uts: make emu10k non-verbose
[unleashed.git] / kernel / os / cpu.c
blobdcbdca42f5f325adbc59252e93391263951d4e63
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
27 * Architecture-independent CPU control functions.
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/var.h>
33 #include <sys/thread.h>
34 #include <sys/cpuvar.h>
35 #include <sys/cpu_event.h>
36 #include <sys/kstat.h>
37 #include <sys/uadmin.h>
38 #include <sys/systm.h>
39 #include <sys/errno.h>
40 #include <sys/cmn_err.h>
41 #include <sys/procset.h>
42 #include <sys/processor.h>
43 #include <sys/debug.h>
44 #include <sys/cpupart.h>
45 #include <sys/lgrp.h>
46 #include <sys/pset.h>
47 #include <sys/pghw.h>
48 #include <sys/kmem.h>
49 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */
50 #include <sys/atomic.h>
51 #include <sys/callb.h>
52 #include <sys/vtrace.h>
53 #include <sys/cyclic.h>
54 #include <sys/bitmap.h>
55 #include <sys/nvpair.h>
56 #include <sys/pool_pset.h>
57 #include <sys/msacct.h>
58 #include <sys/time.h>
59 #include <sys/archsystm.h>
60 #include <sys/sdt.h>
61 #if defined(__x86) || defined(__amd64)
62 #include <sys/x86_archext.h>
63 #endif
64 #include <sys/callo.h>
66 extern int mp_cpu_start(cpu_t *);
67 extern int mp_cpu_stop(cpu_t *);
68 extern int mp_cpu_poweron(cpu_t *);
69 extern int mp_cpu_poweroff(cpu_t *);
70 extern int mp_cpu_configure(int);
71 extern int mp_cpu_unconfigure(int);
72 extern void mp_cpu_faulted_enter(cpu_t *);
73 extern void mp_cpu_faulted_exit(cpu_t *);
75 extern int cmp_cpu_to_chip(processorid_t cpuid);
76 #ifdef __sparcv9
77 extern char *cpu_fru_fmri(cpu_t *cp);
78 #endif
80 static void cpu_add_active_internal(cpu_t *cp);
81 static void cpu_remove_active(cpu_t *cp);
82 static void cpu_info_kstat_create(cpu_t *cp);
83 static void cpu_info_kstat_destroy(cpu_t *cp);
84 static void cpu_stats_kstat_create(cpu_t *cp);
85 static void cpu_stats_kstat_destroy(cpu_t *cp);
87 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw);
88 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw);
89 static int cpu_stat_ks_update(kstat_t *ksp, int rw);
90 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t);
93 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active,
94 * max_cpu_seqid_ever, and dispatch queue reallocations. The lock ordering with
95 * respect to related locks is:
97 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock()
99 * Warning: Certain sections of code do not use the cpu_lock when
100 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since
101 * all cpus are paused during modifications to this list, a solution
102 * to protect the list is too either disable kernel preemption while
103 * walking the list, *or* recheck the cpu_next pointer at each
104 * iteration in the loop. Note that in no cases can any cached
105 * copies of the cpu pointers be kept as they may become invalid.
107 kmutex_t cpu_lock;
108 cpu_t *cpu_list; /* list of all CPUs */
109 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */
110 cpu_t *cpu_active; /* list of active CPUs */
111 static cpuset_t cpu_available; /* set of available CPUs */
112 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */
114 cpu_t **cpu_seq; /* ptrs to CPUs, indexed by seq_id */
117 * max_ncpus keeps the max cpus the system can have. Initially
118 * it's NCPU, but since most archs scan the devtree for cpus
119 * fairly early on during boot, the real max can be known before
120 * ncpus is set (useful for early NCPU based allocations).
122 int max_ncpus = NCPU;
124 * platforms that set max_ncpus to maxiumum number of cpus that can be
125 * dynamically added will set boot_max_ncpus to the number of cpus found
126 * at device tree scan time during boot.
128 int boot_max_ncpus = -1;
129 int boot_ncpus = -1;
131 * Maximum possible CPU id. This can never be >= NCPU since NCPU is
132 * used to size arrays that are indexed by CPU id.
134 processorid_t max_cpuid = NCPU - 1;
137 * Maximum cpu_seqid was given. This number can only grow and never shrink. It
138 * can be used to optimize NCPU loops to avoid going through CPUs which were
139 * never on-line.
141 processorid_t max_cpu_seqid_ever = 0;
143 int ncpus = 1;
144 int ncpus_online = 1;
147 * CPU that we're trying to offline. Protected by cpu_lock.
149 cpu_t *cpu_inmotion;
152 * Can be raised to suppress further weakbinding, which are instead
153 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock,
154 * while individual thread weakbinding synchronization is done under thread
155 * lock.
157 int weakbindingbarrier;
160 * Variables used in pause_cpus().
162 static volatile char safe_list[NCPU];
164 static struct _cpu_pause_info {
165 int cp_spl; /* spl saved in pause_cpus() */
166 volatile int cp_go; /* Go signal sent after all ready */
167 int cp_count; /* # of CPUs to pause */
168 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */
169 kthread_id_t cp_paused;
170 void *(*cp_func)(void *);
171 } cpu_pause_info;
173 static kmutex_t pause_free_mutex;
174 static kcondvar_t pause_free_cv;
177 static struct cpu_sys_stats_ks_data {
178 kstat_named_t cpu_ticks_idle;
179 kstat_named_t cpu_ticks_user;
180 kstat_named_t cpu_ticks_kernel;
181 kstat_named_t cpu_ticks_wait;
182 kstat_named_t cpu_nsec_idle;
183 kstat_named_t cpu_nsec_user;
184 kstat_named_t cpu_nsec_kernel;
185 kstat_named_t cpu_nsec_dtrace;
186 kstat_named_t cpu_nsec_intr;
187 kstat_named_t cpu_load_intr;
188 kstat_named_t wait_ticks_io;
189 kstat_named_t dtrace_probes;
190 kstat_named_t bread;
191 kstat_named_t bwrite;
192 kstat_named_t lread;
193 kstat_named_t lwrite;
194 kstat_named_t phread;
195 kstat_named_t phwrite;
196 kstat_named_t pswitch;
197 kstat_named_t trap;
198 kstat_named_t intr;
199 kstat_named_t syscall;
200 kstat_named_t sysread;
201 kstat_named_t syswrite;
202 kstat_named_t sysfork;
203 kstat_named_t sysvfork;
204 kstat_named_t sysexec;
205 kstat_named_t readch;
206 kstat_named_t writech;
207 kstat_named_t rcvint;
208 kstat_named_t xmtint;
209 kstat_named_t mdmint;
210 kstat_named_t rawch;
211 kstat_named_t canch;
212 kstat_named_t outch;
213 kstat_named_t msg;
214 kstat_named_t sema;
215 kstat_named_t namei;
216 kstat_named_t ufsiget;
217 kstat_named_t ufsdirblk;
218 kstat_named_t ufsipage;
219 kstat_named_t ufsinopage;
220 kstat_named_t procovf;
221 kstat_named_t intrthread;
222 kstat_named_t intrblk;
223 kstat_named_t intrunpin;
224 kstat_named_t idlethread;
225 kstat_named_t inv_swtch;
226 kstat_named_t nthreads;
227 kstat_named_t cpumigrate;
228 kstat_named_t xcalls;
229 kstat_named_t mutex_adenters;
230 kstat_named_t rw_rdfails;
231 kstat_named_t rw_wrfails;
232 kstat_named_t modload;
233 kstat_named_t modunload;
234 kstat_named_t bawrite;
235 kstat_named_t iowait;
236 } cpu_sys_stats_ks_data_template = {
237 { "cpu_ticks_idle", KSTAT_DATA_UINT64 },
238 { "cpu_ticks_user", KSTAT_DATA_UINT64 },
239 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 },
240 { "cpu_ticks_wait", KSTAT_DATA_UINT64 },
241 { "cpu_nsec_idle", KSTAT_DATA_UINT64 },
242 { "cpu_nsec_user", KSTAT_DATA_UINT64 },
243 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 },
244 { "cpu_nsec_dtrace", KSTAT_DATA_UINT64 },
245 { "cpu_nsec_intr", KSTAT_DATA_UINT64 },
246 { "cpu_load_intr", KSTAT_DATA_UINT64 },
247 { "wait_ticks_io", KSTAT_DATA_UINT64 },
248 { "dtrace_probes", KSTAT_DATA_UINT64 },
249 { "bread", KSTAT_DATA_UINT64 },
250 { "bwrite", KSTAT_DATA_UINT64 },
251 { "lread", KSTAT_DATA_UINT64 },
252 { "lwrite", KSTAT_DATA_UINT64 },
253 { "phread", KSTAT_DATA_UINT64 },
254 { "phwrite", KSTAT_DATA_UINT64 },
255 { "pswitch", KSTAT_DATA_UINT64 },
256 { "trap", KSTAT_DATA_UINT64 },
257 { "intr", KSTAT_DATA_UINT64 },
258 { "syscall", KSTAT_DATA_UINT64 },
259 { "sysread", KSTAT_DATA_UINT64 },
260 { "syswrite", KSTAT_DATA_UINT64 },
261 { "sysfork", KSTAT_DATA_UINT64 },
262 { "sysvfork", KSTAT_DATA_UINT64 },
263 { "sysexec", KSTAT_DATA_UINT64 },
264 { "readch", KSTAT_DATA_UINT64 },
265 { "writech", KSTAT_DATA_UINT64 },
266 { "rcvint", KSTAT_DATA_UINT64 },
267 { "xmtint", KSTAT_DATA_UINT64 },
268 { "mdmint", KSTAT_DATA_UINT64 },
269 { "rawch", KSTAT_DATA_UINT64 },
270 { "canch", KSTAT_DATA_UINT64 },
271 { "outch", KSTAT_DATA_UINT64 },
272 { "msg", KSTAT_DATA_UINT64 },
273 { "sema", KSTAT_DATA_UINT64 },
274 { "namei", KSTAT_DATA_UINT64 },
275 { "ufsiget", KSTAT_DATA_UINT64 },
276 { "ufsdirblk", KSTAT_DATA_UINT64 },
277 { "ufsipage", KSTAT_DATA_UINT64 },
278 { "ufsinopage", KSTAT_DATA_UINT64 },
279 { "procovf", KSTAT_DATA_UINT64 },
280 { "intrthread", KSTAT_DATA_UINT64 },
281 { "intrblk", KSTAT_DATA_UINT64 },
282 { "intrunpin", KSTAT_DATA_UINT64 },
283 { "idlethread", KSTAT_DATA_UINT64 },
284 { "inv_swtch", KSTAT_DATA_UINT64 },
285 { "nthreads", KSTAT_DATA_UINT64 },
286 { "cpumigrate", KSTAT_DATA_UINT64 },
287 { "xcalls", KSTAT_DATA_UINT64 },
288 { "mutex_adenters", KSTAT_DATA_UINT64 },
289 { "rw_rdfails", KSTAT_DATA_UINT64 },
290 { "rw_wrfails", KSTAT_DATA_UINT64 },
291 { "modload", KSTAT_DATA_UINT64 },
292 { "modunload", KSTAT_DATA_UINT64 },
293 { "bawrite", KSTAT_DATA_UINT64 },
294 { "iowait", KSTAT_DATA_UINT64 },
297 static struct cpu_vm_stats_ks_data {
298 kstat_named_t pgrec;
299 kstat_named_t pgfrec;
300 kstat_named_t pgin;
301 kstat_named_t pgpgin;
302 kstat_named_t pgout;
303 kstat_named_t pgpgout;
304 kstat_named_t zfod;
305 kstat_named_t dfree;
306 kstat_named_t scan;
307 kstat_named_t rev;
308 kstat_named_t hat_fault;
309 kstat_named_t as_fault;
310 kstat_named_t maj_fault;
311 kstat_named_t cow_fault;
312 kstat_named_t prot_fault;
313 kstat_named_t softlock;
314 kstat_named_t kernel_asflt;
315 kstat_named_t pgrrun;
316 kstat_named_t execpgin;
317 kstat_named_t execpgout;
318 kstat_named_t execfree;
319 kstat_named_t anonpgin;
320 kstat_named_t anonpgout;
321 kstat_named_t anonfree;
322 kstat_named_t fspgin;
323 kstat_named_t fspgout;
324 kstat_named_t fsfree;
325 } cpu_vm_stats_ks_data_template = {
326 { "pgrec", KSTAT_DATA_UINT64 },
327 { "pgfrec", KSTAT_DATA_UINT64 },
328 { "pgin", KSTAT_DATA_UINT64 },
329 { "pgpgin", KSTAT_DATA_UINT64 },
330 { "pgout", KSTAT_DATA_UINT64 },
331 { "pgpgout", KSTAT_DATA_UINT64 },
332 { "zfod", KSTAT_DATA_UINT64 },
333 { "dfree", KSTAT_DATA_UINT64 },
334 { "scan", KSTAT_DATA_UINT64 },
335 { "rev", KSTAT_DATA_UINT64 },
336 { "hat_fault", KSTAT_DATA_UINT64 },
337 { "as_fault", KSTAT_DATA_UINT64 },
338 { "maj_fault", KSTAT_DATA_UINT64 },
339 { "cow_fault", KSTAT_DATA_UINT64 },
340 { "prot_fault", KSTAT_DATA_UINT64 },
341 { "softlock", KSTAT_DATA_UINT64 },
342 { "kernel_asflt", KSTAT_DATA_UINT64 },
343 { "pgrrun", KSTAT_DATA_UINT64 },
344 { "execpgin", KSTAT_DATA_UINT64 },
345 { "execpgout", KSTAT_DATA_UINT64 },
346 { "execfree", KSTAT_DATA_UINT64 },
347 { "anonpgin", KSTAT_DATA_UINT64 },
348 { "anonpgout", KSTAT_DATA_UINT64 },
349 { "anonfree", KSTAT_DATA_UINT64 },
350 { "fspgin", KSTAT_DATA_UINT64 },
351 { "fspgout", KSTAT_DATA_UINT64 },
352 { "fsfree", KSTAT_DATA_UINT64 },
356 * Force the specified thread to migrate to the appropriate processor.
