8560 Reference leak on ipsec_action_t
[unleashed.git] / usr / src / uts / common / inet / ip / ip6_ire.c
blob979ca02a3b7e26003a9890446d80ac6aad31e188
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 1990 Mentat Inc.
27 * This file contains routines that manipulate Internet Routing Entries (IREs).
29 #include <sys/types.h>
30 #include <sys/stream.h>
31 #include <sys/stropts.h>
32 #include <sys/ddi.h>
33 #include <sys/cmn_err.h>
35 #include <sys/systm.h>
36 #include <sys/param.h>
37 #include <sys/socket.h>
38 #include <net/if.h>
39 #include <net/route.h>
40 #include <netinet/in.h>
41 #include <net/if_dl.h>
42 #include <netinet/ip6.h>
43 #include <netinet/icmp6.h>
45 #include <inet/common.h>
46 #include <inet/mi.h>
47 #include <inet/ip.h>
48 #include <inet/ip6.h>
49 #include <inet/ip_ndp.h>
50 #include <inet/ip_if.h>
51 #include <inet/ip_ire.h>
52 #include <inet/ipclassifier.h>
53 #include <inet/nd.h>
54 #include <inet/tunables.h>
55 #include <sys/kmem.h>
56 #include <sys/zone.h>
58 #include <sys/tsol/label.h>
59 #include <sys/tsol/tnet.h>
61 #define IS_DEFAULT_ROUTE_V6(ire) \
62 (((ire)->ire_type & IRE_DEFAULT) || \
63 (((ire)->ire_type & IRE_INTERFACE) && \
64 (IN6_IS_ADDR_UNSPECIFIED(&(ire)->ire_addr_v6))))
66 static ire_t ire_null;
68 static ire_t *
69 ire_ftable_lookup_impl_v6(const in6_addr_t *addr, const in6_addr_t *mask,
70 const in6_addr_t *gateway, int type, const ill_t *ill,
71 zoneid_t zoneid, const ts_label_t *tsl, int flags,
72 ip_stack_t *ipst);
75 * Initialize the ire that is specific to IPv6 part and call
76 * ire_init_common to finish it.
77 * Returns zero or errno.
79 int
80 ire_init_v6(ire_t *ire, const in6_addr_t *v6addr, const in6_addr_t *v6mask,
81 const in6_addr_t *v6gateway, ushort_t type, ill_t *ill,
82 zoneid_t zoneid, uint_t flags, tsol_gc_t *gc, ip_stack_t *ipst)
84 int error;
87 * Reject IRE security attmakeribute creation/initialization
88 * if system is not running in Trusted mode.
90 if (gc != NULL && !is_system_labeled())
91 return (EINVAL);
93 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_alloced);
94 if (v6addr != NULL)
95 ire->ire_addr_v6 = *v6addr;
96 if (v6gateway != NULL)
97 ire->ire_gateway_addr_v6 = *v6gateway;
99 /* Make sure we don't have stray values in some fields */
100 switch (type) {
101 case IRE_LOOPBACK:
102 case IRE_HOST:
103 case IRE_LOCAL:
104 case IRE_IF_CLONE:
105 ire->ire_mask_v6 = ipv6_all_ones;
106 ire->ire_masklen = IPV6_ABITS;
107 break;
108 case IRE_PREFIX:
109 case IRE_DEFAULT:
110 case IRE_IF_RESOLVER:
111 case IRE_IF_NORESOLVER:
112 if (v6mask != NULL) {
113 ire->ire_mask_v6 = *v6mask;
114 ire->ire_masklen =
115 ip_mask_to_plen_v6(&ire->ire_mask_v6);
117 break;
118 case IRE_MULTICAST:
119 case IRE_NOROUTE:
120 ASSERT(v6mask == NULL);
121 break;
122 default:
123 ASSERT(0);
124 return (EINVAL);
127 error = ire_init_common(ire, type, ill, zoneid, flags, IPV6_VERSION,
128 gc, ipst);
129 if (error != NULL)
130 return (error);
132 /* Determine which function pointers to use */
133 ire->ire_postfragfn = ip_xmit; /* Common case */
135 switch (ire->ire_type) {
136 case IRE_LOCAL:
137 ire->ire_sendfn = ire_send_local_v6;
138 ire->ire_recvfn = ire_recv_local_v6;
139 ASSERT(ire->ire_ill != NULL);
140 if (ire->ire_ill->ill_flags & ILLF_NOACCEPT)
141 ire->ire_recvfn = ire_recv_noaccept_v6;
142 break;
143 case IRE_LOOPBACK:
144 ire->ire_sendfn = ire_send_local_v6;
145 ire->ire_recvfn = ire_recv_loopback_v6;
146 break;
147 case IRE_MULTICAST:
148 ire->ire_postfragfn = ip_postfrag_loopcheck;
149 ire->ire_sendfn = ire_send_multicast_v6;
150 ire->ire_recvfn = ire_recv_multicast_v6;
151 break;
152 default:
154 * For IRE_IF_ALL and IRE_OFFLINK we forward received
155 * packets by default.
157 ire->ire_sendfn = ire_send_wire_v6;
158 ire->ire_recvfn = ire_recv_forward_v6;
159 break;
161 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
162 ire->ire_sendfn = ire_send_noroute_v6;
163 ire->ire_recvfn = ire_recv_noroute_v6;
164 } else if (ire->ire_flags & RTF_MULTIRT) {
165 ire->ire_postfragfn = ip_postfrag_multirt_v6;
166 ire->ire_sendfn = ire_send_multirt_v6;
167 ire->ire_recvfn = ire_recv_multirt_v6;
169 ire->ire_nce_capable = ire_determine_nce_capable(ire);
170 return (0);
174 * ire_create_v6 is called to allocate and initialize a new IRE.
176 * NOTE : This is called as writer sometimes though not required
177 * by this function.
179 /* ARGSUSED */
180 ire_t *
181 ire_create_v6(const in6_addr_t *v6addr, const in6_addr_t *v6mask,
182 const in6_addr_t *v6gateway, ushort_t type, ill_t *ill, zoneid_t zoneid,
183 uint_t flags, tsol_gc_t *gc, ip_stack_t *ipst)
185 ire_t *ire;
186 int error;
188 ASSERT(!IN6_IS_ADDR_V4MAPPED(v6addr));
190 ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
191 if (ire == NULL) {
192 DTRACE_PROBE(kmem__cache__alloc);
193 return (NULL);
195 *ire = ire_null;
197 error = ire_init_v6(ire, v6addr, v6mask, v6gateway,
198 type, ill, zoneid, flags, gc, ipst);
200 if (error != 0) {
201 DTRACE_PROBE2(ire__init__v6, ire_t *, ire, int, error);
202 kmem_cache_free(ire_cache, ire);
203 return (NULL);
205 return (ire);
209 * Find the ill matching a multicast group.
210 * Allows different routes for multicast addresses
211 * in the unicast routing table (akin to FF::0/8 but could be more specific)
212 * which point at different interfaces. This is used when IPV6_MULTICAST_IF
213 * isn't specified (when sending) and when IPV6_JOIN_GROUP doesn't
214 * specify the interface to join on.
