uts: make emu10k non-verbose
[unleashed.git] / kernel / os / rctl.c
blob09b80323d58942f0236df8b9b4f1a48fca80c2c7
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
25 #include <sys/atomic.h>
26 #include <sys/cmn_err.h>
27 #include <sys/id_space.h>
28 #include <sys/kmem.h>
29 #include <sys/kstat.h>
30 #include <sys/log.h>
31 #include <sys/modctl.h>
32 #include <sys/modhash.h>
33 #include <sys/mutex.h>
34 #include <sys/proc.h>
35 #include <sys/procset.h>
36 #include <sys/project.h>
37 #include <sys/resource.h>
38 #include <sys/rctl.h>
39 #include <sys/siginfo.h>
40 #include <sys/strlog.h>
41 #include <sys/systm.h>
42 #include <sys/task.h>
43 #include <sys/types.h>
44 #include <sys/policy.h>
45 #include <sys/zone.h>
48 * Resource controls (rctls)
50 * The rctl subsystem provides a mechanism for kernel components to
51 * register their individual resource controls with the system as a whole,
52 * such that those controls can subscribe to specific actions while being
53 * associated with the various process-model entities provided by the kernel:
54 * the process, the task, the project, and the zone. (In principle, only
55 * minor modifications would be required to connect the resource control
56 * functionality to non-process-model entities associated with the system.)
58 * Subsystems register their rctls via rctl_register(). Subsystems
59 * also wishing to provide additional limits on a given rctl can modify
60 * them once they have the rctl handle. Each subsystem should store the
61 * handle to their rctl for direct access.
63 * A primary dictionary, rctl_dict, contains a hash of id to the default
64 * control definition for each controlled resource-entity pair on the system.
65 * A secondary dictionary, rctl_dict_by_name, contains a hash of name to
66 * resource control handles. The resource control handles are distributed by
67 * the rctl_ids ID space. The handles are private and not to be
68 * advertised to userland; all userland interactions are via the rctl
69 * names.
71 * Entities inherit their rctls from their predecessor. Since projects have
72 * no ancestor, they inherit their rctls from the rctl dict for project
73 * rctls. It is expected that project controls will be set to their
74 * appropriate values shortly after project creation, presumably from a
75 * policy source such as the project database.
77 * Data structures
78 * The rctl_set_t attached to each of the process model entities is a simple
79 * hash table keyed on the rctl handle assigned at registration. The entries
80 * in the hash table are rctl_t's, whose relationship with the active control
81 * values on that resource and with the global state of the resource we
82 * illustrate below:
84 * rctl_dict[key] --> rctl_dict_entry
85 * ^
86 * |
87 * +--+---+
88 * rctl_set[key] ---> | rctl | --> value <-> value <-> system value --> NULL
89 * +--+---+ ^
90 * | |
91 * +------- cursor ------+
93 * That is, the rctl contains a back pointer to the global resource control
94 * state for this resource, which is also available in the rctl_dict hash
95 * table mentioned earlier. The rctl contains two pointers to resource
96 * control values: one, values, indicates the entire sequence of control
97 * values; the other, cursor, indicates the currently active control
98 * value--the next value to be enforced. The value list itself is an open,
99 * doubly-linked list, the last non-NULL member of which is the system value
100 * for that resource (being the theoretical/conventional maximum allowable
101 * value for the resource on this OS instance).
103 * Ops Vector
104 * Subsystems publishing rctls need not provide instances of all of the
105 * functions specified by the ops vector. In particular, if general
106 * rctl_*() entry points are not being called, certain functions can be
107 * omitted. These align as follows:
109 * rctl_set()
110 * You may wish to provide a set callback if locking circumstances prevent
111 * it or if the performance cost of requesting the enforced value from the
112 * resource control is prohibitively expensive. For instance, the currently
113 * enforced file size limit is stored on the process in the p_fsz_ctl to
114 * maintain read()/write() performance.
116 * rctl_test()
117 * You must provide a test callback if you are using the rctl_test()
118 * interface. An action callback is optional.
120 * rctl_action()
121 * You may wish to provide an action callback.
123 * Registration
124 * New resource controls can be added to a running instance by loaded modules
125 * via registration. (The current implementation does not support unloadable
126 * modules; this functionality can be added if needed, via an
127 * activation/deactivation interface involving the manipulation of the
128 * ops vector for the resource control(s) needing to support unloading.)
130 * Control value ordering
131 * Because the rctl_val chain on each rctl must be navigable in a
132 * deterministic way, we have to define an ordering on the rctl_val_t's. The
133 * defined order is (flags & [maximal], value, flags & [deny-action],
134 * privilege).
136 * Locking
137 * rctl_dict_lock must be acquired prior to rctl_lists_lock. Since
138 * rctl_dict_lock or rctl_lists_lock can be called at the enforcement point
139 * of any subsystem, holding subsystem locks, it is at all times inappropriate
140 * to call kmem_alloc(., KM_SLEEP) while holding either of these locks.
141 * Traversing any of the various resource control entity lists requires
142 * holding rctl_lists_lock.
144 * Each individual resource control set associated with an entity must have
145 * its rcs_lock held for the duration of any operations that would add
146 * resource controls or control values to the set.
148 * The locking subsequence of interest is: p_lock, rctl_dict_lock,
149 * rctl_lists_lock, entity->rcs_lock.
151 * The projects(4) database and project entity resource controls
152 * A special case is made for RCENTITY_PROJECT values set through the
153 * setproject(3PROJECT) interface. setproject() makes use of a private
154 * interface, setprojrctl(), which passes through an array of resource control
155 * blocks that need to be set while holding the entity->rcs_lock. This
156 * ensures that the act of modifying a project's resource controls is
157 * "atomic" within the kernel.
159 * Within the rctl sub-system, we provide two interfaces that are only used by
160 * the setprojrctl() code path - rctl_local_insert_all() and
161 * rctl_local_replace_all(). rctl_local_insert_all() will ensure that the
162 * resource values specified in *new_values are applied.
163 * rctl_local_replace_all() will purge the current rctl->rc_projdb and
164 * rctl->rc_values entries, and apply the *new_values.
166 * These functions modify not only the linked list of active resource controls
167 * (rctl->rc_values), but also a "cached" linked list (rctl->rc_projdb) of
168 * values set through these interfaces. To clarify:
170 * rctl->rc_values - a linked list of rctl_val_t. These are the active
171 * resource values associated with this rctl, and may have been set by
172 * setrctl() - via prctl(1M), or by setprojrctl() - via
173 * setproject(3PROJECT).
175 * rctl->rc_projdb - a linked list of rctl_val_t. These reflect the
176 * resource values set by the setprojrctl() code path. rc_projdb is not
177 * referenced by any other component of the rctl sub-system.
179 * As various locks are held when calling these functions, we ensure that all
180 * the possible memory allocations are performed prior to calling the
181 * function. *alloc_values is a linked list of uninitialized rctl_val_t,
182 * which may be used to duplicate a new resource control value (passed in as
183 * one of the members of the *new_values linked list), in order to populate
184 * rctl->rc_values.
187 id_t max_rctl_hndl = 32768;
188 int rctl_dict_size = 64;
189 int rctl_set_size = 8;
190 kmutex_t rctl_dict_lock;
191 mod_hash_t *rctl_dict;
192 mod_hash_t *rctl_dict_by_name;
193 id_space_t *rctl_ids;
194 kmem_cache_t *rctl_cache; /* kmem cache for rctl structures */
195 kmem_cache_t *rctl_val_cache; /* kmem cache for rctl values */
197 kmutex_t rctl_lists_lock;
198 rctl_dict_entry_t *rctl_lists[RC_MAX_ENTITY + 1];
201 * Default resource control operations and ops vector
202 * To be used if the particular rcontrol has no specific actions defined, or
203 * if the subsystem providing the control is quiescing (in preparation for
204 * unloading, presumably.)
206 * Resource controls with callbacks should fill the unused operations with the
207 * appropriate default impotent callback.
209 /*ARGSUSED*/
210 void
211 rcop_no_action(struct rctl *r, struct proc *p, rctl_entity_p_t *e)
215 /*ARGSUSED*/
216 rctl_qty_t
217 rcop_no_usage(struct rctl *r, struct proc *p)
219 return (0);
222 /*ARGSUSED*/
224 rcop_no_set(struct rctl *r, struct proc *p, rctl_entity_p_t *e, rctl_qty_t l)
226 return (0);
229 /*ARGSUSED*/
231 rcop_no_test(struct rctl *r, struct proc *p, rctl_entity_p_t *e,
232 struct rctl_val *rv, rctl_qty_t i, uint_t f)
234 return (0);
237 rctl_ops_t rctl_default_ops = {
238 rcop_no_action,
239 rcop_no_usage,
240 rcop_no_set,
241 rcop_no_test
245 * Default "absolute" resource control operation and ops vector
246 * Useful if there is no usage associated with the
247 * resource control.
249 /*ARGSUSED*/
251 rcop_absolute_test(struct rctl *r, struct proc *p, rctl_entity_p_t *e,
252 struct rctl_val *rv, rctl_qty_t i, uint_t f)
254 return (i > rv->rcv_value);
257 rctl_ops_t rctl_absolute_ops = {
258 rcop_no_action,
259 rcop_no_usage,
260 rcop_no_set,
261 rcop_absolute_test
264 /*ARGSUSED*/
265 static uint_t
266 rctl_dict_hash_by_id(void *hash_data, mod_hash_key_t key)
268 return ((uint_t)(uintptr_t)key % rctl_dict_size);
271 static int
272 rctl_dict_id_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
274 uint_t u1 = (uint_t)(uintptr_t)key1;
275 uint_t u2 = (uint_t)(uintptr_t)key2;
277 if (u1 > u2)
278 return (1);
280 if (u1 == u2)
281 return (0);
283 return (-1);
286 static void
287 rctl_dict_val_dtor(mod_hash_val_t val)
289 rctl_dict_entry_t *kr = (rctl_dict_entry_t *)val;
291 kmem_free(kr, sizeof (rctl_dict_entry_t));
295 * size_t rctl_build_name_buf()
297 * Overview
298 * rctl_build_name_buf() walks all active resource controls in the dictionary,
299 * building a buffer of continguous NUL-terminated strings.
301 * Return values
302 * The size of the buffer is returned, the passed pointer's contents are
303 * modified to that of the location of the buffer.
305 * Caller's context
306 * Caller must be in a context suitable for KM_SLEEP allocations.
308 size_t
309 rctl_build_name_buf(char **rbufp)
311 size_t req_size, cpy_size;
312 char *rbufloc;
313 int i;
315 rctl_rebuild_name_buf:
316 req_size = cpy_size = 0;
319 * Calculate needed buffer length.
321 mutex_enter(&rctl_lists_lock);
322 for (i = 0; i < RC_MAX_ENTITY + 1; i++) {
323 rctl_dict_entry_t *rde;
325 for (rde = rctl_lists[i];
326 rde != NULL;
327 rde = rde->rcd_next)
328 req_size += strlen(rde->rcd_name) + 1;
330 mutex_exit(&rctl_lists_lock);
332 rbufloc = *rbufp = kmem_alloc(req_size, KM_SLEEP);
335 * Copy rctl names into our buffer. If the copy length exceeds the
336 * allocate length (due to registration changes), stop copying, free the
337 * buffer, and start again.
339 mutex_enter(&rctl_lists_lock);
340 for (i = 0; i < RC_MAX_ENTITY + 1; i++) {
341 rctl_dict_entry_t *rde;
343 for (rde = rctl_lists[i];
344 rde != NULL;
345 rde = rde->rcd_next) {
346 size_t length = strlen(rde->rcd_name) + 1;
348 cpy_size += length;
350 if (cpy_size > req_size) {
351 kmem_free(*rbufp, req_size);
352 mutex_exit(&rctl_lists_lock);
353 goto rctl_rebuild_name_buf;
356 bcopy(rde->rcd_name, rbufloc, length);
357 rbufloc += length;
360 mutex_exit(&rctl_lists_lock);
362 return (req_size);
366 * rctl_dict_entry_t *rctl_dict_lookup(const char *)
368 * Overview
369 * rctl_dict_lookup() returns the resource control dictionary entry for the
370 * named resource control.
372 * Return values
373 * A pointer to the appropriate resource control dictionary entry, or NULL if
374 * no such named entry exists.
376 * Caller's context
377 * Caller must not be holding rctl_dict_lock.
379 rctl_dict_entry_t *
380 rctl_dict_lookup(const char *name)
382 rctl_dict_entry_t *rde;
384 mutex_enter(&rctl_dict_lock);
386 if (mod_hash_find(rctl_dict_by_name, (mod_hash_key_t)name,
387 (mod_hash_val_t *)&rde) == MH_ERR_NOTFOUND) {
388 mutex_exit(&rctl_dict_lock);
389 return (NULL);
392 mutex_exit(&rctl_dict_lock);
394 return (rde);
398 * rctl_hndl_t rctl_hndl_lookup(const char *)
400 * Overview
401 * rctl_hndl_lookup() returns the resource control id (the "handle") for the
402 * named resource control.