357 * Called with thread lock held, returns with it dropped.
359 static void
360 force_thread_migrate(kthread_id_t tp)
362 ASSERT(THREAD_LOCK_HELD(tp));
363 if (tp == curthread) {
364 THREAD_TRANSITION(tp);
365 CL_SETRUN(tp);
366 thread_unlock_nopreempt(tp);
367 swtch();
368 } else {
369 if (tp->t_state == TS_ONPROC) {
370 cpu_surrender(tp);
371 } else if (tp->t_state == TS_RUN) {
372 (void) dispdeq(tp);
373 setbackdq(tp);
375 thread_unlock(tp);
380 * Set affinity for a specified CPU.
381 * A reference count is incremented and the affinity is held until the
382 * reference count is decremented to zero by thread_affinity_clear().
383 * This is so regions of code requiring affinity can be nested.
384 * Caller needs to ensure that cpu_id remains valid, which can be
385 * done by holding cpu_lock across this call, unless the caller
386 * specifies CPU_CURRENT in which case the cpu_lock will be acquired
387 * by thread_affinity_set and CPU->cpu_id will be the target CPU.
389 void
390 thread_affinity_set(kthread_id_t t, int cpu_id)
392 cpu_t *cp;
393 int c;
395 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL));
397 if ((c = cpu_id) == CPU_CURRENT) {
398 mutex_enter(&cpu_lock);
399 cpu_id = CPU->cpu_id;
401 ASSERT(MUTEX_HELD(&cpu_lock));
402 ASSERT((cpu_id >= 0) && (cpu_id < NCPU));
403 cp = cpu[cpu_id];
404 ASSERT(cp != NULL); /* user must provide a good cpu_id */
406 * If there is already a hard affinity requested, and this affinity
407 * conflicts with that, panic.
409 thread_lock(t);
410 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) {
411 panic("affinity_set: setting %p but already bound to %p",
412 (void *)cp, (void *)t->t_bound_cpu);
414 t->t_affinitycnt++;
415 t->t_bound_cpu = cp;
418 * Make sure we're running on the right CPU.
420 if (cp != t->t_cpu || t != curthread) {
421 force_thread_migrate(t); /* drops thread lock */
422 } else {
423 thread_unlock(t);
426 if (c == CPU_CURRENT)
427 mutex_exit(&cpu_lock);
431 * Wrapper for backward compatibility.
433 void
434 affinity_set(int cpu_id)
436 thread_affinity_set(curthread, cpu_id);
440 * Decrement the affinity reservation count and if it becomes zero,
441 * clear the CPU affinity for the current thread, or set it to the user's
442 * software binding request.
444 void
445 thread_affinity_clear(kthread_id_t t)
447 register processorid_t binding;
449 thread_lock(t);
450 if (--t->t_affinitycnt == 0) {
451 if ((binding = t->t_bind_cpu) == PBIND_NONE) {
453 * Adjust disp_max_unbound_pri if necessary.
455 disp_adjust_unbound_pri(t);
456 t->t_bound_cpu = NULL;
457 if (t->t_cpu->cpu_part != t->t_cpupart) {
458 force_thread_migrate(t);
459 return;
461 } else {
462 t->t_bound_cpu = cpu[binding];
464 * Make sure the thread is running on the bound CPU.
466 if (t->t_cpu != t->t_bound_cpu) {
467 force_thread_migrate(t);
468 return; /* already dropped lock */
472 thread_unlock(t);
476 * Wrapper for backward compatibility.
478 void
479 affinity_clear(void)
481 thread_affinity_clear(curthread);
485 * Weak cpu affinity. Bind to the "current" cpu for short periods
486 * of time during which the thread must not block (but may be preempted).
487 * Use this instead of kpreempt_disable() when it is only "no migration"
488 * rather than "no preemption" semantics that are required - disabling
489 * preemption holds higher priority threads off of cpu and if the
490 * operation that is protected is more than momentary this is not good
491 * for realtime etc.
493 * Weakly bound threads will not prevent a cpu from being offlined -
494 * we'll only run them on the cpu to which they are weakly bound but
495 * (because they do not block) we'll always be able to move them on to
496 * another cpu at offline time if we give them just a short moment to
497 * run during which they will unbind. To give a cpu a chance of offlining,
498 * however, we require a barrier to weak bindings that may be raised for a
499 * given cpu (offline/move code may set this and then wait a short time for
500 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier.
502 * There are few restrictions on the calling context of thread_nomigrate.
503 * The caller must not hold the thread lock. Calls may be nested.
505 * After weakbinding a thread must not perform actions that may block.
506 * In particular it must not call thread_affinity_set; calling that when
507 * already weakbound is nonsensical anyway.
509 * If curthread is prevented from migrating for other reasons
510 * (kernel preemption disabled; high pil; strongly bound; interrupt thread)
511 * then the weak binding will succeed even if this cpu is the target of an
512 * offline/move request.
514 void
515 thread_nomigrate(void)
517 cpu_t *cp;
518 kthread_id_t t = curthread;
520 again:
521 kpreempt_disable();
522 cp = CPU;
525 * A highlevel interrupt must not modify t_nomigrate or
526 * t_weakbound_cpu of the thread it has interrupted. A lowlevel
527 * interrupt thread cannot migrate and we can avoid the
528 * thread_lock call below by short-circuiting here. In either
529 * case we can just return since no migration is possible and
530 * the condition will persist (ie, when we test for these again
531 * in thread_allowmigrate they can't have changed). Migration
532 * is also impossible if we're at or above DISP_LEVEL pil.
534 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD ||
535 getpil() >= DISP_LEVEL) {
536 kpreempt_enable();
537 return;
541 * We must be consistent with existing weak bindings. Since we
542 * may be interrupted between the increment of t_nomigrate and
543 * the store to t_weakbound_cpu below we cannot assume that
544 * t_weakbound_cpu will be set if t_nomigrate is. Note that we
545 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not
546 * always the case.
548 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) {
549 if (!panicstr)
550 panic("thread_nomigrate: binding to %p but already "
551 "bound to %p", (void *)cp,
552 (void *)t->t_weakbound_cpu);
556 * At this point we have preemption disabled and we don't yet hold
557 * the thread lock. So it's possible that somebody else could
558 * set t_bind_cpu here and not be able to force us across to the
559 * new cpu (since we have preemption disabled).
561 thread_lock(curthread);
564 * If further weak bindings are being (temporarily) suppressed then
565 * we'll settle for disabling kernel preemption (which assures
566 * no migration provided the thread does not block which it is
567 * not allowed to if using thread_nomigrate). We must remember
568 * this disposition so we can take appropriate action in
569 * thread_allowmigrate. If this is a nested call and the
570 * thread is already weakbound then fall through as normal.
571 * We remember the decision to settle for kpreempt_disable through
572 * negative nesting counting in t_nomigrate. Once a thread has had one
573 * weakbinding request satisfied in this way any further (nested)
574 * requests will continue to be satisfied in the same way,
575 * even if weak bindings have recommenced.
577 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) {
578 --t->t_nomigrate;
579 thread_unlock(curthread);
580 return; /* with kpreempt_disable still active */
584 * We hold thread_lock so t_bind_cpu cannot change. We could,
585 * however, be running on a different cpu to which we are t_bound_cpu
586 * to (as explained above). If we grant the weak binding request
587 * in that case then the dispatcher must favour our weak binding
588 * over our strong (in which case, just as when preemption is
589 * disabled, we can continue to run on a cpu other than the one to
590 * which we are strongbound; the difference in this case is that
591 * this thread can be preempted and so can appear on the dispatch
592 * queues of a cpu other than the one it is strongbound to).
594 * If the cpu we are running on does not appear to be a current
595 * offline target (we check cpu_inmotion to determine this - since
596 * we don't hold cpu_lock we may not see a recent store to that,
597 * so it's possible that we at times can grant a weak binding to a
598 * cpu that is an offline target, but that one request will not
599 * prevent the offline from succeeding) then we will always grant
600 * the weak binding request. This includes the case above where
601 * we grant a weakbinding not commensurate with our strong binding.
603 * If our cpu does appear to be an offline target then we're inclined
604 * not to grant the weakbinding request just yet - we'd prefer to
605 * migrate to another cpu and grant the request there. The
606 * exceptions are those cases where going through preemption code
607 * will not result in us changing cpu:
609 * . interrupts have already bypassed this case (see above)
610 * . we are already weakbound to this cpu (dispatcher code will
611 * always return us to the weakbound cpu)
612 * . preemption was disabled even before we disabled it above
613 * . we are strongbound to this cpu (if we're strongbound to
614 * another and not yet running there the trip through the
615 * dispatcher will move us to the strongbound cpu and we
616 * will grant the weak binding there)
618 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 ||
619 t->t_bound_cpu == cp) {
621 * Don't be tempted to store to t_weakbound_cpu only on
622 * the first nested bind request - if we're interrupted
623 * after the increment of t_nomigrate and before the
624 * store to t_weakbound_cpu and the interrupt calls
625 * thread_nomigrate then the assertion in thread_allowmigrate
626 * would fail.
628 t->t_nomigrate++;
629 t->t_weakbound_cpu = cp;
630 membar_producer();
631 thread_unlock(curthread);
633 * Now that we have dropped the thread_lock another thread
634 * can set our t_weakbound_cpu, and will try to migrate us
635 * to the strongbound cpu (which will not be prevented by
636 * preemption being disabled since we're about to enable
637 * preemption). We have granted the weakbinding to the current
638 * cpu, so again we are in the position that is is is possible
639 * that our weak and strong bindings differ. Again this
640 * is catered for by dispatcher code which will favour our
641 * weak binding.
643 kpreempt_enable();
644 } else {
646 * Move to another cpu before granting the request by
647 * forcing this thread through preemption code. When we
648 * get to set{front,back}dq called from CL_PREEMPT()
649 * cpu_choose() will be used to select a cpu to queue
650 * us on - that will see cpu_inmotion and take
651 * steps to avoid returning us to this cpu.
653 cp->cpu_kprunrun = 1;
654 thread_unlock(curthread);
655 kpreempt_enable(); /* will call preempt() */
656 goto again;
660 void
661 thread_allowmigrate(void)
663 kthread_id_t t = curthread;
665 ASSERT(t->t_weakbound_cpu == CPU ||
666 (t->t_nomigrate < 0 && t->t_preempt > 0) ||
667 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD ||
668 getpil() >= DISP_LEVEL);
670 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) ||
671 getpil() >= DISP_LEVEL)
672 return;
674 if (t->t_nomigrate < 0) {
676 * This thread was granted "weak binding" in the
677 * stronger form of kernel preemption disabling.
678 * Undo a level of nesting for both t_nomigrate
679 * and t_preempt.
681 ++t->t_nomigrate;
682 kpreempt_enable();
683 } else if (--t->t_nomigrate == 0) {
685 * Time to drop the weak binding. We need to cater
686 * for the case where we're weakbound to a different
687 * cpu than that to which we're strongbound (a very
688 * temporary arrangement that must only persist until
689 * weak binding drops). We don't acquire thread_lock
690 * here so even as this code executes t_bound_cpu
691 * may be changing. So we disable preemption and
692 * a) in the case that t_bound_cpu changes while we
693 * have preemption disabled kprunrun will be set
694 * asynchronously, and b) if before disabling
695 * preemption we were already on a different cpu to
696 * our t_bound_cpu then we set kprunrun ourselves
697 * to force a trip through the dispatcher when
698 * preemption is enabled.
700 kpreempt_disable();
701 if (t->t_bound_cpu &&
702 t->t_weakbound_cpu != t->t_bound_cpu)
703 CPU->cpu_kprunrun = 1;
704 t->t_weakbound_cpu = NULL;
705 membar_producer();
706 kpreempt_enable();
711 * weakbinding_stop can be used to temporarily cause weakbindings made
712 * with thread_nomigrate to be satisfied through the stronger action of
713 * kpreempt_disable. weakbinding_start recommences normal weakbinding.
716 void
717 weakbinding_stop(void)
719 ASSERT(MUTEX_HELD(&cpu_lock));
720 weakbindingbarrier = 1;
721 membar_producer(); /* make visible before subsequent thread_lock */
724 void
725 weakbinding_start(void)
727 ASSERT(MUTEX_HELD(&cpu_lock));
728 weakbindingbarrier = 0;
731 void
732 null_xcall(void)
737 * This routine is called to place the CPUs in a safe place so that
738 * one of them can be taken off line or placed on line. What we are
739 * trying to do here is prevent a thread from traversing the list
740 * of active CPUs while we are changing it or from getting placed on
741 * the run queue of a CPU that has just gone off line. We do this by
742 * creating a thread with the highest possible prio for each CPU and
743 * having it call this routine. The advantage of this method is that
744 * we can eliminate all checks for CPU_ACTIVE in the disp routines.
