9903 qinfo: add typed members
[unleashed.git] / usr / src / uts / common / io / ppp / sppp / sppp.c
blob1b12b6406b92bda2427bf2db715c932bbe712b91
1 /*
2 * sppp.c - Solaris STREAMS PPP multiplexing pseudo-driver
4 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
5 * Use is subject to license terms.
6 * Copyright (c) 2016 by Delphix. All rights reserved.
8 * Permission to use, copy, modify, and distribute this software and its
9 * documentation is hereby granted, provided that the above copyright
10 * notice appears in all copies.
12 * SUN MAKES NO REPRESENTATION OR WARRANTIES ABOUT THE SUITABILITY OF
13 * THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
14 * TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
15 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR
16 * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
17 * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES
19 * Copyright (c) 1994 The Australian National University.
20 * All rights reserved.
22 * Permission to use, copy, modify, and distribute this software and its
23 * documentation is hereby granted, provided that the above copyright
24 * notice appears in all copies. This software is provided without any
25 * warranty, express or implied. The Australian National University
26 * makes no representations about the suitability of this software for
27 * any purpose.
29 * IN NO EVENT SHALL THE AUSTRALIAN NATIONAL UNIVERSITY BE LIABLE TO ANY
30 * PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
31 * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF
32 * THE AUSTRALIAN NATIONAL UNIVERSITY HAS BEEN ADVISED OF THE POSSIBILITY
33 * OF SUCH DAMAGE.
35 * THE AUSTRALIAN NATIONAL UNIVERSITY SPECIFICALLY DISCLAIMS ANY WARRANTIES,
36 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
37 * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
38 * ON AN "AS IS" BASIS, AND THE AUSTRALIAN NATIONAL UNIVERSITY HAS NO
39 * OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,
40 * OR MODIFICATIONS.
42 * This driver is derived from the original SVR4 STREAMS PPP driver
43 * originally written by Paul Mackerras <paul.mackerras@cs.anu.edu.au>.
45 * Adi Masputra <adi.masputra@sun.com> rewrote and restructured the code
46 * for improved performance and scalability.
49 #define RCSID "$Id: sppp.c,v 1.0 2000/05/08 01:10:12 masputra Exp $"
51 #include <sys/types.h>
52 #include <sys/debug.h>
53 #include <sys/param.h>
54 #include <sys/stat.h>
55 #include <sys/stream.h>
56 #include <sys/stropts.h>
57 #include <sys/sysmacros.h>
58 #include <sys/errno.h>
59 #include <sys/time.h>
60 #include <sys/cmn_err.h>
61 #include <sys/kmem.h>
62 #include <sys/conf.h>
63 #include <sys/dlpi.h>
64 #include <sys/ddi.h>
65 #include <sys/kstat.h>
66 #include <sys/strsun.h>
67 #include <sys/ethernet.h>
68 #include <sys/policy.h>
69 #include <sys/zone.h>
70 #include <net/ppp_defs.h>
71 #include <net/pppio.h>
72 #include "sppp.h"
73 #include "s_common.h"
76 * This is used to tag official Solaris sources. Please do not define
77 * "INTERNAL_BUILD" when building this software outside of Sun Microsystems.
79 #ifdef INTERNAL_BUILD
80 /* MODINFO is limited to 32 characters. */
81 const char sppp_module_description[] = "PPP 4.0 mux";
82 #else /* INTERNAL_BUILD */
83 const char sppp_module_description[] = "ANU PPP mux";
85 /* LINTED */
86 static const char buildtime[] = "Built " __DATE__ " at " __TIME__
87 #ifdef DEBUG
88 " DEBUG"
89 #endif
90 "\n";
91 #endif /* INTERNAL_BUILD */
93 static void sppp_inner_ioctl(queue_t *, mblk_t *);
94 static void sppp_outer_ioctl(queue_t *, mblk_t *);
95 static queue_t *sppp_send(queue_t *, mblk_t **, spppstr_t *);
96 static queue_t *sppp_recv(queue_t *, mblk_t **, spppstr_t *);
97 static void sppp_recv_nondata(queue_t *, mblk_t *, spppstr_t *);
98 static queue_t *sppp_outpkt(queue_t *, mblk_t **, int, spppstr_t *);
99 static spppstr_t *sppp_inpkt(queue_t *, mblk_t *, spppstr_t *);
100 static int sppp_kstat_update(kstat_t *, int);
101 static void sppp_release_pkts(sppa_t *, uint16_t);
104 * sps_list contains the list of active per-stream instance state structures
105 * ordered on the minor device number (see sppp.h for details). All streams
106 * opened to this driver are threaded together in this list.
108 static spppstr_t *sps_list = NULL;
110 * ppa_list contains the list of active per-attachment instance state
111 * structures ordered on the ppa id number (see sppp.h for details). All of
112 * the ppa structures created once per PPPIO_NEWPPA ioctl are threaded together
113 * in this list. There is exactly one ppa structure for a given PPP interface,
114 * and multiple sps streams (upper streams) may share a ppa by performing
115 * an attachment explicitly (PPPIO_ATTACH) or implicitly (DL_ATTACH_REQ).
117 static sppa_t *ppa_list = NULL;
119 static const char *kstats_names[] = { SPPP_KSTATS_NAMES };
120 static const char *kstats64_names[] = { SPPP_KSTATS64_NAMES };
123 * map proto (which is an IANA defined ppp network protocol) to
124 * a bit position indicated by NP_* in ppa_npflag
126 static uint32_t
127 sppp_ppp2np(uint16_t proto)
129 switch (proto) {
130 case PPP_IP:
131 return (NP_IP);
132 case PPP_IPV6:
133 return (NP_IPV6);
134 default:
135 return (0);
140 * sppp_open()
142 * MT-Perimeters:
143 * exclusive inner, exclusive outer.
145 * Description:
146 * Common open procedure for module.
148 /* ARGSUSED */
150 sppp_open(queue_t *q, dev_t *devp, int oflag, int sflag, cred_t *credp)
152 spppstr_t *sps;
153 spppstr_t **nextmn;
154 minor_t mn;
156 ASSERT(q != NULL && devp != NULL);
157 ASSERT(sflag != MODOPEN);
159 if (q->q_ptr != NULL) {
160 return (0); /* already open */
162 if (sflag != CLONEOPEN) {
163 return (OPENFAIL);
166 * The sps list is sorted using the minor number as the key. The
167 * following code walks the list to find the lowest valued minor
168 * number available to be used.
170 mn = 0;
171 for (nextmn = &sps_list; (sps = *nextmn) != NULL;
172 nextmn = &sps->sps_nextmn) {
173 if (sps->sps_mn_id != mn) {
174 break;
176 ++mn;
178 sps = (spppstr_t *)kmem_zalloc(sizeof (spppstr_t), KM_SLEEP);
179 ASSERT(sps != NULL); /* KM_SLEEP must never return NULL */
180 sps->sps_nextmn = *nextmn; /* insert stream in global list */
181 *nextmn = sps;
182 sps->sps_mn_id = mn; /* save minor id for this stream */
183 sps->sps_rq = q; /* save read queue pointer */
184 sps->sps_sap = -1; /* no sap bound to stream */
185 sps->sps_dlstate = DL_UNATTACHED; /* dlpi state is unattached */
186 sps->sps_npmode = NPMODE_DROP; /* drop all packets initially */
187 sps->sps_zoneid = crgetzoneid(credp);
188 q->q_ptr = WR(q)->q_ptr = (caddr_t)sps;
190 * We explicitly disable the automatic queue scheduling for the
191 * write-side to obtain complete control over queuing during transmit.
192 * Packets will be queued at the upper write queue and the service
193 * routine will not be called until it gets scheduled by having the
194 * lower write service routine call the qenable(WR(uq)) for all streams
195 * attached to the same ppa instance.
197 noenable(WR(q));
198 *devp = makedevice(getmajor(*devp), mn);
199 qprocson(q);
200 return (0);
204 * Free storage used by a PPA. This is not called until the last PPA
205 * user closes their connection or reattaches to a different PPA.
207 static void
208 sppp_free_ppa(sppa_t *ppa)
210 sppa_t **nextppa;
212 ASSERT(ppa->ppa_refcnt == 1);
213 if (ppa->ppa_kstats != NULL) {
214 kstat_delete(ppa->ppa_kstats);
215 ppa->ppa_kstats = NULL;
217 mutex_destroy(&ppa->ppa_sta_lock);
218 mutex_destroy(&ppa->ppa_npmutex);
219 rw_destroy(&ppa->ppa_sib_lock);
220 nextppa = &ppa_list;
221 while (*nextppa != NULL) {
222 if (*nextppa == ppa) {
223 *nextppa = ppa->ppa_nextppa;
224 break;
226 nextppa = &(*nextppa)->ppa_nextppa;
228 kmem_free(ppa, sizeof (*ppa));
232 * Create a new PPA. Caller must be exclusive on outer perimeter.
234 sppa_t *
235 sppp_create_ppa(uint32_t ppa_id, zoneid_t zoneid)
237 sppa_t *ppa;
238 sppa_t *curppa;
239 sppa_t **availppa;
240 char unit[32]; /* Unit name */
241 const char **cpp;
242 kstat_t *ksp;
243 kstat_named_t *knt;
246 * NOTE: unit *must* be named for the driver
247 * name plus the ppa number so that netstat
248 * can find the statistics.
250 (void) sprintf(unit, "%s" "%d", PPP_DRV_NAME, ppa_id);
252 * Make sure we can allocate a buffer to
253 * contain the ppa to be sent upstream, as
254 * well as the actual ppa structure and its
255 * associated kstat structure.
257 ppa = (sppa_t *)kmem_zalloc(sizeof (sppa_t),
258 KM_NOSLEEP);
259 ksp = kstat_create(PPP_DRV_NAME, ppa_id, unit, "net", KSTAT_TYPE_NAMED,
260 sizeof (sppp_kstats_t) / sizeof (kstat_named_t), 0);
262 if (ppa == NULL || ksp == NULL) {
263 if (ppa != NULL) {
264 kmem_free(ppa, sizeof (sppa_t));
266 if (ksp != NULL) {
267 kstat_delete(ksp);
269 return (NULL);
271 ppa->ppa_kstats = ksp; /* chain kstat structure */
272 ppa->ppa_ppa_id = ppa_id; /* record ppa id */
273 ppa->ppa_zoneid = zoneid; /* zone that owns this PPA */
274 ppa->ppa_mtu = PPP_MAXMTU; /* 65535-(PPP_HDRLEN+PPP_FCSLEN) */
275 ppa->ppa_mru = PPP_MAXMRU; /* 65000 */
277 mutex_init(&ppa->ppa_sta_lock, NULL, MUTEX_DRIVER, NULL);
278 mutex_init(&ppa->ppa_npmutex, NULL, MUTEX_DRIVER, NULL);
279 rw_init(&ppa->ppa_sib_lock, NULL, RW_DRIVER, NULL);
282 * Prepare and install kstat counters. Note that for netstat
283 * -i to work, there needs to be "ipackets", "opackets",
284 * "ierrors", and "oerrors" kstat named variables.