216 * Supports link-local addresses by using ire_route_recursive which follows
217 * the ill when recursing.
219 * To handle CGTP, since we don't have a separate IRE_MULTICAST for each group
220 * and the MULTIRT property can be different for different groups, we
221 * extract RTF_MULTIRT from the special unicast route added for a group
222 * with CGTP and pass that back in the multirtp argument.
223 * This is used in ip_set_destination etc to set ixa_postfragfn for multicast.
224 * We have a setsrcp argument for the same reason.
226 ill_t *
227 ire_lookup_multi_ill_v6(const in6_addr_t *group, zoneid_t zoneid,
228 ip_stack_t *ipst, boolean_t *multirtp, in6_addr_t *setsrcp)
230 ire_t *ire;
231 ill_t *ill;
233 ire = ire_route_recursive_v6(group, 0, NULL, zoneid, NULL,
234 MATCH_IRE_DSTONLY, IRR_NONE, 0, ipst, setsrcp, NULL, NULL);
235 ASSERT(ire != NULL);
237 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
238 ire_refrele(ire);
239 return (NULL);
242 if (multirtp != NULL)
243 *multirtp = (ire->ire_flags & RTF_MULTIRT) != 0;
245 ill = ire_nexthop_ill(ire);
246 ire_refrele(ire);
247 return (ill);
251 * This function takes a mask and returns number of bits set in the
252 * mask (the represented prefix length). Assumes a contiguous mask.
255 ip_mask_to_plen_v6(const in6_addr_t *v6mask)
257 int bits;
258 int plen = IPV6_ABITS;
259 int i;
261 for (i = 3; i >= 0; i--) {
262 if (v6mask->s6_addr32[i] == 0) {
263 plen -= 32;
264 continue;
266 bits = ffs(ntohl(v6mask->s6_addr32[i])) - 1;
267 if (bits == 0)
268 break;
269 plen -= bits;
272 return (plen);
276 * Convert a prefix length to the mask for that prefix.
277 * Returns the argument bitmask.
279 in6_addr_t *
280 ip_plen_to_mask_v6(uint_t plen, in6_addr_t *bitmask)
282 uint32_t *ptr;
284 if (plen < 0 || plen > IPV6_ABITS)
285 return (NULL);
286 *bitmask = ipv6_all_zeros;
287 if (plen == 0)
288 return (bitmask);
290 ptr = (uint32_t *)bitmask;
291 while (plen > 32) {
292 *ptr++ = 0xffffffffU;
293 plen -= 32;
295 *ptr = htonl(0xffffffffU << (32 - plen));
296 return (bitmask);
300 * Add a fully initialized IPv6 IRE to the forwarding table.
301 * This returns NULL on failure, or a held IRE on success.
302 * Normally the returned IRE is the same as the argument. But a different
303 * IRE will be returned if the added IRE is deemed identical to an existing
304 * one. In that case ire_identical_ref will be increased.
305 * The caller always needs to do an ire_refrele() on the returned IRE.
307 ire_t *
308 ire_add_v6(ire_t *ire)
310 ire_t *ire1;
311 int mask_table_index;
312 irb_t *irb_ptr;
313 ire_t **irep;
314 int match_flags;
315 int error;
316 ip_stack_t *ipst = ire->ire_ipst;
318 ASSERT(ire->ire_ipversion == IPV6_VERSION);
320 /* Make sure the address is properly masked. */
321 V6_MASK_COPY(ire->ire_addr_v6, ire->ire_mask_v6, ire->ire_addr_v6);
323 mask_table_index = ip_mask_to_plen_v6(&ire->ire_mask_v6);
324 if ((ipst->ips_ip_forwarding_table_v6[mask_table_index]) == NULL) {
325 irb_t *ptr;
326 int i;
328 ptr = (irb_t *)mi_zalloc((ipst->ips_ip6_ftable_hash_size *
329 sizeof (irb_t)));
330 if (ptr == NULL) {
331 ire_delete(ire);
332 return (NULL);
334 for (i = 0; i < ipst->ips_ip6_ftable_hash_size; i++) {
335 rw_init(&ptr[i].irb_lock, NULL, RW_DEFAULT, NULL);
336 ptr[i].irb_ipst = ipst;
338 mutex_enter(&ipst->ips_ire_ft_init_lock);
339 if (ipst->ips_ip_forwarding_table_v6[mask_table_index] ==
340 NULL) {
341 ipst->ips_ip_forwarding_table_v6[mask_table_index] =
342 ptr;
343 mutex_exit(&ipst->ips_ire_ft_init_lock);
344 } else {
346 * Some other thread won the race in
347 * initializing the forwarding table at the
348 * same index.
350 mutex_exit(&ipst->ips_ire_ft_init_lock);
351 for (i = 0; i < ipst->ips_ip6_ftable_hash_size; i++) {
352 rw_destroy(&ptr[i].irb_lock);
354 mi_free(ptr);
357 irb_ptr = &(ipst->ips_ip_forwarding_table_v6[mask_table_index][
358 IRE_ADDR_MASK_HASH_V6(ire->ire_addr_v6, ire->ire_mask_v6,
359 ipst->ips_ip6_ftable_hash_size)]);
361 match_flags = (MATCH_IRE_MASK | MATCH_IRE_TYPE | MATCH_IRE_GW);
362 if (ire->ire_ill != NULL)
363 match_flags |= MATCH_IRE_ILL;
365 * Start the atomic add of the ire. Grab the bucket lock and the
366 * ill lock. Check for condemned.
368 error = ire_atomic_start(irb_ptr, ire);
369 if (error != 0) {
370 ire_delete(ire);
371 return (NULL);
375 * If we are creating a hidden IRE, make sure we search for
376 * hidden IREs when searching for duplicates below.
377 * Otherwise, we might find an IRE on some other interface
378 * that's not marked hidden.
380 if (ire->ire_testhidden)
381 match_flags |= MATCH_IRE_TESTHIDDEN;
384 * Atomically check for duplicate and insert in the table.
386 for (ire1 = irb_ptr->irb_ire; ire1 != NULL; ire1 = ire1->ire_next) {
387 if (IRE_IS_CONDEMNED(ire1))
388 continue;
390 * Here we need an exact match on zoneid, i.e.,
391 * ire_match_args doesn't fit.
393 if (ire1->ire_zoneid != ire->ire_zoneid)
394 continue;
396 if (ire1->ire_type != ire->ire_type)
397 continue;
400 * Note: We do not allow multiple routes that differ only
401 * in the gateway security attributes; such routes are
402 * considered duplicates.
403 * To change that we explicitly have to treat them as
404 * different here.
406 if (ire_match_args_v6(ire1, &ire->ire_addr_v6,
407 &ire->ire_mask_v6, &ire->ire_gateway_addr_v6,
408 ire->ire_type, ire->ire_ill, ire->ire_zoneid, NULL,
409 match_flags)) {
411 * Return the old ire after doing a REFHOLD.