404 * Return values
405 * The appropriate id, or -1 if no such named entry exists.
407 * Caller's context
408 * Caller must not be holding rctl_dict_lock.
410 rctl_hndl_t
411 rctl_hndl_lookup(const char *name)
413 rctl_dict_entry_t *rde;
415 if ((rde = rctl_dict_lookup(name)) == NULL)
416 return (-1);
418 return (rde->rcd_id);
422 * rctl_dict_entry_t * rctl_dict_lookup_hndl(rctl_hndl_t)
424 * Overview
425 * rctl_dict_lookup_hndl() completes the public lookup functions, by returning
426 * the resource control dictionary entry matching a given resource control id.
428 * Return values
429 * A pointer to the matching resource control dictionary entry, or NULL if the
430 * id does not match any existing entries.
432 * Caller's context
433 * Caller must not be holding rctl_lists_lock.
435 rctl_dict_entry_t *
436 rctl_dict_lookup_hndl(rctl_hndl_t hndl)
438 uint_t i;
440 mutex_enter(&rctl_lists_lock);
441 for (i = 0; i < RC_MAX_ENTITY + 1; i++) {
442 rctl_dict_entry_t *rde;
444 for (rde = rctl_lists[i];
445 rde != NULL;
446 rde = rde->rcd_next)
447 if (rde->rcd_id == hndl) {
448 mutex_exit(&rctl_lists_lock);
449 return (rde);
452 mutex_exit(&rctl_lists_lock);
454 return (NULL);
458 * void rctl_add_default_limit(const char *name, rctl_qty_t value,
459 * rctl_priv_t privilege, uint_t action)
461 * Overview
462 * Create a default limit with specified value, privilege, and action.
464 * Return value
465 * No value returned.
467 void
468 rctl_add_default_limit(const char *name, rctl_qty_t value,
469 rctl_priv_t privilege, uint_t action)
471 rctl_val_t *dval;
472 rctl_dict_entry_t *rde;
474 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
475 bzero(dval, sizeof (rctl_val_t));
476 dval->rcv_value = value;
477 dval->rcv_privilege = privilege;
478 dval->rcv_flagaction = action;
479 dval->rcv_action_recip_pid = -1;
481 rde = rctl_dict_lookup(name);
482 (void) rctl_val_list_insert(&rde->rcd_default_value, dval);
486 * void rctl_add_legacy_limit(const char *name, const char *mname,
487 * const char *lname, rctl_qty_t dflt)
489 * Overview
490 * Create a default privileged limit, using the value obtained from
491 * /etc/system if it exists and is greater than the specified default
492 * value. Exists primarily for System V IPC.
494 * Return value
495 * No value returned.
497 void
498 rctl_add_legacy_limit(const char *name, const char *mname, const char *lname,
499 rctl_qty_t dflt, rctl_qty_t max)
501 rctl_qty_t qty;
503 if (!mod_sysvar(mname, lname, &qty) || (qty < dflt))
504 qty = dflt;
506 if (qty > max)
507 qty = max;
509 rctl_add_default_limit(name, qty, RCPRIV_PRIVILEGED, RCTL_LOCAL_DENY);
512 rctl_set_t *
513 rctl_entity_obtain_rset(rctl_dict_entry_t *rcd, struct proc *p)
515 rctl_set_t *rset = NULL;
517 if (rcd == NULL)
518 return (NULL);
520 switch (rcd->rcd_entity) {
521 case RCENTITY_PROCESS:
522 rset = p->p_rctls;
523 break;
524 case RCENTITY_TASK:
525 ASSERT(MUTEX_HELD(&p->p_lock));
526 if (p->p_task != NULL)
527 rset = p->p_task->tk_rctls;
528 break;
529 case RCENTITY_PROJECT:
530 ASSERT(MUTEX_HELD(&p->p_lock));
531 if (p->p_task != NULL &&
532 p->p_task->tk_proj != NULL)
533 rset = p->p_task->tk_proj->kpj_rctls;
534 break;
535 case RCENTITY_ZONE:
536 ASSERT(MUTEX_HELD(&p->p_lock));
537 if (p->p_zone != NULL)
538 rset = p->p_zone->zone_rctls;
539 break;
540 default:
541 panic("unknown rctl entity type %d seen", rcd->rcd_entity);
542 break;
545 return (rset);
548 static void
549 rctl_entity_obtain_entity_p(rctl_entity_t entity, struct proc *p,
550 rctl_entity_p_t *e)
552 e->rcep_p.proc = NULL;
553 e->rcep_t = entity;
555 switch (entity) {
556 case RCENTITY_PROCESS:
557 e->rcep_p.proc = p;
558 break;
559 case RCENTITY_TASK:
560 ASSERT(MUTEX_HELD(&p->p_lock));
561 if (p->p_task != NULL)
562 e->rcep_p.task = p->p_task;
563 break;
564 case RCENTITY_PROJECT:
565 ASSERT(MUTEX_HELD(&p->p_lock));
566 if (p->p_task != NULL &&
567 p->p_task->tk_proj != NULL)
568 e->rcep_p.proj = p->p_task->tk_proj;
569 break;
570 case RCENTITY_ZONE:
571 ASSERT(MUTEX_HELD(&p->p_lock));
572 if (p->p_zone != NULL)
573 e->rcep_p.zone = p->p_zone;
574 break;
575 default:
576 panic("unknown rctl entity type %d seen", entity);
577 break;
581 static void
582 rctl_gp_alloc(rctl_alloc_gp_t *rcgp)
584 uint_t i;
586 if (rcgp->rcag_nctls > 0) {
587 rctl_t *prev = kmem_cache_alloc(rctl_cache, KM_SLEEP);
588 rctl_t *rctl = prev;
590 rcgp->rcag_ctls = prev;
592 for (i = 1; i < rcgp->rcag_nctls; i++) {
593 rctl = kmem_cache_alloc(rctl_cache, KM_SLEEP);
594 prev->rc_next = rctl;
595 prev = rctl;
598 rctl->rc_next = NULL;
601 if (rcgp->rcag_nvals > 0) {
602 rctl_val_t *prev = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
603 rctl_val_t *rval = prev;
605 rcgp->rcag_vals = prev;
607 for (i = 1; i < rcgp->rcag_nvals; i++) {
608 rval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
609 prev->rcv_next = rval;
610 prev = rval;
613 rval->rcv_next = NULL;
618 static rctl_val_t *
619 rctl_gp_detach_val(rctl_alloc_gp_t *rcgp)
621 rctl_val_t *rval = rcgp->rcag_vals;
623 ASSERT(rcgp->rcag_nvals > 0);
624 rcgp->rcag_nvals--;
625 rcgp->rcag_vals = rval->rcv_next;
627 rval->rcv_next = NULL;
629 return (rval);
632 static rctl_t *
633 rctl_gp_detach_ctl(rctl_alloc_gp_t *rcgp)
635 rctl_t *rctl = rcgp->rcag_ctls;
637 ASSERT(rcgp->rcag_nctls > 0);
638 rcgp->rcag_nctls--;
639 rcgp->rcag_ctls = rctl->rc_next;
641 rctl->rc_next = NULL;
643 return (rctl);
647 static void
648 rctl_gp_free(rctl_alloc_gp_t *rcgp)
650 rctl_val_t *rval = rcgp->rcag_vals;
651 rctl_t *rctl = rcgp->rcag_ctls;
653 while (rval != NULL) {
654 rctl_val_t *next = rval->rcv_next;
656 kmem_cache_free(rctl_val_cache, rval);
657 rval = next;
660 while (rctl != NULL) {
661 rctl_t *next = rctl->rc_next;
663 kmem_cache_free(rctl_cache, rctl);
664 rctl = next;
669 * void rctl_prealloc_destroy(rctl_alloc_gp_t *)
671 * Overview
672 * Release all unused memory allocated via one of the "prealloc" functions:
673 * rctl_set_init_prealloc, rctl_set_dup_prealloc, or rctl_rlimit_set_prealloc.
675 * Return values
676 * None.
678 * Caller's context
679 * No restrictions on context.
681 void
682 rctl_prealloc_destroy(rctl_alloc_gp_t *gp)
684 rctl_gp_free(gp);
685 kmem_free(gp, sizeof (rctl_alloc_gp_t));
689 * int rctl_val_cmp(rctl_val_t *, rctl_val_t *, int)
691 * Overview
692 * This function defines an ordering to rctl_val_t's in order to allow
693 * for correct placement in value lists. When the imprecise flag is set,
694 * the action recipient is ignored. This is to facilitate insert,
695 * delete, and replace operations by rctlsys.
697 * Return values
698 * 0 if the val_t's are are considered identical
699 * -1 if a is ordered lower than b
700 * 1 if a is lowered higher than b
702 * Caller's context
703 * No restrictions on context.
706 rctl_val_cmp(rctl_val_t *a, rctl_val_t *b, int imprecise)
708 if ((a->rcv_flagaction & RCTL_LOCAL_MAXIMAL) <
709 (b->rcv_flagaction & RCTL_LOCAL_MAXIMAL))
710 return (-1);
712 if ((a->rcv_flagaction & RCTL_LOCAL_MAXIMAL) >
713 (b->rcv_flagaction & RCTL_LOCAL_MAXIMAL))
714 return (1);
716 if (a->rcv_value < b->rcv_value)
717 return (-1);
719 if (a->rcv_value > b->rcv_value)
720 return (1);
722 if ((a->rcv_flagaction & RCTL_LOCAL_DENY) <
723 (b->rcv_flagaction & RCTL_LOCAL_DENY))
724 return (-1);
726 if ((a->rcv_flagaction & RCTL_LOCAL_DENY) >
727 (b->rcv_flagaction & RCTL_LOCAL_DENY))
728 return (1);
730 if (a->rcv_privilege < b->rcv_privilege)
731 return (-1);
733 if (a->rcv_privilege > b->rcv_privilege)
734 return (1);
736 if (imprecise)
737 return (0);
739 if (a->rcv_action_recip_pid < b->rcv_action_recip_pid)
740 return (-1);
742 if (a->rcv_action_recip_pid > b->rcv_action_recip_pid)
743 return (1);
745 return (0);
748 static rctl_val_t *
749 rctl_val_list_find(rctl_val_t **head, rctl_val_t *cval)
751 rctl_val_t *rval = *head;
753 while (rval != NULL) {
754 if (rctl_val_cmp(cval, rval, 0) == 0)
755 return (rval);
757 rval = rval->rcv_next;
760 return (NULL);
765 * int rctl_val_list_insert(rctl_val_t **, rctl_val_t *)
767 * Overview
768 * This function inserts the rctl_val_t into the value list provided.
769 * The insert is always successful unless if the value is a duplicate
770 * of one already in the list.
772 * Return values
773 * 1 if the value was a duplicate of an existing value in the list.
774 * 0 if the insert was successful.
777 rctl_val_list_insert(rctl_val_t **root, rctl_val_t *rval)
779 rctl_val_t *prev;
780 int equiv;
782 rval->rcv_next = NULL;
783 rval->rcv_prev = NULL;
785 if (*root == NULL) {
786 *root = rval;
787 return (0);
790 equiv = rctl_val_cmp(rval, *root, 0);
792 if (equiv == 0)
793 return (1);
795 if (equiv < 0) {
796 rval->rcv_next = *root;
797 rval->rcv_next->rcv_prev = rval;
798 *root = rval;
800 return (0);
803 prev = *root;
804 while (prev->rcv_next != NULL &&
805 (equiv = rctl_val_cmp(rval, prev->rcv_next, 0)) > 0) {
806 prev = prev->rcv_next;
809 if (equiv == 0)
810 return (1);
812 rval->rcv_next = prev->rcv_next;
813 if (rval->rcv_next != NULL)
814 rval->rcv_next->rcv_prev = rval;
815 prev->rcv_next = rval;
816 rval->rcv_prev = prev;
818 return (0);
821 static int
822 rctl_val_list_delete(rctl_val_t **root, rctl_val_t *rval)
824 rctl_val_t *prev;
826 if (*root == NULL)
827 return (-1);
829 prev = *root;
830 if (rctl_val_cmp(rval, prev, 0) == 0) {
831 *root = prev->rcv_next;
832 if (*root != NULL)
833 (*root)->rcv_prev = NULL;
835 kmem_cache_free(rctl_val_cache, prev);
837 return (0);
840 while (prev->rcv_next != NULL &&
841 rctl_val_cmp(rval, prev->rcv_next, 0) != 0) {
842 prev = prev->rcv_next;
845 if (prev->rcv_next == NULL) {
847 * If we navigate the entire list and cannot find a match, then
848 * return failure.