745 * This makes disp faster at the expense of making p_online() slower
746 * which is a good trade off.
748 static void
749 cpu_pause(int index)
751 int s;
752 struct _cpu_pause_info *cpi = &cpu_pause_info;
753 volatile char *safe = &safe_list[index];
754 long lindex = index;
756 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE));
758 while (*safe != PAUSE_DIE) {
759 *safe = PAUSE_READY;
760 membar_enter(); /* make sure stores are flushed */
761 sema_v(&cpi->cp_sem); /* signal requesting thread */
764 * Wait here until all pause threads are running. That
765 * indicates that it's safe to do the spl. Until
766 * cpu_pause_info.cp_go is set, we don't want to spl
767 * because that might block clock interrupts needed
768 * to preempt threads on other CPUs.
770 while (cpi->cp_go == 0)
773 * Even though we are at the highest disp prio, we need
774 * to block out all interrupts below LOCK_LEVEL so that
775 * an intr doesn't come in, wake up a thread, and call
776 * setbackdq/setfrontdq.
778 s = splhigh();
780 * if cp_func has been set then call it using index as the
781 * argument, currently only used by cpr_suspend_cpus().
782 * This function is used as the code to execute on the
783 * "paused" cpu's when a machine comes out of a sleep state
784 * and CPU's were powered off. (could also be used for
785 * hotplugging CPU's).
787 if (cpi->cp_func != NULL)
788 (*cpi->cp_func)((void *)lindex);
790 mach_cpu_pause(safe);
792 splx(s);
794 * Waiting is at an end. Switch out of cpu_pause
795 * loop and resume useful work.
797 swtch();
800 mutex_enter(&pause_free_mutex);
801 *safe = PAUSE_DEAD;
802 cv_broadcast(&pause_free_cv);
803 mutex_exit(&pause_free_mutex);
807 * Allow the cpus to start running again.
809 void
810 start_cpus()
812 int i;
814 ASSERT(MUTEX_HELD(&cpu_lock));
815 ASSERT(cpu_pause_info.cp_paused);
816 cpu_pause_info.cp_paused = NULL;
817 for (i = 0; i < NCPU; i++)
818 safe_list[i] = PAUSE_IDLE;
819 membar_enter(); /* make sure stores are flushed */
820 affinity_clear();
821 splx(cpu_pause_info.cp_spl);
822 kpreempt_enable();
826 * Allocate a pause thread for a CPU.
828 static void
829 cpu_pause_alloc(cpu_t *cp)
831 kthread_id_t t;
832 long cpun = cp->cpu_id;
835 * Note, v.v_nglobpris will not change value as long as I hold
836 * cpu_lock.
838 t = thread_create(NULL, 0, cpu_pause, (void *)cpun,
839 0, &p0, TS_STOPPED, v.v_nglobpris - 1);
840 thread_lock(t);
841 t->t_bound_cpu = cp;
842 t->t_disp_queue = cp->cpu_disp;
843 t->t_affinitycnt = 1;
844 t->t_preempt = 1;
845 thread_unlock(t);
846 cp->cpu_pause_thread = t;
848 * Registering a thread in the callback table is usually done
849 * in the initialization code of the thread. In this
850 * case, we do it right after thread creation because the
851 * thread itself may never run, and we need to register the
852 * fact that it is safe for cpr suspend.
854 CALLB_CPR_INIT_SAFE(t, "cpu_pause");
858 * Free a pause thread for a CPU.
860 static void
861 cpu_pause_free(cpu_t *cp)
863 kthread_id_t t;
864 int cpun = cp->cpu_id;
866 ASSERT(MUTEX_HELD(&cpu_lock));
868 * We have to get the thread and tell it to die.
870 if ((t = cp->cpu_pause_thread) == NULL) {
871 ASSERT(safe_list[cpun] == PAUSE_IDLE);
872 return;
874 thread_lock(t);
875 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */
876 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */
877 t->t_pri = v.v_nglobpris - 1;
878 ASSERT(safe_list[cpun] == PAUSE_IDLE);
879 safe_list[cpun] = PAUSE_DIE;
880 THREAD_TRANSITION(t);
881 setbackdq(t);
882 thread_unlock_nopreempt(t);
885 * If we don't wait for the thread to actually die, it may try to
886 * run on the wrong cpu as part of an actual call to pause_cpus().
888 mutex_enter(&pause_free_mutex);
889 while (safe_list[cpun] != PAUSE_DEAD) {
890 cv_wait(&pause_free_cv, &pause_free_mutex);
892 mutex_exit(&pause_free_mutex);
893 safe_list[cpun] = PAUSE_IDLE;
895 cp->cpu_pause_thread = NULL;
899 * Initialize basic structures for pausing CPUs.
901 void
902 cpu_pause_init()
904 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL);
906 * Create initial CPU pause thread.
908 cpu_pause_alloc(CPU);
912 * Start the threads used to pause another CPU.
914 static int
915 cpu_pause_start(processorid_t cpu_id)
917 int i;
918 int cpu_count = 0;
920 for (i = 0; i < NCPU; i++) {
921 cpu_t *cp;
922 kthread_id_t t;
924 cp = cpu[i];
925 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) {
926 safe_list[i] = PAUSE_WAIT;
927 continue;
931 * Skip CPU if it is quiesced or not yet started.
933 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) {
934 safe_list[i] = PAUSE_WAIT;
935 continue;
939 * Start this CPU's pause thread.
941 t = cp->cpu_pause_thread;
942 thread_lock(t);
944 * Reset the priority, since nglobpris may have
945 * changed since the thread was created, if someone
946 * has loaded the RT (or some other) scheduling
947 * class.
949 t->t_pri = v.v_nglobpris - 1;
950 THREAD_TRANSITION(t);
951 setbackdq(t);
952 thread_unlock_nopreempt(t);
953 ++cpu_count;
955 return (cpu_count);
960 * Pause all of the CPUs except the one we are on by creating a high
961 * priority thread bound to those CPUs.
963 * Note that one must be extremely careful regarding code
964 * executed while CPUs are paused. Since a CPU may be paused
965 * while a thread scheduling on that CPU is holding an adaptive
966 * lock, code executed with CPUs paused must not acquire adaptive
967 * (or low-level spin) locks. Also, such code must not block,
968 * since the thread that is supposed to initiate the wakeup may
969 * never run.
971 * With a few exceptions, the restrictions on code executed with CPUs
972 * paused match those for code executed at high-level interrupt
973 * context.
975 void
976 pause_cpus(cpu_t *off_cp, void *(*func)(void *))
978 processorid_t cpu_id;
979 int i;
980 struct _cpu_pause_info *cpi = &cpu_pause_info;
982 ASSERT(MUTEX_HELD(&cpu_lock));
983 ASSERT(cpi->cp_paused == NULL);
984 cpi->cp_count = 0;
985 cpi->cp_go = 0;
986 for (i = 0; i < NCPU; i++)
987 safe_list[i] = PAUSE_IDLE;
988 kpreempt_disable();
990 cpi->cp_func = func;
993 * If running on the cpu that is going offline, get off it.
994 * This is so that it won't be necessary to rechoose a CPU
995 * when done.
997 if (CPU == off_cp)
998 cpu_id = off_cp->cpu_next_part->cpu_id;
999 else
1000 cpu_id = CPU->cpu_id;
1001 affinity_set(cpu_id);
1004 * Start the pause threads and record how many were started
1006 cpi->cp_count = cpu_pause_start(cpu_id);
1009 * Now wait for all CPUs to be running the pause thread.
1011 while (cpi->cp_count > 0) {
1013 * Spin reading the count without grabbing the disp
1014 * lock to make sure we don't prevent the pause
1015 * threads from getting the lock.
1017 while (sema_held(&cpi->cp_sem))
1019 if (sema_tryp(&cpi->cp_sem))
1020 --cpi->cp_count;
1022 cpi->cp_go = 1; /* all have reached cpu_pause */
1025 * Now wait for all CPUs to spl. (Transition from PAUSE_READY
1026 * to PAUSE_WAIT.)
1028 for (i = 0; i < NCPU; i++) {
1029 while (safe_list[i] != PAUSE_WAIT)
1032 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */
1033 cpi->cp_paused = curthread;
1037 * Check whether the current thread has CPUs paused
1040 cpus_paused(void)
1042 if (cpu_pause_info.cp_paused != NULL) {
1043 ASSERT(cpu_pause_info.cp_paused == curthread);
1044 return (1);
1046 return (0);
1049 static cpu_t *
1050 cpu_get_all(processorid_t cpun)
1052 ASSERT(MUTEX_HELD(&cpu_lock));
1054 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun))
1055 return (NULL);
1056 return (cpu[cpun]);
1060 * Check whether cpun is a valid processor id and whether it should be
1061 * visible from the current zone. If it is, return a pointer to the
1062 * associated CPU structure.
1064 cpu_t *
1065 cpu_get(processorid_t cpun)
1067 cpu_t *c;
1069 ASSERT(MUTEX_HELD(&cpu_lock));
1070 c = cpu_get_all(cpun);
1071 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() &&
1072 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c))
1073 return (NULL);
1074 return (c);
1078 * The following functions should be used to check CPU states in the kernel.
1079 * They should be invoked with cpu_lock held. Kernel subsystems interested
1080 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc
1081 * states. Those are for user-land (and system call) use only.
1085 * Determine whether the CPU is online and handling interrupts.
1088 cpu_is_online(cpu_t *cpu)
1090 ASSERT(MUTEX_HELD(&cpu_lock));
1091 return (cpu_flagged_online(cpu->cpu_flags));
1095 * Determine whether the CPU is offline (this includes spare and faulted).
1098 cpu_is_offline(cpu_t *cpu)
1100 ASSERT(MUTEX_HELD(&cpu_lock));
1101 return (cpu_flagged_offline(cpu->cpu_flags));
1105 * Determine whether the CPU is powered off.
1108 cpu_is_poweredoff(cpu_t *cpu)
1110 ASSERT(MUTEX_HELD(&cpu_lock));
1111 return (cpu_flagged_poweredoff(cpu->cpu_flags));
1115 * Determine whether the CPU is handling interrupts.
1118 cpu_is_nointr(cpu_t *cpu)
1120 ASSERT(MUTEX_HELD(&cpu_lock));
1121 return (cpu_flagged_nointr(cpu->cpu_flags));
1125 * Determine whether the CPU is active (scheduling threads).
1128 cpu_is_active(cpu_t *cpu)
1130 ASSERT(MUTEX_HELD(&cpu_lock));
1131 return (cpu_flagged_active(cpu->cpu_flags));
1135 * Same as above, but these require cpu_flags instead of cpu_t pointers.
1138 cpu_flagged_online(cpu_flag_t cpu_flags)
1140 return (cpu_flagged_active(cpu_flags) &&
1141 (cpu_flags & CPU_ENABLE));
1145 cpu_flagged_offline(cpu_flag_t cpu_flags)
1147 return (((cpu_flags & CPU_POWEROFF) == 0) &&
1148 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY));
1152 cpu_flagged_poweredoff(cpu_flag_t cpu_flags)
1154 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF);
1158 cpu_flagged_nointr(cpu_flag_t cpu_flags)
1160 return (cpu_flagged_active(cpu_flags) &&
1161 (cpu_flags & CPU_ENABLE) == 0);
1165 cpu_flagged_active(cpu_flag_t cpu_flags)
1167 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) &&
1168 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY));
1172 * Bring the indicated CPU online.
1175 cpu_online(cpu_t *cp)
1177 int error = 0;
1180 * Handle on-line request.
1181 * This code must put the new CPU on the active list before
1182 * starting it because it will not be paused, and will start
1183 * using the active list immediately. The real start occurs
1184 * when the CPU_QUIESCED flag is turned off.
1187 ASSERT(MUTEX_HELD(&cpu_lock));
1190 * Put all the cpus into a known safe place.
1191 * No mutexes can be entered while CPUs are paused.
1193 error = mp_cpu_start(cp); /* arch-dep hook */
1194 if (error == 0) {
1195 pg_cpupart_in(cp, cp->cpu_part);
1196 pause_cpus(NULL, NULL);
1197 cpu_add_active_internal(cp);
1198 if (cp->cpu_flags & CPU_FAULTED) {
1199 cp->cpu_flags &= ~CPU_FAULTED;
1200 mp_cpu_faulted_exit(cp);
1202 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN |
1203 CPU_SPARE);
1204 CPU_NEW_GENERATION(cp);
1205 start_cpus();
1206 cpu_stats_kstat_create(cp);
1207 cpu_create_intrstat(cp);
1208 lgrp_kstat_create(cp);
1209 cpu_state_change_notify(cp->cpu_id, CPU_ON);
1210 cpu_intr_enable(cp); /* arch-dep hook */
1211 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1212 cpu_set_state(cp);
1213 cyclic_online(cp);
1215 * This has to be called only after cyclic_online(). This
1216 * function uses cyclics.
1218 callout_cpu_online(cp);
1219 poke_cpu(cp->cpu_id);
1222 return (error);
1226 * Take the indicated CPU offline.
