9903 qinfo: add typed members
[unleashed.git] / usr / src / uts / common / inet / ip / ipsecesp.c
blobce7a4d0f4fad98da06ef47e6fb51abca870b870a
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017 Joyent, Inc.
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/stropts.h>
31 #include <sys/errno.h>
32 #include <sys/strlog.h>
33 #include <sys/tihdr.h>
34 #include <sys/socket.h>
35 #include <sys/ddi.h>
36 #include <sys/sunddi.h>
37 #include <sys/kmem.h>
38 #include <sys/zone.h>
39 #include <sys/sysmacros.h>
40 #include <sys/cmn_err.h>
41 #include <sys/vtrace.h>
42 #include <sys/debug.h>
43 #include <sys/atomic.h>
44 #include <sys/strsun.h>
45 #include <sys/random.h>
46 #include <netinet/in.h>
47 #include <net/if.h>
48 #include <netinet/ip6.h>
49 #include <net/pfkeyv2.h>
50 #include <net/pfpolicy.h>
52 #include <inet/common.h>
53 #include <inet/mi.h>
54 #include <inet/nd.h>
55 #include <inet/ip.h>
56 #include <inet/ip_impl.h>
57 #include <inet/ip6.h>
58 #include <inet/ip_if.h>
59 #include <inet/ip_ndp.h>
60 #include <inet/sadb.h>
61 #include <inet/ipsec_info.h>
62 #include <inet/ipsec_impl.h>
63 #include <inet/ipsecesp.h>
64 #include <inet/ipdrop.h>
65 #include <inet/tcp.h>
66 #include <sys/kstat.h>
67 #include <sys/policy.h>
68 #include <sys/strsun.h>
69 #include <sys/strsubr.h>
70 #include <inet/udp_impl.h>
71 #include <sys/taskq.h>
72 #include <sys/note.h>
74 #include <sys/tsol/tnet.h>
77 * Table of ND variables supported by ipsecesp. These are loaded into
78 * ipsecesp_g_nd in ipsecesp_init_nd.
79 * All of these are alterable, within the min/max values given, at run time.
81 static ipsecespparam_t lcl_param_arr[] = {
82 /* min max value name */
83 { 0, 3, 0, "ipsecesp_debug"},
84 { 125, 32000, SADB_AGE_INTERVAL_DEFAULT, "ipsecesp_age_interval"},
85 { 1, 10, 1, "ipsecesp_reap_delay"},
86 { 1, SADB_MAX_REPLAY, 64, "ipsecesp_replay_size"},
87 { 1, 300, 15, "ipsecesp_acquire_timeout"},
88 { 1, 1800, 90, "ipsecesp_larval_timeout"},
89 /* Default lifetime values for ACQUIRE messages. */
90 { 0, 0xffffffffU, 0, "ipsecesp_default_soft_bytes"},
91 { 0, 0xffffffffU, 0, "ipsecesp_default_hard_bytes"},
92 { 0, 0xffffffffU, 24000, "ipsecesp_default_soft_addtime"},
93 { 0, 0xffffffffU, 28800, "ipsecesp_default_hard_addtime"},
94 { 0, 0xffffffffU, 0, "ipsecesp_default_soft_usetime"},
95 { 0, 0xffffffffU, 0, "ipsecesp_default_hard_usetime"},
96 { 0, 1, 0, "ipsecesp_log_unknown_spi"},
97 { 0, 2, 1, "ipsecesp_padding_check"},
98 { 0, 600, 20, "ipsecesp_nat_keepalive_interval"},
100 /* For ipsecesp_nat_keepalive_interval, see ipsecesp.h. */
102 #define esp0dbg(a) printf a
103 /* NOTE: != 0 instead of > 0 so lint doesn't complain. */
104 #define esp1dbg(espstack, a) if (espstack->ipsecesp_debug != 0) printf a
105 #define esp2dbg(espstack, a) if (espstack->ipsecesp_debug > 1) printf a
106 #define esp3dbg(espstack, a) if (espstack->ipsecesp_debug > 2) printf a
108 static int ipsecesp_open(queue_t *, dev_t *, int, int, cred_t *);
109 static int ipsecesp_close(queue_t *, int, cred_t *);
110 static void ipsecesp_wput(queue_t *, mblk_t *);
111 static void *ipsecesp_stack_init(netstackid_t stackid, netstack_t *ns);
112 static void ipsecesp_stack_fini(netstackid_t stackid, void *arg);
114 static void esp_prepare_udp(netstack_t *, mblk_t *, ipha_t *);
115 static void esp_outbound_finish(mblk_t *, ip_xmit_attr_t *);
116 static void esp_inbound_restart(mblk_t *, ip_recv_attr_t *);
118 static boolean_t esp_register_out(uint32_t, uint32_t, uint_t,
119 ipsecesp_stack_t *, cred_t *);
120 static boolean_t esp_strip_header(mblk_t *, boolean_t, uint32_t,
121 kstat_named_t **, ipsecesp_stack_t *);
122 static mblk_t *esp_submit_req_inbound(mblk_t *, ip_recv_attr_t *,
123 ipsa_t *, uint_t);
124 static mblk_t *esp_submit_req_outbound(mblk_t *, ip_xmit_attr_t *,
125 ipsa_t *, uchar_t *, uint_t);
127 /* Setable in /etc/system */
128 uint32_t esp_hash_size = IPSEC_DEFAULT_HASH_SIZE;
130 static struct module_info info = {
131 5137, "ipsecesp", 0, INFPSZ, 65536, 1024
134 static struct qinit rinit = {
135 (pfi_t)putnext, NULL, ipsecesp_open, ipsecesp_close, NULL, &info,
136 NULL
139 static struct qinit winit = {
140 (pfi_t)ipsecesp_wput, NULL, ipsecesp_open, ipsecesp_close, NULL, &info,
141 NULL
144 struct streamtab ipsecespinfo = {
145 &rinit, &winit, NULL, NULL
148 static taskq_t *esp_taskq;
151 * OTOH, this one is set at open/close, and I'm D_MTQPAIR for now.
153 * Question: Do I need this, given that all instance's esps->esps_wq point
154 * to IP?