286 knt = (kstat_named_t *)ksp->ks_data;
287 for (cpp = kstats_names; cpp < kstats_names + Dim(kstats_names);
288 cpp++) {
289 kstat_named_init(knt, *cpp, KSTAT_DATA_UINT32);
290 knt++;
292 for (cpp = kstats64_names; cpp < kstats64_names + Dim(kstats64_names);
293 cpp++) {
294 kstat_named_init(knt, *cpp, KSTAT_DATA_UINT64);
295 knt++;
297 ksp->ks_update = sppp_kstat_update;
298 ksp->ks_private = (void *)ppa;
299 kstat_install(ksp);
301 /* link to the next ppa and insert into global list */
302 availppa = &ppa_list;
303 while ((curppa = *availppa) != NULL) {
304 if (ppa_id < curppa->ppa_ppa_id)
305 break;
306 availppa = &curppa->ppa_nextppa;
308 ppa->ppa_nextppa = *availppa;
309 *availppa = ppa;
310 return (ppa);
314 * sppp_close()
316 * MT-Perimeters:
317 * exclusive inner, exclusive outer.
319 * Description:
320 * Common close procedure for module.
322 /* ARGSUSED */
324 sppp_close(queue_t *q, int flags __unused, cred_t *credp __unused)
326 spppstr_t *sps;
327 spppstr_t **nextmn;
328 spppstr_t *sib;
329 sppa_t *ppa;
330 mblk_t *mp;
332 ASSERT(q != NULL && q->q_ptr != NULL);
333 sps = (spppstr_t *)q->q_ptr;
334 qprocsoff(q);
336 ppa = sps->sps_ppa;
337 if (ppa == NULL) {
338 ASSERT(!IS_SPS_CONTROL(sps));
339 goto close_unattached;
341 if (IS_SPS_CONTROL(sps)) {
342 uint32_t cnt = 0;
344 ASSERT(ppa != NULL);
345 ASSERT(ppa->ppa_ctl == sps);
346 ppa->ppa_ctl = NULL;
348 * STREAMS framework always issues I_UNLINK prior to close,
349 * since we only allow I_LINK under the control stream.
350 * A given ppa structure has at most one lower stream pointed
351 * by the ppa_lower_wq field, because we only allow a single
352 * linkage (I_LINK) to be done on the control stream.
354 ASSERT(ppa->ppa_lower_wq == NULL);
356 * Walk through all of sibling streams attached to this ppa,
357 * and remove all references to this ppa. We have exclusive
358 * access for the entire driver here, so there's no need
359 * to hold ppa_sib_lock.
361 cnt++;
362 sib = ppa->ppa_streams;
363 while (sib != NULL) {
364 ASSERT(ppa == sib->sps_ppa);
365 sib->sps_npmode = NPMODE_DROP;
366 sib->sps_flags &= ~(SPS_PIOATTACH | SPS_CACHED);
368 * There should be a preallocated hangup
369 * message here. Fetch it and send it up to
370 * the stream head. This will cause IP to
371 * mark the interface as "down."
373 if ((mp = sib->sps_hangup) != NULL) {
374 sib->sps_hangup = NULL;
376 * M_HANGUP works with IP, but snoop
377 * is lame and requires M_ERROR. Send
378 * up a clean error code instead.
380 * XXX if snoop is fixed, fix this, too.
382 MTYPE(mp) = M_ERROR;
383 *mp->b_wptr++ = ENXIO;
384 putnext(sib->sps_rq, mp);
386 qenable(WR(sib->sps_rq));
387 cnt++;
388 sib = sib->sps_nextsib;
390 ASSERT(ppa->ppa_refcnt == cnt);
391 } else {
392 ASSERT(ppa->ppa_streams != NULL);
393 ASSERT(ppa->ppa_ctl != sps);
394 mp = NULL;
395 if (sps->sps_sap == PPP_IP) {
396 ppa->ppa_ip_cache = NULL;
397 mp = create_lsmsg(PPP_LINKSTAT_IPV4_UNBOUND);
398 } else if (sps->sps_sap == PPP_IPV6) {
399 ppa->ppa_ip6_cache = NULL;
400 mp = create_lsmsg(PPP_LINKSTAT_IPV6_UNBOUND);
402 /* Tell the daemon the bad news. */
403 if (mp != NULL && ppa->ppa_ctl != NULL &&
404 (sps->sps_npmode == NPMODE_PASS ||
405 sps->sps_npmode == NPMODE_QUEUE)) {
406 putnext(ppa->ppa_ctl->sps_rq, mp);
407 } else {
408 freemsg(mp);
411 * Walk through all of sibling streams attached to the
412 * same ppa, and remove this stream from the sibling
413 * streams list. We have exclusive access for the
414 * entire driver here, so there's no need to hold
415 * ppa_sib_lock.
417 sib = ppa->ppa_streams;
418 if (sib == sps) {
419 ppa->ppa_streams = sps->sps_nextsib;
420 } else {
421 while (sib->sps_nextsib != NULL) {
422 if (sib->sps_nextsib == sps) {
423 sib->sps_nextsib = sps->sps_nextsib;
424 break;
426 sib = sib->sps_nextsib;
429 sps->sps_nextsib = NULL;
430 freemsg(sps->sps_hangup);
431 sps->sps_hangup = NULL;
433 * Check if this is a promiscous stream. If the SPS_PROMISC bit
434 * is still set, it means that the stream is closed without
435 * ever having issued DL_DETACH_REQ or DL_PROMISCOFF_REQ.
436 * In this case, we simply decrement the promiscous counter,
437 * and it's safe to do it without holding ppa_sib_lock since
438 * we're exclusive (inner and outer) at this point.
440 if (IS_SPS_PROMISC(sps)) {
441 ASSERT(ppa->ppa_promicnt > 0);
442 ppa->ppa_promicnt--;
445 /* If we're the only one left, then delete now. */
446 if (ppa->ppa_refcnt <= 1)
447 sppp_free_ppa(ppa);
448 else
449 ppa->ppa_refcnt--;
450 close_unattached:
451 q->q_ptr = WR(q)->q_ptr = NULL;
452 for (nextmn = &sps_list; *nextmn != NULL;
453 nextmn = &(*nextmn)->sps_nextmn) {
454 if (*nextmn == sps) {
455 *nextmn = sps->sps_nextmn;
456 break;
459 kmem_free(sps, sizeof (spppstr_t));
460 return (0);
463 static void
464 sppp_ioctl(struct queue *q, mblk_t *mp)
466 spppstr_t *sps;
467 spppstr_t *nextsib;
468 sppa_t *ppa;
469 struct iocblk *iop;
470 mblk_t *nmp;
471 enum NPmode npmode;
472 struct ppp_idle *pip;
473 struct ppp_stats64 *psp;
474 struct ppp_comp_stats *pcsp;
475 hrtime_t hrtime;
476 int sap;
477 int count = 0;
478 int error = EINVAL;
480 sps = (spppstr_t *)q->q_ptr;
481 ppa = sps->sps_ppa;
483 iop = (struct iocblk *)mp->b_rptr;
484 switch (iop->ioc_cmd) {
485 case PPPIO_NPMODE:
486 if (!IS_SPS_CONTROL(sps)) {
487 break; /* return EINVAL */
488 } else if (iop->ioc_count != 2 * sizeof (uint32_t) ||
489 (mp->b_cont == NULL)) {
490 error = EPROTO;
491 break;
493 ASSERT(ppa != NULL);
494 ASSERT(mp->b_cont->b_rptr != NULL);
495 ASSERT(sps->sps_npmode == NPMODE_PASS);
496 sap = ((uint32_t *)mp->b_cont->b_rptr)[0];
497 npmode = (enum NPmode)((uint32_t *)mp->b_cont->b_rptr)[1];
499 * Walk the sibling streams which belong to the same
500 * ppa, and try to find a stream with matching sap
501 * number.
503 rw_enter(&ppa->ppa_sib_lock, RW_WRITER);
504 for (nextsib = ppa->ppa_streams; nextsib != NULL;
505 nextsib = nextsib->sps_nextsib) {
506 if (nextsib->sps_sap == sap) {
507 break; /* found it */
510 if (nextsib == NULL) {
511 rw_exit(&ppa->ppa_sib_lock);
512 break; /* return EINVAL */
513 } else {
514 nextsib->sps_npmode = npmode;
515 if ((nextsib->sps_npmode != NPMODE_QUEUE) &&
516 (WR(nextsib->sps_rq)->q_first != NULL)) {
517 qenable(WR(nextsib->sps_rq));
520 rw_exit(&ppa->ppa_sib_lock);
521 error = 0; /* return success */
522 break;
523 case PPPIO_GIDLE:
524 if (ppa == NULL) {
525 ASSERT(!IS_SPS_CONTROL(sps));
526 error = ENOLINK;
527 break;
528 } else if (!IS_PPA_TIMESTAMP(ppa)) {
529 break; /* return EINVAL */
531 if ((nmp = allocb(sizeof (struct ppp_idle),
532 BPRI_MED)) == NULL) {
533 mutex_enter(&ppa->ppa_sta_lock);
534 ppa->ppa_allocbfail++;
535 mutex_exit(&ppa->ppa_sta_lock);
536 error = ENOSR;
537 break;
539 if (mp->b_cont != NULL) {
540 freemsg(mp->b_cont);
542 mp->b_cont = nmp;
543 pip = (struct ppp_idle *)nmp->b_wptr;
544 nmp->b_wptr += sizeof (struct ppp_idle);
546 * Get current timestamp and subtract the tx and rx
547 * timestamps to get the actual idle time to be
548 * returned.
550 hrtime = gethrtime();
551 pip->xmit_idle = (hrtime - ppa->ppa_lasttx) / 1000000000ul;
552 pip->recv_idle = (hrtime - ppa->ppa_lastrx) / 1000000000ul;
553 count = msgsize(nmp);
554 error = 0;
555 break; /* return success (error is 0) */
556 case PPPIO_GTYPE:
557 nmp = allocb(sizeof (uint32_t), BPRI_MED);
558 if (nmp == NULL) {
559 error = ENOSR;
560 break;
562 if (mp->b_cont != NULL) {
563 freemsg(mp->b_cont);
565 mp->b_cont = nmp;
567 * Let the requestor know that we are the PPP
568 * multiplexer (PPPTYP_MUX).
570 *(uint32_t *)nmp->b_wptr = PPPTYP_MUX;
571 nmp->b_wptr += sizeof (uint32_t);
572 count = msgsize(nmp);
573 error = 0; /* return success */
574 break;
575 case PPPIO_GETSTAT64:
576 if (ppa == NULL) {
577 break; /* return EINVAL */
578 } else if ((ppa->ppa_lower_wq != NULL) &&
579 !IS_PPA_LASTMOD(ppa)) {
580 mutex_enter(&ppa->ppa_sta_lock);
582 * We match sps_ioc_id on the M_IOC{ACK,NAK},
583 * so if the response hasn't come back yet,
584 * new ioctls must be queued instead.
586 if (IS_SPS_IOCQ(sps)) {
587 mutex_exit(&ppa->ppa_sta_lock);
588 if (!putq(q, mp)) {
589 error = EAGAIN;
590 break;
592 return;
593 } else {
594 ppa->ppa_ioctlsfwd++;
596 * Record the ioctl CMD & ID - this will be
597 * used to check the ACK or NAK responses
598 * coming from below.