1229 cpu_offline(cpu_t *cp, int flags)
1231 cpupart_t *pp;
1232 int error = 0;
1233 cpu_t *ncp;
1234 int intr_enable;
1235 int cyclic_off = 0;
1236 int callout_off = 0;
1237 int loop_count;
1238 int no_quiesce = 0;
1239 int (*bound_func)(struct cpu *, int);
1240 kthread_t *t;
1241 lpl_t *cpu_lpl;
1242 proc_t *p;
1243 int lgrp_diff_lpl;
1244 boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0;
1246 ASSERT(MUTEX_HELD(&cpu_lock));
1249 * If we're going from faulted or spare to offline, just
1250 * clear these flags and update CPU state.
1252 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) {
1253 if (cp->cpu_flags & CPU_FAULTED) {
1254 cp->cpu_flags &= ~CPU_FAULTED;
1255 mp_cpu_faulted_exit(cp);
1257 cp->cpu_flags &= ~CPU_SPARE;
1258 cpu_set_state(cp);
1259 return (0);
1263 * Handle off-line request.
1265 pp = cp->cpu_part;
1267 * Don't offline last online CPU in partition
1269 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2)
1270 return (EBUSY);
1272 * Unbind all soft-bound threads bound to our CPU and hard bound threads
1273 * if we were asked to.
1275 error = cpu_unbind(cp->cpu_id, unbind_all_threads);
1276 if (error != 0)
1277 return (error);
1279 * We shouldn't be bound to this CPU ourselves.
1281 if (curthread->t_bound_cpu == cp)
1282 return (EBUSY);
1285 * Tell interested parties that this CPU is going offline.
1287 CPU_NEW_GENERATION(cp);
1288 cpu_state_change_notify(cp->cpu_id, CPU_OFF);
1291 * Tell the PG subsystem that the CPU is leaving the partition
1293 pg_cpupart_out(cp, pp);
1296 * Take the CPU out of interrupt participation so we won't find
1297 * bound kernel threads. If the architecture cannot completely
1298 * shut off interrupts on the CPU, don't quiesce it, but don't
1299 * run anything but interrupt thread... this is indicated by
1300 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being
1301 * off.
1303 intr_enable = cp->cpu_flags & CPU_ENABLE;
1304 if (intr_enable)
1305 no_quiesce = cpu_intr_disable(cp);
1308 * Record that we are aiming to offline this cpu. This acts as
1309 * a barrier to further weak binding requests in thread_nomigrate
1310 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to
1311 * lean away from this cpu. Further strong bindings are already
1312 * avoided since we hold cpu_lock. Since threads that are set
1313 * runnable around now and others coming off the target cpu are
1314 * directed away from the target, existing strong and weak bindings
1315 * (especially the latter) to the target cpu stand maximum chance of
1316 * being able to unbind during the short delay loop below (if other
1317 * unbound threads compete they may not see cpu in time to unbind
1318 * even if they would do so immediately.
1320 cpu_inmotion = cp;
1321 membar_enter();
1324 * Check for kernel threads (strong or weak) bound to that CPU.
1325 * Strongly bound threads may not unbind, and we'll have to return
1326 * EBUSY. Weakly bound threads should always disappear - we've
1327 * stopped more weak binding with cpu_inmotion and existing
1328 * bindings will drain imminently (they may not block). Nonetheless
1329 * we will wait for a fixed period for all bound threads to disappear.
1330 * Inactive interrupt threads are OK (they'll be in TS_FREE
1331 * state). If test finds some bound threads, wait a few ticks
1332 * to give short-lived threads (such as interrupts) chance to
1333 * complete. Note that if no_quiesce is set, i.e. this cpu
1334 * is required to service interrupts, then we take the route
1335 * that permits interrupt threads to be active (or bypassed).
1337 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads;
1339 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) {
1340 if (loop_count >= 5) {
1341 error = EBUSY; /* some threads still bound */
1342 break;
1346 * If some threads were assigned, give them
1347 * a chance to complete or move.
1349 * This assumes that the clock_thread is not bound
1350 * to any CPU, because the clock_thread is needed to
1351 * do the delay(hz/100).
1353 * Note: we still hold the cpu_lock while waiting for
1354 * the next clock tick. This is OK since it isn't
1355 * needed for anything else except processor_bind(2),
1356 * and system initialization. If we drop the lock,
1357 * we would risk another p_online disabling the last
1358 * processor.
1360 delay(hz/100);
1363 if (error == 0 && callout_off == 0) {
1364 callout_cpu_offline(cp);
1365 callout_off = 1;
1368 if (error == 0 && cyclic_off == 0) {
1369 if (!cyclic_offline(cp)) {
1371 * We must have bound cyclics...
1373 error = EBUSY;
1374 goto out;
1376 cyclic_off = 1;
1380 * Call mp_cpu_stop() to perform any special operations
1381 * needed for this machine architecture to offline a CPU.
1383 if (error == 0)
1384 error = mp_cpu_stop(cp); /* arch-dep hook */
1387 * If that all worked, take the CPU offline and decrement
1388 * ncpus_online.
1390 if (error == 0) {
1392 * Put all the cpus into a known safe place.
1393 * No mutexes can be entered while CPUs are paused.
1395 pause_cpus(cp, NULL);
1397 * Repeat the operation, if necessary, to make sure that
1398 * all outstanding low-level interrupts run to completion
1399 * before we set the CPU_QUIESCED flag. It's also possible
1400 * that a thread has weak bound to the cpu despite our raising
1401 * cpu_inmotion above since it may have loaded that
1402 * value before the barrier became visible (this would have
1403 * to be the thread that was on the target cpu at the time
1404 * we raised the barrier).
1406 if ((!no_quiesce && cp->cpu_intr_actv != 0) ||
1407 (*bound_func)(cp, 1)) {
1408 start_cpus();
1409 (void) mp_cpu_start(cp);
1410 goto again;
1412 ncp = cp->cpu_next_part;
1413 cpu_lpl = cp->cpu_lpl;
1414 ASSERT(cpu_lpl != NULL);
1417 * Remove the CPU from the list of active CPUs.
1419 cpu_remove_active(cp);
1422 * Walk the active process list and look for threads
1423 * whose home lgroup needs to be updated, or
1424 * the last CPU they run on is the one being offlined now.
1427 ASSERT(curthread->t_cpu != cp);
1428 for (p = practive; p != NULL; p = p->p_next) {
1430 t = p->p_tlist;
1432 if (t == NULL)
1433 continue;
1435 lgrp_diff_lpl = 0;
1437 do {
1438 ASSERT(t->t_lpl != NULL);
1440 * Taking last CPU in lpl offline
1441 * Rehome thread if it is in this lpl
1442 * Otherwise, update the count of how many
1443 * threads are in this CPU's lgroup but have
1444 * a different lpl.
1447 if (cpu_lpl->lpl_ncpu == 0) {
1448 if (t->t_lpl == cpu_lpl)
1449 lgrp_move_thread(t,
1450 lgrp_choose(t,
1451 t->t_cpupart), 0);
1452 else if (t->t_lpl->lpl_lgrpid ==
1453 cpu_lpl->lpl_lgrpid)
1454 lgrp_diff_lpl++;
1456 ASSERT(t->t_lpl->lpl_ncpu > 0);
1459 * Update CPU last ran on if it was this CPU
1461 if (t->t_cpu == cp && t->t_bound_cpu != cp)
1462 t->t_cpu = disp_lowpri_cpu(ncp,
1463 t->t_lpl, t->t_pri, NULL);
1464 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1465 t->t_weakbound_cpu == cp);
1467 t = t->t_forw;
1468 } while (t != p->p_tlist);
1471 * Didn't find any threads in the same lgroup as this
1472 * CPU with a different lpl, so remove the lgroup from
1473 * the process lgroup bitmask.
1476 if (lgrp_diff_lpl == 0)
1477 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid);
1481 * Walk thread list looking for threads that need to be
1482 * rehomed, since there are some threads that are not in
1483 * their process's p_tlist.
1486 t = curthread;
1487 do {
1488 ASSERT(t != NULL && t->t_lpl != NULL);
1491 * Rehome threads with same lpl as this CPU when this
1492 * is the last CPU in the lpl.
1495 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl))
1496 lgrp_move_thread(t,
1497 lgrp_choose(t, t->t_cpupart), 1);
1499 ASSERT(t->t_lpl->lpl_ncpu > 0);
1502 * Update CPU last ran on if it was this CPU
1505 if (t->t_cpu == cp && t->t_bound_cpu != cp) {
1506 t->t_cpu = disp_lowpri_cpu(ncp,
1507 t->t_lpl, t->t_pri, NULL);
1509 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1510 t->t_weakbound_cpu == cp);
1511 t = t->t_next;
1513 } while (t != curthread);
1514 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0);
1515 cp->cpu_flags |= CPU_OFFLINE;
1516 disp_cpu_inactive(cp);
1517 if (!no_quiesce)
1518 cp->cpu_flags |= CPU_QUIESCED;
1519 ncpus_online--;
1520 cpu_set_state(cp);
1521 cpu_inmotion = NULL;
1522 start_cpus();
1523 cpu_stats_kstat_destroy(cp);
1524 cpu_delete_intrstat(cp);
1525 lgrp_kstat_destroy(cp);
1528 out:
1529 cpu_inmotion = NULL;
1532 * If we failed, re-enable interrupts.
1533 * Do this even if cpu_intr_disable returned an error, because
1534 * it may have partially disabled interrupts.
1536 if (error && intr_enable)
1537 cpu_intr_enable(cp);
1540 * If we failed, but managed to offline the cyclic subsystem on this
1541 * CPU, bring it back online.
1543 if (error && cyclic_off)
1544 cyclic_online(cp);
1547 * If we failed, but managed to offline callouts on this CPU,
1548 * bring it back online.
1550 if (error && callout_off)
1551 callout_cpu_online(cp);
1554 * If we failed, tell the PG subsystem that the CPU is back
1556 pg_cpupart_in(cp, pp);
1559 * If we failed, we need to notify everyone that this CPU is back on.
1561 if (error != 0) {
1562 CPU_NEW_GENERATION(cp);
1563 cpu_state_change_notify(cp->cpu_id, CPU_ON);
1564 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1567 return (error);
1571 * Mark the indicated CPU as faulted, taking it offline.
1574 cpu_faulted(cpu_t *cp, int flags)
1576 int error = 0;
1578 ASSERT(MUTEX_HELD(&cpu_lock));
1579 ASSERT(!cpu_is_poweredoff(cp));
1581 if (cpu_is_offline(cp)) {
1582 cp->cpu_flags &= ~CPU_SPARE;
1583 cp->cpu_flags |= CPU_FAULTED;
1584 mp_cpu_faulted_enter(cp);
1585 cpu_set_state(cp);
1586 return (0);
1589 if ((error = cpu_offline(cp, flags)) == 0) {
1590 cp->cpu_flags |= CPU_FAULTED;
1591 mp_cpu_faulted_enter(cp);
1592 cpu_set_state(cp);
1595 return (error);
1599 * Mark the indicated CPU as a spare, taking it offline.
1602 cpu_spare(cpu_t *cp, int flags)
1604 int error = 0;
1606 ASSERT(MUTEX_HELD(&cpu_lock));
1607 ASSERT(!cpu_is_poweredoff(cp));
1609 if (cpu_is_offline(cp)) {
1610 if (cp->cpu_flags & CPU_FAULTED) {
1611 cp->cpu_flags &= ~CPU_FAULTED;
1612 mp_cpu_faulted_exit(cp);
1614 cp->cpu_flags |= CPU_SPARE;
1615 cpu_set_state(cp);
1616 return (0);
1619 if ((error = cpu_offline(cp, flags)) == 0) {
1620 cp->cpu_flags |= CPU_SPARE;
1621 cpu_set_state(cp);
1624 return (error);
1628 * Take the indicated CPU from poweroff to offline.
1631 cpu_poweron(cpu_t *cp)
1633 int error = ENOTSUP;
1635 ASSERT(MUTEX_HELD(&cpu_lock));
1636 ASSERT(cpu_is_poweredoff(cp));
1638 error = mp_cpu_poweron(cp); /* arch-dep hook */
1639 if (error == 0)
1640 cpu_set_state(cp);
1642 return (error);
1646 * Take the indicated CPU from any inactive state to powered off.
1649 cpu_poweroff(cpu_t *cp)
1651 int error = ENOTSUP;
1653 ASSERT(MUTEX_HELD(&cpu_lock));
1654 ASSERT(cpu_is_offline(cp));
1656 if (!(cp->cpu_flags & CPU_QUIESCED))
1657 return (EBUSY); /* not completely idle */
1659 error = mp_cpu_poweroff(cp); /* arch-dep hook */
1660 if (error == 0)
1661 cpu_set_state(cp);
1663 return (error);
1667 * Initialize the Sequential CPU id lookup table
1669 void
1670 cpu_seq_tbl_init()
1672 cpu_t **tbl;
1674 tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP);
1675 tbl[0] = CPU;
1677 cpu_seq = tbl;
1681 * Initialize the CPU lists for the first CPU.