156 * Answer: Yes, because I need to know which queue is BOUND to
157 * IPPROTO_ESP
160 static int esp_kstat_update(kstat_t *, int);
162 static boolean_t
163 esp_kstat_init(ipsecesp_stack_t *espstack, netstackid_t stackid)
165 espstack->esp_ksp = kstat_create_netstack("ipsecesp", 0, "esp_stat",
166 "net", KSTAT_TYPE_NAMED,
167 sizeof (esp_kstats_t) / sizeof (kstat_named_t), 0, stackid);
169 if (espstack->esp_ksp == NULL || espstack->esp_ksp->ks_data == NULL)
170 return (B_FALSE);
172 espstack->esp_kstats = espstack->esp_ksp->ks_data;
174 espstack->esp_ksp->ks_update = esp_kstat_update;
175 espstack->esp_ksp->ks_private = (void *)(uintptr_t)stackid;
177 #define K64 KSTAT_DATA_UINT64
178 #define KI(x) kstat_named_init(&(espstack->esp_kstats->esp_stat_##x), #x, K64)
180 KI(num_aalgs);
181 KI(num_ealgs);
182 KI(good_auth);
183 KI(bad_auth);
184 KI(bad_padding);
185 KI(replay_failures);
186 KI(replay_early_failures);
187 KI(keysock_in);
188 KI(out_requests);
189 KI(acquire_requests);
190 KI(bytes_expired);
191 KI(out_discards);
192 KI(crypto_sync);
193 KI(crypto_async);
194 KI(crypto_failures);
195 KI(bad_decrypt);
196 KI(sa_port_renumbers);
198 #undef KI
199 #undef K64
201 kstat_install(espstack->esp_ksp);
203 return (B_TRUE);
206 static int
207 esp_kstat_update(kstat_t *kp, int rw)
209 esp_kstats_t *ekp;
210 netstackid_t stackid = (zoneid_t)(uintptr_t)kp->ks_private;
211 netstack_t *ns;
212 ipsec_stack_t *ipss;
214 if ((kp == NULL) || (kp->ks_data == NULL))
215 return (EIO);
217 if (rw == KSTAT_WRITE)
218 return (EACCES);
220 ns = netstack_find_by_stackid(stackid);
221 if (ns == NULL)
222 return (-1);
223 ipss = ns->netstack_ipsec;
224 if (ipss == NULL) {
225 netstack_rele(ns);
226 return (-1);
228 ekp = (esp_kstats_t *)kp->ks_data;
230 rw_enter(&ipss->ipsec_alg_lock, RW_READER);
231 ekp->esp_stat_num_aalgs.value.ui64 =
232 ipss->ipsec_nalgs[IPSEC_ALG_AUTH];
233 ekp->esp_stat_num_ealgs.value.ui64 =
234 ipss->ipsec_nalgs[IPSEC_ALG_ENCR];
235 rw_exit(&ipss->ipsec_alg_lock);
237 netstack_rele(ns);
238 return (0);
241 #ifdef DEBUG
243 * Debug routine, useful to see pre-encryption data.
245 static char *
246 dump_msg(mblk_t *mp)
248 char tmp_str[3], tmp_line[256];
250 while (mp != NULL) {
251 unsigned char *ptr;
253 printf("mblk address 0x%p, length %ld, db_ref %d "
254 "type %d, base 0x%p, lim 0x%p\n",
255 (void *) mp, (long)(mp->b_wptr - mp->b_rptr),
256 mp->b_datap->db_ref, mp->b_datap->db_type,
257 (void *)mp->b_datap->db_base, (void *)mp->b_datap->db_lim);
258 ptr = mp->b_rptr;
260 tmp_line[0] = '\0';
261 while (ptr < mp->b_wptr) {
262 uint_t diff;
264 diff = (ptr - mp->b_rptr);
265 if (!(diff & 0x1f)) {
266 if (strlen(tmp_line) > 0) {
267 printf("bytes: %s\n", tmp_line);
268 tmp_line[0] = '\0';
271 if (!(diff & 0x3))
272 (void) strcat(tmp_line, " ");
273 (void) sprintf(tmp_str, "%02x", *ptr);
274 (void) strcat(tmp_line, tmp_str);
275 ptr++;
277 if (strlen(tmp_line) > 0)
278 printf("bytes: %s\n", tmp_line);
280 mp = mp->b_cont;
283 return ("\n");
286 #else /* DEBUG */
287 static char *
288 dump_msg(mblk_t *mp)
290 printf("Find value of mp %p.\n", mp);
291 return ("\n");
293 #endif /* DEBUG */
296 * Don't have to lock age_interval, as only one thread will access it at
297 * a time, because I control the one function that does with timeout().
299 static void
300 esp_ager(void *arg)
302 ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)arg;
303 netstack_t *ns = espstack->ipsecesp_netstack;
304 hrtime_t begin = gethrtime();
306 sadb_ager(&espstack->esp_sadb.s_v4, espstack->esp_pfkey_q,
307 espstack->ipsecesp_reap_delay, ns);
308 sadb_ager(&espstack->esp_sadb.s_v6, espstack->esp_pfkey_q,
309 espstack->ipsecesp_reap_delay, ns);
311 espstack->esp_event = sadb_retimeout(begin, espstack->esp_pfkey_q,
312 esp_ager, espstack,
313 &espstack->ipsecesp_age_interval, espstack->ipsecesp_age_int_max,
314 info.mi_idnum);
318 * Get an ESP NDD parameter.
320 /* ARGSUSED */
321 static int
322 ipsecesp_param_get(
323 queue_t *q,
324 mblk_t *mp,
325 caddr_t cp,
326 cred_t *cr)
328 ipsecespparam_t *ipsecesppa = (ipsecespparam_t *)cp;
329 uint_t value;
330 ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)q->q_ptr;
332 mutex_enter(&espstack->ipsecesp_param_lock);
333 value = ipsecesppa->ipsecesp_param_value;
334 mutex_exit(&espstack->ipsecesp_param_lock);
336 (void) mi_mpprintf(mp, "%u", value);
337 return (0);
341 * This routine sets an NDD variable in a ipsecespparam_t structure.
343 /* ARGSUSED */
344 static int
345 ipsecesp_param_set(
346 queue_t *q,
347 mblk_t *mp,
348 char *value,
349 caddr_t cp,
350 cred_t *cr)
352 ulong_t new_value;
353 ipsecespparam_t *ipsecesppa = (ipsecespparam_t *)cp;
354 ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)q->q_ptr;
357 * Fail the request if the new value does not lie within the
358 * required bounds.
360 if (ddi_strtoul(value, NULL, 10, &new_value) != 0 ||
361 new_value < ipsecesppa->ipsecesp_param_min ||
362 new_value > ipsecesppa->ipsecesp_param_max) {
363 return (EINVAL);
366 /* Set the new value */
367 mutex_enter(&espstack->ipsecesp_param_lock);
368 ipsecesppa->ipsecesp_param_value = new_value;
369 mutex_exit(&espstack->ipsecesp_param_lock);
370 return (0);
374 * Using lifetime NDD variables, fill in an extended combination's
375 * lifetime information.