412 * As most of the callers continue to use the IRE
413 * after adding, we return a held ire. This will
414 * avoid a lookup in the caller again. If the callers
415 * don't want to use it, they need to do a REFRELE.
417 * We only allow exactly one IRE_IF_CLONE for any dst,
418 * so, if the is an IF_CLONE, return the ire without
419 * an identical_ref, but with an ire_ref held.
421 if (ire->ire_type != IRE_IF_CLONE) {
422 atomic_add_32(&ire1->ire_identical_ref, 1);
423 DTRACE_PROBE2(ire__add__exist, ire_t *, ire1,
424 ire_t *, ire);
426 ip1dbg(("found dup ire existing %p new %p",
427 (void *)ire1, (void *)ire));
428 ire_refhold(ire1);
429 ire_atomic_end(irb_ptr, ire);
430 ire_delete(ire);
431 return (ire1);
436 * Normally we do head insertion since most things do not care about
437 * the order of the IREs in the bucket.
438 * However, due to shared-IP zones (and restrict_interzone_loopback)
439 * we can have an IRE_LOCAL as well as IRE_IF_CLONE for the same
440 * address. For that reason we do tail insertion for IRE_IF_CLONE.
442 irep = (ire_t **)irb_ptr;
443 if (ire->ire_type & IRE_IF_CLONE) {
444 while ((ire1 = *irep) != NULL)
445 irep = &ire1->ire_next;
447 /* Insert at *irep */
448 ire1 = *irep;
449 if (ire1 != NULL)
450 ire1->ire_ptpn = &ire->ire_next;
451 ire->ire_next = ire1;
452 /* Link the new one in. */
453 ire->ire_ptpn = irep;
455 * ire_walk routines de-reference ire_next without holding
456 * a lock. Before we point to the new ire, we want to make
457 * sure the store that sets the ire_next of the new ire
458 * reaches global visibility, so that ire_walk routines
459 * don't see a truncated list of ires i.e if the ire_next
460 * of the new ire gets set after we do "*irep = ire" due
461 * to re-ordering, the ire_walk thread will see a NULL
462 * once it accesses the ire_next of the new ire.
463 * membar_producer() makes sure that the following store
464 * happens *after* all of the above stores.
466 membar_producer();
467 *irep = ire;
468 ire->ire_bucket = irb_ptr;
470 * We return a bumped up IRE above. Keep it symmetrical
471 * so that the callers will always have to release. This
472 * helps the callers of this function because they continue
473 * to use the IRE after adding and hence they don't have to
474 * lookup again after we return the IRE.
476 * NOTE : We don't have to use atomics as this is appearing
477 * in the list for the first time and no one else can bump
478 * up the reference count on this yet.
480 ire_refhold_locked(ire);
481 BUMP_IRE_STATS(ipst->ips_ire_stats_v6, ire_stats_inserted);
482 irb_ptr->irb_ire_cnt++;
484 if (ire->ire_ill != NULL) {
485 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), ire->ire_ill,
486 (char *), "ire", (void *), ire);
487 ire->ire_ill->ill_ire_cnt++;
488 ASSERT(ire->ire_ill->ill_ire_cnt != 0); /* Wraparound */
490 ire_atomic_end(irb_ptr, ire);
492 /* Make any caching of the IREs be notified or updated */
493 ire_flush_cache_v6(ire, IRE_FLUSH_ADD);
495 return (ire);
499 * Search for all HOST REDIRECT routes that are
500 * pointing at the specified gateway and
501 * delete them. This routine is called only
502 * when a default gateway is going away.
504 static void
505 ire_delete_host_redirects_v6(const in6_addr_t *gateway, ip_stack_t *ipst)
507 irb_t *irb_ptr;
508 irb_t *irb;
509 ire_t *ire;
510 in6_addr_t gw_addr_v6;
511 int i;
513 /* get the hash table for HOST routes */
514 irb_ptr = ipst->ips_ip_forwarding_table_v6[(IP6_MASK_TABLE_SIZE - 1)];
515 if (irb_ptr == NULL)
516 return;
517 for (i = 0; (i < ipst->ips_ip6_ftable_hash_size); i++) {
518 irb = &irb_ptr[i];
519 irb_refhold(irb);
520 for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
521 if (!(ire->ire_flags & RTF_DYNAMIC))
522 continue;
523 mutex_enter(&ire->ire_lock);
524 gw_addr_v6 = ire->ire_gateway_addr_v6;
525 mutex_exit(&ire->ire_lock);
526 if (IN6_ARE_ADDR_EQUAL(&gw_addr_v6, gateway))
527 ire_delete(ire);
529 irb_refrele(irb);
534 * Delete the specified IRE.
535 * All calls should use ire_delete().
536 * Sometimes called as writer though not required by this function.
538 * NOTE : This function is called only if the ire was added
539 * in the list.
541 void
542 ire_delete_v6(ire_t *ire)
544 in6_addr_t gw_addr_v6;
545 ip_stack_t *ipst = ire->ire_ipst;
548 * Make sure ire_generation increases from ire_flush_cache happen
549 * after any lookup/reader has read ire_generation.
550 * Since the rw_enter makes us wait until any lookup/reader has
551 * completed we can exit the lock immediately.
553 rw_enter(&ipst->ips_ip6_ire_head_lock, RW_WRITER);
554 rw_exit(&ipst->ips_ip6_ire_head_lock);
556 ASSERT(ire->ire_refcnt >= 1);
557 ASSERT(ire->ire_ipversion == IPV6_VERSION);
559 ire_flush_cache_v6(ire, IRE_FLUSH_DELETE);
561 if (ire->ire_type == IRE_DEFAULT) {
563 * when a default gateway is going away
564 * delete all the host redirects pointing at that
565 * gateway.
567 mutex_enter(&ire->ire_lock);
568 gw_addr_v6 = ire->ire_gateway_addr_v6;
569 mutex_exit(&ire->ire_lock);
570 ire_delete_host_redirects_v6(&gw_addr_v6, ipst);
574 * If we are deleting an IRE_INTERFACE then we make sure we also
575 * delete any IRE_IF_CLONE that has been created from it.
576 * Those are always in ire_dep_children.
578 if ((ire->ire_type & IRE_INTERFACE) && ire->ire_dep_children != 0)
579 ire_dep_delete_if_clone(ire);
581 /* Remove from parent dependencies and child */
582 rw_enter(&ipst->ips_ire_dep_lock, RW_WRITER);
583 if (ire->ire_dep_parent != NULL) {
584 ire_dep_remove(ire);
586 while (ire->ire_dep_children != NULL)
587 ire_dep_remove(ire->ire_dep_children);
588 rw_exit(&ipst->ips_ire_dep_lock);
592 * When an IRE is added or deleted this routine is called to make sure
593 * any caching of IRE information is notified or updated.
595 * The flag argument indicates if the flush request is due to addition
596 * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE),
597 * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE).
599 void
600 ire_flush_cache_v6(ire_t *ire, int flag)
602 ip_stack_t *ipst = ire->ire_ipst;
605 * IRE_IF_CLONE ire's don't provide any new information
606 * than the parent from which they are cloned, so don't
607 * perturb the generation numbers.