850 return (-1);
853 prev = prev->rcv_next;
854 prev->rcv_prev->rcv_next = prev->rcv_next;
855 if (prev->rcv_next != NULL)
856 prev->rcv_next->rcv_prev = prev->rcv_prev;
858 kmem_cache_free(rctl_val_cache, prev);
860 return (0);
863 static rctl_val_t *
864 rctl_val_list_dup(rctl_val_t *rval, rctl_alloc_gp_t *ragp, struct proc *oldp,
865 struct proc *newp)
867 rctl_val_t *head = NULL;
869 for (; rval != NULL; rval = rval->rcv_next) {
870 rctl_val_t *dval = rctl_gp_detach_val(ragp);
872 bcopy(rval, dval, sizeof (rctl_val_t));
873 dval->rcv_prev = dval->rcv_next = NULL;
875 if (oldp == NULL ||
876 rval->rcv_action_recipient == NULL ||
877 rval->rcv_action_recipient == oldp) {
878 if (rval->rcv_privilege == RCPRIV_BASIC) {
879 dval->rcv_action_recipient = newp;
880 dval->rcv_action_recip_pid = newp->p_pid;
881 } else {
882 dval->rcv_action_recipient = NULL;
883 dval->rcv_action_recip_pid = -1;
886 (void) rctl_val_list_insert(&head, dval);
887 } else {
888 kmem_cache_free(rctl_val_cache, dval);
892 return (head);
895 static void
896 rctl_val_list_reset(rctl_val_t *rval)
898 for (; rval != NULL; rval = rval->rcv_next)
899 rval->rcv_firing_time = 0;
902 static uint_t
903 rctl_val_list_count(rctl_val_t *rval)
905 uint_t n = 0;
907 for (; rval != NULL; rval = rval->rcv_next)
908 n++;
910 return (n);
914 static void
915 rctl_val_list_free(rctl_val_t *rval)
917 while (rval != NULL) {
918 rctl_val_t *next = rval->rcv_next;
920 kmem_cache_free(rctl_val_cache, rval);
922 rval = next;
927 * rctl_qty_t rctl_model_maximum(rctl_dict_entry_t *, struct proc *)
929 * Overview
930 * In cases where the operating system supports more than one process
931 * addressing model, the operating system capabilities will exceed those of
932 * one or more of these models. Processes in a less capable model must have
933 * their resources accurately controlled, without diluting those of their
934 * descendants reached via exec(). rctl_model_maximum() returns the governing
935 * value for the specified process with respect to a resource control, such
936 * that the value can used for the RCTLOP_SET callback or compatability
937 * support.
939 * Return values
940 * The maximum value for the given process for the specified resource control.
942 * Caller's context
943 * No restrictions on context.
945 rctl_qty_t
946 rctl_model_maximum(rctl_dict_entry_t *rde, struct proc *p)
948 if (p->p_model == DATAMODEL_NATIVE)
949 return (rde->rcd_max_native);
951 return (rde->rcd_max_ilp32);
955 * rctl_qty_t rctl_model_value(rctl_dict_entry_t *, struct proc *, rctl_qty_t)
957 * Overview
958 * Convenience function wrapping the rctl_model_maximum() functionality.
960 * Return values
961 * The lesser of the process's maximum value and the given value for the
962 * specified resource control.
964 * Caller's context
965 * No restrictions on context.
967 rctl_qty_t
968 rctl_model_value(rctl_dict_entry_t *rde, struct proc *p, rctl_qty_t value)
970 rctl_qty_t max = rctl_model_maximum(rde, p);
972 return (value < max ? value : max);
975 static void
976 rctl_set_insert(rctl_set_t *set, rctl_hndl_t hndl, rctl_t *rctl)
978 uint_t index = hndl % rctl_set_size;
979 rctl_t *next_ctl, *prev_ctl;
981 ASSERT(MUTEX_HELD(&set->rcs_lock));
983 rctl->rc_next = NULL;
985 if (set->rcs_ctls[index] == NULL) {
986 set->rcs_ctls[index] = rctl;
987 return;
990 if (hndl < set->rcs_ctls[index]->rc_id) {
991 rctl->rc_next = set->rcs_ctls[index];
992 set->rcs_ctls[index] = rctl;
994 return;
997 for (next_ctl = set->rcs_ctls[index]->rc_next,
998 prev_ctl = set->rcs_ctls[index];
999 next_ctl != NULL;
1000 prev_ctl = next_ctl,
1001 next_ctl = next_ctl->rc_next) {
1002 if (next_ctl->rc_id > hndl) {
1003 rctl->rc_next = next_ctl;
1004 prev_ctl->rc_next = rctl;
1006 return;
1010 rctl->rc_next = next_ctl;
1011 prev_ctl->rc_next = rctl;
1015 * rctl_set_t *rctl_set_create()
1017 * Overview
1018 * Create an empty resource control set, suitable for attaching to a
1019 * controlled entity.
1021 * Return values
1022 * A pointer to the newly created set.
1024 * Caller's context
1025 * Safe for KM_SLEEP allocations.
1027 rctl_set_t *
1028 rctl_set_create()
1030 rctl_set_t *rset = kmem_zalloc(sizeof (rctl_set_t), KM_SLEEP);
1032 mutex_init(&rset->rcs_lock, NULL, MUTEX_DEFAULT, NULL);
1033 rset->rcs_ctls = kmem_zalloc(rctl_set_size * sizeof (rctl_t *),
1034 KM_SLEEP);
1035 rset->rcs_entity = -1;
1037 return (rset);
1041 * rctl_gp_alloc_t *rctl_set_init_prealloc(rctl_entity_t)
1043 * Overview
1044 * rctl_set_init_prealloc() examines the globally defined resource controls
1045 * and their default values and returns a resource control allocation group
1046 * populated with sufficient controls and values to form a representative
1047 * resource control set for the specified entity.
1049 * Return values
1050 * A pointer to the newly created allocation group.
1052 * Caller's context
1053 * Caller must be in a context suitable for KM_SLEEP allocations.
1055 rctl_alloc_gp_t *
1056 rctl_set_init_prealloc(rctl_entity_t entity)
1058 rctl_dict_entry_t *rde;
1059 rctl_alloc_gp_t *ragp = kmem_zalloc(sizeof (rctl_alloc_gp_t), KM_SLEEP);
1061 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1063 if (rctl_lists[entity] == NULL)
1064 return (ragp);
1066 mutex_enter(&rctl_lists_lock);
1068 for (rde = rctl_lists[entity]; rde != NULL; rde = rde->rcd_next) {
1069 ragp->rcag_nctls++;
1070 ragp->rcag_nvals += rctl_val_list_count(rde->rcd_default_value);
1073 mutex_exit(&rctl_lists_lock);
1075 rctl_gp_alloc(ragp);
1077 return (ragp);
1081 * rctl_set_t *rctl_set_init(rctl_entity_t)
1083 * Overview
1084 * rctl_set_create() creates a resource control set, initialized with the
1085 * system infinite values on all registered controls, for attachment to a
1086 * system entity requiring resource controls, such as a process or a task.
1088 * Return values
1089 * A pointer to the newly filled set.
1091 * Caller's context
1092 * Caller must be holding p_lock on entry so that RCTLOP_SET() functions
1093 * may modify task and project members based on the proc structure
1094 * they are passed.
1096 rctl_set_t *
1097 rctl_set_init(rctl_entity_t entity, struct proc *p, rctl_entity_p_t *e,
1098 rctl_set_t *rset, rctl_alloc_gp_t *ragp)
1100 rctl_dict_entry_t *rde;
1102 ASSERT(MUTEX_HELD(&p->p_lock));
1103 ASSERT(e);
1104 rset->rcs_entity = entity;
1106 if (rctl_lists[entity] == NULL)
1107 return (rset);
1109 mutex_enter(&rctl_lists_lock);
1110 mutex_enter(&rset->rcs_lock);
1112 for (rde = rctl_lists[entity]; rde != NULL; rde = rde->rcd_next) {
1113 rctl_t *rctl = rctl_gp_detach_ctl(ragp);
1115 rctl->rc_dict_entry = rde;
1116 rctl->rc_id = rde->rcd_id;
1117 rctl->rc_projdb = NULL;
1119 rctl->rc_values = rctl_val_list_dup(rde->rcd_default_value,
1120 ragp, NULL, p);
1121 rctl->rc_cursor = rctl->rc_values;
1123 ASSERT(rctl->rc_cursor != NULL);
1125 rctl_set_insert(rset, rde->rcd_id, rctl);
1127 RCTLOP_SET(rctl, p, e, rctl_model_value(rctl->rc_dict_entry, p,
1128 rctl->rc_cursor->rcv_value));
1131 mutex_exit(&rset->rcs_lock);
1132 mutex_exit(&rctl_lists_lock);
1134 return (rset);
1137 static rctl_t *
1138 rctl_dup(rctl_t *rctl, rctl_alloc_gp_t *ragp, struct proc *oldp,
1139 struct proc *newp)
1141 rctl_t *dup = rctl_gp_detach_ctl(ragp);
1142 rctl_val_t *dval;
1144 dup->rc_id = rctl->rc_id;
1145 dup->rc_dict_entry = rctl->rc_dict_entry;
1146 dup->rc_next = NULL;
1147 dup->rc_cursor = NULL;
1148 dup->rc_values = rctl_val_list_dup(rctl->rc_values, ragp, oldp, newp);
1150 for (dval = dup->rc_values;
1151 dval != NULL; dval = dval->rcv_next) {
1152 if (rctl_val_cmp(rctl->rc_cursor, dval, 0) >= 0) {
1153 dup->rc_cursor = dval;
1154 break;
1158 if (dup->rc_cursor == NULL)
1159 dup->rc_cursor = dup->rc_values;
1161 return (dup);
1164 static void
1165 rctl_set_fill_alloc_gp(rctl_set_t *set, rctl_alloc_gp_t *ragp)
1167 uint_t i;
1169 bzero(ragp, sizeof (rctl_alloc_gp_t));
1171 for (i = 0; i < rctl_set_size; i++) {
1172 rctl_t *r = set->rcs_ctls[i];
1174 while (r != NULL) {
1175 ragp->rcag_nctls++;
1177 ragp->rcag_nvals += rctl_val_list_count(r->rc_values);
1179 r = r->rc_next;
1185 * rctl_alloc_gp_t *rctl_set_dup_prealloc(rctl_set_t *)
1187 * Overview
1188 * Given a resource control set, allocate a sufficiently large allocation
1189 * group to contain a duplicate of the set.
1191 * Return value
1192 * A pointer to the newly created allocation group.
1194 * Caller's context
1195 * Safe for KM_SLEEP allocations.
1197 rctl_alloc_gp_t *
1198 rctl_set_dup_prealloc(rctl_set_t *set)
1200 rctl_alloc_gp_t *ragp = kmem_zalloc(sizeof (rctl_alloc_gp_t), KM_SLEEP);
1202 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1204 mutex_enter(&set->rcs_lock);
1205 rctl_set_fill_alloc_gp(set, ragp);
1206 mutex_exit(&set->rcs_lock);
1208 rctl_gp_alloc(ragp);
1210 return (ragp);
1214 * int rctl_set_dup_ready(rctl_set_t *, rctl_alloc_gp_t *)
1216 * Overview
1217 * Verify that the allocation group provided is large enough to allow a
1218 * duplicate of the given resource control set to be constructed from its
1219 * contents.
1221 * Return values
1222 * 1 if the allocation group is sufficiently large, 0 otherwise.
1224 * Caller's context
1225 * rcs_lock must be held prior to entry.
1228 rctl_set_dup_ready(rctl_set_t *set, rctl_alloc_gp_t *ragp)
1230 rctl_alloc_gp_t curr_gp;
1232 ASSERT(MUTEX_HELD(&set->rcs_lock));
1234 rctl_set_fill_alloc_gp(set, &curr_gp);
1236 if (curr_gp.rcag_nctls <= ragp->rcag_nctls &&
1237 curr_gp.rcag_nvals <= ragp->rcag_nvals)
1238 return (1);
1240 return (0);
1244 * rctl_set_t *rctl_set_dup(rctl_set_t *, struct proc *, struct proc *,
1245 * rctl_set_t *, rctl_alloc_gp_t *, int)
1247 * Overview
1248 * Make a duplicate of the resource control set. The proc pointers are those
1249 * of the owning process and of the process associated with the entity
1250 * receiving the duplicate.
1252 * Duplication is a 3 stage process. Stage 1 is memory allocation for
1253 * the duplicate set, which is taken care of by rctl_set_dup_prealloc().
1254 * Stage 2 consists of copying all rctls and values from the old set into
1255 * the new. Stage 3 completes the duplication by performing the appropriate
1256 * callbacks for each rctl in the new set.
1258 * Stages 2 and 3 are handled by calling rctl_set_dup with the RCD_DUP and
1259 * RCD_CALLBACK functions, respectively. The RCD_CALLBACK flag may only
1260 * be supplied if the newp proc structure reflects the new task and
1261 * project linkage.
1263 * Return value
1264 * A pointer to the duplicate set.
1266 * Caller's context
1267 * The rcs_lock of the set to be duplicated must be held prior to entry.