600 sps->sps_ioc_id = iop->ioc_id;
601 sps->sps_flags |= SPS_IOCQ;
602 mutex_exit(&ppa->ppa_sta_lock);
604 putnext(ppa->ppa_lower_wq, mp);
605 return; /* don't ack or nak the request */
607 nmp = allocb(sizeof (*psp), BPRI_MED);
608 if (nmp == NULL) {
609 mutex_enter(&ppa->ppa_sta_lock);
610 ppa->ppa_allocbfail++;
611 mutex_exit(&ppa->ppa_sta_lock);
612 error = ENOSR;
613 break;
615 if (mp->b_cont != NULL) {
616 freemsg(mp->b_cont);
618 mp->b_cont = nmp;
619 psp = (struct ppp_stats64 *)nmp->b_wptr;
621 * Copy the contents of ppp_stats64 structure for this
622 * ppa and return them to the caller.
624 mutex_enter(&ppa->ppa_sta_lock);
625 bcopy(&ppa->ppa_stats, psp, sizeof (*psp));
626 mutex_exit(&ppa->ppa_sta_lock);
627 nmp->b_wptr += sizeof (*psp);
628 count = sizeof (*psp);
629 error = 0; /* return success */
630 break;
631 case PPPIO_GETCSTAT:
632 if (ppa == NULL) {
633 break; /* return EINVAL */
634 } else if ((ppa->ppa_lower_wq != NULL) &&
635 !IS_PPA_LASTMOD(ppa)) {
636 mutex_enter(&ppa->ppa_sta_lock);
638 * See comments in PPPIO_GETSTAT64 case
639 * in sppp_ioctl().
641 if (IS_SPS_IOCQ(sps)) {
642 mutex_exit(&ppa->ppa_sta_lock);
643 if (!putq(q, mp)) {
644 error = EAGAIN;
645 break;
647 return;
648 } else {
649 ppa->ppa_ioctlsfwd++;
651 * Record the ioctl CMD & ID - this will be
652 * used to check the ACK or NAK responses
653 * coming from below.
655 sps->sps_ioc_id = iop->ioc_id;
656 sps->sps_flags |= SPS_IOCQ;
657 mutex_exit(&ppa->ppa_sta_lock);
659 putnext(ppa->ppa_lower_wq, mp);
660 return; /* don't ack or nak the request */
662 nmp = allocb(sizeof (struct ppp_comp_stats), BPRI_MED);
663 if (nmp == NULL) {
664 mutex_enter(&ppa->ppa_sta_lock);
665 ppa->ppa_allocbfail++;
666 mutex_exit(&ppa->ppa_sta_lock);
667 error = ENOSR;
668 break;
670 if (mp->b_cont != NULL) {
671 freemsg(mp->b_cont);
673 mp->b_cont = nmp;
674 pcsp = (struct ppp_comp_stats *)nmp->b_wptr;
675 nmp->b_wptr += sizeof (struct ppp_comp_stats);
676 bzero((caddr_t)pcsp, sizeof (struct ppp_comp_stats));
677 count = msgsize(nmp);
678 error = 0; /* return success */
679 break;
682 if (error == 0) {
683 /* Success; tell the user. */
684 miocack(q, mp, count, 0);
685 } else {
686 /* Failure; send error back upstream. */
687 miocnak(q, mp, 0, error);
692 * sppp_uwput()
694 * MT-Perimeters:
695 * shared inner, shared outer.
697 * Description:
698 * Upper write-side put procedure. Messages from above arrive here.
700 void
701 sppp_uwput(queue_t *q, mblk_t *mp)
703 queue_t *nextq;
704 spppstr_t *sps;
705 sppa_t *ppa;
706 struct iocblk *iop;
707 int error;
709 ASSERT(q != NULL && q->q_ptr != NULL);
710 ASSERT(mp != NULL && mp->b_rptr != NULL);
711 sps = (spppstr_t *)q->q_ptr;
712 ppa = sps->sps_ppa;
714 switch (MTYPE(mp)) {
715 case M_PCPROTO:
716 case M_PROTO:
717 if (IS_SPS_CONTROL(sps)) {
718 ASSERT(ppa != NULL);
720 * Intentionally change this to a high priority
721 * message so it doesn't get queued up. M_PROTO is
722 * specifically used for signalling between pppd and its
723 * kernel-level component(s), such as ppptun, so we
724 * make sure that it doesn't get queued up behind
725 * data messages.
727 MTYPE(mp) = M_PCPROTO;
728 if ((ppa->ppa_lower_wq != NULL) &&
729 canputnext(ppa->ppa_lower_wq)) {
730 mutex_enter(&ppa->ppa_sta_lock);
731 ppa->ppa_mctlsfwd++;
732 mutex_exit(&ppa->ppa_sta_lock);
733 putnext(ppa->ppa_lower_wq, mp);
734 } else {
735 mutex_enter(&ppa->ppa_sta_lock);
736 ppa->ppa_mctlsfwderr++;
737 mutex_exit(&ppa->ppa_sta_lock);
738 freemsg(mp);
740 } else {
741 (void) sppp_mproto(q, mp, sps);
742 return;
744 break;
745 case M_DATA:
746 if ((nextq = sppp_send(q, &mp, sps)) != NULL)
747 putnext(nextq, mp);
748 break;
749 case M_IOCTL:
750 error = EINVAL;
751 iop = (struct iocblk *)mp->b_rptr;
752 switch (iop->ioc_cmd) {
753 case DLIOCRAW:
754 case DL_IOC_HDR_INFO:
755 case PPPIO_ATTACH:
756 case PPPIO_DEBUG:
757 case PPPIO_DETACH:
758 case PPPIO_LASTMOD:
759 case PPPIO_MRU:
760 case PPPIO_MTU:
761 case PPPIO_USETIMESTAMP:
762 case PPPIO_BLOCKNP:
763 case PPPIO_UNBLOCKNP:
764 qwriter(q, mp, sppp_inner_ioctl, PERIM_INNER);
765 return;
766 case I_LINK:
767 case I_UNLINK:
768 case PPPIO_NEWPPA:
769 qwriter(q, mp, sppp_outer_ioctl, PERIM_OUTER);
770 return;
771 case PPPIO_NPMODE:
772 case PPPIO_GIDLE:
773 case PPPIO_GTYPE:
774 case PPPIO_GETSTAT64:
775 case PPPIO_GETCSTAT:
777 * These require additional auto variables to
778 * handle, so (for optimization reasons)
779 * they're moved off to a separate function.
781 sppp_ioctl(q, mp);
782 return;
783 case PPPIO_GETSTAT:
784 break; /* 32 bit interface gone */
785 default:
786 if (iop->ioc_cr == NULL ||
787 secpolicy_ppp_config(iop->ioc_cr) != 0) {
788 error = EPERM;
789 break;
790 } else if ((ppa == NULL) ||
791 (ppa->ppa_lower_wq == NULL)) {
792 break; /* return EINVAL */
794 mutex_enter(&ppa->ppa_sta_lock);
796 * See comments in PPPIO_GETSTAT64 case
797 * in sppp_ioctl().
799 if (IS_SPS_IOCQ(sps)) {
800 mutex_exit(&ppa->ppa_sta_lock);
801 if (!putq(q, mp)) {
802 error = EAGAIN;
803 break;
805 return;
806 } else {
807 ppa->ppa_ioctlsfwd++;
809 * Record the ioctl CMD & ID -
810 * this will be used to check the
811 * ACK or NAK responses coming from below.
813 sps->sps_ioc_id = iop->ioc_id;
814 sps->sps_flags |= SPS_IOCQ;
815 mutex_exit(&ppa->ppa_sta_lock);
817 putnext(ppa->ppa_lower_wq, mp);
818 return; /* don't ack or nak the request */
820 /* Failure; send error back upstream. */
821 miocnak(q, mp, 0, error);
822 break;
823 case M_FLUSH:
824 if (*mp->b_rptr & FLUSHW) {
825 flushq(q, FLUSHDATA);
827 if (*mp->b_rptr & FLUSHR) {
828 *mp->b_rptr &= ~FLUSHW;
829 qreply(q, mp);
830 } else {
831 freemsg(mp);
833 break;
834 default:
835 freemsg(mp);
836 break;
841 * sppp_uwsrv()
843 * MT-Perimeters:
844 * exclusive inner, shared outer.
846 * Description:
847 * Upper write-side service procedure. Note that this procedure does
848 * not get called when a message is placed on our write-side queue, since
849 * automatic queue scheduling has been turned off by noenable() when
850 * the queue was opened. We do this on purpose, as we explicitly control
851 * the write-side queue. Therefore, this procedure gets called when
852 * the lower write service procedure qenable() the upper write stream queue.
854 void
855 sppp_uwsrv(queue_t *q)
857 spppstr_t *sps;
858 sppa_t *ppa;
859 mblk_t *mp;
860 queue_t *nextq;
861 struct iocblk *iop;
863 ASSERT(q != NULL && q->q_ptr != NULL);
864 sps = (spppstr_t *)q->q_ptr;
866 while ((mp = getq(q)) != NULL) {
867 if (MTYPE(mp) == M_IOCTL) {
868 ppa = sps->sps_ppa;
869 if ((ppa == NULL) || (ppa->ppa_lower_wq == NULL)) {
870 miocnak(q, mp, 0, EINVAL);
871 continue;
874 iop = (struct iocblk *)mp->b_rptr;
875 mutex_enter(&ppa->ppa_sta_lock);
877 * See comments in PPPIO_GETSTAT64 case
878 * in sppp_ioctl().
880 if (IS_SPS_IOCQ(sps)) {
881 mutex_exit(&ppa->ppa_sta_lock);
882 if (putbq(q, mp) == 0)
883 miocnak(q, mp, 0, EAGAIN);
884 break;
885 } else {
886 ppa->ppa_ioctlsfwd++;
887 sps->sps_ioc_id = iop->ioc_id;
888 sps->sps_flags |= SPS_IOCQ;
889 mutex_exit(&ppa->ppa_sta_lock);
890 putnext(ppa->ppa_lower_wq, mp);
892 } else if ((nextq =
893 sppp_outpkt(q, &mp, msgdsize(mp), sps)) == NULL) {
894 if (mp != NULL) {
895 if (putbq(q, mp) == 0)
896 freemsg(mp);
897 break;
899 } else {
900 putnext(nextq, mp);
905 void
906 sppp_remove_ppa(spppstr_t *sps)
908 spppstr_t *nextsib;
909 sppa_t *ppa = sps->sps_ppa;
911 rw_enter(&ppa->ppa_sib_lock, RW_WRITER);
912 if (ppa->ppa_refcnt <= 1) {
913 rw_exit(&ppa->ppa_sib_lock);
914 sppp_free_ppa(ppa);
915 } else {
916 nextsib = ppa->ppa_streams;
917 if (nextsib == sps) {
918 ppa->ppa_streams = sps->sps_nextsib;
919 } else {
920 while (nextsib->sps_nextsib != NULL) {
921 if (nextsib->sps_nextsib == sps) {
922 nextsib->sps_nextsib =
923 sps->sps_nextsib;
924 break;
926 nextsib = nextsib->sps_nextsib;
929 ppa->ppa_refcnt--;
931 * And if this stream was marked as promiscuous
932 * (SPS_PROMISC), then we need to update the
933 * promiscuous streams count. This should only happen
934 * when DL_DETACH_REQ is issued prior to marking the
935 * stream as non-promiscuous, through
936 * DL_PROMISCOFF_REQ request.