1683 void
1684 cpu_list_init(cpu_t *cp)
1686 cp->cpu_next = cp;
1687 cp->cpu_prev = cp;
1688 cpu_list = cp;
1689 clock_cpu_list = cp;
1691 cp->cpu_next_onln = cp;
1692 cp->cpu_prev_onln = cp;
1693 cpu_active = cp;
1695 cp->cpu_seqid = 0;
1696 CPUSET_ADD(cpu_seqid_inuse, 0);
1699 * Bootstrap cpu_seq using cpu_list
1700 * The cpu_seq[] table will be dynamically allocated
1701 * when kmem later becomes available (but before going MP)
1703 cpu_seq = &cpu_list;
1705 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1706 cp_default.cp_cpulist = cp;
1707 cp_default.cp_ncpus = 1;
1708 cp->cpu_next_part = cp;
1709 cp->cpu_prev_part = cp;
1710 cp->cpu_part = &cp_default;
1712 CPUSET_ADD(cpu_available, cp->cpu_id);
1716 * Insert a CPU into the list of available CPUs.
1718 void
1719 cpu_add_unit(cpu_t *cp)
1721 int seqid;
1723 ASSERT(MUTEX_HELD(&cpu_lock));
1724 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */
1726 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0);
1729 * Note: most users of the cpu_list will grab the
1730 * cpu_lock to insure that it isn't modified. However,
1731 * certain users can't or won't do that. To allow this
1732 * we pause the other cpus. Users who walk the list
1733 * without cpu_lock, must disable kernel preemption
1734 * to insure that the list isn't modified underneath
1735 * them. Also, any cached pointers to cpu structures
1736 * must be revalidated by checking to see if the
1737 * cpu_next pointer points to itself. This check must
1738 * be done with the cpu_lock held or kernel preemption
1739 * disabled. This check relies upon the fact that
1740 * old cpu structures are not free'ed or cleared after
1741 * then are removed from the cpu_list.
1743 * Note that the clock code walks the cpu list dereferencing
1744 * the cpu_part pointer, so we need to initialize it before
1745 * adding the cpu to the list.
1747 cp->cpu_part = &cp_default;
1748 pause_cpus(NULL, NULL);
1749 cp->cpu_next = cpu_list;
1750 cp->cpu_prev = cpu_list->cpu_prev;
1751 cpu_list->cpu_prev->cpu_next = cp;
1752 cpu_list->cpu_prev = cp;
1753 start_cpus();
1755 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++)
1756 continue;
1757 CPUSET_ADD(cpu_seqid_inuse, seqid);
1758 cp->cpu_seqid = seqid;
1760 if (seqid > max_cpu_seqid_ever)
1761 max_cpu_seqid_ever = seqid;
1763 ASSERT(ncpus < max_ncpus);
1764 ncpus++;
1765 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1766 cpu[cp->cpu_id] = cp;
1767 CPUSET_ADD(cpu_available, cp->cpu_id);
1768 cpu_seq[cp->cpu_seqid] = cp;
1771 * allocate a pause thread for this CPU.
1773 cpu_pause_alloc(cp);
1776 * So that new CPUs won't have NULL prev_onln and next_onln pointers,
1777 * link them into a list of just that CPU.
1778 * This is so that disp_lowpri_cpu will work for thread_create in
1779 * pause_cpus() when called from the startup thread in a new CPU.
1781 cp->cpu_next_onln = cp;
1782 cp->cpu_prev_onln = cp;
1783 cpu_info_kstat_create(cp);
1784 cp->cpu_next_part = cp;
1785 cp->cpu_prev_part = cp;
1787 init_cpu_mstate(cp, CMS_SYSTEM);
1789 pool_pset_mod = gethrtime();
1793 * Do the opposite of cpu_add_unit().
1795 void
1796 cpu_del_unit(int cpuid)
1798 struct cpu *cp, *cpnext;
1800 ASSERT(MUTEX_HELD(&cpu_lock));
1801 cp = cpu[cpuid];
1802 ASSERT(cp != NULL);
1804 ASSERT(cp->cpu_next_onln == cp);
1805 ASSERT(cp->cpu_prev_onln == cp);
1806 ASSERT(cp->cpu_next_part == cp);
1807 ASSERT(cp->cpu_prev_part == cp);
1810 * Tear down the CPU's physical ID cache, and update any
1811 * processor groups
1813 pg_cpu_fini(cp, NULL);
1814 pghw_physid_destroy(cp);
1817 * Destroy kstat stuff.
1819 cpu_info_kstat_destroy(cp);
1820 term_cpu_mstate(cp);
1822 * Free up pause thread.
1824 cpu_pause_free(cp);
1825 CPUSET_DEL(cpu_available, cp->cpu_id);
1826 cpu[cp->cpu_id] = NULL;
1827 cpu_seq[cp->cpu_seqid] = NULL;
1830 * The clock thread and mutex_vector_enter cannot hold the
1831 * cpu_lock while traversing the cpu list, therefore we pause
1832 * all other threads by pausing the other cpus. These, and any
1833 * other routines holding cpu pointers while possibly sleeping
1834 * must be sure to call kpreempt_disable before processing the
1835 * list and be sure to check that the cpu has not been deleted
1836 * after any sleeps (check cp->cpu_next != NULL). We guarantee
1837 * to keep the deleted cpu structure around.
1839 * Note that this MUST be done AFTER cpu_available
1840 * has been updated so that we don't waste time
1841 * trying to pause the cpu we're trying to delete.
1843 pause_cpus(NULL, NULL);
1845 cpnext = cp->cpu_next;
1846 cp->cpu_prev->cpu_next = cp->cpu_next;
1847 cp->cpu_next->cpu_prev = cp->cpu_prev;
1848 if (cp == cpu_list)
1849 cpu_list = cpnext;
1852 * Signals that the cpu has been deleted (see above).
1854 cp->cpu_next = NULL;
1855 cp->cpu_prev = NULL;
1857 start_cpus();
1859 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid);
1860 ncpus--;
1861 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0);
1863 pool_pset_mod = gethrtime();
1867 * Add a CPU to the list of active CPUs.
1868 * This routine must not get any locks, because other CPUs are paused.
1870 static void
1871 cpu_add_active_internal(cpu_t *cp)
1873 cpupart_t *pp = cp->cpu_part;
1875 ASSERT(MUTEX_HELD(&cpu_lock));
1876 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */
1878 ncpus_online++;
1879 cpu_set_state(cp);
1880 cp->cpu_next_onln = cpu_active;
1881 cp->cpu_prev_onln = cpu_active->cpu_prev_onln;
1882 cpu_active->cpu_prev_onln->cpu_next_onln = cp;
1883 cpu_active->cpu_prev_onln = cp;
1885 if (pp->cp_cpulist) {
1886 cp->cpu_next_part = pp->cp_cpulist;
1887 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part;
1888 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp;
1889 pp->cp_cpulist->cpu_prev_part = cp;
1890 } else {
1891 ASSERT(pp->cp_ncpus == 0);
1892 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp;
1894 pp->cp_ncpus++;
1895 if (pp->cp_ncpus == 1) {
1896 cp_numparts_nonempty++;
1897 ASSERT(cp_numparts_nonempty != 0);
1900 pg_cpu_active(cp);
1901 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0);
1903 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg));
1907 * Add a CPU to the list of active CPUs.
1908 * This is called from machine-dependent layers when a new CPU is started.
1910 void
1911 cpu_add_active(cpu_t *cp)
1913 pg_cpupart_in(cp, cp->cpu_part);
1915 pause_cpus(NULL, NULL);
1916 cpu_add_active_internal(cp);
1917 start_cpus();
1919 cpu_stats_kstat_create(cp);
1920 cpu_create_intrstat(cp);
1921 lgrp_kstat_create(cp);
1922 cpu_state_change_notify(cp->cpu_id, CPU_INIT);
1927 * Remove a CPU from the list of active CPUs.
1928 * This routine must not get any locks, because other CPUs are paused.
1930 /* ARGSUSED */
1931 static void
1932 cpu_remove_active(cpu_t *cp)
1934 cpupart_t *pp = cp->cpu_part;
1936 ASSERT(MUTEX_HELD(&cpu_lock));
1937 ASSERT(cp->cpu_next_onln != cp); /* not the last one */
1938 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */
1940 pg_cpu_inactive(cp);
1942 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0);
1944 if (cp == clock_cpu_list)
1945 clock_cpu_list = cp->cpu_next_onln;
1947 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln;
1948 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln;
1949 if (cpu_active == cp) {
1950 cpu_active = cp->cpu_next_onln;
1952 cp->cpu_next_onln = cp;
1953 cp->cpu_prev_onln = cp;
1955 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part;
1956 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part;
1957 if (pp->cp_cpulist == cp) {
1958 pp->cp_cpulist = cp->cpu_next_part;
1959 ASSERT(pp->cp_cpulist != cp);
1961 cp->cpu_next_part = cp;
1962 cp->cpu_prev_part = cp;
1963 pp->cp_ncpus--;
1964 if (pp->cp_ncpus == 0) {
1965 cp_numparts_nonempty--;
1966 ASSERT(cp_numparts_nonempty != 0);
1971 * Routine used to setup a newly inserted CPU in preparation for starting
1972 * it running code.
1975 cpu_configure(int cpuid)
1977 int retval = 0;
1979 ASSERT(MUTEX_HELD(&cpu_lock));
1982 * Some structures are statically allocated based upon
1983 * the maximum number of cpus the system supports. Do not
1984 * try to add anything beyond this limit.
1986 if (cpuid < 0 || cpuid >= NCPU) {
1987 return (EINVAL);
1990 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) {
1991 return (EALREADY);
1994 if ((retval = mp_cpu_configure(cpuid)) != 0) {
1995 return (retval);
1998 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF;
1999 cpu_set_state(cpu[cpuid]);
2000 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG);
2001 if (retval != 0)
2002 (void) mp_cpu_unconfigure(cpuid);
2004 return (retval);
2008 * Routine used to cleanup a CPU that has been powered off. This will
2009 * destroy all per-cpu information related to this cpu.
2012 cpu_unconfigure(int cpuid)
2014 int error;
2016 ASSERT(MUTEX_HELD(&cpu_lock));
2018 if (cpu[cpuid] == NULL) {
2019 return (ENODEV);
2022 if (cpu[cpuid]->cpu_flags == 0) {
2023 return (EALREADY);
2026 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) {
2027 return (EBUSY);
2030 if (cpu[cpuid]->cpu_props != NULL) {
2031 (void) nvlist_free(cpu[cpuid]->cpu_props);
2032 cpu[cpuid]->cpu_props = NULL;
2035 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG);
2037 if (error != 0)
2038 return (error);
2040 return (mp_cpu_unconfigure(cpuid));
2044 * Routines for registering and de-registering cpu_setup callback functions.
2046 * Caller's context
2047 * These routines must not be called from a driver's attach(9E) or
2048 * detach(9E) entry point.
2050 * NOTE: CPU callbacks should not block. They are called with cpu_lock held.
2054 * Ideally, these would be dynamically allocated and put into a linked
2055 * list; however that is not feasible because the registration routine
2056 * has to be available before the kmem allocator is working (in fact,
2057 * it is called by the kmem allocator init code). In any case, there
2058 * are quite a few extra entries for future users.
2060 #define NCPU_SETUPS 20
2062 struct cpu_setup {
2063 cpu_setup_func_t *func;
2064 void *arg;
2065 } cpu_setups[NCPU_SETUPS];
2067 void
2068 register_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2070 int i;
2072 ASSERT(MUTEX_HELD(&cpu_lock));
2074 for (i = 0; i < NCPU_SETUPS; i++)
2075 if (cpu_setups[i].func == NULL)
2076 break;
2077 if (i >= NCPU_SETUPS)
2078 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries");
2080 cpu_setups[i].func = func;
2081 cpu_setups[i].arg = arg;
2084 void
2085 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2087 int i;
2089 ASSERT(MUTEX_HELD(&cpu_lock));
2091 for (i = 0; i < NCPU_SETUPS; i++)
2092 if ((cpu_setups[i].func == func) &&
2093 (cpu_setups[i].arg == arg))
2094 break;
2095 if (i >= NCPU_SETUPS)
2096 cmn_err(CE_PANIC, "Could not find cpu_setup callback to "
2097 "deregister");
2099 cpu_setups[i].func = NULL;
2100 cpu_setups[i].arg = 0;
2104 * Call any state change hooks for this CPU, ignore any errors.
2106 void
2107 cpu_state_change_notify(int id, cpu_setup_t what)
2109 int i;
2111 ASSERT(MUTEX_HELD(&cpu_lock));
2113 for (i = 0; i < NCPU_SETUPS; i++) {
2114 if (cpu_setups[i].func != NULL) {
2115 cpu_setups[i].func(what, id, cpu_setups[i].arg);
2121 * Call any state change hooks for this CPU, undo it if error found.
2123 static int
2124 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo)
2126 int i;
2127 int retval = 0;
2129 ASSERT(MUTEX_HELD(&cpu_lock));
2131 for (i = 0; i < NCPU_SETUPS; i++) {
2132 if (cpu_setups[i].func != NULL) {
2133 retval = cpu_setups[i].func(what, id,
2134 cpu_setups[i].arg);
2135 if (retval) {
2136 for (i--; i >= 0; i--) {
2137 if (cpu_setups[i].func != NULL)
2138 cpu_setups[i].func(undo,
2139 id, cpu_setups[i].arg);
2141 break;
2145 return (retval);
2149 * Export information about this CPU via the kstat mechanism.
