uts: make emu10k non-verbose
[unleashed.git] / kernel / os / dtrace_subr.c
blob680f04a9585de120eb4275a9d285a25a89cc5db5
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 * Copyright 2016 Joyent, Inc.
28 #include <sys/dtrace.h>
29 #include <sys/cmn_err.h>
30 #include <sys/tnf.h>
31 #include <sys/atomic.h>
32 #include <sys/prsystm.h>
33 #include <sys/modctl.h>
34 #include <sys/aio_impl.h>
36 #ifdef __sparc
37 #include <sys/privregs.h>
38 #endif
40 void (*dtrace_cpu_init)(processorid_t);
41 void (*dtrace_modload)(struct modctl *);
42 void (*dtrace_modunload)(struct modctl *);
43 void (*dtrace_helpers_cleanup)(proc_t *);
44 void (*dtrace_helpers_fork)(proc_t *, proc_t *);
45 void (*dtrace_cpustart_init)(void);
46 void (*dtrace_cpustart_fini)(void);
47 void (*dtrace_cpc_fire)(uint64_t);
48 void (*dtrace_closef)(void);
50 void (*dtrace_debugger_init)(void);
51 void (*dtrace_debugger_fini)(void);
53 dtrace_vtime_state_t dtrace_vtime_active = 0;
54 dtrace_cacheid_t dtrace_predcache_id = DTRACE_CACHEIDNONE + 1;
57 * dtrace_cpc_in_use usage statement: this global variable is used by the cpc
58 * hardware overflow interrupt handler and the kernel cpc framework to check
59 * whether or not the DTrace cpc provider is currently in use. The variable is
60 * set before counters are enabled with the first enabling and cleared when
61 * the last enabling is disabled. Its value at any given time indicates the
62 * number of active dcpc based enablings. The global 'kcpc_cpuctx_lock' rwlock
63 * is held during initial setting to protect races between kcpc_open() and the
64 * first enabling. The locking provided by the DTrace subsystem, the kernel
65 * cpc framework and the cpu management framework protect consumers from race
66 * conditions on enabling and disabling probes.
68 uint32_t dtrace_cpc_in_use = 0;
70 typedef struct dtrace_hrestime {
71 lock_t dthr_lock; /* lock for this element */
72 timestruc_t dthr_hrestime; /* hrestime value */
73 int64_t dthr_adj; /* hrestime_adj value */
74 hrtime_t dthr_hrtime; /* hrtime value */
75 } dtrace_hrestime_t;
77 static dtrace_hrestime_t dtrace_hrestime[2];
80 * Making available adjustable high-resolution time in DTrace is regrettably
81 * more complicated than one might think it should be. The problem is that
82 * the variables related to adjusted high-resolution time (hrestime,
83 * hrestime_adj and friends) are adjusted under hres_lock -- and this lock may
84 * be held when we enter probe context. One might think that we could address
85 * this by having a single snapshot copy that is stored under a different lock
86 * from hres_tick(), using the snapshot iff hres_lock is locked in probe
87 * context. Unfortunately, this too won't work: because hres_lock is grabbed
88 * in more than just hres_tick() context, we could enter probe context
89 * concurrently on two different CPUs with both locks (hres_lock and the
90 * snapshot lock) held. As this implies, the fundamental problem is that we
91 * need to have access to a snapshot of these variables that we _know_ will
92 * not be locked in probe context. To effect this, we have two snapshots
93 * protected by two different locks, and we mandate that these snapshots are
94 * recorded in succession by a single thread calling dtrace_hres_tick(). (We
95 * assure this by calling it out of the same CY_HIGH_LEVEL cyclic that calls
96 * hres_tick().) A single thread can't be in two places at once: one of the
97 * snapshot locks is guaranteed to be unheld at all times. The
98 * dtrace_gethrestime() algorithm is thus to check first one snapshot and then
99 * the other to find the unlocked snapshot.
101 void
102 dtrace_hres_tick(void)
104 int i;
105 ushort_t spl;
107 for (i = 0; i < 2; i++) {
108 dtrace_hrestime_t tmp;
110 spl = hr_clock_lock();
111 tmp.dthr_hrestime = hrestime;
112 tmp.dthr_adj = hrestime_adj;
113 tmp.dthr_hrtime = dtrace_gethrtime();
114 hr_clock_unlock(spl);
116 lock_set(&dtrace_hrestime[i].dthr_lock);
117 dtrace_hrestime[i].dthr_hrestime = tmp.dthr_hrestime;
118 dtrace_hrestime[i].dthr_adj = tmp.dthr_adj;
119 dtrace_hrestime[i].dthr_hrtime = tmp.dthr_hrtime;
120 dtrace_membar_producer();
123 * To allow for lock-free examination of this lock, we use
124 * the same trick that is used hres_lock; for more details,
125 * see the description of this technique in sun4u/sys/clock.h.
127 dtrace_hrestime[i].dthr_lock++;
131 hrtime_t
132 dtrace_gethrestime(void)
134 dtrace_hrestime_t snap;
135 hrtime_t now;
136 int i = 0, adj, nslt;
138 for (;;) {
139 snap.dthr_lock = dtrace_hrestime[i].dthr_lock;
140 dtrace_membar_consumer();
141 snap.dthr_hrestime = dtrace_hrestime[i].dthr_hrestime;
142 snap.dthr_hrtime = dtrace_hrestime[i].dthr_hrtime;
143 snap.dthr_adj = dtrace_hrestime[i].dthr_adj;
144 dtrace_membar_consumer();
146 if ((snap.dthr_lock & ~1) == dtrace_hrestime[i].dthr_lock)
147 break;
150 * If we're here, the lock was either locked, or it
151 * transitioned while we were taking the snapshot. Either
152 * way, we're going to try the other dtrace_hrestime element;
153 * we know that it isn't possible for both to be locked
154 * simultaneously, so we will ultimately get a good snapshot.