938 if (IS_SPS_PROMISC(sps)) {
939 ASSERT(ppa->ppa_promicnt > 0);
940 ppa->ppa_promicnt--;
942 rw_exit(&ppa->ppa_sib_lock);
944 sps->sps_nextsib = NULL;
945 sps->sps_ppa = NULL;
946 freemsg(sps->sps_hangup);
947 sps->sps_hangup = NULL;
950 sppa_t *
951 sppp_find_ppa(uint32_t ppa_id)
953 sppa_t *ppa;
955 for (ppa = ppa_list; ppa != NULL; ppa = ppa->ppa_nextppa) {
956 if (ppa->ppa_ppa_id == ppa_id) {
957 break; /* found the ppa */
960 return (ppa);
964 * sppp_inner_ioctl()
966 * MT-Perimeters:
967 * exclusive inner, shared outer
969 * Description:
970 * Called by sppp_uwput as a result of receiving ioctls which require
971 * an exclusive access at the inner perimeter.
973 static void
974 sppp_inner_ioctl(queue_t *q, mblk_t *mp)
976 spppstr_t *sps;
977 sppa_t *ppa;
978 struct iocblk *iop;
979 mblk_t *nmp;
980 int error = EINVAL;
981 int count = 0;
982 int dbgcmd;
983 int mru, mtu;
984 uint32_t ppa_id;
985 hrtime_t hrtime;
986 uint16_t proto;
988 ASSERT(q != NULL && q->q_ptr != NULL);
989 ASSERT(mp != NULL && mp->b_rptr != NULL);
991 sps = (spppstr_t *)q->q_ptr;
992 ppa = sps->sps_ppa;
993 iop = (struct iocblk *)mp->b_rptr;
994 switch (iop->ioc_cmd) {
995 case DLIOCRAW:
996 if (IS_SPS_CONTROL(sps)) {
997 break; /* return EINVAL */
999 sps->sps_flags |= SPS_RAWDATA;
1000 error = 0; /* return success */
1001 break;
1002 case DL_IOC_HDR_INFO:
1003 if (IS_SPS_CONTROL(sps)) {
1004 break; /* return EINVAL */
1005 } else if ((mp->b_cont == NULL) ||
1006 *((t_uscalar_t *)mp->b_cont->b_rptr) != DL_UNITDATA_REQ ||
1007 (MBLKL(mp->b_cont) < (sizeof (dl_unitdata_req_t) +
1008 SPPP_ADDRL))) {
1009 error = EPROTO;
1010 break;
1011 } else if (ppa == NULL) {
1012 error = ENOLINK;
1013 break;
1015 if ((nmp = allocb(PPP_HDRLEN, BPRI_MED)) == NULL) {
1016 mutex_enter(&ppa->ppa_sta_lock);
1017 ppa->ppa_allocbfail++;
1018 mutex_exit(&ppa->ppa_sta_lock);
1019 error = ENOMEM;
1020 break;
1022 *(uchar_t *)nmp->b_wptr++ = PPP_ALLSTATIONS;
1023 *(uchar_t *)nmp->b_wptr++ = PPP_UI;
1024 *(uchar_t *)nmp->b_wptr++ = sps->sps_sap >> 8;
1025 *(uchar_t *)nmp->b_wptr++ = sps->sps_sap & 0xff;
1026 ASSERT(MBLKL(nmp) == PPP_HDRLEN);
1028 linkb(mp, nmp);
1029 sps->sps_flags |= SPS_FASTPATH;
1030 error = 0; /* return success */
1031 count = msgsize(nmp);
1032 break;
1033 case PPPIO_ATTACH:
1034 if (IS_SPS_CONTROL(sps) || IS_SPS_PIOATTACH(sps) ||
1035 (sps->sps_dlstate != DL_UNATTACHED) ||
1036 (iop->ioc_count != sizeof (uint32_t))) {
1037 break; /* return EINVAL */
1038 } else if (mp->b_cont == NULL) {
1039 error = EPROTO;
1040 break;
1042 ASSERT(mp->b_cont->b_rptr != NULL);
1043 /* If there's something here, it's detached. */
1044 if (ppa != NULL) {
1045 sppp_remove_ppa(sps);
1047 ppa_id = *(uint32_t *)mp->b_cont->b_rptr;
1048 ppa = sppp_find_ppa(ppa_id);
1050 * If we can't find it, then it's either because the requestor
1051 * has supplied a wrong ppa_id to be attached to, or because
1052 * the control stream for the specified ppa_id has been closed
1053 * before we get here.
1055 if (ppa == NULL) {
1056 error = ENOENT;
1057 break;
1059 if (iop->ioc_cr == NULL ||
1060 ppa->ppa_zoneid != crgetzoneid(iop->ioc_cr)) {
1061 error = EPERM;
1062 break;
1065 * Preallocate the hangup message so that we're always
1066 * able to send this upstream in the event of a
1067 * catastrophic failure.
1069 if ((sps->sps_hangup = allocb(1, BPRI_MED)) == NULL) {
1070 error = ENOSR;
1071 break;
1074 * There are two ways to attach a stream to a ppa: one is
1075 * through DLPI (DL_ATTACH_REQ) and the other is through
1076 * PPPIO_ATTACH. This is why we need to distinguish whether or
1077 * not a stream was allocated via PPPIO_ATTACH, so that we can
1078 * properly detach it when we receive PPPIO_DETACH ioctl
1079 * request.
1081 sps->sps_flags |= SPS_PIOATTACH;
1082 sps->sps_ppa = ppa;
1084 * Add this stream to the head of the list of sibling streams
1085 * which belong to the same ppa as specified.
1087 rw_enter(&ppa->ppa_sib_lock, RW_WRITER);
1088 ppa->ppa_refcnt++;
1089 sps->sps_nextsib = ppa->ppa_streams;
1090 ppa->ppa_streams = sps;
1091 rw_exit(&ppa->ppa_sib_lock);
1092 error = 0; /* return success */
1093 break;
1094 case PPPIO_BLOCKNP:
1095 case PPPIO_UNBLOCKNP:
1096 if (iop->ioc_cr == NULL ||
1097 secpolicy_ppp_config(iop->ioc_cr) != 0) {
1098 error = EPERM;
1099 break;
1101 error = miocpullup(mp, sizeof (uint16_t));
1102 if (error != 0)
1103 break;
1104 ASSERT(mp->b_cont->b_rptr != NULL);
1105 proto = *(uint16_t *)mp->b_cont->b_rptr;
1106 if (iop->ioc_cmd == PPPIO_BLOCKNP) {
1107 uint32_t npflagpos = sppp_ppp2np(proto);
1109 * Mark proto as blocked in ppa_npflag until the
1110 * corresponding queues for proto have been plumbed.
1112 if (npflagpos != 0) {
1113 mutex_enter(&ppa->ppa_npmutex);
1114 ppa->ppa_npflag |= (1 << npflagpos);
1115 mutex_exit(&ppa->ppa_npmutex);
1116 } else {
1117 error = EINVAL;
1119 } else {
1121 * reset ppa_npflag and release proto
1122 * packets that were being held in control queue.
1124 sppp_release_pkts(ppa, proto);
1126 break;
1127 case PPPIO_DEBUG:
1128 if (iop->ioc_cr == NULL ||
1129 secpolicy_ppp_config(iop->ioc_cr) != 0) {
1130 error = EPERM;
1131 break;
1132 } else if (iop->ioc_count != sizeof (uint32_t)) {
1133 break; /* return EINVAL */
1134 } else if (mp->b_cont == NULL) {
1135 error = EPROTO;
1136 break;
1138 ASSERT(mp->b_cont->b_rptr != NULL);
1139 dbgcmd = *(uint32_t *)mp->b_cont->b_rptr;
1141 * We accept PPPDBG_LOG + PPPDBG_DRIVER value as an indication
1142 * that SPS_KDEBUG needs to be enabled for this upper stream.
1144 if (dbgcmd == PPPDBG_LOG + PPPDBG_DRIVER) {
1145 sps->sps_flags |= SPS_KDEBUG;
1146 error = 0; /* return success */
1147 break;
1150 * Otherwise, for any other values, we send them down only if
1151 * there is an attachment and if the attachment has something
1152 * linked underneath it.
1154 if ((ppa == NULL) || (ppa->ppa_lower_wq == NULL)) {
1155 error = ENOLINK;
1156 break;
1158 mutex_enter(&ppa->ppa_sta_lock);
1160 * See comments in PPPIO_GETSTAT64 case
1161 * in sppp_ioctl().
1163 if (IS_SPS_IOCQ(sps)) {
1164 mutex_exit(&ppa->ppa_sta_lock);
1165 if (!putq(q, mp)) {
1166 error = EAGAIN;
1167 break;
1169 return;
1170 } else {
1171 ppa->ppa_ioctlsfwd++;
1173 * Record the ioctl CMD & ID -
1174 * this will be used to check the
1175 * ACK or NAK responses coming from below.
1177 sps->sps_ioc_id = iop->ioc_id;
1178 sps->sps_flags |= SPS_IOCQ;
1179 mutex_exit(&ppa->ppa_sta_lock);
1181 putnext(ppa->ppa_lower_wq, mp);
1182 return; /* don't ack or nak the request */
1183 case PPPIO_DETACH:
1184 if (!IS_SPS_PIOATTACH(sps)) {
1185 break; /* return EINVAL */
1188 * The SPS_PIOATTACH flag set on the stream tells us that
1189 * the ppa field is still valid. In the event that the control
1190 * stream be closed prior to this stream's detachment, the
1191 * SPS_PIOATTACH flag would have been cleared from this stream
1192 * during close; in that case we won't get here.
1194 ASSERT(ppa != NULL);
1195 ASSERT(ppa->ppa_ctl != sps);
1196 ASSERT(sps->sps_dlstate == DL_UNATTACHED);
1199 * We don't actually detach anything until the stream is
1200 * closed or reattached.
1203 sps->sps_flags &= ~SPS_PIOATTACH;
1204 error = 0; /* return success */
1205 break;
1206 case PPPIO_LASTMOD:
1207 if (!IS_SPS_CONTROL(sps)) {
1208 break; /* return EINVAL */
1210 ASSERT(ppa != NULL);
1211 ppa->ppa_flags |= PPA_LASTMOD;
1212 error = 0; /* return success */
1213 break;
1214 case PPPIO_MRU:
1215 if (!IS_SPS_CONTROL(sps) ||
1216 (iop->ioc_count != sizeof (uint32_t))) {
1217 break; /* return EINVAL */
1218 } else if (mp->b_cont == NULL) {
1219 error = EPROTO;
1220 break;
1222 ASSERT(ppa != NULL);
1223 ASSERT(mp->b_cont->b_rptr != NULL);
1224 mru = *(uint32_t *)mp->b_cont->b_rptr;
1225 if ((mru <= 0) || (mru > PPP_MAXMRU)) {
1226 error = EPROTO;
1227 break;
1229 if (mru < PPP_MRU) {
1230 mru = PPP_MRU;
1232 ppa->ppa_mru = (uint16_t)mru;
1234 * If there's something beneath this driver for the ppa, then
1235 * inform it (or them) of the MRU size. Only do this is we
1236 * are not the last PPP module on the stream.