377 void
378 ipsecesp_fill_defs(sadb_x_ecomb_t *ecomb, netstack_t *ns)
380 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
382 ecomb->sadb_x_ecomb_soft_bytes = espstack->ipsecesp_default_soft_bytes;
383 ecomb->sadb_x_ecomb_hard_bytes = espstack->ipsecesp_default_hard_bytes;
384 ecomb->sadb_x_ecomb_soft_addtime =
385 espstack->ipsecesp_default_soft_addtime;
386 ecomb->sadb_x_ecomb_hard_addtime =
387 espstack->ipsecesp_default_hard_addtime;
388 ecomb->sadb_x_ecomb_soft_usetime =
389 espstack->ipsecesp_default_soft_usetime;
390 ecomb->sadb_x_ecomb_hard_usetime =
391 espstack->ipsecesp_default_hard_usetime;
395 * Initialize things for ESP at module load time.
397 boolean_t
398 ipsecesp_ddi_init(void)
400 esp_taskq = taskq_create("esp_taskq", 1, minclsyspri,
401 IPSEC_TASKQ_MIN, IPSEC_TASKQ_MAX, 0);
404 * We want to be informed each time a stack is created or
405 * destroyed in the kernel, so we can maintain the
406 * set of ipsecesp_stack_t's.
408 netstack_register(NS_IPSECESP, ipsecesp_stack_init, NULL,
409 ipsecesp_stack_fini);
411 return (B_TRUE);
415 * Walk through the param array specified registering each element with the
416 * named dispatch handler.
418 static boolean_t
419 ipsecesp_param_register(IDP *ndp, ipsecespparam_t *espp, int cnt)
421 for (; cnt-- > 0; espp++) {
422 if (espp->ipsecesp_param_name != NULL &&
423 espp->ipsecesp_param_name[0]) {
424 if (!nd_load(ndp,
425 espp->ipsecesp_param_name,
426 ipsecesp_param_get, ipsecesp_param_set,
427 (caddr_t)espp)) {
428 nd_free(ndp);
429 return (B_FALSE);
433 return (B_TRUE);
437 * Initialize things for ESP for each stack instance
439 static void *
440 ipsecesp_stack_init(netstackid_t stackid, netstack_t *ns)
442 ipsecesp_stack_t *espstack;
443 ipsecespparam_t *espp;
445 espstack = (ipsecesp_stack_t *)kmem_zalloc(sizeof (*espstack),
446 KM_SLEEP);
447 espstack->ipsecesp_netstack = ns;
449 espp = (ipsecespparam_t *)kmem_alloc(sizeof (lcl_param_arr), KM_SLEEP);
450 espstack->ipsecesp_params = espp;
451 bcopy(lcl_param_arr, espp, sizeof (lcl_param_arr));
453 (void) ipsecesp_param_register(&espstack->ipsecesp_g_nd, espp,
454 A_CNT(lcl_param_arr));
456 (void) esp_kstat_init(espstack, stackid);
458 espstack->esp_sadb.s_acquire_timeout =
459 &espstack->ipsecesp_acquire_timeout;
460 sadbp_init("ESP", &espstack->esp_sadb, SADB_SATYPE_ESP, esp_hash_size,
461 espstack->ipsecesp_netstack);
463 mutex_init(&espstack->ipsecesp_param_lock, NULL, MUTEX_DEFAULT, 0);
465 ip_drop_register(&espstack->esp_dropper, "IPsec ESP");
466 return (espstack);
470 * Destroy things for ESP at module unload time.
472 void
473 ipsecesp_ddi_destroy(void)
475 netstack_unregister(NS_IPSECESP);
476 taskq_destroy(esp_taskq);
480 * Destroy things for ESP for one stack instance
482 static void
483 ipsecesp_stack_fini(netstackid_t stackid, void *arg)
485 ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)arg;
487 if (espstack->esp_pfkey_q != NULL) {
488 (void) quntimeout(espstack->esp_pfkey_q, espstack->esp_event);
490 espstack->esp_sadb.s_acquire_timeout = NULL;
491 sadbp_destroy(&espstack->esp_sadb, espstack->ipsecesp_netstack);
492 ip_drop_unregister(&espstack->esp_dropper);
493 mutex_destroy(&espstack->ipsecesp_param_lock);
494 nd_free(&espstack->ipsecesp_g_nd);
496 kmem_free(espstack->ipsecesp_params, sizeof (lcl_param_arr));
497 espstack->ipsecesp_params = NULL;
498 kstat_delete_netstack(espstack->esp_ksp, stackid);
499 espstack->esp_ksp = NULL;
500 espstack->esp_kstats = NULL;
501 kmem_free(espstack, sizeof (*espstack));
505 * ESP module open routine, which is here for keysock plumbing.
506 * Keysock is pushed over {AH,ESP} which is an artifact from the Bad Old
507 * Days of export control, and fears that ESP would not be allowed
508 * to be shipped at all by default. Eventually, keysock should
509 * either access AH and ESP via modstubs or krtld dependencies, or
510 * perhaps be folded in with AH and ESP into a single IPsec/netsec
511 * module ("netsec" if PF_KEY provides more than AH/ESP keying tables).
513 /* ARGSUSED */
514 static int
515 ipsecesp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
517 netstack_t *ns;
518 ipsecesp_stack_t *espstack;
520 if (secpolicy_ip_config(credp, B_FALSE) != 0)
521 return (EPERM);
523 if (q->q_ptr != NULL)
524 return (0); /* Re-open of an already open instance. */
526 if (sflag != MODOPEN)
527 return (EINVAL);
529 ns = netstack_find_by_cred(credp);
530 ASSERT(ns != NULL);
531 espstack = ns->netstack_ipsecesp;
532 ASSERT(espstack != NULL);
534 q->q_ptr = espstack;
535 WR(q)->q_ptr = q->q_ptr;
537 qprocson(q);
538 return (0);
542 * ESP module close routine.
544 /* ARGSUSED */
545 static int
546 ipsecesp_close(queue_t *q, int flags __unused, cred_t *credp __unused)
548 ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)q->q_ptr;
551 * Clean up q_ptr, if needed.