609 if (ire->ire_type & IRE_IF_CLONE)
610 return;
613 * Ensure that an ire_add during a lookup serializes the updates of
614 * the generation numbers under ire_head_lock so that the lookup gets
615 * either the old ire and old generation number, or a new ire and new
616 * generation number.
618 rw_enter(&ipst->ips_ip6_ire_head_lock, RW_WRITER);
621 * If a route was just added, we need to notify everybody that
622 * has cached an IRE_NOROUTE since there might now be a better
623 * route for them.
625 if (flag == IRE_FLUSH_ADD) {
626 ire_increment_generation(ipst->ips_ire_reject_v6);
627 ire_increment_generation(ipst->ips_ire_blackhole_v6);
630 /* Adding a default can't otherwise provide a better route */
631 if (ire->ire_type == IRE_DEFAULT && flag == IRE_FLUSH_ADD) {
632 rw_exit(&ipst->ips_ip6_ire_head_lock);
633 return;
636 switch (flag) {
637 case IRE_FLUSH_DELETE:
638 case IRE_FLUSH_GWCHANGE:
640 * Update ire_generation for all ire_dep_children chains
641 * starting with this IRE
643 ire_dep_incr_generation(ire);
644 break;
645 case IRE_FLUSH_ADD: {
646 in6_addr_t addr;
647 in6_addr_t mask;
648 ip_stack_t *ipst = ire->ire_ipst;
649 uint_t masklen;
652 * Find an IRE which is a shorter match than the ire to be added
653 * For any such IRE (which we repeat) we update the
654 * ire_generation the same way as in the delete case.
656 addr = ire->ire_addr_v6;
657 mask = ire->ire_mask_v6;
658 masklen = ip_mask_to_plen_v6(&mask);
660 ire = ire_ftable_lookup_impl_v6(&addr, &mask, NULL, 0, NULL,
661 ALL_ZONES, NULL, MATCH_IRE_SHORTERMASK, ipst);
662 while (ire != NULL) {
663 /* We need to handle all in the same bucket */
664 irb_increment_generation(ire->ire_bucket);
666 mask = ire->ire_mask_v6;
667 ASSERT(masklen > ip_mask_to_plen_v6(&mask));
668 masklen = ip_mask_to_plen_v6(&mask);
669 ire_refrele(ire);
670 ire = ire_ftable_lookup_impl_v6(&addr, &mask, NULL, 0,
671 NULL, ALL_ZONES, NULL, MATCH_IRE_SHORTERMASK, ipst);
674 break;
676 rw_exit(&ipst->ips_ip6_ire_head_lock);
680 * Matches the arguments passed with the values in the ire.
682 * Note: for match types that match using "ill" passed in, ill
683 * must be checked for non-NULL before calling this routine.
685 boolean_t
686 ire_match_args_v6(ire_t *ire, const in6_addr_t *addr, const in6_addr_t *mask,
687 const in6_addr_t *gateway, int type, const ill_t *ill, zoneid_t zoneid,
688 const ts_label_t *tsl, int match_flags)
690 in6_addr_t gw_addr_v6;
691 ill_t *ire_ill = NULL, *dst_ill;
692 ip_stack_t *ipst = ire->ire_ipst;
694 ASSERT(ire->ire_ipversion == IPV6_VERSION);
695 ASSERT(addr != NULL);
696 ASSERT(mask != NULL);
697 ASSERT((!(match_flags & MATCH_IRE_GW)) || gateway != NULL);
698 ASSERT((!(match_flags & (MATCH_IRE_ILL|MATCH_IRE_SRC_ILL))) ||
699 (ill != NULL && ill->ill_isv6));
702 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it
703 * is in fact hidden, to ensure the caller gets the right one.
705 if (ire->ire_testhidden) {
706 if (!(match_flags & MATCH_IRE_TESTHIDDEN))
707 return (B_FALSE);
710 if (zoneid != ALL_ZONES && zoneid != ire->ire_zoneid &&
711 ire->ire_zoneid != ALL_ZONES) {
713 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid
714 * does not match that of ire_zoneid, a failure to
715 * match is reported at this point. Otherwise, since some IREs
716 * that are available in the global zone can be used in local
717 * zones, additional checks need to be performed:
719 * IRE_LOOPBACK
720 * entries should never be matched in this situation.
721 * Each zone has its own IRE_LOOPBACK.
723 * IRE_LOCAL
724 * We allow them for any zoneid. ire_route_recursive
725 * does additional checks when
726 * ip_restrict_interzone_loopback is set.
728 * If ill_usesrc_ifindex is set
729 * Then we check if the zone has a valid source address
730 * on the usesrc ill.
732 * If ire_ill is set, then check that the zone has an ipif
733 * on that ill.
735 * Outside of this function (in ire_round_robin) we check
736 * that any IRE_OFFLINK has a gateway that reachable from the
737 * zone when we have multiple choices (ECMP).
739 if (match_flags & MATCH_IRE_ZONEONLY)
740 return (B_FALSE);
741 if (ire->ire_type & IRE_LOOPBACK)
742 return (B_FALSE);
744 if (ire->ire_type & IRE_LOCAL)
745 goto matchit;
748 * The normal case of IRE_ONLINK has a matching zoneid.
749 * Here we handle the case when shared-IP zones have been
750 * configured with IP addresses on vniN. In that case it
751 * is ok for traffic from a zone to use IRE_ONLINK routes
752 * if the ill has a usesrc pointing at vniN
753 * Applies to IRE_INTERFACE.
755 dst_ill = ire->ire_ill;
756 if (ire->ire_type & IRE_ONLINK) {
757 uint_t ifindex;
760 * Note there is no IRE_INTERFACE on vniN thus
761 * can't do an IRE lookup for a matching route.
763 ifindex = dst_ill->ill_usesrc_ifindex;
764 if (ifindex == 0)
765 return (B_FALSE);
768 * If there is a usable source address in the
769 * zone, then it's ok to return this IRE_INTERFACE
771 if (!ipif_zone_avail(ifindex, dst_ill->ill_isv6,
772 zoneid, ipst)) {
773 ip3dbg(("ire_match_args: no usrsrc for zone"
774 " dst_ill %p\n", (void *)dst_ill));
775 return (B_FALSE);
779 * For example, with
780 * route add 11.0.0.0 gw1 -ifp bge0
781 * route add 11.0.0.0 gw2 -ifp bge1
782 * this code would differentiate based on
783 * where the sending zone has addresses.
784 * Only if the zone has an address on bge0 can it use the first
785 * route. It isn't clear if this behavior is documented
786 * anywhere.