1238 if (!IS_PPA_LASTMOD(ppa) && (ppa->ppa_lower_wq != NULL)) {
1239 (void) putctl4(ppa->ppa_lower_wq, M_CTL, PPPCTL_MRU,
1240 mru);
1242 error = 0; /* return success */
1243 break;
1244 case PPPIO_MTU:
1245 if (!IS_SPS_CONTROL(sps) ||
1246 (iop->ioc_count != sizeof (uint32_t))) {
1247 break; /* return EINVAL */
1248 } else if (mp->b_cont == NULL) {
1249 error = EPROTO;
1250 break;
1252 ASSERT(ppa != NULL);
1253 ASSERT(mp->b_cont->b_rptr != NULL);
1254 mtu = *(uint32_t *)mp->b_cont->b_rptr;
1255 if ((mtu <= 0) || (mtu > PPP_MAXMTU)) {
1256 error = EPROTO;
1257 break;
1259 ppa->ppa_mtu = (uint16_t)mtu;
1261 * If there's something beneath this driver for the ppa, then
1262 * inform it (or them) of the MTU size. Only do this if we
1263 * are not the last PPP module on the stream.
1265 if (!IS_PPA_LASTMOD(ppa) && (ppa->ppa_lower_wq != NULL)) {
1266 (void) putctl4(ppa->ppa_lower_wq, M_CTL, PPPCTL_MTU,
1267 mtu);
1269 error = 0; /* return success */
1270 break;
1271 case PPPIO_USETIMESTAMP:
1272 if (!IS_SPS_CONTROL(sps)) {
1273 break; /* return EINVAL */
1275 if (!IS_PPA_TIMESTAMP(ppa)) {
1276 hrtime = gethrtime();
1277 ppa->ppa_lasttx = ppa->ppa_lastrx = hrtime;
1278 ppa->ppa_flags |= PPA_TIMESTAMP;
1280 error = 0;
1281 break;
1284 if (error == 0) {
1285 /* Success; tell the user */
1286 miocack(q, mp, count, 0);
1287 } else {
1288 /* Failure; send error back upstream */
1289 miocnak(q, mp, 0, error);
1294 * sppp_outer_ioctl()
1296 * MT-Perimeters:
1297 * exclusive inner, exclusive outer
1299 * Description:
1300 * Called by sppp_uwput as a result of receiving ioctls which require
1301 * an exclusive access at the outer perimeter.
1303 static void
1304 sppp_outer_ioctl(queue_t *q, mblk_t *mp)
1306 spppstr_t *sps = q->q_ptr;
1307 spppstr_t *nextsib;
1308 queue_t *lwq;
1309 sppa_t *ppa;
1310 struct iocblk *iop;
1311 int error = EINVAL;
1312 int count = 0;
1313 uint32_t ppa_id;
1314 mblk_t *nmp;
1315 zoneid_t zoneid;
1317 sps = (spppstr_t *)q->q_ptr;
1318 ppa = sps->sps_ppa;
1319 iop = (struct iocblk *)mp->b_rptr;
1320 switch (iop->ioc_cmd) {
1321 case I_LINK:
1322 if (!IS_SPS_CONTROL(sps)) {
1323 break; /* return EINVAL */
1324 } else if (ppa->ppa_lower_wq != NULL) {
1325 error = EEXIST;
1326 break;
1328 ASSERT(ppa->ppa_ctl != NULL);
1329 ASSERT(sps->sps_npmode == NPMODE_PASS);
1330 ASSERT(mp->b_cont != NULL && mp->b_cont->b_rptr != NULL);
1332 lwq = ((struct linkblk *)mp->b_cont->b_rptr)->l_qbot;
1333 ASSERT(lwq != NULL);
1335 ppa->ppa_lower_wq = lwq;
1336 lwq->q_ptr = RD(lwq)->q_ptr = (caddr_t)ppa;
1338 * Unblock upper network streams which now feed this lower
1339 * stream. We don't need to hold ppa_sib_lock here, since we
1340 * are writer at the outer perimeter.
1342 if (WR(sps->sps_rq)->q_first != NULL)
1343 qenable(WR(sps->sps_rq));
1344 for (nextsib = ppa->ppa_streams; nextsib != NULL;
1345 nextsib = nextsib->sps_nextsib) {
1346 nextsib->sps_npmode = NPMODE_PASS;
1347 if (WR(nextsib->sps_rq)->q_first != NULL) {
1348 qenable(WR(nextsib->sps_rq));
1353 * Also unblock (run once) our lower read-side queue. This is
1354 * where packets received while doing the I_LINK may be
1355 * languishing; see sppp_lrsrv.
1357 qenable(RD(lwq));
1360 * Send useful information down to the modules which are now
1361 * linked below this driver (for this particular ppa). Only
1362 * do this if we are not the last PPP module on the stream.
1364 if (!IS_PPA_LASTMOD(ppa)) {
1365 (void) putctl8(lwq, M_CTL, PPPCTL_UNIT,
1366 ppa->ppa_ppa_id);
1367 (void) putctl4(lwq, M_CTL, PPPCTL_MRU, ppa->ppa_mru);
1368 (void) putctl4(lwq, M_CTL, PPPCTL_MTU, ppa->ppa_mtu);
1371 if (IS_SPS_KDEBUG(sps)) {
1372 SPDEBUG(PPP_DRV_NAME
1373 "/%d: I_LINK lwq=0x%p sps=0x%p flags=0x%b ppa=0x%p "
1374 "flags=0x%b\n", sps->sps_mn_id,
1375 (void *)ppa->ppa_lower_wq, (void *)sps,
1376 sps->sps_flags, SPS_FLAGS_STR,
1377 (void *)ppa, ppa->ppa_flags,
1378 PPA_FLAGS_STR);
1380 error = 0; /* return success */
1381 break;
1382 case I_UNLINK:
1383 ASSERT(IS_SPS_CONTROL(sps));
1384 ASSERT(ppa != NULL);
1385 lwq = ppa->ppa_lower_wq;
1386 ASSERT(mp->b_cont != NULL && mp->b_cont->b_rptr != NULL);
1387 ASSERT(lwq == ((struct linkblk *)mp->b_cont->b_rptr)->l_qbot);
1389 if (IS_SPS_KDEBUG(sps)) {
1390 SPDEBUG(PPP_DRV_NAME
1391 "/%d: I_UNLINK lwq=0x%p sps=0x%p flags=0x%b "
1392 "ppa=0x%p flags=0x%b\n", sps->sps_mn_id,
1393 (void *)lwq, (void *)sps, sps->sps_flags,
1394 SPS_FLAGS_STR, (void *)ppa, ppa->ppa_flags,
1395 PPA_FLAGS_STR);
1398 * While accessing the outer perimeter exclusively, we
1399 * disassociate our ppa's lower_wq from the lower stream linked
1400 * beneath us, and we also disassociate our control stream from
1401 * the q_ptr of the lower stream.
1403 lwq->q_ptr = RD(lwq)->q_ptr = NULL;
1404 ppa->ppa_lower_wq = NULL;
1406 * Unblock streams which now feed back up the control stream,
1407 * and acknowledge the request. We don't need to hold
1408 * ppa_sib_lock here, since we are writer at the outer
1409 * perimeter.
1411 if (WR(sps->sps_rq)->q_first != NULL)
1412 qenable(WR(sps->sps_rq));
1413 for (nextsib = ppa->ppa_streams; nextsib != NULL;
1414 nextsib = nextsib->sps_nextsib) {
1415 if (WR(nextsib->sps_rq)->q_first != NULL) {
1416 qenable(WR(nextsib->sps_rq));
1419 error = 0; /* return success */
1420 break;
1421 case PPPIO_NEWPPA:
1423 * Do sanity check to ensure that we don't accept PPPIO_NEWPPA
1424 * on a stream which DLPI is used (since certain DLPI messages
1425 * will cause state transition reflected in sps_dlstate,
1426 * changing it from its default DL_UNATTACHED value). In other
1427 * words, we won't allow a network/snoop stream to become
1428 * a control stream.
1430 if (iop->ioc_cr == NULL ||
1431 secpolicy_ppp_config(iop->ioc_cr) != 0) {
1432 error = EPERM;
1433 break;
1434 } else if (IS_SPS_CONTROL(sps) || IS_SPS_PIOATTACH(sps) ||
1435 (ppa != NULL) || (sps->sps_dlstate != DL_UNATTACHED)) {
1436 break; /* return EINVAL */
1438 /* Get requested unit number (if any) */
1439 if (iop->ioc_count == sizeof (uint32_t) && mp->b_cont != NULL)
1440 ppa_id = *(uint32_t *)mp->b_cont->b_rptr;
1441 else
1442 ppa_id = 0;
1443 /* Get mblk to use for response message */
1444 nmp = allocb(sizeof (uint32_t), BPRI_MED);
1445 if (nmp == NULL) {
1446 error = ENOSR;
1447 break;
1449 if (mp->b_cont != NULL) {
1450 freemsg(mp->b_cont);
1452 mp->b_cont = nmp; /* chain our response mblk */
1454 * Walk the global ppa list and determine the lowest
1455 * available ppa_id number to be used.
1457 if (ppa_id == (uint32_t)-1)
1458 ppa_id = 0;
1459 zoneid = crgetzoneid(iop->ioc_cr);
1460 for (ppa = ppa_list; ppa != NULL; ppa = ppa->ppa_nextppa) {
1461 if (ppa_id == (uint32_t)-2) {
1462 if (ppa->ppa_ctl == NULL &&
1463 ppa->ppa_zoneid == zoneid)
1464 break;
1465 } else {
1466 if (ppa_id < ppa->ppa_ppa_id)
1467 break;
1468 if (ppa_id == ppa->ppa_ppa_id)
1469 ++ppa_id;
1472 if (ppa_id == (uint32_t)-2) {
1473 if (ppa == NULL) {
1474 error = ENXIO;
1475 break;
1477 /* Clear timestamp and lastmod flags */
1478 ppa->ppa_flags = 0;
1479 } else {
1480 ppa = sppp_create_ppa(ppa_id, zoneid);
1481 if (ppa == NULL) {
1482 error = ENOMEM;
1483 break;
1487 sps->sps_ppa = ppa; /* chain the ppa structure */
1488 sps->sps_npmode = NPMODE_PASS; /* network packets may travel */
1489 sps->sps_flags |= SPS_CONTROL; /* this is the control stream */
1491 ppa->ppa_refcnt++; /* new PPA reference */
1492 ppa->ppa_ctl = sps; /* back ptr to upper stream */
1494 * Return the newly created ppa_id to the requestor and
1495 * acnowledge the request.
1497 *(uint32_t *)nmp->b_wptr = ppa->ppa_ppa_id;
1498 nmp->b_wptr += sizeof (uint32_t);
1500 if (IS_SPS_KDEBUG(sps)) {
1501 SPDEBUG(PPP_DRV_NAME
1502 "/%d: PPPIO_NEWPPA ppa_id=%d sps=0x%p flags=0x%b "
1503 "ppa=0x%p flags=0x%b\n", sps->sps_mn_id, ppa_id,
1504 (void *)sps, sps->sps_flags, SPS_FLAGS_STR,
1505 (void *)ppa, ppa->ppa_flags,
1506 PPA_FLAGS_STR);
1508 count = msgsize(nmp);
1509 error = 0;
1510 break;
1513 if (error == 0) {
1514 /* Success; tell the user. */
1515 miocack(q, mp, count, 0);
1516 } else {
1517 /* Failure; send error back upstream. */
1518 miocnak(q, mp, 0, error);
1523 * sppp_send()
1525 * MT-Perimeters:
1526 * shared inner, shared outer.