553 qprocsoff(q);
555 /* Keysock queue check is safe, because of OCEXCL perimeter. */
557 if (q == espstack->esp_pfkey_q) {
558 esp1dbg(espstack,
559 ("ipsecesp_close: Ummm... keysock is closing ESP.\n"));
560 espstack->esp_pfkey_q = NULL;
561 /* Detach qtimeouts. */
562 (void) quntimeout(q, espstack->esp_event);
565 netstack_rele(espstack->ipsecesp_netstack);
566 return (0);
570 * Add a number of bytes to what the SA has protected so far. Return
571 * B_TRUE if the SA can still protect that many bytes.
573 * Caller must REFRELE the passed-in assoc. This function must REFRELE
574 * any obtained peer SA.
576 static boolean_t
577 esp_age_bytes(ipsa_t *assoc, uint64_t bytes, boolean_t inbound)
579 ipsa_t *inassoc, *outassoc;
580 isaf_t *bucket;
581 boolean_t inrc, outrc, isv6;
582 sadb_t *sp;
583 int outhash;
584 netstack_t *ns = assoc->ipsa_netstack;
585 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
587 /* No peer? No problem! */
588 if (!assoc->ipsa_haspeer) {
589 return (sadb_age_bytes(espstack->esp_pfkey_q, assoc, bytes,
590 B_TRUE));
594 * Otherwise, we want to grab both the original assoc and its peer.
595 * There might be a race for this, but if it's a real race, two
596 * expire messages may occur. We limit this by only sending the
597 * expire message on one of the peers, we'll pick the inbound
598 * arbitrarily.
600 * If we need tight synchronization on the peer SA, then we need to
601 * reconsider.
604 /* Use address length to select IPv6/IPv4 */
605 isv6 = (assoc->ipsa_addrfam == AF_INET6);
606 sp = isv6 ? &espstack->esp_sadb.s_v6 : &espstack->esp_sadb.s_v4;
608 if (inbound) {
609 inassoc = assoc;
610 if (isv6) {
611 outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *)
612 &inassoc->ipsa_dstaddr));
613 } else {
614 outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *)
615 &inassoc->ipsa_dstaddr));
617 bucket = &sp->sdb_of[outhash];
618 mutex_enter(&bucket->isaf_lock);
619 outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi,
620 inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr,
621 inassoc->ipsa_addrfam);
622 mutex_exit(&bucket->isaf_lock);
623 if (outassoc == NULL) {
624 /* Q: Do we wish to set haspeer == B_FALSE? */
625 esp0dbg(("esp_age_bytes: "
626 "can't find peer for inbound.\n"));
627 return (sadb_age_bytes(espstack->esp_pfkey_q, inassoc,
628 bytes, B_TRUE));
630 } else {
631 outassoc = assoc;
632 bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi);
633 mutex_enter(&bucket->isaf_lock);
634 inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi,
635 outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr,
636 outassoc->ipsa_addrfam);
637 mutex_exit(&bucket->isaf_lock);
638 if (inassoc == NULL) {
639 /* Q: Do we wish to set haspeer == B_FALSE? */
640 esp0dbg(("esp_age_bytes: "
641 "can't find peer for outbound.\n"));
642 return (sadb_age_bytes(espstack->esp_pfkey_q, outassoc,
643 bytes, B_TRUE));
647 inrc = sadb_age_bytes(espstack->esp_pfkey_q, inassoc, bytes, B_TRUE);
648 outrc = sadb_age_bytes(espstack->esp_pfkey_q, outassoc, bytes, B_FALSE);
651 * REFRELE any peer SA.
653 * Because of the multi-line macro nature of IPSA_REFRELE, keep
654 * them in { }.
656 if (inbound) {
657 IPSA_REFRELE(outassoc);
658 } else {
659 IPSA_REFRELE(inassoc);
662 return (inrc && outrc);
666 * Do incoming NAT-T manipulations for packet.
667 * Returns NULL if the mblk chain is consumed.
669 static mblk_t *
670 esp_fix_natt_checksums(mblk_t *data_mp, ipsa_t *assoc)
672 ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
673 tcpha_t *tcpha;
674 udpha_t *udpha;
675 /* Initialize to our inbound cksum adjustment... */
676 uint32_t sum = assoc->ipsa_inbound_cksum;
678 switch (ipha->ipha_protocol) {
679 case IPPROTO_TCP:
680 tcpha = (tcpha_t *)(data_mp->b_rptr +
681 IPH_HDR_LENGTH(ipha));
683 #define DOWN_SUM(x) (x) = ((x) & 0xFFFF) + ((x) >> 16)
684 sum += ~ntohs(tcpha->tha_sum) & 0xFFFF;
685 DOWN_SUM(sum);
686 DOWN_SUM(sum);
687 tcpha->tha_sum = ~htons(sum);
688 break;
689 case IPPROTO_UDP:
690 udpha = (udpha_t *)(data_mp->b_rptr + IPH_HDR_LENGTH(ipha));
692 if (udpha->uha_checksum != 0) {
693 /* Adujst if the inbound one was not zero. */
694 sum += ~ntohs(udpha->uha_checksum) & 0xFFFF;
695 DOWN_SUM(sum);
696 DOWN_SUM(sum);
697 udpha->uha_checksum = ~htons(sum);
698 if (udpha->uha_checksum == 0)
699 udpha->uha_checksum = 0xFFFF;
701 #undef DOWN_SUM
702 break;
703 case IPPROTO_IP:
705 * This case is only an issue for self-encapsulated
706 * packets. So for now, fall through.
708 break;
710 return (data_mp);
715 * Strip ESP header, check padding, and fix IP header.
716 * Returns B_TRUE on success, B_FALSE if an error occured.
718 static boolean_t
719 esp_strip_header(mblk_t *data_mp, boolean_t isv4, uint32_t ivlen,
720 kstat_named_t **counter, ipsecesp_stack_t *espstack)
722 ipha_t *ipha;
723 ip6_t *ip6h;
724 uint_t divpoint;
725 mblk_t *scratch;
726 uint8_t nexthdr, padlen;
727 uint8_t lastpad;
728 ipsec_stack_t *ipss = espstack->ipsecesp_netstack->netstack_ipsec;
729 uint8_t *lastbyte;
732 * Strip ESP data and fix IP header.
734 * XXX In case the beginning of esp_inbound() changes to not do a
735 * pullup, this part of the code can remain unchanged.