788 if (dst_ill != NULL && (ire->ire_type & IRE_OFFLINK)) {
789 ipif_t *tipif;
791 mutex_enter(&dst_ill->ill_lock);
792 for (tipif = dst_ill->ill_ipif;
793 tipif != NULL; tipif = tipif->ipif_next) {
794 if (!IPIF_IS_CONDEMNED(tipif) &&
795 (tipif->ipif_flags & IPIF_UP) &&
796 (tipif->ipif_zoneid == zoneid ||
797 tipif->ipif_zoneid == ALL_ZONES))
798 break;
800 mutex_exit(&dst_ill->ill_lock);
801 if (tipif == NULL)
802 return (B_FALSE);
806 matchit:
807 ire_ill = ire->ire_ill;
808 if (match_flags & MATCH_IRE_GW) {
809 mutex_enter(&ire->ire_lock);
810 gw_addr_v6 = ire->ire_gateway_addr_v6;
811 mutex_exit(&ire->ire_lock);
813 if (match_flags & MATCH_IRE_ILL) {
816 * If asked to match an ill, we *must* match
817 * on the ire_ill for ipmp test addresses, or
818 * any of the ill in the group for data addresses.
819 * If we don't, we may as well fail.
820 * However, we need an exception for IRE_LOCALs to ensure
821 * we loopback packets even sent to test addresses on different
822 * interfaces in the group.
824 if ((match_flags & MATCH_IRE_TESTHIDDEN) &&
825 !(ire->ire_type & IRE_LOCAL)) {
826 if (ire->ire_ill != ill)
827 return (B_FALSE);
828 } else {
829 match_flags &= ~MATCH_IRE_TESTHIDDEN;
831 * We know that ill is not NULL, but ire_ill could be
832 * NULL
834 if (ire_ill == NULL || !IS_ON_SAME_LAN(ill, ire_ill))
835 return (B_FALSE);
838 if (match_flags & MATCH_IRE_SRC_ILL) {
839 if (ire_ill == NULL)
840 return (B_FALSE);
841 if (!IS_ON_SAME_LAN(ill, ire_ill)) {
842 if (ire_ill->ill_usesrc_ifindex == 0 ||
843 (ire_ill->ill_usesrc_ifindex !=
844 ill->ill_phyint->phyint_ifindex))
845 return (B_FALSE);
849 /* No ire_addr_v6 bits set past the mask */
850 ASSERT(V6_MASK_EQ(ire->ire_addr_v6, ire->ire_mask_v6,
851 ire->ire_addr_v6));
852 if (V6_MASK_EQ(*addr, *mask, ire->ire_addr_v6) &&
853 ((!(match_flags & MATCH_IRE_GW)) ||
854 ((!(match_flags & MATCH_IRE_DIRECT)) ||
855 !(ire->ire_flags & RTF_INDIRECT)) &&
856 IN6_ARE_ADDR_EQUAL(&gw_addr_v6, gateway)) &&
857 ((!(match_flags & MATCH_IRE_TYPE)) || (ire->ire_type & type)) &&
858 ((!(match_flags & MATCH_IRE_TESTHIDDEN)) || ire->ire_testhidden) &&
859 ((!(match_flags & MATCH_IRE_MASK)) ||
860 (IN6_ARE_ADDR_EQUAL(&ire->ire_mask_v6, mask))) &&
861 ((!(match_flags & MATCH_IRE_SECATTR)) ||
862 (!is_system_labeled()) ||
863 (tsol_ire_match_gwattr(ire, tsl) == 0))) {
864 /* We found the matched IRE */
865 return (B_TRUE);
867 return (B_FALSE);
871 * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified
872 * gateway address. If ill is non-NULL we also match on it.
873 * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set.
875 boolean_t
876 ire_gateway_ok_zone_v6(const in6_addr_t *gateway, zoneid_t zoneid, ill_t *ill,
877 const ts_label_t *tsl, ip_stack_t *ipst, boolean_t lock_held)
879 ire_t *ire;
880 uint_t match_flags;
882 if (lock_held)
883 ASSERT(RW_READ_HELD(&ipst->ips_ip6_ire_head_lock));
884 else
885 rw_enter(&ipst->ips_ip6_ire_head_lock, RW_READER);
887 match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR;
888 if (ill != NULL)
889 match_flags |= MATCH_IRE_ILL;
891 ire = ire_ftable_lookup_impl_v6(gateway, &ipv6_all_zeros,
892 &ipv6_all_zeros, IRE_INTERFACE, ill, zoneid, tsl, match_flags,
893 ipst);
895 if (!lock_held)
896 rw_exit(&ipst->ips_ip6_ire_head_lock);
897 if (ire != NULL) {
898 ire_refrele(ire);
899 return (B_TRUE);
900 } else {
901 return (B_FALSE);
906 * Lookup a route in forwarding table.
907 * specific lookup is indicated by passing the
908 * required parameters and indicating the
909 * match required in flag field.
911 * Supports link-local addresses by following the ipif/ill when recursing.
913 ire_t *
914 ire_ftable_lookup_v6(const in6_addr_t *addr, const in6_addr_t *mask,
915 const in6_addr_t *gateway, int type, const ill_t *ill,
916 zoneid_t zoneid, const ts_label_t *tsl, int flags,
917 uint32_t xmit_hint, ip_stack_t *ipst, uint_t *generationp)
919 ire_t *ire = NULL;
921 ASSERT(addr != NULL);
922 ASSERT((!(flags & MATCH_IRE_MASK)) || mask != NULL);
923 ASSERT((!(flags & MATCH_IRE_GW)) || gateway != NULL);
924 ASSERT(ill == NULL || ill->ill_isv6);
926 ASSERT(!IN6_IS_ADDR_V4MAPPED(addr));
929 * ire_match_args_v6() will dereference ill if MATCH_IRE_ILL
930 * or MATCH_IRE_SRC_ILL is set.
932 if ((flags & (MATCH_IRE_ILL|MATCH_IRE_SRC_ILL)) && (ill == NULL))
933 return (NULL);
935 rw_enter(&ipst->ips_ip6_ire_head_lock, RW_READER);
936 ire = ire_ftable_lookup_impl_v6(addr, mask, gateway, type, ill, zoneid,
937 tsl, flags, ipst);
938 if (ire == NULL) {
939 rw_exit(&ipst->ips_ip6_ire_head_lock);
940 return (NULL);
944 * round-robin only if we have more than one route in the bucket.
945 * ips_ip_ecmp_behavior controls when we do ECMP
946 * 2: always
947 * 1: for IRE_DEFAULT and /0 IRE_INTERFACE
948 * 0: never
950 * Note: if we found an IRE_IF_CLONE we won't look at the bucket with
951 * other ECMP IRE_INTERFACEs since the IRE_IF_CLONE is a /128 match
952 * and the IRE_INTERFACESs are likely to be shorter matches.