156 i ^= 1;
160 * We have a good snapshot. Now perform any necessary adjustments.
162 nslt = dtrace_gethrtime() - snap.dthr_hrtime;
163 ASSERT(nslt >= 0);
165 now = ((hrtime_t)snap.dthr_hrestime.tv_sec * (hrtime_t)NANOSEC) +
166 snap.dthr_hrestime.tv_nsec;
168 if (snap.dthr_adj != 0) {
169 if (snap.dthr_adj > 0) {
170 adj = (nslt >> adj_shift);
171 if (adj > snap.dthr_adj)
172 adj = (int)snap.dthr_adj;
173 } else {
174 adj = -(nslt >> adj_shift);
175 if (adj < snap.dthr_adj)
176 adj = (int)snap.dthr_adj;
178 now += adj;
181 return (now);
184 void
185 dtrace_vtime_enable(void)
187 dtrace_vtime_state_t state, nstate;
189 do {
190 state = dtrace_vtime_active;
192 switch (state) {
193 case DTRACE_VTIME_INACTIVE:
194 nstate = DTRACE_VTIME_ACTIVE;
195 break;
197 case DTRACE_VTIME_INACTIVE_TNF:
198 nstate = DTRACE_VTIME_ACTIVE_TNF;
199 break;
201 case DTRACE_VTIME_ACTIVE:
202 case DTRACE_VTIME_ACTIVE_TNF:
203 panic("DTrace virtual time already enabled");
204 /*NOTREACHED*/
207 } while (atomic_cas_32((uint32_t *)&dtrace_vtime_active,
208 state, nstate) != state);
211 void
212 dtrace_vtime_disable(void)
214 dtrace_vtime_state_t state, nstate;
216 do {
217 state = dtrace_vtime_active;
219 switch (state) {
220 case DTRACE_VTIME_ACTIVE:
221 nstate = DTRACE_VTIME_INACTIVE;
222 break;
224 case DTRACE_VTIME_ACTIVE_TNF:
225 nstate = DTRACE_VTIME_INACTIVE_TNF;
226 break;
228 case DTRACE_VTIME_INACTIVE:
229 case DTRACE_VTIME_INACTIVE_TNF:
230 panic("DTrace virtual time already disabled");
231 /*NOTREACHED*/
234 } while (atomic_cas_32((uint32_t *)&dtrace_vtime_active,
235 state, nstate) != state);
238 void
239 dtrace_vtime_enable_tnf(void)
241 dtrace_vtime_state_t state, nstate;
243 do {
244 state = dtrace_vtime_active;
246 switch (state) {
247 case DTRACE_VTIME_ACTIVE:
248 nstate = DTRACE_VTIME_ACTIVE_TNF;
249 break;
251 case DTRACE_VTIME_INACTIVE:
252 nstate = DTRACE_VTIME_INACTIVE_TNF;
253 break;
255 case DTRACE_VTIME_ACTIVE_TNF:
256 case DTRACE_VTIME_INACTIVE_TNF:
257 panic("TNF already active");
258 /*NOTREACHED*/
261 } while (atomic_cas_32((uint32_t *)&dtrace_vtime_active,
262 state, nstate) != state);
265 void
266 dtrace_vtime_disable_tnf(void)
268 dtrace_vtime_state_t state, nstate;
270 do {
271 state = dtrace_vtime_active;
273 switch (state) {
274 case DTRACE_VTIME_ACTIVE_TNF:
275 nstate = DTRACE_VTIME_ACTIVE;
276 break;
278 case DTRACE_VTIME_INACTIVE_TNF:
279 nstate = DTRACE_VTIME_INACTIVE;
280 break;
282 case DTRACE_VTIME_ACTIVE:
283 case DTRACE_VTIME_INACTIVE:
284 panic("TNF already inactive");
285 /*NOTREACHED*/
288 } while (atomic_cas_32((uint32_t *)&dtrace_vtime_active,
289 state, nstate) != state);
292 void
293 dtrace_vtime_switch(kthread_t *next)
295 dtrace_icookie_t cookie;
296 hrtime_t ts;
298 if (tnf_tracing_active) {
299 tnf_thread_switch(next);
301 if (dtrace_vtime_active == DTRACE_VTIME_INACTIVE_TNF)
302 return;
305 cookie = dtrace_interrupt_disable();
306 ts = dtrace_gethrtime();
308 if (curthread->t_dtrace_start != 0) {
309 curthread->t_dtrace_vtime += ts - curthread->t_dtrace_start;
310 curthread->t_dtrace_start = 0;
313 next->t_dtrace_start = ts;
315 dtrace_interrupt_enable(cookie);
318 void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
319 void (*dtrace_fasttrap_exec_ptr)(proc_t *);
320 void (*dtrace_fasttrap_exit_ptr)(proc_t *);
323 * This function is called by cfork() in the event that it appears that
324 * there may be dtrace tracepoints active in the parent process's address
325 * space. This first confirms the existence of dtrace tracepoints in the
326 * parent process and calls into the fasttrap module to remove the
327 * corresponding tracepoints from the child. By knowing that there are
328 * existing tracepoints, and ensuring they can't be removed, we can rely
329 * on the fasttrap module remaining loaded.
331 void
332 dtrace_fasttrap_fork(proc_t *p, proc_t *cp)
334 ASSERT(p->p_proc_flag & P_PR_LOCK);
335 ASSERT(p->p_dtrace_count > 0);
336 ASSERT(dtrace_fasttrap_fork_ptr != NULL);
338 dtrace_fasttrap_fork_ptr(p, cp);