1528 * Description:
1529 * Called by sppp_uwput to handle M_DATA message type. Returns
1530 * queue_t for putnext, or NULL to mean that the packet was
1531 * handled internally.
1533 static queue_t *
1534 sppp_send(queue_t *q, mblk_t **mpp, spppstr_t *sps)
1536 mblk_t *mp;
1537 sppa_t *ppa;
1538 int is_promisc;
1539 int msize;
1540 int error = 0;
1541 queue_t *nextq;
1543 ASSERT(mpp != NULL);
1544 mp = *mpp;
1545 ASSERT(q != NULL && q->q_ptr != NULL);
1546 ASSERT(mp != NULL && mp->b_rptr != NULL);
1547 ASSERT(sps != NULL);
1548 ASSERT(q->q_ptr == sps);
1550 * We only let M_DATA through if the sender is either the control
1551 * stream (for PPP control packets) or one of the network streams
1552 * (for IP packets) in IP fastpath mode. If this stream is not attached
1553 * to any ppas, then discard data coming down through this stream.
1555 ppa = sps->sps_ppa;
1556 if (ppa == NULL) {
1557 ASSERT(!IS_SPS_CONTROL(sps));
1558 error = ENOLINK;
1559 } else if (!IS_SPS_CONTROL(sps) && !IS_SPS_FASTPATH(sps)) {
1560 error = EPROTO;
1562 if (error != 0) {
1563 merror(q, mp, error);
1564 return (NULL);
1566 msize = msgdsize(mp);
1567 if (msize > (ppa->ppa_mtu + PPP_HDRLEN)) {
1568 /* Log, and send it anyway */
1569 mutex_enter(&ppa->ppa_sta_lock);
1570 ppa->ppa_otoolongs++;
1571 mutex_exit(&ppa->ppa_sta_lock);
1572 } else if (msize < PPP_HDRLEN) {
1574 * Log, and send it anyway. We log it because we get things
1575 * in M_DATA form here, which tells us that the sender is
1576 * either IP in fastpath transmission mode, or pppd. In both
1577 * cases, they are currently expected to send the 4-bytes
1578 * PPP header in front of any possible payloads.
1580 mutex_enter(&ppa->ppa_sta_lock);
1581 ppa->ppa_orunts++;
1582 mutex_exit(&ppa->ppa_sta_lock);
1585 if (IS_SPS_KDEBUG(sps)) {
1586 SPDEBUG(PPP_DRV_NAME
1587 "/%d: M_DATA send (%d bytes) sps=0x%p flags=0x%b "
1588 "ppa=0x%p flags=0x%b\n", sps->sps_mn_id, msize,
1589 (void *)sps, sps->sps_flags, SPS_FLAGS_STR,
1590 (void *)ppa, ppa->ppa_flags, PPA_FLAGS_STR);
1593 * Should there be any promiscuous stream(s), send the data up
1594 * for each promiscuous stream that we recognize. Make sure that
1595 * for fastpath, we skip the PPP header in the M_DATA mblk. We skip
1596 * the control stream as we obviously never allow the control stream
1597 * to become promiscous and bind to PPP_ALLSAP.
1599 rw_enter(&ppa->ppa_sib_lock, RW_READER);
1600 is_promisc = sps->sps_ppa->ppa_promicnt;
1601 if (is_promisc) {
1602 ASSERT(ppa->ppa_streams != NULL);
1603 sppp_dlprsendup(ppa->ppa_streams, mp, sps->sps_sap, B_TRUE);
1605 rw_exit(&ppa->ppa_sib_lock);
1607 * Only time-stamp the packet with hrtime if the upper stream
1608 * is configured to do so. PPP control (negotiation) messages
1609 * are never considered link activity; only data is activity.
1611 if (!IS_SPS_CONTROL(sps) && IS_PPA_TIMESTAMP(ppa)) {
1612 ppa->ppa_lasttx = gethrtime();
1615 * If there's already a message in the write-side service queue,
1616 * then queue this message there as well, otherwise, try to send
1617 * it down to the module immediately below us.
1619 if (q->q_first != NULL ||
1620 (nextq = sppp_outpkt(q, mpp, msize, sps)) == NULL) {
1621 mp = *mpp;
1622 if (mp != NULL && putq(q, mp) == 0) {
1623 mutex_enter(&ppa->ppa_sta_lock);
1624 ppa->ppa_oqdropped++;
1625 mutex_exit(&ppa->ppa_sta_lock);
1626 freemsg(mp);
1628 return (NULL);
1630 return (nextq);
1634 * sppp_outpkt()
1636 * MT-Perimeters:
1637 * shared inner, shared outer (if called from sppp_wput, sppp_dlunitdatareq).
1638 * exclusive inner, shared outer (if called from sppp_wsrv).
1640 * Description:
1641 * Called from 1) sppp_uwput when processing a M_DATA fastpath message,
1642 * or 2) sppp_uwsrv when processing the upper write-side service queue.
1643 * For both cases, it prepares to send the data to the module below
1644 * this driver if there is a lower stream linked underneath. If none, then
1645 * the data will be sent upstream via the control channel to pppd.
1647 * Returns:
1648 * Non-NULL queue_t if message should be sent now, otherwise
1649 * if *mpp == NULL, then message was freed, otherwise put *mpp
1650 * (back) on the queue. (Does not do putq/putbq, since it's
1651 * called both from srv and put procedures.)
1653 static queue_t *
1654 sppp_outpkt(queue_t *q, mblk_t **mpp, int msize, spppstr_t *sps)
1656 mblk_t *mp;
1657 sppa_t *ppa;
1658 enum NPmode npmode;
1659 mblk_t *mpnew;
1661 ASSERT(mpp != NULL);
1662 mp = *mpp;
1663 ASSERT(q != NULL && q->q_ptr != NULL);
1664 ASSERT(mp != NULL && mp->b_rptr != NULL);
1665 ASSERT(sps != NULL);
1667 ppa = sps->sps_ppa;
1668 npmode = sps->sps_npmode;
1670 if (npmode == NPMODE_QUEUE) {
1671 ASSERT(!IS_SPS_CONTROL(sps));
1672 return (NULL); /* queue it for later */
1673 } else if (ppa == NULL || ppa->ppa_ctl == NULL ||
1674 npmode == NPMODE_DROP || npmode == NPMODE_ERROR) {
1676 * This can not be the control stream, as it must always have
1677 * a valid ppa, and its npmode must always be NPMODE_PASS.
1679 ASSERT(!IS_SPS_CONTROL(sps));
1680 if (npmode == NPMODE_DROP) {
1681 freemsg(mp);
1682 } else {
1684 * If we no longer have the control stream, or if the
1685 * mode is set to NPMODE_ERROR, then we need to tell IP
1686 * that the interface need to be marked as down. In
1687 * other words, we tell IP to be quiescent.
1689 merror(q, mp, EPROTO);
1691 *mpp = NULL;
1692 return (NULL); /* don't queue it */
1695 * Do we have a driver stream linked underneath ? If not, we need to
1696 * notify pppd that the link needs to be brought up and configure
1697 * this upper stream to drop subsequent outgoing packets. This is
1698 * for demand-dialing, in which case pppd has done the IP plumbing
1699 * but hasn't linked the driver stream underneath us. Therefore, when
1700 * a packet is sent down the IP interface, a notification message
1701 * will be sent up the control stream to pppd in order for it to
1702 * establish the physical link. The driver stream is then expected
1703 * to be linked underneath after physical link establishment is done.
1705 if (ppa->ppa_lower_wq == NULL) {
1706 ASSERT(ppa->ppa_ctl != NULL);
1707 ASSERT(ppa->ppa_ctl->sps_rq != NULL);
1709 *mpp = NULL;
1710 mpnew = create_lsmsg(PPP_LINKSTAT_NEEDUP);
1711 if (mpnew == NULL) {
1712 freemsg(mp);
1713 mutex_enter(&ppa->ppa_sta_lock);
1714 ppa->ppa_allocbfail++;
1715 mutex_exit(&ppa->ppa_sta_lock);
1716 return (NULL); /* don't queue it */
1718 /* Include the data in the message for logging. */
1719 mpnew->b_cont = mp;
1720 mutex_enter(&ppa->ppa_sta_lock);
1721 ppa->ppa_lsneedup++;
1722 mutex_exit(&ppa->ppa_sta_lock);
1724 * We need to set the mode to NPMODE_DROP, but should only
1725 * do so when this stream is not the control stream.
1727 if (!IS_SPS_CONTROL(sps)) {
1728 sps->sps_npmode = NPMODE_DROP;
1730 putnext(ppa->ppa_ctl->sps_rq, mpnew);
1731 return (NULL); /* don't queue it */
1734 * If so, then try to send it down. The lower queue is only ever
1735 * detached while holding an exclusive lock on the whole driver,
1736 * so we can be confident that the lower queue is still there.
1738 if (bcanputnext(ppa->ppa_lower_wq, mp->b_band)) {
1739 mutex_enter(&ppa->ppa_sta_lock);
1740 ppa->ppa_stats.p.ppp_opackets++;
1741 if (IS_SPS_CONTROL(sps)) {
1742 ppa->ppa_opkt_ctl++;
1744 ppa->ppa_stats.p.ppp_obytes += msize;
1745 mutex_exit(&ppa->ppa_sta_lock);
1746 return (ppa->ppa_lower_wq); /* don't queue it */
1748 return (NULL); /* queue it for later */
1752 * sppp_lwsrv()
1754 * MT-Perimeters:
1755 * exclusive inner, shared outer.
1757 * Description:
1758 * Lower write-side service procedure. No messages are ever placed on
1759 * the write queue here, this just back-enables all upper write side
1760 * service procedures.
1762 void
1763 sppp_lwsrv(queue_t *q)
1765 sppa_t *ppa;
1766 spppstr_t *nextsib;
1768 ASSERT(q != NULL && q->q_ptr != NULL);
1769 ppa = (sppa_t *)q->q_ptr;
1770 ASSERT(ppa != NULL);
1772 rw_enter(&ppa->ppa_sib_lock, RW_READER);
1773 if ((nextsib = ppa->ppa_ctl) != NULL &&
1774 WR(nextsib->sps_rq)->q_first != NULL)
1775 qenable(WR(nextsib->sps_rq));
1776 for (nextsib = ppa->ppa_streams; nextsib != NULL;
1777 nextsib = nextsib->sps_nextsib) {
1778 if (WR(nextsib->sps_rq)->q_first != NULL) {
1779 qenable(WR(nextsib->sps_rq));
1782 rw_exit(&ppa->ppa_sib_lock);
1786 * sppp_lrput()
1788 * MT-Perimeters:
1789 * shared inner, shared outer.
1791 * Description:
1792 * Lower read-side put procedure. Messages from below get here.
1793 * Data messages are handled separately to limit stack usage
1794 * going into IP.
1796 * Note that during I_UNLINK processing, it's possible for a downstream
1797 * message to enable upstream data (due to pass_wput() removing the
1798 * SQ_BLOCKED flag), and thus we must protect against a NULL sppa pointer.
1799 * In this case, the only thing above us is passthru, and we might as well
1800 * discard.