1269 rctl_set_t *
1270 rctl_set_dup(rctl_set_t *set, struct proc *oldp, struct proc *newp,
1271 rctl_entity_p_t *e, rctl_set_t *dup, rctl_alloc_gp_t *ragp, int flag)
1273 uint_t i;
1274 rctl_set_t *iter;
1276 ASSERT((flag & RCD_DUP) || (flag & RCD_CALLBACK));
1277 ASSERT(e);
1279 * When copying the old set, iterate over that. Otherwise, when
1280 * only callbacks have been requested, iterate over the dup set.
1282 if (flag & RCD_DUP) {
1283 ASSERT(MUTEX_HELD(&set->rcs_lock));
1284 iter = set;
1285 dup->rcs_entity = set->rcs_entity;
1286 } else {
1287 iter = dup;
1290 mutex_enter(&dup->rcs_lock);
1292 for (i = 0; i < rctl_set_size; i++) {
1293 rctl_t *r = iter->rcs_ctls[i];
1294 rctl_t *d;
1296 while (r != NULL) {
1297 if (flag & RCD_DUP) {
1298 d = rctl_dup(r, ragp, oldp, newp);
1299 rctl_set_insert(dup, r->rc_id, d);
1300 } else {
1301 d = r;
1304 if (flag & RCD_CALLBACK)
1305 RCTLOP_SET(d, newp, e,
1306 rctl_model_value(d->rc_dict_entry, newp,
1307 d->rc_cursor->rcv_value));
1309 r = r->rc_next;
1313 mutex_exit(&dup->rcs_lock);
1315 return (dup);
1319 * void rctl_set_free(rctl_set_t *)
1321 * Overview
1322 * Delete resource control set and all attached values.
1324 * Return values
1325 * No value returned.
1327 * Caller's context
1328 * No restrictions on context.
1330 void
1331 rctl_set_free(rctl_set_t *set)
1333 uint_t i;
1335 mutex_enter(&set->rcs_lock);
1336 for (i = 0; i < rctl_set_size; i++) {
1337 rctl_t *r = set->rcs_ctls[i];
1339 while (r != NULL) {
1340 rctl_val_t *v = r->rc_values;
1341 rctl_t *n = r->rc_next;
1343 kmem_cache_free(rctl_cache, r);
1345 rctl_val_list_free(v);
1347 r = n;
1350 mutex_exit(&set->rcs_lock);
1352 kmem_free(set->rcs_ctls, sizeof (rctl_t *) * rctl_set_size);
1353 kmem_free(set, sizeof (rctl_set_t));
1357 * void rctl_set_reset(rctl_set_t *)
1359 * Overview
1360 * Resets all rctls within the set such that the lowest value becomes active.
1362 * Return values
1363 * No value returned.
1365 * Caller's context
1366 * No restrictions on context.
1368 void
1369 rctl_set_reset(rctl_set_t *set, struct proc *p, rctl_entity_p_t *e)
1371 uint_t i;
1373 ASSERT(e);
1375 mutex_enter(&set->rcs_lock);
1376 for (i = 0; i < rctl_set_size; i++) {
1377 rctl_t *r = set->rcs_ctls[i];
1379 while (r != NULL) {
1380 r->rc_cursor = r->rc_values;
1381 rctl_val_list_reset(r->rc_cursor);
1382 RCTLOP_SET(r, p, e, rctl_model_value(r->rc_dict_entry,
1383 p, r->rc_cursor->rcv_value));
1385 ASSERT(r->rc_cursor != NULL);
1387 r = r->rc_next;
1391 mutex_exit(&set->rcs_lock);
1395 * void rctl_set_tearoff(rctl_set *, struct proc *)
1397 * Overview
1398 * Tear off any resource control values on this set with an action recipient
1399 * equal to the specified process (as they are becoming invalid with the
1400 * process's departure from this set as an observer).
1402 * Return values
1403 * No value returned.
1405 * Caller's context
1406 * No restrictions on context
1408 void
1409 rctl_set_tearoff(rctl_set_t *set, struct proc *p)
1411 uint_t i;
1413 mutex_enter(&set->rcs_lock);
1414 for (i = 0; i < rctl_set_size; i++) {
1415 rctl_t *r = set->rcs_ctls[i];
1417 while (r != NULL) {
1418 rctl_val_t *rval;
1420 tearoff_rewalk_list:
1421 rval = r->rc_values;
1423 while (rval != NULL) {
1424 if (rval->rcv_privilege == RCPRIV_BASIC &&
1425 rval->rcv_action_recipient == p) {
1426 if (r->rc_cursor == rval)
1427 r->rc_cursor = rval->rcv_next;
1429 (void) rctl_val_list_delete(
1430 &r->rc_values, rval);
1432 goto tearoff_rewalk_list;
1435 rval = rval->rcv_next;
1438 ASSERT(r->rc_cursor != NULL);
1440 r = r->rc_next;
1444 mutex_exit(&set->rcs_lock);
1448 rctl_set_find(rctl_set_t *set, rctl_hndl_t hndl, rctl_t **rctl)
1450 uint_t index = hndl % rctl_set_size;
1451 rctl_t *curr_ctl;
1453 ASSERT(MUTEX_HELD(&set->rcs_lock));
1455 for (curr_ctl = set->rcs_ctls[index]; curr_ctl != NULL;
1456 curr_ctl = curr_ctl->rc_next) {
1457 if (curr_ctl->rc_id == hndl) {
1458 *rctl = curr_ctl;
1460 return (0);
1464 return (-1);
1468 * rlim64_t rctl_enforced_value(rctl_hndl_t, rctl_set_t *, struct proc *)
1470 * Overview
1471 * Given a process, get the next enforced value on the rctl of the specified
1472 * handle.
1474 * Return value
1475 * The enforced value.
1477 * Caller's context
1478 * For controls on process collectives, p->p_lock must be held across the
1479 * operation.
1481 /*ARGSUSED*/
1482 rctl_qty_t
1483 rctl_enforced_value(rctl_hndl_t hndl, rctl_set_t *rset, struct proc *p)
1485 rctl_t *rctl;
1486 rlim64_t ret;
1488 mutex_enter(&rset->rcs_lock);
1490 if (rctl_set_find(rset, hndl, &rctl) == -1)
1491 panic("unknown resource control handle %d requested", hndl);
1492 else
1493 ret = rctl_model_value(rctl->rc_dict_entry, p,
1494 rctl->rc_cursor->rcv_value);
1496 mutex_exit(&rset->rcs_lock);
1498 return (ret);
1502 * int rctl_global_get(const char *, rctl_dict_entry_t *)
1504 * Overview
1505 * Copy a sanitized version of the global rctl for a given resource control
1506 * name. (By sanitization, we mean that the unsafe data pointers have been
1507 * zeroed.)
1509 * Return value
1510 * -1 if name not defined, 0 otherwise.
1512 * Caller's context
1513 * No restrictions on context. rctl_dict_lock must not be held.
1516 rctl_global_get(const char *name, rctl_dict_entry_t *drde)
1518 rctl_dict_entry_t *rde = rctl_dict_lookup(name);
1520 if (rde == NULL)
1521 return (-1);
1523 bcopy(rde, drde, sizeof (rctl_dict_entry_t));
1525 drde->rcd_next = NULL;
1526 drde->rcd_ops = NULL;
1528 return (0);
1532 * int rctl_global_set(const char *, rctl_dict_entry_t *)
1534 * Overview
1535 * Transfer the settable fields of the named rctl to the global rctl matching
1536 * the given resource control name.
1538 * Return value
1539 * -1 if name not defined, 0 otherwise.
1541 * Caller's context
1542 * No restrictions on context. rctl_dict_lock must not be held.
1545 rctl_global_set(const char *name, rctl_dict_entry_t *drde)
1547 rctl_dict_entry_t *rde = rctl_dict_lookup(name);
1549 if (rde == NULL)
1550 return (-1);
1552 rde->rcd_flagaction = drde->rcd_flagaction;
1553 rde->rcd_syslog_level = drde->rcd_syslog_level;
1554 rde->rcd_strlog_flags = drde->rcd_strlog_flags;
1556 return (0);
1559 static int
1560 rctl_local_op(rctl_hndl_t hndl, rctl_val_t *oval, rctl_val_t *nval,
1561 int (*cbop)(rctl_hndl_t, struct proc *p, rctl_entity_p_t *e, rctl_t *,
1562 rctl_val_t *, rctl_val_t *), struct proc *p)
1564 rctl_t *rctl;
1565 rctl_set_t *rset;
1566 rctl_entity_p_t e;
1567 int ret = 0;
1568 rctl_dict_entry_t *rde = rctl_dict_lookup_hndl(hndl);
1570 local_op_retry:
1572 ASSERT(MUTEX_HELD(&p->p_lock));
1574 rset = rctl_entity_obtain_rset(rde, p);
1576 if (rset == NULL) {
1577 return (-1);
1579 rctl_entity_obtain_entity_p(rset->rcs_entity, p, &e);
1581 mutex_enter(&rset->rcs_lock);
1583 /* using rctl's hndl, get rctl from local set */
1584 if (rctl_set_find(rset, hndl, &rctl) == -1) {
1585 mutex_exit(&rset->rcs_lock);
1586 return (-1);
1589 ret = cbop(hndl, p, &e, rctl, oval, nval);
1591 mutex_exit(&rset->rcs_lock);
1592 return (ret);
1595 /*ARGSUSED*/
1596 static int
1597 rctl_local_get_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
1598 rctl_t *rctl, rctl_val_t *oval, rctl_val_t *nval)
1600 if (oval == NULL) {
1602 * RCTL_FIRST
1604 bcopy(rctl->rc_values, nval, sizeof (rctl_val_t));
1605 } else {
1607 * RCTL_NEXT
1609 rctl_val_t *tval = rctl_val_list_find(&rctl->rc_values, oval);
1611 if (tval == NULL)
1612 return (ESRCH);
1613 else if (tval->rcv_next == NULL)
1614 return (ENOENT);
1615 else
1616 bcopy(tval->rcv_next, nval, sizeof (rctl_val_t));
1619 return (0);
1623 * int rctl_local_get(rctl_hndl_t, rctl_val_t *)
1625 * Overview
1626 * Get the rctl value for the given flags.
1628 * Return values
1629 * 0 for successful get, errno otherwise.
1632 rctl_local_get(rctl_hndl_t hndl, rctl_val_t *oval, rctl_val_t *nval,
1633 struct proc *p)
1635 return (rctl_local_op(hndl, oval, nval, rctl_local_get_cb, p));
1638 /*ARGSUSED*/
1639 static int
1640 rctl_local_delete_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
1641 rctl_t *rctl, rctl_val_t *oval, rctl_val_t *nval)
1643 if ((oval = rctl_val_list_find(&rctl->rc_values, nval)) == NULL)
1644 return (ESRCH);
1646 if (rctl->rc_cursor == oval) {
1647 rctl->rc_cursor = oval->rcv_next;
1648 rctl_val_list_reset(rctl->rc_cursor);
1649 RCTLOP_SET(rctl, p, e, rctl_model_value(rctl->rc_dict_entry, p,
1650 rctl->rc_cursor->rcv_value));
1652 ASSERT(rctl->rc_cursor != NULL);
1655 (void) rctl_val_list_delete(&rctl->rc_values, oval);
1657 return (0);
1661 * int rctl_local_delete(rctl_hndl_t, rctl_val_t *)
1663 * Overview
1664 * Delete the rctl value for the given flags.
1666 * Return values
1667 * 0 for successful delete, errno otherwise.
1670 rctl_local_delete(rctl_hndl_t hndl, rctl_val_t *val, struct proc *p)
1672 return (rctl_local_op(hndl, NULL, val, rctl_local_delete_cb, p));
1676 * rctl_local_insert_cb()
1678 * Overview
1679 * Insert a new value into the rctl's val list. If an error occurs,
1680 * the val list must be left in the same state as when the function
1681 * was entered.
1683 * Return Values
1684 * 0 for successful insert, EINVAL if the value is duplicated in the
1685 * existing list.
1687 /*ARGSUSED*/
1688 static int
1689 rctl_local_insert_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
1690 rctl_t *rctl, rctl_val_t *oval, rctl_val_t *nval)
1693 * Before inserting, confirm there are no duplicates of this value
1694 * and flag level. If there is a duplicate, flag an error and do
1695 * nothing.
1697 if (rctl_val_list_insert(&rctl->rc_values, nval) != 0)
1698 return (EINVAL);
1700 if (rctl_val_cmp(nval, rctl->rc_cursor, 0) < 0) {
1701 rctl->rc_cursor = nval;
1702 rctl_val_list_reset(rctl->rc_cursor);
1703 RCTLOP_SET(rctl, p, e, rctl_model_value(rctl->rc_dict_entry, p,
1704 rctl->rc_cursor->rcv_value));
1706 ASSERT(rctl->rc_cursor != NULL);
1709 return (0);
1713 * int rctl_local_insert(rctl_hndl_t, rctl_val_t *)
1715 * Overview
1716 * Insert the rctl value into the appropriate rctl set for the calling
1717 * process, given the handle.