737 if (isv4) {
738 ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (ipha_t));
739 ipha = (ipha_t *)data_mp->b_rptr;
740 ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (esph_t) +
741 IPH_HDR_LENGTH(ipha));
742 divpoint = IPH_HDR_LENGTH(ipha);
743 } else {
744 ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (ip6_t));
745 ip6h = (ip6_t *)data_mp->b_rptr;
746 divpoint = ip_hdr_length_v6(data_mp, ip6h);
749 scratch = data_mp;
750 while (scratch->b_cont != NULL)
751 scratch = scratch->b_cont;
753 ASSERT((scratch->b_wptr - scratch->b_rptr) >= 3);
756 * "Next header" and padding length are the last two bytes in the
757 * ESP-protected datagram, thus the explicit - 1 and - 2.
758 * lastpad is the last byte of the padding, which can be used for
759 * a quick check to see if the padding is correct.
761 lastbyte = scratch->b_wptr - 1;
762 nexthdr = *lastbyte--;
763 padlen = *lastbyte--;
765 if (isv4) {
766 /* Fix part of the IP header. */
767 ipha->ipha_protocol = nexthdr;
769 * Reality check the padlen. The explicit - 2 is for the
770 * padding length and the next-header bytes.
772 if (padlen >= ntohs(ipha->ipha_length) - sizeof (ipha_t) - 2 -
773 sizeof (esph_t) - ivlen) {
774 ESP_BUMP_STAT(espstack, bad_decrypt);
775 ipsec_rl_strlog(espstack->ipsecesp_netstack,
776 info.mi_idnum, 0, 0,
777 SL_ERROR | SL_WARN,
778 "Corrupt ESP packet (padlen too big).\n");
779 esp1dbg(espstack, ("padlen (%d) is greater than:\n",
780 padlen));
781 esp1dbg(espstack, ("pkt len(%d) - ip hdr - esp "
782 "hdr - ivlen(%d) = %d.\n",
783 ntohs(ipha->ipha_length), ivlen,
784 (int)(ntohs(ipha->ipha_length) - sizeof (ipha_t) -
785 2 - sizeof (esph_t) - ivlen)));
786 *counter = DROPPER(ipss, ipds_esp_bad_padlen);
787 return (B_FALSE);
791 * Fix the rest of the header. The explicit - 2 is for the
792 * padding length and the next-header bytes.
794 ipha->ipha_length = htons(ntohs(ipha->ipha_length) - padlen -
795 2 - sizeof (esph_t) - ivlen);
796 ipha->ipha_hdr_checksum = 0;
797 ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha);
798 } else {
799 if (ip6h->ip6_nxt == IPPROTO_ESP) {
800 ip6h->ip6_nxt = nexthdr;
801 } else {
802 ip_pkt_t ipp;
804 bzero(&ipp, sizeof (ipp));
805 (void) ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp,
806 NULL);
807 if (ipp.ipp_dstopts != NULL) {
808 ipp.ipp_dstopts->ip6d_nxt = nexthdr;
809 } else if (ipp.ipp_rthdr != NULL) {
810 ipp.ipp_rthdr->ip6r_nxt = nexthdr;
811 } else if (ipp.ipp_hopopts != NULL) {
812 ipp.ipp_hopopts->ip6h_nxt = nexthdr;
813 } else {
814 /* Panic a DEBUG kernel. */
815 ASSERT(ipp.ipp_hopopts != NULL);
816 /* Otherwise, pretend it's IP + ESP. */
817 cmn_err(CE_WARN, "ESP IPv6 headers wrong.\n");
818 ip6h->ip6_nxt = nexthdr;
822 if (padlen >= ntohs(ip6h->ip6_plen) - 2 - sizeof (esph_t) -
823 ivlen) {
824 ESP_BUMP_STAT(espstack, bad_decrypt);
825 ipsec_rl_strlog(espstack->ipsecesp_netstack,
826 info.mi_idnum, 0, 0,
827 SL_ERROR | SL_WARN,
828 "Corrupt ESP packet (v6 padlen too big).\n");
829 esp1dbg(espstack, ("padlen (%d) is greater than:\n",
830 padlen));
831 esp1dbg(espstack,
832 ("pkt len(%u) - ip hdr - esp hdr - ivlen(%d) = "
833 "%u.\n", (unsigned)(ntohs(ip6h->ip6_plen)
834 + sizeof (ip6_t)), ivlen,
835 (unsigned)(ntohs(ip6h->ip6_plen) - 2 -
836 sizeof (esph_t) - ivlen)));
837 *counter = DROPPER(ipss, ipds_esp_bad_padlen);
838 return (B_FALSE);
843 * Fix the rest of the header. The explicit - 2 is for the
844 * padding length and the next-header bytes. IPv6 is nice,
845 * because there's no hdr checksum!
847 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - padlen -
848 2 - sizeof (esph_t) - ivlen);
851 if (espstack->ipsecesp_padding_check > 0 && padlen > 0) {
853 * Weak padding check: compare last-byte to length, they
854 * should be equal.
856 lastpad = *lastbyte--;
858 if (padlen != lastpad) {
859 ipsec_rl_strlog(espstack->ipsecesp_netstack,
860 info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
861 "Corrupt ESP packet (lastpad != padlen).\n");
862 esp1dbg(espstack,
863 ("lastpad (%d) not equal to padlen (%d):\n",
864 lastpad, padlen));
865 ESP_BUMP_STAT(espstack, bad_padding);
866 *counter = DROPPER(ipss, ipds_esp_bad_padding);
867 return (B_FALSE);
871 * Strong padding check: Check all pad bytes to see that
872 * they're ascending. Go backwards using a descending counter
873 * to verify. padlen == 1 is checked by previous block, so
874 * only bother if we've more than 1 byte of padding.
875 * Consequently, start the check one byte before the location
876 * of "lastpad".
878 if (espstack->ipsecesp_padding_check > 1) {
880 * This assert may have to become an if and a pullup
881 * if we start accepting multi-dblk mblks. For now,
882 * though, any packet here will have been pulled up in
883 * esp_inbound.
885 ASSERT(MBLKL(scratch) >= lastpad + 3);
888 * Use "--lastpad" because we already checked the very
889 * last pad byte previously.
891 while (--lastpad != 0) {
892 if (lastpad != *lastbyte) {
893 ipsec_rl_strlog(
894 espstack->ipsecesp_netstack,
895 info.mi_idnum, 0, 0,
896 SL_ERROR | SL_WARN, "Corrupt ESP "
897 "packet (bad padding).\n");
898 esp1dbg(espstack,
899 ("padding not in correct"
900 " format:\n"));
901 ESP_BUMP_STAT(espstack, bad_padding);
902 *counter = DROPPER(ipss,
903 ipds_esp_bad_padding);
904 return (B_FALSE);
906 lastbyte--;
911 /* Trim off the padding. */
912 ASSERT(data_mp->b_cont == NULL);
913 data_mp->b_wptr -= (padlen + 2);
916 * Remove the ESP header.