2151 static struct {
2152 kstat_named_t ci_state;
2153 kstat_named_t ci_state_begin;
2154 kstat_named_t ci_cpu_type;
2155 kstat_named_t ci_fpu_type;
2156 kstat_named_t ci_clock_MHz;
2157 kstat_named_t ci_chip_id;
2158 kstat_named_t ci_implementation;
2159 kstat_named_t ci_brandstr;
2160 kstat_named_t ci_core_id;
2161 kstat_named_t ci_curr_clock_Hz;
2162 kstat_named_t ci_supp_freq_Hz;
2163 kstat_named_t ci_pg_id;
2164 #if defined(__sparcv9)
2165 kstat_named_t ci_device_ID;
2166 kstat_named_t ci_cpu_fru;
2167 #endif
2168 #if defined(__x86)
2169 kstat_named_t ci_vendorstr;
2170 kstat_named_t ci_family;
2171 kstat_named_t ci_model;
2172 kstat_named_t ci_step;
2173 kstat_named_t ci_clogid;
2174 kstat_named_t ci_pkg_core_id;
2175 kstat_named_t ci_ncpuperchip;
2176 kstat_named_t ci_ncoreperchip;
2177 kstat_named_t ci_max_cstates;
2178 kstat_named_t ci_curr_cstate;
2179 kstat_named_t ci_cacheid;
2180 kstat_named_t ci_sktstr;
2181 #endif
2182 } cpu_info_template = {
2183 { "state", KSTAT_DATA_CHAR },
2184 { "state_begin", KSTAT_DATA_LONG },
2185 { "cpu_type", KSTAT_DATA_CHAR },
2186 { "fpu_type", KSTAT_DATA_CHAR },
2187 { "clock_MHz", KSTAT_DATA_LONG },
2188 { "chip_id", KSTAT_DATA_LONG },
2189 { "implementation", KSTAT_DATA_STRING },
2190 { "brand", KSTAT_DATA_STRING },
2191 { "core_id", KSTAT_DATA_LONG },
2192 { "current_clock_Hz", KSTAT_DATA_UINT64 },
2193 { "supported_frequencies_Hz", KSTAT_DATA_STRING },
2194 { "pg_id", KSTAT_DATA_LONG },
2195 #if defined(__sparcv9)
2196 { "device_ID", KSTAT_DATA_UINT64 },
2197 { "cpu_fru", KSTAT_DATA_STRING },
2198 #endif
2199 #if defined(__x86)
2200 { "vendor_id", KSTAT_DATA_STRING },
2201 { "family", KSTAT_DATA_INT32 },
2202 { "model", KSTAT_DATA_INT32 },
2203 { "stepping", KSTAT_DATA_INT32 },
2204 { "clog_id", KSTAT_DATA_INT32 },
2205 { "pkg_core_id", KSTAT_DATA_LONG },
2206 { "ncpu_per_chip", KSTAT_DATA_INT32 },
2207 { "ncore_per_chip", KSTAT_DATA_INT32 },
2208 { "supported_max_cstates", KSTAT_DATA_INT32 },
2209 { "current_cstate", KSTAT_DATA_INT32 },
2210 { "cache_id", KSTAT_DATA_INT32 },
2211 { "socket_type", KSTAT_DATA_STRING },
2212 #endif
2215 static kmutex_t cpu_info_template_lock;
2217 static int
2218 cpu_info_kstat_update(kstat_t *ksp, int rw)
2220 cpu_t *cp = ksp->ks_private;
2221 const char *pi_state;
2223 if (rw == KSTAT_WRITE)
2224 return (EACCES);
2226 #if defined(__x86)
2227 /* Is the cpu still initialising itself? */
2228 if (cpuid_checkpass(cp, 1) == 0)
2229 return (ENXIO);
2230 #endif
2231 switch (cp->cpu_type_info.pi_state) {
2232 case P_ONLINE:
2233 pi_state = PS_ONLINE;
2234 break;
2235 case P_POWEROFF:
2236 pi_state = PS_POWEROFF;
2237 break;
2238 case P_NOINTR:
2239 pi_state = PS_NOINTR;
2240 break;
2241 case P_FAULTED:
2242 pi_state = PS_FAULTED;
2243 break;
2244 case P_SPARE:
2245 pi_state = PS_SPARE;
2246 break;
2247 case P_OFFLINE:
2248 pi_state = PS_OFFLINE;
2249 break;
2250 default:
2251 pi_state = "unknown";
2253 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state);
2254 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin;
2255 (void) strncpy(cpu_info_template.ci_cpu_type.value.c,
2256 cp->cpu_type_info.pi_processor_type, 15);
2257 (void) strncpy(cpu_info_template.ci_fpu_type.value.c,
2258 cp->cpu_type_info.pi_fputypes, 15);
2259 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock;
2260 cpu_info_template.ci_chip_id.value.l =
2261 pg_plat_hw_instance_id(cp, PGHW_CHIP);
2262 kstat_named_setstr(&cpu_info_template.ci_implementation,
2263 cp->cpu_idstr);
2264 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr);
2265 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp);
2266 cpu_info_template.ci_curr_clock_Hz.value.ui64 =
2267 cp->cpu_curr_clock;
2268 cpu_info_template.ci_pg_id.value.l =
2269 cp->cpu_pg && cp->cpu_pg->cmt_lineage ?
2270 cp->cpu_pg->cmt_lineage->pg_id : -1;
2271 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz,
2272 cp->cpu_supp_freqs);
2273 #if defined(__sparcv9)
2274 cpu_info_template.ci_device_ID.value.ui64 =
2275 cpunodes[cp->cpu_id].device_id;
2276 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp));
2277 #endif
2278 #if defined(__x86)
2279 kstat_named_setstr(&cpu_info_template.ci_vendorstr,
2280 cpuid_getvendorstr(cp));
2281 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp);
2282 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp);
2283 cpu_info_template.ci_step.value.l = cpuid_getstep(cp);
2284 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp);
2285 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp);
2286 cpu_info_template.ci_ncoreperchip.value.l =
2287 cpuid_get_ncore_per_chip(cp);
2288 cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp);
2289 cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates;
2290 cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp);
2291 cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp);
2292 kstat_named_setstr(&cpu_info_template.ci_sktstr,
2293 cpuid_getsocketstr(cp));
2294 #endif
2296 return (0);
2299 static void
2300 cpu_info_kstat_create(cpu_t *cp)
2302 zoneid_t zoneid;
2304 ASSERT(MUTEX_HELD(&cpu_lock));
2306 if (pool_pset_enabled())
2307 zoneid = GLOBAL_ZONEID;
2308 else
2309 zoneid = ALL_ZONES;
2310 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id,
2311 NULL, "misc", KSTAT_TYPE_NAMED,
2312 sizeof (cpu_info_template) / sizeof (kstat_named_t),
2313 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) {
2314 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN;
2315 #if defined(__sparcv9)
2316 cp->cpu_info_kstat->ks_data_size +=
2317 strlen(cpu_fru_fmri(cp)) + 1;
2318 #endif
2319 #if defined(__x86)
2320 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN;
2321 #endif
2322 if (cp->cpu_supp_freqs != NULL)
2323 cp->cpu_info_kstat->ks_data_size +=
2324 strlen(cp->cpu_supp_freqs) + 1;
2325 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock;
2326 cp->cpu_info_kstat->ks_data = &cpu_info_template;
2327 cp->cpu_info_kstat->ks_private = cp;
2328 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update;
2329 kstat_install(cp->cpu_info_kstat);
2333 static void
2334 cpu_info_kstat_destroy(cpu_t *cp)
2336 ASSERT(MUTEX_HELD(&cpu_lock));
2338 kstat_delete(cp->cpu_info_kstat);
2339 cp->cpu_info_kstat = NULL;
2343 * Create and install kstats for the boot CPU.
2345 void
2346 cpu_kstat_init(cpu_t *cp)
2348 mutex_enter(&cpu_lock);
2349 cpu_info_kstat_create(cp);
2350 cpu_stats_kstat_create(cp);
2351 cpu_create_intrstat(cp);
2352 cpu_set_state(cp);
2353 mutex_exit(&cpu_lock);
2357 * Make visible to the zone that subset of the cpu information that would be
2358 * initialized when a cpu is configured (but still offline).
2360 void
2361 cpu_visibility_configure(cpu_t *cp, zone_t *zone)
2363 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2365 ASSERT(MUTEX_HELD(&cpu_lock));
2366 ASSERT(pool_pset_enabled());
2367 ASSERT(cp != NULL);
2369 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2370 zone->zone_ncpus++;
2371 ASSERT(zone->zone_ncpus <= ncpus);
2373 if (cp->cpu_info_kstat != NULL)
2374 kstat_zone_add(cp->cpu_info_kstat, zoneid);
2378 * Make visible to the zone that subset of the cpu information that would be
2379 * initialized when a previously configured cpu is onlined.
2381 void
2382 cpu_visibility_online(cpu_t *cp, zone_t *zone)
2384 kstat_t *ksp;
2385 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */
2386 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2387 processorid_t cpun;
2389 ASSERT(MUTEX_HELD(&cpu_lock));
2390 ASSERT(pool_pset_enabled());
2391 ASSERT(cp != NULL);
2392 ASSERT(cpu_is_active(cp));
2394 cpun = cp->cpu_id;
2395 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2396 zone->zone_ncpus_online++;
2397 ASSERT(zone->zone_ncpus_online <= ncpus_online);
2399 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2400 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2401 != NULL) {
2402 kstat_zone_add(ksp, zoneid);
2403 kstat_rele(ksp);
2405 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2406 kstat_zone_add(ksp, zoneid);
2407 kstat_rele(ksp);
2409 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2410 kstat_zone_add(ksp, zoneid);
2411 kstat_rele(ksp);
2413 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2414 NULL) {
2415 kstat_zone_add(ksp, zoneid);
2416 kstat_rele(ksp);
2421 * Update relevant kstats such that cpu is now visible to processes
2422 * executing in specified zone.
2424 void
2425 cpu_visibility_add(cpu_t *cp, zone_t *zone)
2427 cpu_visibility_configure(cp, zone);
2428 if (cpu_is_active(cp))
2429 cpu_visibility_online(cp, zone);
2433 * Make invisible to the zone that subset of the cpu information that would be
2434 * torn down when a previously offlined cpu is unconfigured.
2436 void
2437 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone)
2439 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2441 ASSERT(MUTEX_HELD(&cpu_lock));
2442 ASSERT(pool_pset_enabled());
2443 ASSERT(cp != NULL);
2445 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2446 ASSERT(zone->zone_ncpus != 0);
2447 zone->zone_ncpus--;
2449 if (cp->cpu_info_kstat)
2450 kstat_zone_remove(cp->cpu_info_kstat, zoneid);
2454 * Make invisible to the zone that subset of the cpu information that would be
2455 * torn down when a cpu is offlined (but still configured).
2457 void
2458 cpu_visibility_offline(cpu_t *cp, zone_t *zone)
2460 kstat_t *ksp;
2461 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */
2462 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2463 processorid_t cpun;
2465 ASSERT(MUTEX_HELD(&cpu_lock));
2466 ASSERT(pool_pset_enabled());
2467 ASSERT(cp != NULL);
2468 ASSERT(cpu_is_active(cp));
2470 cpun = cp->cpu_id;
2471 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2472 ASSERT(zone->zone_ncpus_online != 0);
2473 zone->zone_ncpus_online--;
2476 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2477 NULL) {
2478 kstat_zone_remove(ksp, zoneid);
2479 kstat_rele(ksp);
2481 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2482 kstat_zone_remove(ksp, zoneid);
2483 kstat_rele(ksp);
2485 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2486 kstat_zone_remove(ksp, zoneid);
2487 kstat_rele(ksp);
2489 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2490 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2491 != NULL) {
2492 kstat_zone_remove(ksp, zoneid);
2493 kstat_rele(ksp);
2498 * Update relevant kstats such that cpu is no longer visible to processes
2499 * executing in specified zone.
2501 void
2502 cpu_visibility_remove(cpu_t *cp, zone_t *zone)
2504 if (cpu_is_active(cp))
2505 cpu_visibility_offline(cp, zone);
2506 cpu_visibility_unconfigure(cp, zone);
2510 * Bind a thread to a CPU as requested.
2513 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind,
2514 int *error)
2516 processorid_t binding;
2517 cpu_t *cp = NULL;
2519 ASSERT(MUTEX_HELD(&cpu_lock));
2520 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock));
2522 thread_lock(tp);
2525 * Record old binding, but change the obind, which was initialized
2526 * to PBIND_NONE, only if this thread has a binding. This avoids
2527 * reporting PBIND_NONE for a process when some LWPs are bound.
2529 binding = tp->t_bind_cpu;
2530 if (binding != PBIND_NONE)
2531 *obind = binding; /* record old binding */
2533 switch (bind) {
2534 case PBIND_QUERY:
2535 /* Just return the old binding */
2536 thread_unlock(tp);
2537 return (0);
2539 case PBIND_QUERY_TYPE:
2540 /* Return the binding type */
2541 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD;
2542 thread_unlock(tp);
2543 return (0);
2545 case PBIND_SOFT:
2547 * Set soft binding for this thread and return the actual
2548 * binding
2550 TB_CPU_SOFT_SET(tp);
2551 thread_unlock(tp);
2552 return (0);
2554 case PBIND_HARD:
2556 * Set hard binding for this thread and return the actual
2557 * binding
2559 TB_CPU_HARD_SET(tp);
2560 thread_unlock(tp);
2561 return (0);
2563 default:
2564 break;
2568 * If this thread/LWP cannot be bound because of permission
2569 * problems, just note that and return success so that the
2570 * other threads/LWPs will be bound. This is the way
2571 * processor_bind() is defined to work.