954 if (ire->ire_bucket->irb_ire_cnt > 1 && !(flags & MATCH_IRE_GW)) {
955 if (ipst->ips_ip_ecmp_behavior == 2 ||
956 (ipst->ips_ip_ecmp_behavior == 1 &&
957 IS_DEFAULT_ROUTE_V6(ire))) {
958 ire_t *next_ire;
959 ire_ftable_args_t margs;
961 bzero(&margs, sizeof (margs));
962 margs.ift_addr_v6 = *addr;
963 if (mask != NULL)
964 margs.ift_mask_v6 = *mask;
965 if (gateway != NULL)
966 margs.ift_gateway_v6 = *gateway;
967 margs.ift_type = type;
968 margs.ift_ill = ill;
969 margs.ift_zoneid = zoneid;
970 margs.ift_tsl = tsl;
971 margs.ift_flags = flags;
973 next_ire = ire_round_robin(ire->ire_bucket, &margs,
974 xmit_hint, ire, ipst);
975 if (next_ire == NULL) {
976 /* keep ire if next_ire is null */
977 goto done;
979 ire_refrele(ire);
980 ire = next_ire;
984 done:
985 /* Return generation before dropping lock */
986 if (generationp != NULL)
987 *generationp = ire->ire_generation;
989 rw_exit(&ipst->ips_ip6_ire_head_lock);
992 * For shared-IP zones we need additional checks to what was
993 * done in ire_match_args to make sure IRE_LOCALs are handled.
995 * When ip_restrict_interzone_loopback is set, then
996 * we ensure that IRE_LOCAL are only used for loopback
997 * between zones when the logical "Ethernet" would
998 * have looped them back. That is, if in the absense of
999 * the IRE_LOCAL we would have sent to packet out the
1000 * same ill.
1002 if ((ire->ire_type & IRE_LOCAL) && zoneid != ALL_ZONES &&
1003 ire->ire_zoneid != zoneid && ire->ire_zoneid != ALL_ZONES &&
1004 ipst->ips_ip_restrict_interzone_loopback) {
1005 ire = ire_alt_local(ire, zoneid, tsl, ill, generationp);
1006 ASSERT(ire != NULL);
1009 return (ire);
1013 * Look up a single ire. The caller holds either the read or write lock.
1015 ire_t *
1016 ire_ftable_lookup_impl_v6(const in6_addr_t *addr, const in6_addr_t *mask,
1017 const in6_addr_t *gateway, int type, const ill_t *ill,
1018 zoneid_t zoneid, const ts_label_t *tsl, int flags,
1019 ip_stack_t *ipst)
1021 irb_t *irb_ptr;
1022 ire_t *ire = NULL;
1023 int i;
1025 ASSERT(RW_LOCK_HELD(&ipst->ips_ip6_ire_head_lock));
1028 * If the mask is known, the lookup
1029 * is simple, if the mask is not known
1030 * we need to search.
1032 if (flags & MATCH_IRE_MASK) {
1033 uint_t masklen;
1035 masklen = ip_mask_to_plen_v6(mask);
1036 if (ipst->ips_ip_forwarding_table_v6[masklen] == NULL) {
1037 return (NULL);
1039 irb_ptr = &(ipst->ips_ip_forwarding_table_v6[masklen][
1040 IRE_ADDR_MASK_HASH_V6(*addr, *mask,
1041 ipst->ips_ip6_ftable_hash_size)]);
1042 rw_enter(&irb_ptr->irb_lock, RW_READER);
1043 for (ire = irb_ptr->irb_ire; ire != NULL;
1044 ire = ire->ire_next) {
1045 if (IRE_IS_CONDEMNED(ire))
1046 continue;
1047 if (ire_match_args_v6(ire, addr, mask, gateway, type,
1048 ill, zoneid, tsl, flags))
1049 goto found_ire;
1051 rw_exit(&irb_ptr->irb_lock);
1052 } else {
1053 uint_t masklen;
1056 * In this case we don't know the mask, we need to
1057 * search the table assuming different mask sizes.
1059 if (flags & MATCH_IRE_SHORTERMASK) {
1060 masklen = ip_mask_to_plen_v6(mask);
1061 if (masklen == 0) {
1062 /* Nothing shorter than zero */
1063 return (NULL);
1065 masklen--;
1066 } else {
1067 masklen = IP6_MASK_TABLE_SIZE - 1;
1070 for (i = masklen; i >= 0; i--) {
1071 in6_addr_t tmpmask;
1073 if ((ipst->ips_ip_forwarding_table_v6[i]) == NULL)
1074 continue;
1075 (void) ip_plen_to_mask_v6(i, &tmpmask);
1076 irb_ptr = &ipst->ips_ip_forwarding_table_v6[i][
1077 IRE_ADDR_MASK_HASH_V6(*addr, tmpmask,
1078 ipst->ips_ip6_ftable_hash_size)];
1079 rw_enter(&irb_ptr->irb_lock, RW_READER);
1080 for (ire = irb_ptr->irb_ire; ire != NULL;
1081 ire = ire->ire_next) {
1082 if (IRE_IS_CONDEMNED(ire))
1083 continue;
1084 if (ire_match_args_v6(ire, addr,
1085 &ire->ire_mask_v6, gateway, type, ill,
1086 zoneid, tsl, flags))
1087 goto found_ire;
1089 rw_exit(&irb_ptr->irb_lock);
1092 ASSERT(ire == NULL);
1093 ip1dbg(("ire_ftable_lookup_v6: returning NULL ire"));
1094 return (NULL);
1096 found_ire:
1097 ire_refhold(ire);
1098 rw_exit(&irb_ptr->irb_lock);
1099 return (ire);
1104 * This function is called by
1105 * ip_input/ire_route_recursive when doing a route lookup on only the
1106 * destination address.
1108 * The optimizations of this function over ire_ftable_lookup are:
1109 * o removing unnecessary flag matching
1110 * o doing longest prefix match instead of overloading it further
1111 * with the unnecessary "best_prefix_match"
1113 * If no route is found we return IRE_NOROUTE.
1115 ire_t *
1116 ire_ftable_lookup_simple_v6(const in6_addr_t *addr, uint32_t xmit_hint,
1117 ip_stack_t *ipst, uint_t *generationp)
1119 ire_t *ire;
1121 ire = ire_ftable_lookup_v6(addr, NULL, NULL, 0, NULL, ALL_ZONES, NULL,
1122 MATCH_IRE_DSTONLY, xmit_hint, ipst, generationp);
1123 if (ire == NULL) {
1124 ire = ire_reject(ipst, B_TRUE);
1125 if (generationp != NULL)
1126 *generationp = IRE_GENERATION_VERIFY;
1128 /* ftable_lookup did round robin */
1129 return (ire);
1132 ire_t *
1133 ip_select_route_v6(const in6_addr_t *dst, const in6_addr_t src,
1134 ip_xmit_attr_t *ixa, uint_t *generationp, in6_addr_t *setsrcp,
1135 int *errorp, boolean_t *multirtp)
1137 ASSERT(!(ixa->ixa_flags & IXAF_IS_IPV4));
1139 return (ip_select_route(dst, src, ixa, generationp, setsrcp, errorp,
1140 multirtp));
1144 * Recursively look for a route to the destination. Can also match on
1145 * the zoneid, ill, and label. Used for the data paths. See also
1146 * ire_route_recursive_dstonly.
1148 * If IRR_ALLOCATE is not set then we will only inspect the existing IREs; never
1149 * create an IRE_IF_CLONE. This is used on the receive side when we are not
1150 * forwarding.