918 * The above assertions about data_mp's size will make this work.
920 * XXX Question: If I send up and get back a contiguous mblk,
921 * would it be quicker to bcopy over, or keep doing the dupb stuff?
922 * I go with copying for now.
925 if (IS_P2ALIGNED(data_mp->b_rptr, sizeof (uint32_t)) &&
926 IS_P2ALIGNED(ivlen, sizeof (uint32_t))) {
927 uint8_t *start = data_mp->b_rptr;
928 uint32_t *src, *dst;
930 src = (uint32_t *)(start + divpoint);
931 dst = (uint32_t *)(start + divpoint + sizeof (esph_t) + ivlen);
933 ASSERT(IS_P2ALIGNED(dst, sizeof (uint32_t)) &&
934 IS_P2ALIGNED(src, sizeof (uint32_t)));
936 do {
937 src--;
938 dst--;
939 *dst = *src;
940 } while (src != (uint32_t *)start);
942 data_mp->b_rptr = (uchar_t *)dst;
943 } else {
944 uint8_t *start = data_mp->b_rptr;
945 uint8_t *src, *dst;
947 src = start + divpoint;
948 dst = src + sizeof (esph_t) + ivlen;
950 do {
951 src--;
952 dst--;
953 *dst = *src;
954 } while (src != start);
956 data_mp->b_rptr = dst;
959 esp2dbg(espstack, ("data_mp after inbound ESP adjustment:\n"));
960 esp2dbg(espstack, (dump_msg(data_mp)));
962 return (B_TRUE);
966 * Updating use times can be tricky business if the ipsa_haspeer flag is
967 * set. This function is called once in an SA's lifetime.
969 * Caller has to REFRELE "assoc" which is passed in. This function has
970 * to REFRELE any peer SA that is obtained.
972 static void
973 esp_set_usetime(ipsa_t *assoc, boolean_t inbound)
975 ipsa_t *inassoc, *outassoc;
976 isaf_t *bucket;
977 sadb_t *sp;
978 int outhash;
979 boolean_t isv6;
980 netstack_t *ns = assoc->ipsa_netstack;
981 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
983 /* No peer? No problem! */
984 if (!assoc->ipsa_haspeer) {
985 sadb_set_usetime(assoc);
986 return;
990 * Otherwise, we want to grab both the original assoc and its peer.
991 * There might be a race for this, but if it's a real race, the times
992 * will be out-of-synch by at most a second, and since our time
993 * granularity is a second, this won't be a problem.
995 * If we need tight synchronization on the peer SA, then we need to
996 * reconsider.
999 /* Use address length to select IPv6/IPv4 */
1000 isv6 = (assoc->ipsa_addrfam == AF_INET6);
1001 sp = isv6 ? &espstack->esp_sadb.s_v6 : &espstack->esp_sadb.s_v4;
1003 if (inbound) {
1004 inassoc = assoc;
1005 if (isv6) {
1006 outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *)
1007 &inassoc->ipsa_dstaddr));
1008 } else {
1009 outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *)
1010 &inassoc->ipsa_dstaddr));
1012 bucket = &sp->sdb_of[outhash];
1013 mutex_enter(&bucket->isaf_lock);
1014 outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi,
1015 inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr,
1016 inassoc->ipsa_addrfam);
1017 mutex_exit(&bucket->isaf_lock);
1018 if (outassoc == NULL) {
1019 /* Q: Do we wish to set haspeer == B_FALSE? */
1020 esp0dbg(("esp_set_usetime: "
1021 "can't find peer for inbound.\n"));
1022 sadb_set_usetime(inassoc);
1023 return;
1025 } else {
1026 outassoc = assoc;
1027 bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi);
1028 mutex_enter(&bucket->isaf_lock);
1029 inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi,
1030 outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr,
1031 outassoc->ipsa_addrfam);
1032 mutex_exit(&bucket->isaf_lock);
1033 if (inassoc == NULL) {
1034 /* Q: Do we wish to set haspeer == B_FALSE? */
1035 esp0dbg(("esp_set_usetime: "
1036 "can't find peer for outbound.\n"));
1037 sadb_set_usetime(outassoc);
1038 return;
1042 /* Update usetime on both. */
1043 sadb_set_usetime(inassoc);
1044 sadb_set_usetime(outassoc);
1047 * REFRELE any peer SA.
1049 * Because of the multi-line macro nature of IPSA_REFRELE, keep
1050 * them in { }.
1052 if (inbound) {
1053 IPSA_REFRELE(outassoc);
1054 } else {
1055 IPSA_REFRELE(inassoc);
1060 * Handle ESP inbound data for IPv4 and IPv6.
1061 * On success returns B_TRUE, on failure returns B_FALSE and frees the
1062 * mblk chain data_mp.
1064 mblk_t *
1065 esp_inbound(mblk_t *data_mp, void *arg, ip_recv_attr_t *ira)
1067 esph_t *esph = (esph_t *)arg;
1068 ipsa_t *ipsa = ira->ira_ipsec_esp_sa;
1069 netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
1070 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1071 ipsec_stack_t *ipss = ns->netstack_ipsec;
1074 * We may wish to check replay in-range-only here as an optimization.
1075 * Include the reality check of ipsa->ipsa_replay >
1076 * ipsa->ipsa_replay_wsize for times when it's the first N packets,
1077 * where N == ipsa->ipsa_replay_wsize.
1079 * Another check that may come here later is the "collision" check.
1080 * If legitimate packets flow quickly enough, this won't be a problem,
1081 * but collisions may cause authentication algorithm crunching to
1082 * take place when it doesn't need to.
1084 if (!sadb_replay_peek(ipsa, esph->esph_replay)) {
1085 ESP_BUMP_STAT(espstack, replay_early_failures);
1086 IP_ESP_BUMP_STAT(ipss, in_discards);
1087 ip_drop_packet(data_mp, B_TRUE, ira->ira_ill,
1088 DROPPER(ipss, ipds_esp_early_replay),
1089 &espstack->esp_dropper);
1090 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
1091 return (NULL);
1095 * Adjust the IP header's payload length to reflect the removal
1096 * of the ICV.