1802 void
1803 sppp_lrput(queue_t *q, mblk_t *mp)
1805 sppa_t *ppa;
1806 spppstr_t *sps;
1808 if ((ppa = q->q_ptr) == NULL) {
1809 freemsg(mp);
1810 return;
1813 sps = ppa->ppa_ctl;
1815 if (MTYPE(mp) != M_DATA) {
1816 sppp_recv_nondata(q, mp, sps);
1817 } else if (sps == NULL) {
1818 freemsg(mp);
1819 } else if ((q = sppp_recv(q, &mp, sps)) != NULL) {
1820 putnext(q, mp);
1825 * sppp_lrsrv()
1827 * MT-Perimeters:
1828 * exclusive inner, shared outer.
1830 * Description:
1831 * Lower read-side service procedure. This is run once after the I_LINK
1832 * occurs in order to clean up any packets that came in while we were
1833 * transferring in the lower stream. Otherwise, it's not used.
1835 void
1836 sppp_lrsrv(queue_t *q)
1838 mblk_t *mp;
1840 while ((mp = getq(q)) != NULL)
1841 sppp_lrput(q, mp);
1845 * sppp_recv_nondata()
1847 * MT-Perimeters:
1848 * shared inner, shared outer.
1850 * Description:
1851 * All received non-data messages come through here.
1853 static void
1854 sppp_recv_nondata(queue_t *q, mblk_t *mp, spppstr_t *ctlsps)
1856 sppa_t *ppa;
1857 spppstr_t *destsps;
1858 struct iocblk *iop;
1860 ppa = (sppa_t *)q->q_ptr;
1861 ctlsps = ppa->ppa_ctl;
1863 switch (MTYPE(mp)) {
1864 case M_CTL:
1865 mutex_enter(&ppa->ppa_sta_lock);
1866 if (*mp->b_rptr == PPPCTL_IERROR) {
1867 ppa->ppa_stats.p.ppp_ierrors++;
1868 ppa->ppa_ierr_low++;
1869 ppa->ppa_mctlsknown++;
1870 } else if (*mp->b_rptr == PPPCTL_OERROR) {
1871 ppa->ppa_stats.p.ppp_oerrors++;
1872 ppa->ppa_oerr_low++;
1873 ppa->ppa_mctlsknown++;
1874 } else {
1875 ppa->ppa_mctlsunknown++;
1877 mutex_exit(&ppa->ppa_sta_lock);
1878 freemsg(mp);
1879 break;
1880 case M_IOCTL:
1881 miocnak(q, mp, 0, EINVAL);
1882 break;
1883 case M_IOCACK:
1884 case M_IOCNAK:
1885 iop = (struct iocblk *)mp->b_rptr;
1886 ASSERT(iop != NULL);
1888 * Attempt to match up the response with the stream that the
1889 * request came from. If ioc_id doesn't match the one that we
1890 * recorded, then discard this message.
1892 rw_enter(&ppa->ppa_sib_lock, RW_READER);
1893 if ((destsps = ctlsps) == NULL ||
1894 destsps->sps_ioc_id != iop->ioc_id) {
1895 destsps = ppa->ppa_streams;
1896 while (destsps != NULL) {
1897 if (destsps->sps_ioc_id == iop->ioc_id) {
1898 break; /* found the upper stream */
1900 destsps = destsps->sps_nextsib;
1903 rw_exit(&ppa->ppa_sib_lock);
1904 if (destsps == NULL) {
1905 mutex_enter(&ppa->ppa_sta_lock);
1906 ppa->ppa_ioctlsfwderr++;
1907 mutex_exit(&ppa->ppa_sta_lock);
1908 freemsg(mp);
1909 break;
1911 mutex_enter(&ppa->ppa_sta_lock);
1912 ppa->ppa_ioctlsfwdok++;
1915 * Clear SPS_IOCQ and enable the lower write side queue,
1916 * this would allow the upper stream service routine
1917 * to start processing the queue for pending messages.
1918 * sppp_lwsrv -> sppp_uwsrv.
1920 destsps->sps_flags &= ~SPS_IOCQ;
1921 mutex_exit(&ppa->ppa_sta_lock);
1922 qenable(WR(destsps->sps_rq));
1924 putnext(destsps->sps_rq, mp);
1925 break;
1926 case M_HANGUP:
1928 * Free the original mblk_t. We don't really want to send
1929 * a M_HANGUP message upstream, so we need to translate this
1930 * message into something else.
1932 freemsg(mp);
1933 if (ctlsps == NULL)
1934 break;
1935 mp = create_lsmsg(PPP_LINKSTAT_HANGUP);
1936 if (mp == NULL) {
1937 mutex_enter(&ppa->ppa_sta_lock);
1938 ppa->ppa_allocbfail++;
1939 mutex_exit(&ppa->ppa_sta_lock);
1940 break;
1942 mutex_enter(&ppa->ppa_sta_lock);
1943 ppa->ppa_lsdown++;
1944 mutex_exit(&ppa->ppa_sta_lock);
1945 putnext(ctlsps->sps_rq, mp);
1946 break;
1947 case M_FLUSH:
1948 if (*mp->b_rptr & FLUSHR) {
1949 flushq(q, FLUSHDATA);
1951 if (*mp->b_rptr & FLUSHW) {
1952 *mp->b_rptr &= ~FLUSHR;
1953 qreply(q, mp);
1954 } else {
1955 freemsg(mp);
1957 break;
1958 default:
1959 if (ctlsps != NULL &&
1960 (queclass(mp) == QPCTL) || canputnext(ctlsps->sps_rq)) {
1961 putnext(ctlsps->sps_rq, mp);
1962 } else {
1963 mutex_enter(&ppa->ppa_sta_lock);
1964 ppa->ppa_iqdropped++;
1965 mutex_exit(&ppa->ppa_sta_lock);
1966 freemsg(mp);
1968 break;
1973 * sppp_recv()
1975 * MT-Perimeters:
1976 * shared inner, shared outer.
1978 * Description:
1979 * Receive function called by sppp_lrput. Finds appropriate
1980 * receive stream and does accounting.
1982 static queue_t *
1983 sppp_recv(queue_t *q, mblk_t **mpp, spppstr_t *ctlsps)
1985 mblk_t *mp;
1986 int len;
1987 sppa_t *ppa;
1988 spppstr_t *destsps;
1989 mblk_t *zmp;
1990 uint32_t npflagpos;
1992 ASSERT(mpp != NULL);
1993 mp = *mpp;
1994 ASSERT(q != NULL && q->q_ptr != NULL);
1995 ASSERT(mp != NULL && mp->b_rptr != NULL);
1996 ASSERT(ctlsps != NULL);
1997 ASSERT(IS_SPS_CONTROL(ctlsps));
1998 ppa = ctlsps->sps_ppa;
1999 ASSERT(ppa != NULL && ppa->ppa_ctl != NULL);
2001 len = msgdsize(mp);
2002 mutex_enter(&ppa->ppa_sta_lock);
2003 ppa->ppa_stats.p.ppp_ibytes += len;
2004 mutex_exit(&ppa->ppa_sta_lock);
2006 * If the entire data size of the mblk is less than the length of the
2007 * PPP header, then free it. We can't do much with such message anyway,
2008 * since we can't really determine what the PPP protocol type is.
2010 if (len < PPP_HDRLEN) {
2011 /* Log, and free it */
2012 mutex_enter(&ppa->ppa_sta_lock);
2013 ppa->ppa_irunts++;
2014 mutex_exit(&ppa->ppa_sta_lock);
2015 freemsg(mp);
2016 return (NULL);
2017 } else if (len > (ppa->ppa_mru + PPP_HDRLEN)) {
2018 /* Log, and accept it anyway */
2019 mutex_enter(&ppa->ppa_sta_lock);
2020 ppa->ppa_itoolongs++;
2021 mutex_exit(&ppa->ppa_sta_lock);
2024 * We need at least be able to read the PPP protocol from the header,
2025 * so if the first message block is too small, then we concatenate the
2026 * rest of the following blocks into one message.
2028 if (MBLKL(mp) < PPP_HDRLEN) {
2029 zmp = msgpullup(mp, PPP_HDRLEN);
2030 freemsg(mp);
2031 mp = zmp;
2032 if (mp == NULL) {
2033 mutex_enter(&ppa->ppa_sta_lock);
2034 ppa->ppa_allocbfail++;
2035 mutex_exit(&ppa->ppa_sta_lock);
2036 return (NULL);
2038 *mpp = mp;
2041 * Hold this packet in the control-queue until
2042 * the matching network-layer upper stream for the PPP protocol (sap)
2043 * has not been plumbed and configured
2045 npflagpos = sppp_ppp2np(PPP_PROTOCOL(mp->b_rptr));
2046 mutex_enter(&ppa->ppa_npmutex);
2047 if (npflagpos != 0 && (ppa->ppa_npflag & (1 << npflagpos))) {
2049 * proto is currently blocked; Hold up to 4 packets
2050 * in the kernel.
2052 if (ppa->ppa_holdpkts[npflagpos] > 3 ||
2053 putq(ctlsps->sps_rq, mp) == 0)
2054 freemsg(mp);
2055 else
2056 ppa->ppa_holdpkts[npflagpos]++;
2057 mutex_exit(&ppa->ppa_npmutex);
2058 return (NULL);
2060 mutex_exit(&ppa->ppa_npmutex);
2062 * Try to find a matching network-layer upper stream for the specified
2063 * PPP protocol (sap), and if none is found, send this frame up the
2064 * control stream.
2066 destsps = sppp_inpkt(q, mp, ctlsps);
2067 if (destsps == NULL) {
2068 mutex_enter(&ppa->ppa_sta_lock);
2069 ppa->ppa_ipkt_ctl++;
2070 mutex_exit(&ppa->ppa_sta_lock);
2071 if (canputnext(ctlsps->sps_rq)) {
2072 if (IS_SPS_KDEBUG(ctlsps)) {
2073 SPDEBUG(PPP_DRV_NAME
2074 "/%d: M_DATA recv (%d bytes) sps=0x%p "
2075 "flags=0x%b ppa=0x%p flags=0x%b\n",
2076 ctlsps->sps_mn_id, len, (void *)ctlsps,
2077 ctlsps->sps_flags, SPS_FLAGS_STR,
2078 (void *)ppa, ppa->ppa_flags,
2079 PPA_FLAGS_STR);
2081 return (ctlsps->sps_rq);
2082 } else {
2083 mutex_enter(&ppa->ppa_sta_lock);
2084 ppa->ppa_iqdropped++;
2085 mutex_exit(&ppa->ppa_sta_lock);
2086 freemsg(mp);
2087 return (NULL);
2090 if (canputnext(destsps->sps_rq)) {
2091 if (IS_SPS_KDEBUG(destsps)) {
2092 SPDEBUG(PPP_DRV_NAME
2093 "/%d: M_DATA recv (%d bytes) sps=0x%p flags=0x%b "
2094 "ppa=0x%p flags=0x%b\n", destsps->sps_mn_id, len,
2095 (void *)destsps, destsps->sps_flags,
2096 SPS_FLAGS_STR, (void *)ppa, ppa->ppa_flags,
2097 PPA_FLAGS_STR);
2100 * If fastpath is enabled on the network-layer stream, then
2101 * make sure we skip over the PPP header, otherwise, we wrap
2102 * the message in a DLPI message.