1720 rctl_local_insert(rctl_hndl_t hndl, rctl_val_t *val, struct proc *p)
1722 return (rctl_local_op(hndl, NULL, val, rctl_local_insert_cb, p));
1726 * rctl_local_insert_all_cb()
1728 * Overview
1729 * Called for RCENTITY_PROJECT rctls only, via rctlsys_projset().
1731 * Inserts new values from the project database (new_values). alloc_values
1732 * should be a linked list of pre-allocated rctl_val_t, which are used to
1733 * populate (rc_projdb).
1735 * Should the *new_values linked list match the contents of the rctl's
1736 * rp_projdb then we do nothing.
1738 * Return Values
1739 * 0 is always returned.
1741 /*ARGSUSED*/
1742 static int
1743 rctl_local_insert_all_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
1744 rctl_t *rctl, rctl_val_t *new_values, rctl_val_t *alloc_values)
1746 rctl_val_t *val;
1747 rctl_val_t *tmp_val;
1748 rctl_val_t *next;
1749 int modified = 0;
1752 * If this the first time we've set this project rctl, then we delete
1753 * all the privilege values. These privilege values have been set by
1754 * rctl_add_default_limit().
1756 * We save some cycles here by not calling rctl_val_list_delete().
1758 if (rctl->rc_projdb == NULL) {
1759 val = rctl->rc_values;
1761 while (val != NULL) {
1762 if (val->rcv_privilege == RCPRIV_PRIVILEGED) {
1763 if (val->rcv_prev != NULL)
1764 val->rcv_prev->rcv_next = val->rcv_next;
1765 else
1766 rctl->rc_values = val->rcv_next;
1768 if (val->rcv_next != NULL)
1769 val->rcv_next->rcv_prev = val->rcv_prev;
1771 tmp_val = val;
1772 val = val->rcv_next;
1773 kmem_cache_free(rctl_val_cache, tmp_val);
1774 } else {
1775 val = val->rcv_next;
1778 modified = 1;
1782 * Delete active values previously set through the project database.
1784 val = rctl->rc_projdb;
1786 while (val != NULL) {
1788 /* Is the old value found in the new values? */
1789 if (rctl_val_list_find(&new_values, val) == NULL) {
1792 * Delete from the active values if it originated from
1793 * the project database.
1795 if (((tmp_val = rctl_val_list_find(&rctl->rc_values,
1796 val)) != NULL) &&
1797 (tmp_val->rcv_flagaction & RCTL_LOCAL_PROJDB)) {
1798 (void) rctl_val_list_delete(&rctl->rc_values,
1799 tmp_val);
1802 tmp_val = val->rcv_next;
1803 (void) rctl_val_list_delete(&rctl->rc_projdb, val);
1804 val = tmp_val;
1805 modified = 1;
1807 } else
1808 val = val->rcv_next;
1812 * Insert new values from the project database.
1814 while (new_values != NULL) {
1815 next = new_values->rcv_next;
1818 * Insert this new value into the rc_projdb, and duplicate this
1819 * entry to the active list.
1821 if (rctl_val_list_insert(&rctl->rc_projdb, new_values) == 0) {
1823 tmp_val = alloc_values->rcv_next;
1824 bcopy(new_values, alloc_values, sizeof (rctl_val_t));
1825 alloc_values->rcv_next = tmp_val;
1827 if (rctl_val_list_insert(&rctl->rc_values,
1828 alloc_values) == 0) {
1829 /* inserted move alloc_values on */
1830 alloc_values = tmp_val;
1831 modified = 1;
1833 } else {
1835 * Unlike setrctl() we don't want to return an error on
1836 * a duplicate entry; we are concerned solely with
1837 * ensuring that all the values specified are set.
1839 kmem_cache_free(rctl_val_cache, new_values);
1841 new_values = next;
1844 /* Teardown any unused rctl_val_t */
1845 while (alloc_values != NULL) {
1846 tmp_val = alloc_values;
1847 alloc_values = alloc_values->rcv_next;
1848 kmem_cache_free(rctl_val_cache, tmp_val);
1851 /* Reset the cursor if rctl values have been modified */
1852 if (modified) {
1853 rctl->rc_cursor = rctl->rc_values;
1854 rctl_val_list_reset(rctl->rc_cursor);
1855 RCTLOP_SET(rctl, p, e, rctl_model_value(rctl->rc_dict_entry, p,
1856 rctl->rc_cursor->rcv_value));
1859 return (0);
1863 rctl_local_insert_all(rctl_hndl_t hndl, rctl_val_t *new_values,
1864 rctl_val_t *alloc_values, struct proc *p)
1866 return (rctl_local_op(hndl, new_values, alloc_values,
1867 rctl_local_insert_all_cb, p));
1871 * rctl_local_replace_all_cb()
1873 * Overview
1874 * Called for RCENTITY_PROJECT rctls only, via rctlsys_projset().
1876 * Clears the active rctl values (rc_values), and stored values from the
1877 * previous insertions from the project database (rc_projdb).
1879 * Inserts new values from the project database (new_values). alloc_values
1880 * should be a linked list of pre-allocated rctl_val_t, which are used to
1881 * populate (rc_projdb).
1883 * Return Values
1884 * 0 is always returned.
1886 /*ARGSUSED*/
1887 static int
1888 rctl_local_replace_all_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
1889 rctl_t *rctl, rctl_val_t *new_values, rctl_val_t *alloc_values)
1891 rctl_val_t *val;
1892 rctl_val_t *next;
1893 rctl_val_t *tmp_val;
1895 /* Delete all the privilege vaules */
1896 val = rctl->rc_values;
1898 while (val != NULL) {
1899 if (val->rcv_privilege == RCPRIV_PRIVILEGED) {
1900 if (val->rcv_prev != NULL)
1901 val->rcv_prev->rcv_next = val->rcv_next;
1902 else
1903 rctl->rc_values = val->rcv_next;
1905 if (val->rcv_next != NULL)
1906 val->rcv_next->rcv_prev = val->rcv_prev;
1908 tmp_val = val;
1909 val = val->rcv_next;
1910 kmem_cache_free(rctl_val_cache, tmp_val);
1911 } else {
1912 val = val->rcv_next;
1916 /* Delete the contents of rc_projdb */
1917 val = rctl->rc_projdb;
1918 while (val != NULL) {
1920 tmp_val = val;
1921 val = val->rcv_next;
1922 kmem_cache_free(rctl_val_cache, tmp_val);
1924 rctl->rc_projdb = NULL;
1927 * Insert new values from the project database.
1929 while (new_values != NULL) {
1930 next = new_values->rcv_next;
1932 if (rctl_val_list_insert(&rctl->rc_projdb, new_values) == 0) {
1933 tmp_val = alloc_values->rcv_next;
1934 bcopy(new_values, alloc_values, sizeof (rctl_val_t));
1935 alloc_values->rcv_next = tmp_val;
1937 if (rctl_val_list_insert(&rctl->rc_values,
1938 alloc_values) == 0) {
1939 /* inserted, so move alloc_values on */
1940 alloc_values = tmp_val;
1942 } else {
1944 * Unlike setrctl() we don't want to return an error on
1945 * a duplicate entry; we are concerned solely with
1946 * ensuring that all the values specified are set.
1948 kmem_cache_free(rctl_val_cache, new_values);
1951 new_values = next;
1954 /* Teardown any unused rctl_val_t */
1955 while (alloc_values != NULL) {
1956 tmp_val = alloc_values;
1957 alloc_values = alloc_values->rcv_next;
1958 kmem_cache_free(rctl_val_cache, tmp_val);
1961 /* Always reset the cursor */
1962 rctl->rc_cursor = rctl->rc_values;
1963 rctl_val_list_reset(rctl->rc_cursor);
1964 RCTLOP_SET(rctl, p, e, rctl_model_value(rctl->rc_dict_entry, p,
1965 rctl->rc_cursor->rcv_value));
1967 return (0);
1971 rctl_local_replace_all(rctl_hndl_t hndl, rctl_val_t *new_values,
1972 rctl_val_t *alloc_values, struct proc *p)
1974 return (rctl_local_op(hndl, new_values, alloc_values,
1975 rctl_local_replace_all_cb, p));
1978 static int
1979 rctl_local_replace_cb(rctl_hndl_t hndl, struct proc *p, rctl_entity_p_t *e,
1980 rctl_t *rctl, rctl_val_t *oval, rctl_val_t *nval)
1982 int ret;
1983 rctl_val_t *tmp;
1985 /* Verify that old will be delete-able */
1986 tmp = rctl_val_list_find(&rctl->rc_values, oval);
1987 if (tmp == NULL)
1988 return (ESRCH);
1990 * Caller should verify that value being deleted is not the
1991 * system value.
1993 ASSERT(tmp->rcv_privilege != RCPRIV_SYSTEM);
1996 * rctl_local_insert_cb() does the job of flagging an error
1997 * for any duplicate values. So, call rctl_local_insert_cb()
1998 * for the new value first, then do deletion of the old value.
1999 * Since this is a callback function to rctl_local_op, we can
2000 * count on rcs_lock being held at this point. This guarantees
2001 * that there is at no point a visible list which contains both
2002 * new and old values.
2004 if (ret = rctl_local_insert_cb(hndl, p, e, rctl, NULL, nval))
2005 return (ret);
2007 ret = rctl_local_delete_cb(hndl, p, e, rctl, NULL, oval);
2008 ASSERT(ret == 0);
2009 return (0);
2013 * int rctl_local_replace(rctl_hndl_t, void *, int, uint64_t *)
2015 * Overview
2016 * Replace the rctl value with a new one.
2018 * Return values
2019 * 0 for successful replace, errno otherwise.
2022 rctl_local_replace(rctl_hndl_t hndl, rctl_val_t *oval, rctl_val_t *nval,
2023 struct proc *p)
2025 return (rctl_local_op(hndl, oval, nval, rctl_local_replace_cb, p));
2029 * int rctl_rlimit_get(rctl_hndl_t, struct proc *, struct rlimit64 *)
2031 * Overview
2032 * To support rlimit compatibility, we need a function which takes a 64-bit
2033 * rlimit and encodes it as appropriate rcontrol values on the given rcontrol.
2034 * This operation is only intended for legacy rlimits.
2037 rctl_rlimit_get(rctl_hndl_t rc, struct proc *p, struct rlimit64 *rlp64)
2039 rctl_t *rctl;
2040 rctl_val_t *rval;
2041 rctl_set_t *rset = p->p_rctls;
2042 int soft_limit_seen = 0;
2043 int test_for_deny = 1;
2045 mutex_enter(&rset->rcs_lock);
2046 if (rctl_set_find(rset, rc, &rctl) == -1) {
2047 mutex_exit(&rset->rcs_lock);
2048 return (-1);
2051 rval = rctl->rc_values;
2053 if (rctl->rc_dict_entry->rcd_flagaction & (RCTL_GLOBAL_DENY_NEVER |
2054 RCTL_GLOBAL_DENY_ALWAYS))
2055 test_for_deny = 0;
2058 * 1. Find the first control value with the RCTL_LOCAL_DENY bit set.
2060 while (rval != NULL && rval->rcv_privilege != RCPRIV_SYSTEM) {
2061 if (test_for_deny &&
2062 (rval->rcv_flagaction & RCTL_LOCAL_DENY) == 0) {
2063 rval = rval->rcv_next;
2064 continue;
2068 * 2. If this is an RCPRIV_BASIC value, then we've found the
2069 * effective soft limit and should set rlim_cur. We should then
2070 * continue looking for another control value with the DENY bit
2071 * set.
2073 if (rval->rcv_privilege == RCPRIV_BASIC) {
2074 if (soft_limit_seen) {
2075 rval = rval->rcv_next;
2076 continue;
2079 if ((rval->rcv_flagaction & RCTL_LOCAL_MAXIMAL) == 0 &&
2080 rval->rcv_value < rctl_model_maximum(
2081 rctl->rc_dict_entry, p))
2082 rlp64->rlim_cur = rval->rcv_value;
2083 else
2084 rlp64->rlim_cur = RLIM64_INFINITY;
2085 soft_limit_seen = 1;
2087 rval = rval->rcv_next;
2088 continue;
2092 * 3. This is an RCPRIV_PRIVILEGED value. If we haven't found
2093 * a soft limit candidate, then we've found the effective hard
2094 * and soft limits and should set both If we had found a soft
2095 * limit, then this is only the hard limit and we need only set
2096 * rlim_max.