1098 if (!(ira->ira_flags & IRAF_IS_IPV4)) {
1099 ip6_t *ip6h = (ip6_t *)data_mp->b_rptr;
1100 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
1101 ipsa->ipsa_mac_len);
1102 } else {
1103 ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
1104 ipha->ipha_length = htons(ntohs(ipha->ipha_length) -
1105 ipsa->ipsa_mac_len);
1108 /* submit the request to the crypto framework */
1109 return (esp_submit_req_inbound(data_mp, ira, ipsa,
1110 (uint8_t *)esph - data_mp->b_rptr));
1113 /* XXX refactor me */
1115 * Handle the SADB_GETSPI message. Create a larval SA.
1117 static void
1118 esp_getspi(mblk_t *mp, keysock_in_t *ksi, ipsecesp_stack_t *espstack)
1120 ipsa_t *newbie, *target;
1121 isaf_t *outbound, *inbound;
1122 int rc, diagnostic;
1123 sadb_sa_t *assoc;
1124 keysock_out_t *kso;
1125 uint32_t newspi;
1128 * Randomly generate a proposed SPI value
1130 if (cl_inet_getspi != NULL) {
1131 cl_inet_getspi(espstack->ipsecesp_netstack->netstack_stackid,
1132 IPPROTO_ESP, (uint8_t *)&newspi, sizeof (uint32_t), NULL);
1133 } else {
1134 (void) random_get_pseudo_bytes((uint8_t *)&newspi,
1135 sizeof (uint32_t));
1137 newbie = sadb_getspi(ksi, newspi, &diagnostic,
1138 espstack->ipsecesp_netstack, IPPROTO_ESP);
1140 if (newbie == NULL) {
1141 sadb_pfkey_error(espstack->esp_pfkey_q, mp, ENOMEM, diagnostic,
1142 ksi->ks_in_serial);
1143 return;
1144 } else if (newbie == (ipsa_t *)-1) {
1145 sadb_pfkey_error(espstack->esp_pfkey_q, mp, EINVAL, diagnostic,
1146 ksi->ks_in_serial);
1147 return;
1151 * XXX - We may randomly collide. We really should recover from this.
1152 * Unfortunately, that could require spending way-too-much-time
1153 * in here. For now, let the user retry.
1156 if (newbie->ipsa_addrfam == AF_INET6) {
1157 outbound = OUTBOUND_BUCKET_V6(&espstack->esp_sadb.s_v6,
1158 *(uint32_t *)(newbie->ipsa_dstaddr));
1159 inbound = INBOUND_BUCKET(&espstack->esp_sadb.s_v6,
1160 newbie->ipsa_spi);
1161 } else {
1162 ASSERT(newbie->ipsa_addrfam == AF_INET);
1163 outbound = OUTBOUND_BUCKET_V4(&espstack->esp_sadb.s_v4,
1164 *(uint32_t *)(newbie->ipsa_dstaddr));
1165 inbound = INBOUND_BUCKET(&espstack->esp_sadb.s_v4,
1166 newbie->ipsa_spi);
1169 mutex_enter(&outbound->isaf_lock);
1170 mutex_enter(&inbound->isaf_lock);
1173 * Check for collisions (i.e. did sadb_getspi() return with something
1174 * that already exists?).
1176 * Try outbound first. Even though SADB_GETSPI is traditionally
1177 * for inbound SAs, you never know what a user might do.
1179 target = ipsec_getassocbyspi(outbound, newbie->ipsa_spi,
1180 newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, newbie->ipsa_addrfam);
1181 if (target == NULL) {
1182 target = ipsec_getassocbyspi(inbound, newbie->ipsa_spi,
1183 newbie->ipsa_srcaddr, newbie->ipsa_dstaddr,
1184 newbie->ipsa_addrfam);
1188 * I don't have collisions elsewhere!
1189 * (Nor will I because I'm still holding inbound/outbound locks.)
1192 if (target != NULL) {
1193 rc = EEXIST;
1194 IPSA_REFRELE(target);
1195 } else {
1197 * sadb_insertassoc() also checks for collisions, so
1198 * if there's a colliding entry, rc will be set
1199 * to EEXIST.
1201 rc = sadb_insertassoc(newbie, inbound);
1202 newbie->ipsa_hardexpiretime = gethrestime_sec();
1203 newbie->ipsa_hardexpiretime +=
1204 espstack->ipsecesp_larval_timeout;
1208 * Can exit outbound mutex. Hold inbound until we're done
1209 * with newbie.
1211 mutex_exit(&outbound->isaf_lock);
1213 if (rc != 0) {
1214 mutex_exit(&inbound->isaf_lock);
1215 IPSA_REFRELE(newbie);
1216 sadb_pfkey_error(espstack->esp_pfkey_q, mp, rc,
1217 SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial);
1218 return;
1222 /* Can write here because I'm still holding the bucket lock. */
1223 newbie->ipsa_type = SADB_SATYPE_ESP;
1226 * Construct successful return message. We have one thing going
1227 * for us in PF_KEY v2. That's the fact that
1228 * sizeof (sadb_spirange_t) == sizeof (sadb_sa_t)
1230 assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE];
1231 assoc->sadb_sa_exttype = SADB_EXT_SA;
1232 assoc->sadb_sa_spi = newbie->ipsa_spi;
1233 *((uint64_t *)(&assoc->sadb_sa_replay)) = 0;
1234 mutex_exit(&inbound->isaf_lock);
1236 /* Convert KEYSOCK_IN to KEYSOCK_OUT. */
1237 kso = (keysock_out_t *)ksi;
1238 kso->ks_out_len = sizeof (*kso);
1239 kso->ks_out_serial = ksi->ks_in_serial;
1240 kso->ks_out_type = KEYSOCK_OUT;
1243 * Can safely putnext() to esp_pfkey_q, because this is a turnaround
1244 * from the esp_pfkey_q.
1246 putnext(espstack->esp_pfkey_q, mp);
1250 * Insert the ESP header into a packet. Duplicate an mblk, and insert a newly
1251 * allocated mblk with the ESP header in between the two.