2573 * Binding will get EPERM if the thread is of system class
2574 * or hasprocperm() fails.
2576 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) {
2577 *error = EPERM;
2578 thread_unlock(tp);
2579 return (0);
2582 binding = bind;
2583 if (binding != PBIND_NONE) {
2584 cp = cpu_get((processorid_t)binding);
2586 * Make sure binding is valid and is in right partition.
2588 if (cp == NULL || tp->t_cpupart != cp->cpu_part) {
2589 *error = EINVAL;
2590 thread_unlock(tp);
2591 return (0);
2594 tp->t_bind_cpu = binding; /* set new binding */
2597 * If there is no system-set reason for affinity, set
2598 * the t_bound_cpu field to reflect the binding.
2600 if (tp->t_affinitycnt == 0) {
2601 if (binding == PBIND_NONE) {
2603 * We may need to adjust disp_max_unbound_pri
2604 * since we're becoming unbound.
2606 disp_adjust_unbound_pri(tp);
2608 tp->t_bound_cpu = NULL; /* set new binding */
2611 * Move thread to lgroup with strongest affinity
2612 * after unbinding
2614 if (tp->t_lgrp_affinity)
2615 lgrp_move_thread(tp,
2616 lgrp_choose(tp, tp->t_cpupart), 1);
2618 if (tp->t_state == TS_ONPROC &&
2619 tp->t_cpu->cpu_part != tp->t_cpupart)
2620 cpu_surrender(tp);
2621 } else {
2622 lpl_t *lpl;
2624 tp->t_bound_cpu = cp;
2625 ASSERT(cp->cpu_lpl != NULL);
2628 * Set home to lgroup with most affinity containing CPU
2629 * that thread is being bound or minimum bounding
2630 * lgroup if no affinities set
2632 if (tp->t_lgrp_affinity)
2633 lpl = lgrp_affinity_best(tp, tp->t_cpupart,
2634 LGRP_NONE, B_FALSE);
2635 else
2636 lpl = cp->cpu_lpl;
2638 if (tp->t_lpl != lpl) {
2639 /* can't grab cpu_lock */
2640 lgrp_move_thread(tp, lpl, 1);
2644 * Make the thread switch to the bound CPU.
2645 * If the thread is runnable, we need to
2646 * requeue it even if t_cpu is already set
2647 * to the right CPU, since it may be on a
2648 * kpreempt queue and need to move to a local
2649 * queue. We could check t_disp_queue to
2650 * avoid unnecessary overhead if it's already
2651 * on the right queue, but since this isn't
2652 * a performance-critical operation it doesn't
2653 * seem worth the extra code and complexity.
2655 * If the thread is weakbound to the cpu then it will
2656 * resist the new binding request until the weak
2657 * binding drops. The cpu_surrender or requeueing
2658 * below could be skipped in such cases (since it
2659 * will have no effect), but that would require
2660 * thread_allowmigrate to acquire thread_lock so
2661 * we'll take the very occasional hit here instead.
2663 if (tp->t_state == TS_ONPROC) {
2664 cpu_surrender(tp);
2665 } else if (tp->t_state == TS_RUN) {
2666 cpu_t *ocp = tp->t_cpu;
2668 (void) dispdeq(tp);
2669 setbackdq(tp);
2671 * On the bound CPU's disp queue now.
2673 ASSERT(tp->t_disp_queue == cp->cpu_disp ||
2674 tp->t_weakbound_cpu == ocp);
2680 * Our binding has changed; set TP_CHANGEBIND.
2682 tp->t_proc_flag |= TP_CHANGEBIND;
2683 aston(tp);
2685 thread_unlock(tp);
2687 return (0);
2690 #if CPUSET_WORDS > 1
2693 * Functions for implementing cpuset operations when a cpuset is more
2694 * than one word. On platforms where a cpuset is a single word these
2695 * are implemented as macros in cpuvar.h.
2698 void
2699 cpuset_all(cpuset_t *s)
2701 int i;
2703 for (i = 0; i < CPUSET_WORDS; i++)
2704 s->cpub[i] = ~0UL;
2707 void
2708 cpuset_all_but(cpuset_t *s, uint_t cpu)
2710 cpuset_all(s);
2711 CPUSET_DEL(*s, cpu);
2714 void
2715 cpuset_only(cpuset_t *s, uint_t cpu)
2717 CPUSET_ZERO(*s);
2718 CPUSET_ADD(*s, cpu);
2722 cpuset_isnull(cpuset_t *s)
2724 int i;
2726 for (i = 0; i < CPUSET_WORDS; i++)
2727 if (s->cpub[i] != 0)
2728 return (0);
2729 return (1);
2733 cpuset_cmp(cpuset_t *s1, cpuset_t *s2)
2735 int i;
2737 for (i = 0; i < CPUSET_WORDS; i++)
2738 if (s1->cpub[i] != s2->cpub[i])
2739 return (0);
2740 return (1);
2743 uint_t
2744 cpuset_find(cpuset_t *s)
2747 uint_t i;
2748 uint_t cpu = (uint_t)-1;
2751 * Find a cpu in the cpuset
2753 for (i = 0; i < CPUSET_WORDS; i++) {
2754 cpu = (uint_t)(lowbit(s->cpub[i]) - 1);
2755 if (cpu != (uint_t)-1) {
2756 cpu += i * BT_NBIPUL;
2757 break;
2760 return (cpu);
2763 void
2764 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid)
2766 int i, j;
2767 uint_t bit;
2770 * First, find the smallest cpu id in the set.
2772 for (i = 0; i < CPUSET_WORDS; i++) {
2773 if (s->cpub[i] != 0) {
2774 bit = (uint_t)(lowbit(s->cpub[i]) - 1);
2775 ASSERT(bit != (uint_t)-1);
2776 *smallestid = bit + (i * BT_NBIPUL);
2779 * Now find the largest cpu id in
2780 * the set and return immediately.
2781 * Done in an inner loop to avoid
2782 * having to break out of the first
2783 * loop.
2785 for (j = CPUSET_WORDS - 1; j >= i; j--) {
2786 if (s->cpub[j] != 0) {
2787 bit = (uint_t)(highbit(s->cpub[j]) - 1);
2788 ASSERT(bit != (uint_t)-1);
2789 *largestid = bit + (j * BT_NBIPUL);
2790 ASSERT(*largestid >= *smallestid);
2791 return;
2796 * If this code is reached, a
2797 * smallestid was found, but not a
2798 * largestid. The cpuset must have
2799 * been changed during the course
2800 * of this function call.
2802 ASSERT(0);
2805 *smallestid = *largestid = CPUSET_NOTINSET;
2808 #endif /* CPUSET_WORDS */
2811 * Unbind threads bound to specified CPU.
2813 * If `unbind_all_threads' is true, unbind all user threads bound to a given
2814 * CPU. Otherwise unbind all soft-bound user threads.
2817 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads)
2819 processorid_t obind;
2820 kthread_t *tp;
2821 int ret = 0;
2822 proc_t *pp;
2823 int err, berr = 0;
2825 ASSERT(MUTEX_HELD(&cpu_lock));
2827 mutex_enter(&pidlock);
2828 for (pp = practive; pp != NULL; pp = pp->p_next) {
2829 mutex_enter(&pp->p_lock);
2830 tp = pp->p_tlist;
2832 * Skip zombies, kernel processes, and processes in
2833 * other zones, if called from a non-global zone.
2835 if (tp == NULL || (pp->p_flag & SSYS) ||
2836 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) {
2837 mutex_exit(&pp->p_lock);
2838 continue;
2840 do {
2841 if (tp->t_bind_cpu != cpu)
2842 continue;
2844 * Skip threads with hard binding when
2845 * `unbind_all_threads' is not specified.
2847 if (!unbind_all_threads && TB_CPU_IS_HARD(tp))
2848 continue;
2849 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr);
2850 if (ret == 0)
2851 ret = err;
2852 } while ((tp = tp->t_forw) != pp->p_tlist);
2853 mutex_exit(&pp->p_lock);
2855 mutex_exit(&pidlock);
2856 if (ret == 0)
2857 ret = berr;
2858 return (ret);
2863 * Destroy all remaining bound threads on a cpu.
2865 void
2866 cpu_destroy_bound_threads(cpu_t *cp)
2868 extern id_t syscid;
2869 register kthread_id_t t, tlist, tnext;
2872 * Destroy all remaining bound threads on the cpu. This
2873 * should include both the interrupt threads and the idle thread.
2874 * This requires some care, since we need to traverse the
2875 * thread list with the pidlock mutex locked, but thread_free
2876 * also locks the pidlock mutex. So, we collect the threads
2877 * we're going to reap in a list headed by "tlist", then we
2878 * unlock the pidlock mutex and traverse the tlist list,
2879 * doing thread_free's on the thread's. Simple, n'est pas?
2880 * Also, this depends on thread_free not mucking with the
2881 * t_next and t_prev links of the thread.
2884 if ((t = curthread) != NULL) {
2886 tlist = NULL;
2887 mutex_enter(&pidlock);
2888 do {
2889 tnext = t->t_next;
2890 if (t->t_bound_cpu == cp) {
2893 * We've found a bound thread, carefully unlink
2894 * it out of the thread list, and add it to
2895 * our "tlist". We "know" we don't have to
2896 * worry about unlinking curthread (the thread
2897 * that is executing this code).
2899 t->t_next->t_prev = t->t_prev;
2900 t->t_prev->t_next = t->t_next;
2901 t->t_next = tlist;
2902 tlist = t;
2903 ASSERT(t->t_cid == syscid);
2904 /* wake up anyone blocked in thread_join */
2905 cv_broadcast(&t->t_joincv);
2907 * t_lwp set by interrupt threads and not
2908 * cleared.
2910 t->t_lwp = NULL;
2912 * Pause and idle threads always have
2913 * t_state set to TS_ONPROC.
2915 t->t_state = TS_FREE;
2916 t->t_prev = NULL; /* Just in case */
2919 } while ((t = tnext) != curthread);
2921 mutex_exit(&pidlock);
2923 mutex_sync();
2924 for (t = tlist; t != NULL; t = tnext) {
2925 tnext = t->t_next;
2926 thread_free(t);
2932 * Update the cpu_supp_freqs of this cpu. This information is returned
2933 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then
2934 * maintain the kstat data size.
2936 void
2937 cpu_set_supp_freqs(cpu_t *cp, const char *freqs)
2939 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */
2940 const char *lfreqs = clkstr;
2941 boolean_t kstat_exists = B_FALSE;
2942 kstat_t *ksp;
2943 size_t len;
2946 * A NULL pointer means we only support one speed.
2948 if (freqs == NULL)
2949 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64,
2950 cp->cpu_curr_clock);
2951 else
2952 lfreqs = freqs;
2955 * Make sure the frequency doesn't change while a snapshot is
2956 * going on. Of course, we only need to worry about this if
2957 * the kstat exists.
2959 if ((ksp = cp->cpu_info_kstat) != NULL) {
2960 mutex_enter(ksp->ks_lock);
2961 kstat_exists = B_TRUE;
2965 * Free any previously allocated string and if the kstat
2966 * already exists, then update its data size.
2968 if (cp->cpu_supp_freqs != NULL) {
2969 len = strlen(cp->cpu_supp_freqs) + 1;
2970 kmem_free(cp->cpu_supp_freqs, len);
2971 if (kstat_exists)
2972 ksp->ks_data_size -= len;
2976 * Allocate the new string and set the pointer.
2978 len = strlen(lfreqs) + 1;
2979 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP);
2980 (void) strcpy(cp->cpu_supp_freqs, lfreqs);
2983 * If the kstat already exists then update the data size and
2984 * free the lock.
2986 if (kstat_exists) {
2987 ksp->ks_data_size += len;
2988 mutex_exit(ksp->ks_lock);
2993 * Indicate the current CPU's clock freqency (in Hz).
2994 * The calling context must be such that CPU references are safe.
2996 void
2997 cpu_set_curr_clock(uint64_t new_clk)
2999 uint64_t old_clk;
3001 old_clk = CPU->cpu_curr_clock;
3002 CPU->cpu_curr_clock = new_clk;
3005 * The cpu-change-speed DTrace probe exports the frequency in Hz
3007 DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id,
3008 uint64_t, old_clk, uint64_t, new_clk);
3012 * processor_info(2) and p_online(2) status support functions
3013 * The constants returned by the cpu_get_state() and cpu_get_state_str() are
3014 * for use in communicating processor state information to userland. Kernel
3015 * subsystems should only be using the cpu_flags value directly. Subsystems
3016 * modifying cpu_flags should record the state change via a call to the
3017 * cpu_set_state().
3021 * Update the pi_state of this CPU. This function provides the CPU status for
3022 * the information returned by processor_info(2).
3024 void
3025 cpu_set_state(cpu_t *cpu)
3027 ASSERT(MUTEX_HELD(&cpu_lock));
3028 cpu->cpu_type_info.pi_state = cpu_get_state(cpu);
3029 cpu->cpu_state_begin = gethrestime_sec();
3030 pool_cpu_mod = gethrtime();
3034 * Return offline/online/other status for the indicated CPU. Use only for
3035 * communication with user applications; cpu_flags provides the in-kernel
3036 * interface.