2098 if ((rval->rcv_flagaction & RCTL_LOCAL_MAXIMAL) == 0 &&
2099 rval->rcv_value < rctl_model_maximum(rctl->rc_dict_entry,
2101 rlp64->rlim_max = rval->rcv_value;
2102 else
2103 rlp64->rlim_max = RLIM64_INFINITY;
2104 if (!soft_limit_seen)
2105 rlp64->rlim_cur = rlp64->rlim_max;
2107 mutex_exit(&rset->rcs_lock);
2108 return (0);
2111 if (rval == NULL) {
2113 * This control sequence is corrupt, as it is not terminated by
2114 * a system privileged control value.
2116 mutex_exit(&rset->rcs_lock);
2117 return (-1);
2121 * 4. If we run into a RCPRIV_SYSTEM value, then the hard limit (and
2122 * the soft, if we haven't a soft candidate) should be the value of the
2123 * system control value.
2125 if ((rval->rcv_flagaction & RCTL_LOCAL_MAXIMAL) == 0 &&
2126 rval->rcv_value < rctl_model_maximum(rctl->rc_dict_entry, p))
2127 rlp64->rlim_max = rval->rcv_value;
2128 else
2129 rlp64->rlim_max = RLIM64_INFINITY;
2131 if (!soft_limit_seen)
2132 rlp64->rlim_cur = rlp64->rlim_max;
2134 mutex_exit(&rset->rcs_lock);
2135 return (0);
2139 * rctl_alloc_gp_t *rctl_rlimit_set_prealloc(uint_t)
2141 * Overview
2142 * Before making a series of calls to rctl_rlimit_set(), we must have a
2143 * preallocated batch of resource control values, as rctl_rlimit_set() can
2144 * potentially consume two resource control values per call.
2146 * Return values
2147 * A populated resource control allocation group with 2n resource control
2148 * values.
2150 * Caller's context
2151 * Must be safe for KM_SLEEP allocations.
2153 rctl_alloc_gp_t *
2154 rctl_rlimit_set_prealloc(uint_t n)
2156 rctl_alloc_gp_t *gp = kmem_zalloc(sizeof (rctl_alloc_gp_t), KM_SLEEP);
2158 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
2160 gp->rcag_nvals = 2 * n;
2162 rctl_gp_alloc(gp);
2164 return (gp);
2168 * int rctl_rlimit_set(rctl_hndl_t, struct proc *, struct rlimit64 *, int,
2169 * int)
2171 * Overview
2172 * To support rlimit compatibility, we need a function which takes a 64-bit
2173 * rlimit and encodes it as appropriate rcontrol values on the given rcontrol.
2174 * This operation is only intended for legacy rlimits.
2176 * The implementation of rctl_rlimit_set() is a bit clever, as it tries to
2177 * minimize the number of values placed on the value sequence in various
2178 * cases. Furthermore, we don't allow multiple identical privilege-action
2179 * values on the same sequence. (That is, we don't want a sequence like
2180 * "while (1) { rlim.rlim_cur++; setrlimit(..., rlim); }" to exhaust kernel
2181 * memory.) So we want to delete any values with the same privilege value and
2182 * action.
2184 * Return values
2185 * 0 for successful set, errno otherwise. Errno will be either EINVAL
2186 * or EPERM, in keeping with defined errnos for ulimit() and setrlimit()
2187 * system calls.
2189 /*ARGSUSED*/
2191 rctl_rlimit_set(rctl_hndl_t rc, struct proc *p, struct rlimit64 *rlp64,
2192 rctl_alloc_gp_t *ragp, int flagaction, int signal, const cred_t *cr)
2194 rctl_t *rctl;
2195 rctl_val_t *rval, *rval_priv, *rval_basic;
2196 rctl_set_t *rset = p->p_rctls;
2197 rctl_qty_t max;
2198 rctl_entity_p_t e;
2199 struct rlimit64 cur_rl;
2201 e.rcep_t = RCENTITY_PROCESS;
2202 e.rcep_p.proc = p;
2204 if (rlp64->rlim_cur > rlp64->rlim_max)
2205 return (EINVAL);
2207 if (rctl_rlimit_get(rc, p, &cur_rl) == -1)
2208 return (EINVAL);
2211 * If we are not privileged, we can only lower the hard limit.
2213 if ((rlp64->rlim_max > cur_rl.rlim_max) &&
2214 cur_rl.rlim_max != RLIM64_INFINITY &&
2215 secpolicy_resource(cr) != 0)
2216 return (EPERM);
2218 mutex_enter(&rset->rcs_lock);
2220 if (rctl_set_find(rset, rc, &rctl) == -1) {
2221 mutex_exit(&rset->rcs_lock);
2222 return (EINVAL);
2225 rval_priv = rctl_gp_detach_val(ragp);
2227 rval = rctl->rc_values;
2229 while (rval != NULL) {
2230 rctl_val_t *next = rval->rcv_next;
2232 if (rval->rcv_privilege == RCPRIV_SYSTEM)
2233 break;
2235 if ((rval->rcv_privilege == RCPRIV_BASIC) ||
2236 (rval->rcv_flagaction & ~RCTL_LOCAL_ACTION_MASK) ==
2237 (flagaction & ~RCTL_LOCAL_ACTION_MASK)) {
2238 if (rctl->rc_cursor == rval) {
2239 rctl->rc_cursor = rval->rcv_next;
2240 rctl_val_list_reset(rctl->rc_cursor);
2241 RCTLOP_SET(rctl, p, &e, rctl_model_value(
2242 rctl->rc_dict_entry, p,
2243 rctl->rc_cursor->rcv_value));
2245 (void) rctl_val_list_delete(&rctl->rc_values, rval);
2248 rval = next;
2251 rval_priv->rcv_privilege = RCPRIV_PRIVILEGED;
2252 rval_priv->rcv_flagaction = flagaction;
2253 if (rlp64->rlim_max == RLIM64_INFINITY) {
2254 rval_priv->rcv_flagaction |= RCTL_LOCAL_MAXIMAL;
2255 max = rctl->rc_dict_entry->rcd_max_native;
2256 } else {
2257 max = rlp64->rlim_max;
2259 rval_priv->rcv_value = max;
2260 rval_priv->rcv_action_signal = signal;
2261 rval_priv->rcv_action_recipient = NULL;
2262 rval_priv->rcv_action_recip_pid = -1;
2263 rval_priv->rcv_firing_time = 0;
2264 rval_priv->rcv_prev = rval_priv->rcv_next = NULL;
2266 (void) rctl_val_list_insert(&rctl->rc_values, rval_priv);
2267 rctl->rc_cursor = rval_priv;
2268 rctl_val_list_reset(rctl->rc_cursor);
2269 RCTLOP_SET(rctl, p, &e, rctl_model_value(rctl->rc_dict_entry, p,
2270 rctl->rc_cursor->rcv_value));
2272 if (rlp64->rlim_cur != RLIM64_INFINITY && rlp64->rlim_cur < max) {
2273 rval_basic = rctl_gp_detach_val(ragp);
2275 rval_basic->rcv_privilege = RCPRIV_BASIC;
2276 rval_basic->rcv_value = rlp64->rlim_cur;
2277 rval_basic->rcv_flagaction = flagaction;
2278 rval_basic->rcv_action_signal = signal;
2279 rval_basic->rcv_action_recipient = p;
2280 rval_basic->rcv_action_recip_pid = p->p_pid;
2281 rval_basic->rcv_firing_time = 0;
2282 rval_basic->rcv_prev = rval_basic->rcv_next = NULL;
2284 (void) rctl_val_list_insert(&rctl->rc_values, rval_basic);
2285 rctl->rc_cursor = rval_basic;
2286 rctl_val_list_reset(rctl->rc_cursor);
2287 RCTLOP_SET(rctl, p, &e, rctl_model_value(rctl->rc_dict_entry, p,
2288 rctl->rc_cursor->rcv_value));
2291 ASSERT(rctl->rc_cursor != NULL);
2293 mutex_exit(&rset->rcs_lock);
2294 return (0);
2299 * rctl_hndl_t rctl_register(const char *, rctl_entity_t, int, rlim64_t,
2300 * rlim64_t, rctl_ops_t *)
2302 * Overview
2303 * rctl_register() performs a look-up in the dictionary of rctls
2304 * active on the system; if a rctl of that name is absent, an entry is
2305 * made into the dictionary. The rctl is returned with its reference
2306 * count incremented by one. If the rctl name already exists, we panic.
2307 * (Were the resource control system to support dynamic loading and unloading,
2308 * which it is structured for, duplicate registration should lead to load
2309 * failure instead of panicking.)
2311 * Each registered rctl has a requirement that a RCPRIV_SYSTEM limit be
2312 * defined. This limit contains the highest possible value for this quantity
2313 * on the system. Furthermore, the registered control must provide infinite
2314 * values for all applicable address space models supported by the operating
2315 * system. Attempts to set resource control values beyond the system limit
2316 * will fail.
2318 * Return values
2319 * The rctl's ID.
2321 * Caller's context
2322 * Caller must be in a context suitable for KM_SLEEP allocations.
2324 rctl_hndl_t
2325 rctl_register(
2326 const char *name,
2327 rctl_entity_t entity,
2328 int global_flags,
2329 rlim64_t max_native,
2330 rlim64_t max_ilp32,
2331 rctl_ops_t *ops)
2333 rctl_t *rctl = kmem_cache_alloc(rctl_cache, KM_SLEEP);
2334 rctl_val_t *rctl_val = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2335 rctl_dict_entry_t *rctl_de = kmem_zalloc(sizeof (rctl_dict_entry_t),
2336 KM_SLEEP);
2337 rctl_t *old_rctl;
2338 rctl_hndl_t rhndl;
2339 int localflags;
2341 ASSERT(ops != NULL);
2343 bzero(rctl, sizeof (rctl_t));
2344 bzero(rctl_val, sizeof (rctl_val_t));
2346 if (global_flags & RCTL_GLOBAL_DENY_NEVER)
2347 localflags = RCTL_LOCAL_MAXIMAL;
2348 else
2349 localflags = RCTL_LOCAL_MAXIMAL | RCTL_LOCAL_DENY;
2351 rctl_val->rcv_privilege = RCPRIV_SYSTEM;
2352 rctl_val->rcv_value = max_native;
2353 rctl_val->rcv_flagaction = localflags;
2354 rctl_val->rcv_action_signal = 0;
2355 rctl_val->rcv_action_recipient = NULL;
2356 rctl_val->rcv_action_recip_pid = -1;
2357 rctl_val->rcv_firing_time = 0;
2358 rctl_val->rcv_next = NULL;
2359 rctl_val->rcv_prev = NULL;
2361 rctl_de->rcd_name = (char *)name;
2362 rctl_de->rcd_default_value = rctl_val;
2363 rctl_de->rcd_max_native = max_native;
2364 rctl_de->rcd_max_ilp32 = max_ilp32;
2365 rctl_de->rcd_entity = entity;
2366 rctl_de->rcd_ops = ops;
2367 rctl_de->rcd_flagaction = global_flags;
2369 rctl->rc_dict_entry = rctl_de;
2370 rctl->rc_values = rctl_val;
2373 * 1. Take global lock, validate nonexistence of name, get ID.
2375 mutex_enter(&rctl_dict_lock);
2377 if (mod_hash_find(rctl_dict_by_name, (mod_hash_key_t)name,
2378 (mod_hash_val_t *)&rhndl) != MH_ERR_NOTFOUND)
2379 panic("duplicate registration of rctl %s", name);
2381 rhndl = rctl_de->rcd_id = rctl->rc_id =
2382 (rctl_hndl_t)id_alloc(rctl_ids);
2385 * 2. Insert name-entry pair in rctl_dict_by_name.
2387 if (mod_hash_insert(rctl_dict_by_name, (mod_hash_key_t)name,
2388 (mod_hash_val_t)rctl_de))
2389 panic("unable to insert rctl dict entry for %s (%u)", name,
2390 (uint_t)rctl->rc_id);
2393 * 3. Insert ID-rctl_t * pair in rctl_dict.
2395 if (mod_hash_find(rctl_dict, (mod_hash_key_t)(uintptr_t)rctl->rc_id,
2396 (mod_hash_val_t *)&old_rctl) != MH_ERR_NOTFOUND)
2397 panic("duplicate rctl ID %u registered", rctl->rc_id);
2399 if (mod_hash_insert(rctl_dict, (mod_hash_key_t)(uintptr_t)rctl->rc_id,
2400 (mod_hash_val_t)rctl))
2401 panic("unable to insert rctl %s/%u (%p)", name,
2402 (uint_t)rctl->rc_id, (void *)rctl);
2405 * 3a. Insert rctl_dict_entry_t * in appropriate entity list.
2408 mutex_enter(&rctl_lists_lock);
2410 switch (entity) {
2411 case RCENTITY_ZONE:
2412 case RCENTITY_PROJECT:
2413 case RCENTITY_TASK:
2414 case RCENTITY_PROCESS:
2415 rctl_de->rcd_next = rctl_lists[entity];
2416 rctl_lists[entity] = rctl_de;
2417 break;
2418 default:
2419 panic("registering unknown rctl entity %d (%s)", entity,
2420 name);
2421 break;
2424 mutex_exit(&rctl_lists_lock);
2427 * 4. Drop lock.