2104 if (IS_SPS_FASTPATH(destsps)) {
2105 mp->b_rptr += PPP_HDRLEN;
2106 return (destsps->sps_rq);
2107 } else {
2108 spppstr_t *uqs = (spppstr_t *)destsps->sps_rq->q_ptr;
2109 ASSERT(uqs != NULL);
2110 mp->b_rptr += PPP_HDRLEN;
2111 mp = sppp_dladdud(uqs, mp, uqs->sps_sap, B_FALSE);
2112 if (mp != NULL) {
2113 *mpp = mp;
2114 return (destsps->sps_rq);
2115 } else {
2116 mutex_enter(&ppa->ppa_sta_lock);
2117 ppa->ppa_allocbfail++;
2118 mutex_exit(&ppa->ppa_sta_lock);
2119 /* mp already freed by sppp_dladdud */
2120 return (NULL);
2123 } else {
2124 mutex_enter(&ppa->ppa_sta_lock);
2125 ppa->ppa_iqdropped++;
2126 mutex_exit(&ppa->ppa_sta_lock);
2127 freemsg(mp);
2128 return (NULL);
2133 * sppp_inpkt()
2135 * MT-Perimeters:
2136 * shared inner, shared outer.
2138 * Description:
2139 * Find the destination upper stream for the received packet, called
2140 * from sppp_recv.
2142 * Returns:
2143 * ptr to destination upper network stream, or NULL for control stream.
2145 /* ARGSUSED */
2146 static spppstr_t *
2147 sppp_inpkt(queue_t *q, mblk_t *mp, spppstr_t *ctlsps)
2149 spppstr_t *destsps = NULL;
2150 sppa_t *ppa;
2151 uint16_t proto;
2152 int is_promisc;
2154 ASSERT(q != NULL && q->q_ptr != NULL);
2155 ASSERT(mp != NULL && mp->b_rptr != NULL);
2156 ASSERT(IS_SPS_CONTROL(ctlsps));
2157 ppa = ctlsps->sps_ppa;
2158 ASSERT(ppa != NULL);
2160 * From RFC 1661 (Section 2):
2162 * The Protocol field is one or two octets, and its value identifies
2163 * the datagram encapsulated in the Information field of the packet.
2164 * The field is transmitted and received most significant octet first.
2166 * The structure of this field is consistent with the ISO 3309
2167 * extension mechanism for address fields. All Protocols MUST be odd;
2168 * the least significant bit of the least significant octet MUST equal
2169 * "1". Also, all Protocols MUST be assigned such that the least
2170 * significant bit of the most significant octet equals "0". Frames
2171 * received which don't comply with these rules MUST be treated as
2172 * having an unrecognized Protocol.
2174 * Protocol field values in the "0***" to "3***" range identify the
2175 * network-layer protocol of specific packets, and values in the
2176 * "8***" to "b***" range identify packets belonging to the associated
2177 * Network Control Protocols (NCPs), if any.
2179 * Protocol field values in the "4***" to "7***" range are used for
2180 * protocols with low volume traffic which have no associated NCP.
2181 * Protocol field values in the "c***" to "f***" range identify packets
2182 * as link-layer Control Protocols (such as LCP).
2184 proto = PPP_PROTOCOL(mp->b_rptr);
2185 mutex_enter(&ppa->ppa_sta_lock);
2186 ppa->ppa_stats.p.ppp_ipackets++;
2187 mutex_exit(&ppa->ppa_sta_lock);
2189 * We check if this is not a network-layer protocol, and if so,
2190 * then send this packet up the control stream.
2192 if (proto > 0x7fff) {
2193 goto inpkt_done; /* send it up the control stream */
2196 * Try to grab the destination upper stream from the network-layer
2197 * stream cache for this ppa for PPP_IP (0x0021) or PPP_IPV6 (0x0057)
2198 * protocol types. Otherwise, if the type is not known to the cache,
2199 * or if its sap can't be matched with any of the upper streams, then
2200 * send this packet up the control stream so that it can be rejected.
2202 if (proto == PPP_IP) {
2203 destsps = ppa->ppa_ip_cache;
2204 } else if (proto == PPP_IPV6) {
2205 destsps = ppa->ppa_ip6_cache;
2208 * Toss this one away up the control stream if there's no matching sap;
2209 * this way the protocol can be rejected (destsps is NULL).
2212 inpkt_done:
2214 * Only time-stamp the packet with hrtime if the upper stream
2215 * is configured to do so. PPP control (negotiation) messages
2216 * are never considered link activity; only data is activity.
2218 if (destsps != NULL && IS_PPA_TIMESTAMP(ppa)) {
2219 ppa->ppa_lastrx = gethrtime();
2222 * Should there be any promiscuous stream(s), send the data up for
2223 * each promiscuous stream that we recognize. We skip the control
2224 * stream as we obviously never allow the control stream to become
2225 * promiscous and bind to PPP_ALLSAP.
2227 rw_enter(&ppa->ppa_sib_lock, RW_READER);
2228 is_promisc = ppa->ppa_promicnt;
2229 if (is_promisc) {
2230 ASSERT(ppa->ppa_streams != NULL);
2231 sppp_dlprsendup(ppa->ppa_streams, mp, proto, B_TRUE);
2233 rw_exit(&ppa->ppa_sib_lock);
2234 return (destsps);
2238 * sppp_kstat_update()
2240 * Description:
2241 * Update per-ppa kstat interface statistics.
2243 static int
2244 sppp_kstat_update(kstat_t *ksp, int rw)
2246 register sppa_t *ppa;
2247 register sppp_kstats_t *pppkp;
2248 register struct pppstat64 *sp;
2250 if (rw == KSTAT_WRITE) {
2251 return (EACCES);
2254 ppa = (sppa_t *)ksp->ks_private;
2255 ASSERT(ppa != NULL);
2257 pppkp = (sppp_kstats_t *)ksp->ks_data;
2258 sp = &ppa->ppa_stats.p;
2260 mutex_enter(&ppa->ppa_sta_lock);
2261 pppkp->allocbfail.value.ui32 = ppa->ppa_allocbfail;
2262 pppkp->mctlsfwd.value.ui32 = ppa->ppa_mctlsfwd;
2263 pppkp->mctlsfwderr.value.ui32 = ppa->ppa_mctlsfwderr;
2264 pppkp->rbytes.value.ui32 = sp->ppp_ibytes;
2265 pppkp->rbytes64.value.ui64 = sp->ppp_ibytes;
2266 pppkp->ierrors.value.ui32 = sp->ppp_ierrors;
2267 pppkp->ierrors_lower.value.ui32 = ppa->ppa_ierr_low;
2268 pppkp->ioctlsfwd.value.ui32 = ppa->ppa_ioctlsfwd;
2269 pppkp->ioctlsfwdok.value.ui32 = ppa->ppa_ioctlsfwdok;
2270 pppkp->ioctlsfwderr.value.ui32 = ppa->ppa_ioctlsfwderr;
2271 pppkp->ipackets.value.ui32 = sp->ppp_ipackets;
2272 pppkp->ipackets64.value.ui64 = sp->ppp_ipackets;
2273 pppkp->ipackets_ctl.value.ui32 = ppa->ppa_ipkt_ctl;
2274 pppkp->iqdropped.value.ui32 = ppa->ppa_iqdropped;
2275 pppkp->irunts.value.ui32 = ppa->ppa_irunts;
2276 pppkp->itoolongs.value.ui32 = ppa->ppa_itoolongs;
2277 pppkp->lsneedup.value.ui32 = ppa->ppa_lsneedup;
2278 pppkp->lsdown.value.ui32 = ppa->ppa_lsdown;
2279 pppkp->mctlsknown.value.ui32 = ppa->ppa_mctlsknown;
2280 pppkp->mctlsunknown.value.ui32 = ppa->ppa_mctlsunknown;
2281 pppkp->obytes.value.ui32 = sp->ppp_obytes;
2282 pppkp->obytes64.value.ui64 = sp->ppp_obytes;
2283 pppkp->oerrors.value.ui32 = sp->ppp_oerrors;
2284 pppkp->oerrors_lower.value.ui32 = ppa->ppa_oerr_low;
2285 pppkp->opackets.value.ui32 = sp->ppp_opackets;
2286 pppkp->opackets64.value.ui64 = sp->ppp_opackets;
2287 pppkp->opackets_ctl.value.ui32 = ppa->ppa_opkt_ctl;
2288 pppkp->oqdropped.value.ui32 = ppa->ppa_oqdropped;
2289 pppkp->otoolongs.value.ui32 = ppa->ppa_otoolongs;
2290 pppkp->orunts.value.ui32 = ppa->ppa_orunts;
2291 mutex_exit(&ppa->ppa_sta_lock);
2293 return (0);
2297 * Turn off proto in ppa_npflag to indicate that
2298 * the corresponding network protocol has been plumbed.
2299 * Release proto packets that were being held in the control
2300 * queue in anticipation of this event.
2302 static void
2303 sppp_release_pkts(sppa_t *ppa, uint16_t proto)
2305 uint32_t npflagpos = sppp_ppp2np(proto);
2306 int count;
2307 mblk_t *mp;
2308 uint16_t mp_proto;
2309 queue_t *q;
2310 spppstr_t *destsps;
2312 ASSERT(ppa != NULL);
2314 if (npflagpos == 0 || (ppa->ppa_npflag & (1 << npflagpos)) == 0)
2315 return;
2317 mutex_enter(&ppa->ppa_npmutex);
2318 ppa->ppa_npflag &= ~(1 << npflagpos);
2319 count = ppa->ppa_holdpkts[npflagpos];
2320 ppa->ppa_holdpkts[npflagpos] = 0;
2321 mutex_exit(&ppa->ppa_npmutex);
2323 q = ppa->ppa_ctl->sps_rq;
2325 while (count > 0) {
2326 mp = getq(q);
2327 ASSERT(mp != NULL);
2329 mp_proto = PPP_PROTOCOL(mp->b_rptr);
2330 if (mp_proto != proto) {
2331 (void) putq(q, mp);
2332 continue;
2334 count--;
2335 destsps = NULL;
2336 if (mp_proto == PPP_IP) {
2337 destsps = ppa->ppa_ip_cache;
2338 } else if (mp_proto == PPP_IPV6) {
2339 destsps = ppa->ppa_ip6_cache;
2341 ASSERT(destsps != NULL);
2343 if (IS_SPS_FASTPATH(destsps)) {
2344 mp->b_rptr += PPP_HDRLEN;
2345 } else {
2346 spppstr_t *uqs = (spppstr_t *)destsps->sps_rq->q_ptr;
2347 ASSERT(uqs != NULL);
2348 mp->b_rptr += PPP_HDRLEN;
2349 mp = sppp_dladdud(uqs, mp, uqs->sps_sap, B_FALSE);
2350 if (mp == NULL) {
2351 mutex_enter(&ppa->ppa_sta_lock);
2352 ppa->ppa_allocbfail++;
2353 mutex_exit(&ppa->ppa_sta_lock);
2354 /* mp already freed by sppp_dladdud */
2355 continue;
2359 if (canputnext(destsps->sps_rq)) {
2360 putnext(destsps->sps_rq, mp);
2361 } else {
2362 mutex_enter(&ppa->ppa_sta_lock);
2363 ppa->ppa_iqdropped++;
2364 mutex_exit(&ppa->ppa_sta_lock);
2365 freemsg(mp);
2366 continue;