3039 cpu_get_state(cpu_t *cpu)
3041 ASSERT(MUTEX_HELD(&cpu_lock));
3042 if (cpu->cpu_flags & CPU_POWEROFF)
3043 return (P_POWEROFF);
3044 else if (cpu->cpu_flags & CPU_FAULTED)
3045 return (P_FAULTED);
3046 else if (cpu->cpu_flags & CPU_SPARE)
3047 return (P_SPARE);
3048 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)
3049 return (P_OFFLINE);
3050 else if (cpu->cpu_flags & CPU_ENABLE)
3051 return (P_ONLINE);
3052 else
3053 return (P_NOINTR);
3057 * Return processor_info(2) state as a string.
3059 const char *
3060 cpu_get_state_str(cpu_t *cpu)
3062 const char *string;
3064 switch (cpu_get_state(cpu)) {
3065 case P_ONLINE:
3066 string = PS_ONLINE;
3067 break;
3068 case P_POWEROFF:
3069 string = PS_POWEROFF;
3070 break;
3071 case P_NOINTR:
3072 string = PS_NOINTR;
3073 break;
3074 case P_SPARE:
3075 string = PS_SPARE;
3076 break;
3077 case P_FAULTED:
3078 string = PS_FAULTED;
3079 break;
3080 case P_OFFLINE:
3081 string = PS_OFFLINE;
3082 break;
3083 default:
3084 string = "unknown";
3085 break;
3087 return (string);
3091 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named
3092 * kstats, respectively. This is done when a CPU is initialized or placed
3093 * online via p_online(2).
3095 static void
3096 cpu_stats_kstat_create(cpu_t *cp)
3098 int instance = cp->cpu_id;
3099 char *module = "cpu";
3100 char *class = "misc";
3101 kstat_t *ksp;
3102 zoneid_t zoneid;
3104 ASSERT(MUTEX_HELD(&cpu_lock));
3106 if (pool_pset_enabled())
3107 zoneid = GLOBAL_ZONEID;
3108 else
3109 zoneid = ALL_ZONES;
3111 * Create named kstats
3113 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \
3114 ksp = kstat_create_zone(module, instance, (name), class, \
3115 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \
3116 zoneid); \
3117 if (ksp != NULL) { \
3118 ksp->ks_private = cp; \
3119 ksp->ks_update = (update_func); \
3120 kstat_install(ksp); \
3121 } else \
3122 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \
3123 module, instance, (name));
3125 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template),
3126 cpu_sys_stats_ks_update);
3127 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template),
3128 cpu_vm_stats_ks_update);
3131 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat.
3133 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL,
3134 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid);
3135 if (ksp != NULL) {
3136 ksp->ks_update = cpu_stat_ks_update;
3137 ksp->ks_private = cp;
3138 kstat_install(ksp);
3142 static void
3143 cpu_stats_kstat_destroy(cpu_t *cp)
3145 char ks_name[KSTAT_STRLEN];
3147 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id);
3148 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name);
3150 kstat_delete_byname("cpu", cp->cpu_id, "sys");
3151 kstat_delete_byname("cpu", cp->cpu_id, "vm");
3154 static int
3155 cpu_sys_stats_ks_update(kstat_t *ksp, int rw)
3157 cpu_t *cp = (cpu_t *)ksp->ks_private;
3158 struct cpu_sys_stats_ks_data *csskd;
3159 cpu_sys_stats_t *css;
3160 hrtime_t msnsecs[NCMSTATES];
3161 int i;
3163 if (rw == KSTAT_WRITE)
3164 return (EACCES);
3166 csskd = ksp->ks_data;
3167 css = &cp->cpu_stats.sys;
3170 * Read CPU mstate, but compare with the last values we
3171 * received to make sure that the returned kstats never
3172 * decrease.
3175 get_cpu_mstate(cp, msnsecs);
3176 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE])
3177 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64;
3178 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER])
3179 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64;
3180 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM])
3181 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64;
3183 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data,
3184 sizeof (cpu_sys_stats_ks_data_template));
3186 csskd->cpu_ticks_wait.value.ui64 = 0;
3187 csskd->wait_ticks_io.value.ui64 = 0;
3189 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE];
3190 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER];
3191 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM];
3192 csskd->cpu_ticks_idle.value.ui64 =
3193 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64);
3194 csskd->cpu_ticks_user.value.ui64 =
3195 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64);
3196 csskd->cpu_ticks_kernel.value.ui64 =
3197 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64);
3198 csskd->cpu_nsec_dtrace.value.ui64 = cp->cpu_dtrace_nsec;
3199 csskd->dtrace_probes.value.ui64 = cp->cpu_dtrace_probes;
3200 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast;
3201 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload;
3202 csskd->bread.value.ui64 = css->bread;
3203 csskd->bwrite.value.ui64 = css->bwrite;
3204 csskd->lread.value.ui64 = css->lread;
3205 csskd->lwrite.value.ui64 = css->lwrite;
3206 csskd->phread.value.ui64 = css->phread;
3207 csskd->phwrite.value.ui64 = css->phwrite;
3208 csskd->pswitch.value.ui64 = css->pswitch;
3209 csskd->trap.value.ui64 = css->trap;
3210 csskd->intr.value.ui64 = 0;
3211 for (i = 0; i < PIL_MAX; i++)
3212 csskd->intr.value.ui64 += css->intr[i];
3213 csskd->syscall.value.ui64 = css->syscall;
3214 csskd->sysread.value.ui64 = css->sysread;
3215 csskd->syswrite.value.ui64 = css->syswrite;
3216 csskd->sysfork.value.ui64 = css->sysfork;
3217 csskd->sysvfork.value.ui64 = css->sysvfork;
3218 csskd->sysexec.value.ui64 = css->sysexec;
3219 csskd->readch.value.ui64 = css->readch;
3220 csskd->writech.value.ui64 = css->writech;
3221 csskd->rcvint.value.ui64 = css->rcvint;
3222 csskd->xmtint.value.ui64 = css->xmtint;
3223 csskd->mdmint.value.ui64 = css->mdmint;
3224 csskd->rawch.value.ui64 = css->rawch;
3225 csskd->canch.value.ui64 = css->canch;
3226 csskd->outch.value.ui64 = css->outch;
3227 csskd->msg.value.ui64 = css->msg;
3228 csskd->sema.value.ui64 = css->sema;
3229 csskd->namei.value.ui64 = css->namei;
3230 csskd->ufsiget.value.ui64 = css->ufsiget;
3231 csskd->ufsdirblk.value.ui64 = css->ufsdirblk;
3232 csskd->ufsipage.value.ui64 = css->ufsipage;
3233 csskd->ufsinopage.value.ui64 = css->ufsinopage;
3234 csskd->procovf.value.ui64 = css->procovf;
3235 csskd->intrthread.value.ui64 = 0;
3236 for (i = 0; i < LOCK_LEVEL - 1; i++)
3237 csskd->intrthread.value.ui64 += css->intr[i];
3238 csskd->intrblk.value.ui64 = css->intrblk;
3239 csskd->intrunpin.value.ui64 = css->intrunpin;
3240 csskd->idlethread.value.ui64 = css->idlethread;
3241 csskd->inv_swtch.value.ui64 = css->inv_swtch;
3242 csskd->nthreads.value.ui64 = css->nthreads;
3243 csskd->cpumigrate.value.ui64 = css->cpumigrate;
3244 csskd->xcalls.value.ui64 = css->xcalls;
3245 csskd->mutex_adenters.value.ui64 = css->mutex_adenters;
3246 csskd->rw_rdfails.value.ui64 = css->rw_rdfails;
3247 csskd->rw_wrfails.value.ui64 = css->rw_wrfails;
3248 csskd->modload.value.ui64 = css->modload;
3249 csskd->modunload.value.ui64 = css->modunload;
3250 csskd->bawrite.value.ui64 = css->bawrite;
3251 csskd->iowait.value.ui64 = css->iowait;
3253 return (0);
3256 static int
3257 cpu_vm_stats_ks_update(kstat_t *ksp, int rw)
3259 cpu_t *cp = (cpu_t *)ksp->ks_private;
3260 struct cpu_vm_stats_ks_data *cvskd;
3261 cpu_vm_stats_t *cvs;
3263 if (rw == KSTAT_WRITE)
3264 return (EACCES);
3266 cvs = &cp->cpu_stats.vm;
3267 cvskd = ksp->ks_data;
3269 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data,
3270 sizeof (cpu_vm_stats_ks_data_template));
3271 cvskd->pgrec.value.ui64 = cvs->pgrec;
3272 cvskd->pgfrec.value.ui64 = cvs->pgfrec;
3273 cvskd->pgin.value.ui64 = cvs->pgin;
3274 cvskd->pgpgin.value.ui64 = cvs->pgpgin;
3275 cvskd->pgout.value.ui64 = cvs->pgout;
3276 cvskd->pgpgout.value.ui64 = cvs->pgpgout;
3277 cvskd->zfod.value.ui64 = cvs->zfod;
3278 cvskd->dfree.value.ui64 = cvs->dfree;
3279 cvskd->scan.value.ui64 = cvs->scan;
3280 cvskd->rev.value.ui64 = cvs->rev;
3281 cvskd->hat_fault.value.ui64 = cvs->hat_fault;
3282 cvskd->as_fault.value.ui64 = cvs->as_fault;
3283 cvskd->maj_fault.value.ui64 = cvs->maj_fault;
3284 cvskd->cow_fault.value.ui64 = cvs->cow_fault;
3285 cvskd->prot_fault.value.ui64 = cvs->prot_fault;
3286 cvskd->softlock.value.ui64 = cvs->softlock;
3287 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt;
3288 cvskd->pgrrun.value.ui64 = cvs->pgrrun;
3289 cvskd->execpgin.value.ui64 = cvs->execpgin;
3290 cvskd->execpgout.value.ui64 = cvs->execpgout;
3291 cvskd->execfree.value.ui64 = cvs->execfree;
3292 cvskd->anonpgin.value.ui64 = cvs->anonpgin;
3293 cvskd->anonpgout.value.ui64 = cvs->anonpgout;
3294 cvskd->anonfree.value.ui64 = cvs->anonfree;
3295 cvskd->fspgin.value.ui64 = cvs->fspgin;
3296 cvskd->fspgout.value.ui64 = cvs->fspgout;
3297 cvskd->fsfree.value.ui64 = cvs->fsfree;
3299 return (0);
3302 static int
3303 cpu_stat_ks_update(kstat_t *ksp, int rw)
3305 cpu_stat_t *cso;
3306 cpu_t *cp;
3307 int i;
3308 hrtime_t msnsecs[NCMSTATES];
3310 cso = (cpu_stat_t *)ksp->ks_data;
3311 cp = (cpu_t *)ksp->ks_private;
3313 if (rw == KSTAT_WRITE)
3314 return (EACCES);
3317 * Read CPU mstate, but compare with the last values we
3318 * received to make sure that the returned kstats never
3319 * decrease.
3322 get_cpu_mstate(cp, msnsecs);
3323 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]);
3324 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]);
3325 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]);
3326 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE])
3327 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE];
3328 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER])
3329 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER];
3330 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM])
3331 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM];
3332 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0;
3333 cso->cpu_sysinfo.wait[W_IO] = 0;
3334 cso->cpu_sysinfo.wait[W_SWAP] = 0;
3335 cso->cpu_sysinfo.wait[W_PIO] = 0;
3336 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread);
3337 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite);
3338 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread);
3339 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite);
3340 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread);
3341 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite);
3342 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch);
3343 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap);
3344 cso->cpu_sysinfo.intr = 0;
3345 for (i = 0; i < PIL_MAX; i++)
3346 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]);
3347 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall);
3348 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread);
3349 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite);
3350 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork);
3351 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork);
3352 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec);
3353 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch);
3354 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech);
3355 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint);
3356 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint);
3357 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint);
3358 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch);
3359 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch);
3360 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch);
3361 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg);
3362 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema);
3363 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei);
3364 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget);
3365 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk);
3366 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage);
3367 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage);
3368 cso->cpu_sysinfo.inodeovf = 0;
3369 cso->cpu_sysinfo.fileovf = 0;
3370 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf);
3371 cso->cpu_sysinfo.intrthread = 0;
3372 for (i = 0; i < LOCK_LEVEL - 1; i++)
3373 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]);
3374 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk);
3375 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread);
3376 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch);
3377 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads);
3378 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate);
3379 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls);
3380 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters);
3381 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails);
3382 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails);
3383 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload);
3384 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload);
3385 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite);
3386 cso->cpu_sysinfo.rw_enters = 0;
3387 cso->cpu_sysinfo.win_uo_cnt = 0;
3388 cso->cpu_sysinfo.win_uu_cnt = 0;
3389 cso->cpu_sysinfo.win_so_cnt = 0;
3390 cso->cpu_sysinfo.win_su_cnt = 0;
3391 cso->cpu_sysinfo.win_suo_cnt = 0;
3393 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait);
3394 cso->cpu_syswait.swap = 0;
3395 cso->cpu_syswait.physio = 0;
3397 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec);
3398 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec);
3399 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin);
3400 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin);
3401 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout);
3402 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout);
3403 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod);
3404 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree);
3405 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan);
3406 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev);
3407 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault);
3408 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault);
3409 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault);
3410 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault);
3411 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault);
3412 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock);
3413 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt);
3414 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun);
3415 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin);
3416 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout);
3417 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree);
3418 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin);
3419 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout);
3420 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree);
3421 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin);
3422 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout);
3423 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree);
3425 return (0);