2429 mutex_exit(&rctl_dict_lock);
2431 return (rhndl);
2435 * static int rctl_global_action(rctl_t *r, rctl_set_t *rset, struct proc *p,
2436 * rctl_val_t *v)
2438 * Overview
2439 * rctl_global_action() takes, in according with the flags on the rctl_dict
2440 * entry for the given control, the appropriate actions on the exceeded
2441 * control value. Additionally, rctl_global_action() updates the firing time
2442 * on the exceeded value.
2444 * Return values
2445 * A bitmask reflecting the actions actually taken.
2447 * Caller's context
2448 * No restrictions on context.
2450 /*ARGSUSED*/
2451 static int
2452 rctl_global_action(rctl_t *r, rctl_set_t *rset, struct proc *p, rctl_val_t *v)
2454 rctl_dict_entry_t *rde = r->rc_dict_entry;
2455 const char *pr, *en, *idstr;
2456 id_t id;
2457 enum {
2458 SUFFIX_NONE, /* id consumed directly */
2459 SUFFIX_NUMERIC, /* id consumed in suffix */
2460 SUFFIX_STRING /* idstr consumed in suffix */
2461 } suffix = SUFFIX_NONE;
2462 int ret = 0;
2464 v->rcv_firing_time = gethrtime();
2466 switch (v->rcv_privilege) {
2467 case RCPRIV_BASIC:
2468 pr = "basic";
2469 break;
2470 case RCPRIV_PRIVILEGED:
2471 pr = "privileged";
2472 break;
2473 case RCPRIV_SYSTEM:
2474 pr = "system";
2475 break;
2476 default:
2477 pr = "unknown";
2478 break;
2481 switch (rde->rcd_entity) {
2482 case RCENTITY_PROCESS:
2483 en = "process";
2484 id = p->p_pid;
2485 suffix = SUFFIX_NONE;
2486 break;
2487 case RCENTITY_TASK:
2488 en = "task";
2489 id = p->p_task->tk_tkid;
2490 suffix = SUFFIX_NUMERIC;
2491 break;
2492 case RCENTITY_PROJECT:
2493 en = "project";
2494 id = p->p_task->tk_proj->kpj_id;
2495 suffix = SUFFIX_NUMERIC;
2496 break;
2497 case RCENTITY_ZONE:
2498 en = "zone";
2499 idstr = p->p_zone->zone_name;
2500 suffix = SUFFIX_STRING;
2501 break;
2502 default:
2503 en = "unknown entity associated with process";
2504 id = p->p_pid;
2505 suffix = SUFFIX_NONE;
2506 break;
2509 if (rde->rcd_flagaction & RCTL_GLOBAL_SYSLOG) {
2510 switch (suffix) {
2511 default:
2512 case SUFFIX_NONE:
2513 (void) strlog(0, 0, 0,
2514 rde->rcd_strlog_flags | log_global.lz_active,
2515 "%s rctl %s (value %llu) exceeded by %s %d.",
2516 pr, rde->rcd_name, v->rcv_value, en, id);
2517 break;
2518 case SUFFIX_NUMERIC:
2519 (void) strlog(0, 0, 0,
2520 rde->rcd_strlog_flags | log_global.lz_active,
2521 "%s rctl %s (value %llu) exceeded by process %d"
2522 " in %s %d.",
2523 pr, rde->rcd_name, v->rcv_value, p->p_pid,
2524 en, id);
2525 break;
2526 case SUFFIX_STRING:
2527 (void) strlog(0, 0, 0,
2528 rde->rcd_strlog_flags | log_global.lz_active,
2529 "%s rctl %s (value %llu) exceeded by process %d"
2530 " in %s %s.",
2531 pr, rde->rcd_name, v->rcv_value, p->p_pid,
2532 en, idstr);
2533 break;
2537 if (rde->rcd_flagaction & RCTL_GLOBAL_DENY_ALWAYS)
2538 ret |= RCT_DENY;
2540 return (ret);
2543 static int
2544 rctl_local_action(rctl_t *r, rctl_set_t *rset, struct proc *p, rctl_val_t *v,
2545 uint_t safety)
2547 int ret = 0;
2548 sigqueue_t *sqp = NULL;
2549 rctl_dict_entry_t *rde = r->rc_dict_entry;
2550 int unobservable = (rde->rcd_flagaction & RCTL_GLOBAL_UNOBSERVABLE);
2552 proc_t *recipient = v->rcv_action_recipient;
2553 id_t recip_pid = v->rcv_action_recip_pid;
2554 int recip_signal = v->rcv_action_signal;
2555 uint_t flagaction = v->rcv_flagaction;
2557 if (safety == RCA_UNSAFE_ALL) {
2558 if (flagaction & RCTL_LOCAL_DENY) {
2559 ret |= RCT_DENY;
2561 return (ret);
2564 if (flagaction & RCTL_LOCAL_SIGNAL) {
2566 * We can build a siginfo only in the case that it is
2567 * safe for us to drop p_lock. (For asynchronous
2568 * checks this is currently not true.)
2570 if (safety == RCA_SAFE) {
2571 mutex_exit(&rset->rcs_lock);
2572 mutex_exit(&p->p_lock);
2573 sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
2574 mutex_enter(&p->p_lock);
2575 mutex_enter(&rset->rcs_lock);
2577 sqp->sq_info.si_signo = recip_signal;
2578 sqp->sq_info.si_code = SI_RCTL;
2579 sqp->sq_info.si_errno = 0;
2580 sqp->sq_info.si_entity = (int)rde->rcd_entity;
2583 if (recipient == NULL || recipient == p) {
2584 ret |= RCT_SIGNAL;
2586 if (sqp == NULL) {
2587 sigtoproc(p, NULL, recip_signal);
2588 } else if (p == curproc) {
2590 * Then this is a synchronous test and we can
2591 * direct the signal at the violating thread.
2593 sigaddqa(curproc, curthread, sqp);
2594 } else {
2595 sigaddqa(p, NULL, sqp);
2597 } else if (!unobservable) {
2598 proc_t *rp;
2600 mutex_exit(&rset->rcs_lock);
2601 mutex_exit(&p->p_lock);
2603 mutex_enter(&pidlock);
2604 if ((rp = prfind(recip_pid)) == recipient) {
2606 * Recipient process is still alive, but may not
2607 * be in this task or project any longer. In
2608 * this case, the recipient's resource control
2609 * set pertinent to this control will have
2610 * changed--and we will not deliver the signal,
2611 * as the recipient process is trying to tear
2612 * itself off of its former set.
2614 mutex_enter(&rp->p_lock);
2615 mutex_exit(&pidlock);
2617 if (rctl_entity_obtain_rset(rde, rp) == rset) {
2618 ret |= RCT_SIGNAL;
2620 if (sqp == NULL)
2621 sigtoproc(rp, NULL,
2622 recip_signal);
2623 else
2624 sigaddqa(rp, NULL, sqp);
2625 } else if (sqp) {
2626 kmem_free(sqp, sizeof (sigqueue_t));
2628 mutex_exit(&rp->p_lock);
2629 } else {
2630 mutex_exit(&pidlock);
2631 if (sqp)
2632 kmem_free(sqp, sizeof (sigqueue_t));
2635 mutex_enter(&p->p_lock);
2637 * Since we dropped p_lock, we may no longer be in the
2638 * same task or project as we were at entry. It is thus
2639 * unsafe for us to reacquire the set lock at this
2640 * point; callers of rctl_local_action() must handle
2641 * this possibility.
2643 ret |= RCT_LK_ABANDONED;
2644 } else if (sqp) {
2645 kmem_free(sqp, sizeof (sigqueue_t));
2649 if ((flagaction & RCTL_LOCAL_DENY) &&
2650 (recipient == NULL || recipient == p)) {
2651 ret |= RCT_DENY;
2654 return (ret);
2658 * int rctl_action(rctl_hndl_t, rctl_set_t *, struct proc *, uint_t)
2660 * Overview
2661 * Take the action associated with the enforced value (as defined by
2662 * rctl_get_enforced_value()) being exceeded or encountered. Possibly perform
2663 * a restricted subset of the available actions, if circumstances dictate that
2664 * we cannot safely allocate memory (for a sigqueue_t) or guarantee process
2665 * persistence across the duration of the function (an asynchronous action).
2667 * Return values
2668 * Actions taken, according to the rctl_test bitmask.
2670 * Caller's context
2671 * Safe to acquire rcs_lock.
2674 rctl_action(rctl_hndl_t hndl, rctl_set_t *rset, struct proc *p, uint_t safety)
2676 return (rctl_action_entity(hndl, rset, p, NULL, safety));
2680 rctl_action_entity(rctl_hndl_t hndl, rctl_set_t *rset, struct proc *p,
2681 rctl_entity_p_t *e, uint_t safety)
2683 int ret = RCT_NONE;
2684 rctl_t *lrctl;
2685 rctl_entity_p_t e_tmp;
2687 rctl_action_acquire:
2688 mutex_enter(&rset->rcs_lock);
2689 if (rctl_set_find(rset, hndl, &lrctl) == -1) {
2690 mutex_exit(&rset->rcs_lock);
2691 return (ret);
2694 if (e == NULL) {
2695 rctl_entity_obtain_entity_p(lrctl->rc_dict_entry->rcd_entity,
2696 p, &e_tmp);
2697 e = &e_tmp;
2700 if ((ret & RCT_LK_ABANDONED) == 0) {
2701 ret |= rctl_global_action(lrctl, rset, p, lrctl->rc_cursor);
2703 RCTLOP_ACTION(lrctl, p, e);
2705 ret |= rctl_local_action(lrctl, rset, p,
2706 lrctl->rc_cursor, safety);
2708 if (ret & RCT_LK_ABANDONED)
2709 goto rctl_action_acquire;
2712 ret &= ~RCT_LK_ABANDONED;
2714 if (!(ret & RCT_DENY) &&
2715 lrctl->rc_cursor->rcv_next != NULL) {
2716 lrctl->rc_cursor = lrctl->rc_cursor->rcv_next;
2718 RCTLOP_SET(lrctl, p, e, rctl_model_value(lrctl->rc_dict_entry,
2719 p, lrctl->rc_cursor->rcv_value));
2722 mutex_exit(&rset->rcs_lock);
2724 return (ret);
2728 * int rctl_test(rctl_hndl_t, rctl_set_t *, struct proc *, rctl_qty_t, uint_t)
2730 * Overview
2731 * Increment the resource associated with the given handle, returning zero if
2732 * the incremented value does not exceed the threshold for the current limit
2733 * on the resource.
2735 * Return values
2736 * Actions taken, according to the rctl_test bitmask.
2738 * Caller's context
2739 * p_lock held by caller.
2741 /*ARGSUSED*/
2743 rctl_test(rctl_hndl_t rhndl, rctl_set_t *rset, struct proc *p,
2744 rctl_qty_t incr, uint_t flags)
2746 return (rctl_test_entity(rhndl, rset, p, NULL, incr, flags));
2750 rctl_test_entity(rctl_hndl_t rhndl, rctl_set_t *rset, struct proc *p,
2751 rctl_entity_p_t *e, rctl_qty_t incr, uint_t flags)
2753 rctl_t *lrctl;
2754 int ret = RCT_NONE;
2755 rctl_entity_p_t e_tmp;
2756 if (p == &p0) {
2758 * We don't enforce rctls on the kernel itself.
2760 return (ret);
2763 rctl_test_acquire:
2764 ASSERT(MUTEX_HELD(&p->p_lock));
2766 mutex_enter(&rset->rcs_lock);
2769 * Dereference from rctl_set. We don't enforce newly loaded controls
2770 * that haven't been set on this entity (since the only valid value is
2771 * the infinite system value).
2773 if (rctl_set_find(rset, rhndl, &lrctl) == -1) {
2774 mutex_exit(&rset->rcs_lock);
2775 return (ret);
2779 * This control is currently unenforced: maximal value on control
2780 * supporting infinitely available resource.
2782 if ((lrctl->rc_dict_entry->rcd_flagaction & RCTL_GLOBAL_INFINITE) &&
2783 (lrctl->rc_cursor->rcv_flagaction & RCTL_LOCAL_MAXIMAL)) {
2785 mutex_exit(&rset->rcs_lock);
2786 return (ret);
2790 * If we have been called by rctl_test, look up the entity pointer
2791 * from the proc pointer.
2793 if (e == NULL) {
2794 rctl_entity_obtain_entity_p(lrctl->rc_dict_entry->rcd_entity,
2795 p, &e_tmp);
2796 e = &e_tmp;
2800 * Get enforced rctl value and current usage. Test the increment
2801 * with the current usage against the enforced value--take action as
2802 * necessary.