1151 * If IRR_INCOMPLETE is set then we return the IRE even if we can't correctly
1152 * resolve the gateway.
1154 * Note that this function never returns NULL. It returns an IRE_NOROUTE
1155 * instead.
1157 * If we find any IRE_LOCAL|BROADCAST etc past the first iteration it
1158 * is an error.
1159 * Allow at most one RTF_INDIRECT.
1161 ire_t *
1162 ire_route_recursive_impl_v6(ire_t *ire,
1163 const in6_addr_t *nexthop, uint_t ire_type, const ill_t *ill_arg,
1164 zoneid_t zoneid, const ts_label_t *tsl, uint_t match_args,
1165 uint_t irr_flags, uint32_t xmit_hint, ip_stack_t *ipst,
1166 in6_addr_t *setsrcp, tsol_ire_gw_secattr_t **gwattrp, uint_t *generationp)
1168 int i, j;
1169 in6_addr_t v6nexthop = *nexthop;
1170 ire_t *ires[MAX_IRE_RECURSION];
1171 uint_t generation;
1172 uint_t generations[MAX_IRE_RECURSION];
1173 boolean_t need_refrele = B_FALSE;
1174 boolean_t invalidate = B_FALSE;
1175 ill_t *ill = NULL;
1176 uint_t maskoff = (IRE_LOCAL|IRE_LOOPBACK);
1178 if (setsrcp != NULL)
1179 ASSERT(IN6_IS_ADDR_UNSPECIFIED(setsrcp));
1180 if (gwattrp != NULL)
1181 ASSERT(*gwattrp == NULL);
1184 * We iterate up to three times to resolve a route, even though
1185 * we have four slots in the array. The extra slot is for an
1186 * IRE_IF_CLONE we might need to create.
1188 i = 0;
1189 while (i < MAX_IRE_RECURSION - 1) {
1190 /* ire_ftable_lookup handles round-robin/ECMP */
1191 if (ire == NULL) {
1192 ire = ire_ftable_lookup_v6(&v6nexthop, 0, 0, ire_type,
1193 (ill != NULL ? ill : ill_arg), zoneid, tsl,
1194 match_args, xmit_hint, ipst, &generation);
1195 } else {
1196 /* Caller passed it; extra hold since we will rele */
1197 ire_refhold(ire);
1198 if (generationp != NULL)
1199 generation = *generationp;
1200 else
1201 generation = IRE_GENERATION_VERIFY;
1204 if (ire == NULL) {
1205 if (i > 0 && (irr_flags & IRR_INCOMPLETE)) {
1206 ire = ires[0];
1207 ire_refhold(ire);
1208 } else {
1209 ire = ire_reject(ipst, B_TRUE);
1211 goto error;
1214 /* Need to return the ire with RTF_REJECT|BLACKHOLE */
1215 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
1216 goto error;
1218 ASSERT(!(ire->ire_type & IRE_MULTICAST)); /* Not in ftable */
1220 * Verify that the IRE_IF_CLONE has a consistent generation
1221 * number.
1223 if ((ire->ire_type & IRE_IF_CLONE) && !ire_clone_verify(ire)) {
1224 ire_refrele(ire);
1225 ire = NULL;
1226 continue;
1230 * Don't allow anything unusual past the first iteration.
1231 * After the first lookup, we should no longer look for
1232 * (IRE_LOCAL|IRE_LOOPBACK) or RTF_INDIRECT routes.
1234 * In addition, after we have found a direct IRE_OFFLINK,
1235 * we should only look for interface or clone routes.
1237 match_args |= MATCH_IRE_DIRECT; /* no more RTF_INDIRECTs */
1238 if ((ire->ire_type & IRE_OFFLINK) &&
1239 !(ire->ire_flags & RTF_INDIRECT)) {
1240 ire_type = IRE_IF_ALL;
1241 } else {
1242 if (!(match_args & MATCH_IRE_TYPE))
1243 ire_type = (IRE_OFFLINK|IRE_ONLINK);
1244 ire_type &= ~maskoff; /* no more LOCAL, LOOPBACK */
1246 match_args |= MATCH_IRE_TYPE;
1247 /* We have a usable IRE */
1248 ires[i] = ire;
1249 generations[i] = generation;
1250 i++;
1252 /* The first RTF_SETSRC address is passed back if setsrcp */
1253 if ((ire->ire_flags & RTF_SETSRC) &&
1254 setsrcp != NULL && IN6_IS_ADDR_UNSPECIFIED(setsrcp)) {
1255 ASSERT(!IN6_IS_ADDR_UNSPECIFIED(
1256 &ire->ire_setsrc_addr_v6));
1257 *setsrcp = ire->ire_setsrc_addr_v6;
1260 /* The first ire_gw_secattr is passed back if gwattrp */
1261 if (ire->ire_gw_secattr != NULL &&
1262 gwattrp != NULL && *gwattrp == NULL)
1263 *gwattrp = ire->ire_gw_secattr;
1266 * Check if we have a short-cut pointer to an IRE for this
1267 * destination, and that the cached dependency isn't stale.
1268 * In that case we've rejoined an existing tree towards a
1269 * parent, thus we don't need to continue the loop to
1270 * discover the rest of the tree.
1272 mutex_enter(&ire->ire_lock);
1273 if (ire->ire_dep_parent != NULL &&
1274 ire->ire_dep_parent->ire_generation ==
1275 ire->ire_dep_parent_generation) {
1276 mutex_exit(&ire->ire_lock);
1277 ire = NULL;
1278 goto done;
1280 mutex_exit(&ire->ire_lock);
1283 * If this type should have an ire_nce_cache (even if it
1284 * doesn't yet have one) then we are done. Includes
1285 * IRE_INTERFACE with a full 128 bit mask.
1287 if (ire->ire_nce_capable) {
1288 ire = NULL;
1289 goto done;
1291 ASSERT(!(ire->ire_type & IRE_IF_CLONE));
1293 * For an IRE_INTERFACE we create an IRE_IF_CLONE for this
1294 * particular destination
1296 if (ire->ire_type & IRE_INTERFACE) {
1297 ire_t *clone;
1299 ASSERT(ire->ire_masklen != IPV6_ABITS);
1302 * In the case of ip_input and ILLF_FORWARDING not
1303 * being set, and in the case of RTM_GET, there is
1304 * no point in allocating an IRE_IF_CLONE. We return
1305 * the IRE_INTERFACE. Note that !IRR_ALLOCATE can
1306 * result in a ire_dep_parent which is IRE_IF_*
1307 * without an IRE_IF_CLONE.
1308 * We recover from that when we need to send packets
1309 * by ensuring that the generations become
1310 * IRE_GENERATION_VERIFY in this case.
1312 if (!(irr_flags & IRR_ALLOCATE)) {
1313 invalidate = B_TRUE;
1314 ire = NULL;
1315 goto done;
1318 clone = ire_create_if_clone(ire, &v6nexthop,
1319 &generation);
1320 if (clone == NULL) {
1322 * Temporary failure - no memory.
1323 * Don't want caller to cache IRE_NOROUTE.