2804 while (RCTLOP_TEST(lrctl, p, e, lrctl->rc_cursor, incr, flags)) {
2805 if ((ret & RCT_LK_ABANDONED) == 0) {
2806 ret |= rctl_global_action(lrctl, rset, p,
2807 lrctl->rc_cursor);
2809 RCTLOP_ACTION(lrctl, p, e);
2811 ret |= rctl_local_action(lrctl, rset, p,
2812 lrctl->rc_cursor, flags);
2814 if (ret & RCT_LK_ABANDONED)
2815 goto rctl_test_acquire;
2818 ret &= ~RCT_LK_ABANDONED;
2820 if ((ret & RCT_DENY) == RCT_DENY ||
2821 lrctl->rc_cursor->rcv_next == NULL) {
2822 ret |= RCT_DENY;
2823 break;
2826 lrctl->rc_cursor = lrctl->rc_cursor->rcv_next;
2827 RCTLOP_SET(lrctl, p, e, rctl_model_value(lrctl->rc_dict_entry,
2828 p, lrctl->rc_cursor->rcv_value));
2831 mutex_exit(&rset->rcs_lock);
2833 return (ret);
2837 * void rctl_init(void)
2839 * Overview
2840 * Initialize the rctl subsystem, including the primoridal rctls
2841 * provided by the system. New subsystem-specific rctls should _not_ be
2842 * initialized here. (Do it in your own file.)
2844 * Return values
2845 * None.
2847 * Caller's context
2848 * Safe for KM_SLEEP allocations. Must be called prior to any process model
2849 * initialization.
2851 void
2852 rctl_init(void)
2854 rctl_cache = kmem_cache_create("rctl_cache", sizeof (rctl_t),
2855 0, NULL, NULL, NULL, NULL, NULL, 0);
2856 rctl_val_cache = kmem_cache_create("rctl_val_cache",
2857 sizeof (rctl_val_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2859 rctl_dict = mod_hash_create_extended("rctl_dict",
2860 rctl_dict_size, mod_hash_null_keydtor, rctl_dict_val_dtor,
2861 rctl_dict_hash_by_id, NULL, rctl_dict_id_cmp, KM_SLEEP);
2862 rctl_dict_by_name = mod_hash_create_strhash(
2863 "rctl_handles_by_name", rctl_dict_size,
2864 mod_hash_null_valdtor);
2865 rctl_ids = id_space_create("rctl_ids", 1, max_rctl_hndl);
2866 bzero(rctl_lists, (RC_MAX_ENTITY + 1) * sizeof (rctl_dict_entry_t *));
2868 rctlproc_init();
2872 * rctl_incr_locked_mem(proc_t *p, kproject_t *proj, rctl_qty_t inc,
2873 * int chargeproc)
2875 * Increments the amount of locked memory on a project, and
2876 * zone. If proj is non-NULL the project must be held by the
2877 * caller; if it is NULL the proj and zone of proc_t p are used.
2878 * If chargeproc is non-zero, then the charged amount is cached
2879 * on p->p_locked_mem so that the charge can be migrated when a
2880 * process changes projects.
2882 * Return values
2883 * 0 - success
2884 * EAGAIN - attempting to increment locked memory is denied by one
2885 * or more resource entities.
2888 rctl_incr_locked_mem(proc_t *p, kproject_t *proj, rctl_qty_t inc,
2889 int chargeproc)
2891 kproject_t *projp;
2892 zone_t *zonep;
2893 rctl_entity_p_t e;
2894 int ret = 0;
2896 ASSERT(p != NULL);
2897 ASSERT(MUTEX_HELD(&p->p_lock));
2898 if (proj != NULL) {
2899 projp = proj;
2900 zonep = proj->kpj_zone;
2901 } else {
2902 projp = p->p_task->tk_proj;
2903 zonep = p->p_zone;
2906 mutex_enter(&zonep->zone_mem_lock);
2908 e.rcep_p.proj = projp;
2909 e.rcep_t = RCENTITY_PROJECT;
2911 /* check for overflow */
2912 if ((projp->kpj_data.kpd_locked_mem + inc) <
2913 projp->kpj_data.kpd_locked_mem) {
2914 ret = EAGAIN;
2915 goto out;
2917 if (projp->kpj_data.kpd_locked_mem + inc >
2918 projp->kpj_data.kpd_locked_mem_ctl) {
2919 if (rctl_test_entity(rc_project_locked_mem, projp->kpj_rctls,
2920 p, &e, inc, 0) & RCT_DENY) {
2921 ret = EAGAIN;
2922 goto out;
2925 e.rcep_p.zone = zonep;
2926 e.rcep_t = RCENTITY_ZONE;
2928 /* Check for overflow */
2929 if ((zonep->zone_locked_mem + inc) < zonep->zone_locked_mem) {
2930 ret = EAGAIN;
2931 goto out;
2933 if (zonep->zone_locked_mem + inc > zonep->zone_locked_mem_ctl) {
2934 if (rctl_test_entity(rc_zone_locked_mem, zonep->zone_rctls,
2935 p, &e, inc, 0) & RCT_DENY) {
2936 ret = EAGAIN;
2937 goto out;
2941 zonep->zone_locked_mem += inc;
2942 projp->kpj_data.kpd_locked_mem += inc;
2943 if (chargeproc != 0) {
2944 p->p_locked_mem += inc;
2946 out:
2947 mutex_exit(&zonep->zone_mem_lock);
2948 return (ret);
2952 * rctl_decr_locked_mem(proc_t *p, kproject_t *proj, rctl_qty_t inc,
2953 * int creditproc)
2955 * Decrements the amount of locked memory on a project and
2956 * zone. If proj is non-NULL the project must be held by the
2957 * caller; if it is NULL the proj and zone of proc_t p are used.
2958 * If creditproc is non-zero, then the quantity of locked memory
2959 * is subtracted from p->p_locked_mem.
2961 * Return values
2962 * none
2964 void
2965 rctl_decr_locked_mem(proc_t *p, kproject_t *proj, rctl_qty_t inc,
2966 int creditproc)
2968 kproject_t *projp;
2969 zone_t *zonep;
2971 if (proj != NULL) {
2972 projp = proj;
2973 zonep = proj->kpj_zone;
2974 } else {
2975 ASSERT(p != NULL);
2976 ASSERT(MUTEX_HELD(&p->p_lock));
2977 projp = p->p_task->tk_proj;
2978 zonep = p->p_zone;
2981 mutex_enter(&zonep->zone_mem_lock);
2982 zonep->zone_locked_mem -= inc;
2983 projp->kpj_data.kpd_locked_mem -= inc;
2984 if (creditproc != 0) {
2985 ASSERT(p != NULL);
2986 ASSERT(MUTEX_HELD(&p->p_lock));
2987 p->p_locked_mem -= inc;
2989 mutex_exit(&zonep->zone_mem_lock);
2993 * rctl_incr_swap(proc_t *, zone_t *, size_t)
2995 * Overview
2996 * Increments the swap charge on the specified zone.
2998 * Return values
2999 * 0 on success. EAGAIN if swap increment fails due an rctl value
3000 * on the zone.
3002 * Callers context
3003 * p_lock held on specified proc.
3004 * swap must be even multiple of PAGESIZE
3007 rctl_incr_swap(proc_t *proc, zone_t *zone, size_t swap)
3009 rctl_entity_p_t e;
3011 ASSERT(MUTEX_HELD(&proc->p_lock));
3012 ASSERT((swap & PAGEOFFSET) == 0);
3013 e.rcep_p.zone = zone;
3014 e.rcep_t = RCENTITY_ZONE;
3016 mutex_enter(&zone->zone_mem_lock);
3018 /* Check for overflow */
3019 if ((zone->zone_max_swap + swap) < zone->zone_max_swap) {
3020 mutex_exit(&zone->zone_mem_lock);
3021 return (EAGAIN);
3023 if ((zone->zone_max_swap + swap) >
3024 zone->zone_max_swap_ctl) {
3026 if (rctl_test_entity(rc_zone_max_swap, zone->zone_rctls,
3027 proc, &e, swap, 0) & RCT_DENY) {
3028 mutex_exit(&zone->zone_mem_lock);
3029 return (EAGAIN);
3032 zone->zone_max_swap += swap;
3033 mutex_exit(&zone->zone_mem_lock);
3034 return (0);
3038 * rctl_decr_swap(zone_t *, size_t)
3040 * Overview
3041 * Decrements the swap charge on the specified zone.
3043 * Return values
3044 * None
3046 * Callers context
3047 * swap must be even multiple of PAGESIZE
3049 void
3050 rctl_decr_swap(zone_t *zone, size_t swap)
3052 ASSERT((swap & PAGEOFFSET) == 0);
3053 mutex_enter(&zone->zone_mem_lock);
3054 ASSERT(zone->zone_max_swap >= swap);
3055 zone->zone_max_swap -= swap;
3056 mutex_exit(&zone->zone_mem_lock);
3060 * rctl_incr_lofi(proc_t *, zone_t *, size_t)
3062 * Overview
3063 * Increments the number of lofi devices for the zone.
3065 * Return values
3066 * 0 on success. EAGAIN if increment fails due an rctl value
3067 * on the zone.
3069 * Callers context
3070 * p_lock held on specified proc.
3073 rctl_incr_lofi(proc_t *proc, zone_t *zone, size_t incr)
3075 rctl_entity_p_t e;
3077 ASSERT(MUTEX_HELD(&proc->p_lock));
3078 ASSERT(incr > 0);
3080 e.rcep_p.zone = zone;
3081 e.rcep_t = RCENTITY_ZONE;
3083 mutex_enter(&zone->zone_rctl_lock);
3085 /* Check for overflow */
3086 if ((zone->zone_max_lofi + incr) < zone->zone_max_lofi) {
3087 mutex_exit(&zone->zone_rctl_lock);
3088 return (EAGAIN);
3090 if ((zone->zone_max_lofi + incr) > zone->zone_max_lofi_ctl) {
3091 if (rctl_test_entity(rc_zone_max_lofi, zone->zone_rctls,
3092 proc, &e, incr, 0) & RCT_DENY) {
3093 mutex_exit(&zone->zone_rctl_lock);
3094 return (EAGAIN);
3097 zone->zone_max_lofi += incr;
3098 mutex_exit(&zone->zone_rctl_lock);
3099 return (0);
3103 * rctl_decr_lofi(zone_t *, size_t)
3105 * Overview
3106 * Decrements the number of lofi devices for the zone.
3108 void
3109 rctl_decr_lofi(zone_t *zone, size_t decr)
3111 mutex_enter(&zone->zone_rctl_lock);
3112 ASSERT(zone->zone_max_lofi >= decr);
3113 zone->zone_max_lofi -= decr;
3114 mutex_exit(&zone->zone_rctl_lock);
3118 * Create resource kstat
3120 static kstat_t *
3121 rctl_kstat_create_common(char *ks_name, int ks_instance, char *ks_class,
3122 uchar_t ks_type, uint_t ks_ndata, uchar_t ks_flags, int ks_zoneid)
3124 kstat_t *ksp = NULL;
3125 char name[KSTAT_STRLEN];
3127 (void) snprintf(name, KSTAT_STRLEN, "%s_%d", ks_name, ks_instance);
3129 if ((ksp = kstat_create_zone("caps", ks_zoneid,
3130 name, ks_class, ks_type,
3131 ks_ndata, ks_flags, ks_zoneid)) != NULL) {
3132 if (ks_zoneid != GLOBAL_ZONEID)
3133 kstat_zone_add(ksp, GLOBAL_ZONEID);
3135 return (ksp);
3139 * Create zone-specific resource kstat
3141 kstat_t *
3142 rctl_kstat_create_zone(zone_t *zone, char *ks_name, uchar_t ks_type,
3143 uint_t ks_ndata, uchar_t ks_flags)
3145 char name[KSTAT_STRLEN];
3147 (void) snprintf(name, KSTAT_STRLEN, "%s_zone", ks_name);
3149 return (rctl_kstat_create_common(name, zone->zone_id, "zone_caps",
3150 ks_type, ks_ndata, ks_flags, zone->zone_id));
3154 * Create project-specific resource kstat
3156 kstat_t *
3157 rctl_kstat_create_project(kproject_t *kpj, char *ks_name, uchar_t ks_type,
3158 uint_t ks_ndata, uchar_t ks_flags)
3160 char name[KSTAT_STRLEN];
3162 (void) snprintf(name, KSTAT_STRLEN, "%s_project", ks_name);
3164 return (rctl_kstat_create_common(name, kpj->kpj_id, "project_caps",
3165 ks_type, ks_ndata, ks_flags, kpj->kpj_zoneid));
3169 * Create task-specific resource kstat
3171 kstat_t *
3172 rctl_kstat_create_task(task_t *tk, char *ks_name, uchar_t ks_type,
3173 uint_t ks_ndata, uchar_t ks_flags)
3175 char name[KSTAT_STRLEN];
3177 (void) snprintf(name, KSTAT_STRLEN, "%s_task", ks_name);
3179 return (rctl_kstat_create_common(name, tk->tk_tkid, "task_caps",
3180 ks_type, ks_ndata, ks_flags, tk->tk_proj->kpj_zoneid));