1325 invalidate = B_TRUE;
1326 ire = ire_blackhole(ipst, B_TRUE);
1327 goto error;
1330 * Make clone next to last entry and the
1331 * IRE_INTERFACE the last in the dependency
1332 * chain since the clone depends on the
1333 * IRE_INTERFACE.
1335 ASSERT(i >= 1);
1336 ASSERT(i < MAX_IRE_RECURSION);
1338 ires[i] = ires[i-1];
1339 generations[i] = generations[i-1];
1340 ires[i-1] = clone;
1341 generations[i-1] = generation;
1342 i++;
1344 ire = NULL;
1345 goto done;
1349 * We only match on the type and optionally ILL when
1350 * recursing. The type match is used by some callers
1351 * to exclude certain types (such as IRE_IF_CLONE or
1352 * IRE_LOCAL|IRE_LOOPBACK).
1354 * In the MATCH_IRE_SRC_ILL case, ill_arg may be the 'srcof'
1355 * ire->ire_ill, and we want to find the IRE_INTERFACE for
1356 * ire_ill, so we set ill to the ire_ill
1358 match_args &= (MATCH_IRE_TYPE | MATCH_IRE_DIRECT);
1359 v6nexthop = ire->ire_gateway_addr_v6;
1360 if (ill == NULL && ire->ire_ill != NULL) {
1361 ill = ire->ire_ill;
1362 need_refrele = B_TRUE;
1363 ill_refhold(ill);
1364 match_args |= MATCH_IRE_ILL;
1366 ire = NULL;
1368 ASSERT(ire == NULL);
1369 ire = ire_reject(ipst, B_TRUE);
1371 error:
1372 ASSERT(ire != NULL);
1373 if (need_refrele)
1374 ill_refrele(ill);
1377 * In the case of MULTIRT we want to try a different IRE the next
1378 * time. We let the next packet retry in that case.
1380 if (i > 0 && (ires[0]->ire_flags & RTF_MULTIRT))
1381 (void) ire_no_good(ires[0]);
1383 cleanup:
1384 /* cleanup ires[i] */
1385 ire_dep_unbuild(ires, i);
1386 for (j = 0; j < i; j++)
1387 ire_refrele(ires[j]);
1389 ASSERT((ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
1390 (irr_flags & IRR_INCOMPLETE));
1392 * Use IRE_GENERATION_VERIFY to ensure that ip_output will redo the
1393 * ip_select_route since the reject or lack of memory might be gone.
1395 if (generationp != NULL)
1396 *generationp = IRE_GENERATION_VERIFY;
1397 return (ire);
1399 done:
1400 ASSERT(ire == NULL);
1401 if (need_refrele)
1402 ill_refrele(ill);
1404 /* Build dependencies */
1405 if (i > 1 && !ire_dep_build(ires, generations, i)) {
1406 /* Something in chain was condemned; tear it apart */
1407 ire = ire_blackhole(ipst, B_TRUE);
1408 goto cleanup;
1412 * Release all refholds except the one for ires[0] that we
1413 * will return to the caller.
1415 for (j = 1; j < i; j++)
1416 ire_refrele(ires[j]);
1418 if (invalidate) {
1420 * Since we needed to allocate but couldn't we need to make
1421 * sure that the dependency chain is rebuilt the next time.
1423 ire_dep_invalidate_generations(ires[0]);
1424 generation = IRE_GENERATION_VERIFY;
1425 } else {
1427 * IREs can have been added or deleted while we did the
1428 * recursive lookup and we can't catch those until we've built
1429 * the dependencies. We verify the stored
1430 * ire_dep_parent_generation to catch any such changes and
1431 * return IRE_GENERATION_VERIFY (which will cause
1432 * ip_select_route to be called again so we can redo the
1433 * recursive lookup next time we send a packet.
1435 if (ires[0]->ire_dep_parent == NULL)
1436 generation = ires[0]->ire_generation;
1437 else
1438 generation = ire_dep_validate_generations(ires[0]);
1439 if (generations[0] != ires[0]->ire_generation) {
1440 /* Something changed at the top */
1441 generation = IRE_GENERATION_VERIFY;
1444 if (generationp != NULL)
1445 *generationp = generation;
1447 return (ires[0]);
1450 ire_t *
1451 ire_route_recursive_v6(const in6_addr_t *nexthop, uint_t ire_type,
1452 const ill_t *ill, zoneid_t zoneid, const ts_label_t *tsl, uint_t match_args,
1453 uint_t irr_flags, uint32_t xmit_hint, ip_stack_t *ipst,
1454 in6_addr_t *setsrcp, tsol_ire_gw_secattr_t **gwattrp, uint_t *generationp)
1456 return (ire_route_recursive_impl_v6(NULL, nexthop, ire_type, ill,
1457 zoneid, tsl, match_args, irr_flags, xmit_hint, ipst, setsrcp,
1458 gwattrp, generationp));
1462 * Recursively look for a route to the destination.
1463 * We only handle a destination match here, yet we have the same arguments
1464 * as the full match to allow function pointers to select between the two.
1466 * Note that this function never returns NULL. It returns an IRE_NOROUTE
1467 * instead.
1469 * If we find any IRE_LOCAL|BROADCAST etc past the first iteration it
1470 * is an error.
1471 * Allow at most one RTF_INDIRECT.
1473 ire_t *
1474 ire_route_recursive_dstonly_v6(const in6_addr_t *nexthop, uint_t irr_flags,
1475 uint32_t xmit_hint, ip_stack_t *ipst)
1477 ire_t *ire;
1478 ire_t *ire1;
1479 uint_t generation;
1481 /* ire_ftable_lookup handles round-robin/ECMP */
1482 ire = ire_ftable_lookup_simple_v6(nexthop, xmit_hint, ipst,
1483 &generation);
1484 ASSERT(ire != NULL);
1487 * If the IRE has a current cached parent we know that the whole
1488 * parent chain is current, hence we don't need to discover and
1489 * build any dependencies by doing a recursive lookup.
1491 mutex_enter(&ire->ire_lock);
1492 if (ire->ire_dep_parent != NULL) {
1493 if (ire->ire_dep_parent->ire_generation ==
1494 ire->ire_dep_parent_generation) {
1495 mutex_exit(&ire->ire_lock);
1496 return (ire);
1498 mutex_exit(&ire->ire_lock);
1499 } else {
1500 mutex_exit(&ire->ire_lock);
1502 * If this type should have an ire_nce_cache (even if it
1503 * doesn't yet have one) then we are done. Includes
1504 * IRE_INTERFACE with a full 128 bit mask.
1506 if (ire->ire_nce_capable)
1507 return (ire);
1511 * Fallback to loop in the normal code starting with the ire
1512 * we found. Normally this would return the same ire.
1514 ire1 = ire_route_recursive_impl_v6(ire, nexthop, 0, NULL, ALL_ZONES,
1515 NULL, MATCH_IRE_DSTONLY, irr_flags, xmit_hint, ipst, NULL, NULL,
1516 &generation);
1517 ire_refrele(ire);
1518 return (ire1);