1253 static boolean_t
1254 esp_insert_esp(mblk_t *mp, mblk_t *esp_mp, uint_t divpoint,
1255 ipsecesp_stack_t *espstack)
1257 mblk_t *split_mp = mp;
1258 uint_t wheretodiv = divpoint;
1260 while ((split_mp->b_wptr - split_mp->b_rptr) < wheretodiv) {
1261 wheretodiv -= (split_mp->b_wptr - split_mp->b_rptr);
1262 split_mp = split_mp->b_cont;
1263 ASSERT(split_mp != NULL);
1266 if (split_mp->b_wptr - split_mp->b_rptr != wheretodiv) {
1267 mblk_t *scratch;
1269 /* "scratch" is the 2nd half, split_mp is the first. */
1270 scratch = dupb(split_mp);
1271 if (scratch == NULL) {
1272 esp1dbg(espstack,
1273 ("esp_insert_esp: can't allocate scratch.\n"));
1274 return (B_FALSE);
1276 /* NOTE: dupb() doesn't set b_cont appropriately. */
1277 scratch->b_cont = split_mp->b_cont;
1278 scratch->b_rptr += wheretodiv;
1279 split_mp->b_wptr = split_mp->b_rptr + wheretodiv;
1280 split_mp->b_cont = scratch;
1283 * At this point, split_mp is exactly "wheretodiv" bytes long, and
1284 * holds the end of the pre-ESP part of the datagram.
1286 esp_mp->b_cont = split_mp->b_cont;
1287 split_mp->b_cont = esp_mp;
1289 return (B_TRUE);
1293 * Section 7 of RFC 3947 says:
1295 * 7. Recovering from the Expiring NAT Mappings
1297 * There are cases where NAT box decides to remove mappings that are still
1298 * alive (for example, when the keepalive interval is too long, or when the
1299 * NAT box is rebooted). To recover from this, ends that are NOT behind
1300 * NAT SHOULD use the last valid UDP encapsulated IKE or IPsec packet from
1301 * the other end to determine which IP and port addresses should be used.
1302 * The host behind dynamic NAT MUST NOT do this, as otherwise it opens a
1303 * DoS attack possibility because the IP address or port of the other host
1304 * will not change (it is not behind NAT).
1306 * Keepalives cannot be used for these purposes, as they are not
1307 * authenticated, but any IKE authenticated IKE packet or ESP packet can be
1308 * used to detect whether the IP address or the port has changed.
1310 * The following function will check an SA and its explicitly-set pair to see
1311 * if the NAT-T remote port matches the received packet (which must have
1312 * passed ESP authentication, see esp_in_done() for the caller context). If
1313 * there is a mismatch, the SAs are updated. It is not important if we race
1314 * with a transmitting thread, as if there is a transmitting thread, it will
1315 * merely emit a packet that will most-likely be dropped.
1317 * "ports" are ordered src,dst, and assoc is an inbound SA, where src should
1318 * match ipsa_remote_nat_port and dst should match ipsa_local_nat_port.
1320 #ifdef _LITTLE_ENDIAN
1321 #define FIRST_16(x) ((x) & 0xFFFF)
1322 #define NEXT_16(x) (((x) >> 16) & 0xFFFF)
1323 #else
1324 #define FIRST_16(x) (((x) >> 16) & 0xFFFF)
1325 #define NEXT_16(x) ((x) & 0xFFFF)
1326 #endif
1327 static void
1328 esp_port_freshness(uint32_t ports, ipsa_t *assoc)
1330 uint16_t remote = FIRST_16(ports);
1331 uint16_t local = NEXT_16(ports);
1332 ipsa_t *outbound_peer;
1333 isaf_t *bucket;
1334 ipsecesp_stack_t *espstack = assoc->ipsa_netstack->netstack_ipsecesp;
1336 /* We found a conn_t, therefore local != 0. */
1337 ASSERT(local != 0);
1338 /* Assume an IPv4 SA. */
1339 ASSERT(assoc->ipsa_addrfam == AF_INET);
1342 * On-the-wire rport == 0 means something's very wrong.
1343 * An unpaired SA is also useless to us.
1344 * If we are behind the NAT, don't bother.
1345 * A zero local NAT port defaults to 4500, so check that too.
1346 * And, of course, if the ports already match, we don't need to
1347 * bother.
1349 if (remote == 0 || assoc->ipsa_otherspi == 0 ||
1350 (assoc->ipsa_flags & IPSA_F_BEHIND_NAT) ||
1351 (assoc->ipsa_remote_nat_port == 0 &&
1352 remote == htons(IPPORT_IKE_NATT)) ||
1353 remote == assoc->ipsa_remote_nat_port)
1354 return;
1356 /* Try and snag the peer. NOTE: Assume IPv4 for now. */
1357 bucket = OUTBOUND_BUCKET_V4(&(espstack->esp_sadb.s_v4),
1358 assoc->ipsa_srcaddr[0]);
1359 mutex_enter(&bucket->isaf_lock);
1360 outbound_peer = ipsec_getassocbyspi(bucket, assoc->ipsa_otherspi,
1361 assoc->ipsa_dstaddr, assoc->ipsa_srcaddr, AF_INET);
1362 mutex_exit(&bucket->isaf_lock);
1364 /* We probably lost a race to a deleting or expiring thread. */
1365 if (outbound_peer == NULL)
1366 return;
1369 * Hold the mutexes for both SAs so we don't race another inbound
1370 * thread. A lock-entry order shouldn't matter, since all other
1371 * per-ipsa locks are individually held-then-released.
1373 * Luckily, this has nothing to do with the remote-NAT address,
1374 * so we don't have to re-scribble the cached-checksum differential.
1376 mutex_enter(&outbound_peer->ipsa_lock);
1377 mutex_enter(&assoc->ipsa_lock);
1378 outbound_peer->ipsa_remote_nat_port = assoc->ipsa_remote_nat_port =
1379 remote;
1380 mutex_exit(&assoc->ipsa_lock);
1381 mutex_exit(&outbound_peer->ipsa_lock);
1382 IPSA_REFRELE(outbound_peer);
1383 ESP_BUMP_STAT(espstack, sa_port_renumbers);
1386 * Finish processing of an inbound ESP packet after processing by the
1387 * crypto framework.
1388 * - Remove the ESP header.
1389 * - Send packet back to IP.
1390 * If authentication was performed on the packet, this function is called
1391 * only if the authentication succeeded.
1392 * On success returns B_TRUE, on failure returns B_FALSE and frees the
1393 * mblk chain data_mp.
1395 static mblk_t *
1396 esp_in_done(mblk_t *data_mp, ip_recv_attr_t *ira, ipsec_crypto_t *ic)
1398 ipsa_t *assoc;
1399 uint_t espstart;
1400 uint32_t ivlen = 0;
1401 uint_t processed_len;
1402 esph_t *esph;
1403 kstat_named_t *counter;
1404 boolean_t is_natt;
1405 netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
1406 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1407 ipsec_stack_t *ipss = ns->netstack_ipsec;
1409 assoc = ira->ira_ipsec_esp_sa;
1410 ASSERT(assoc != NULL);
1412 is_natt = ((assoc->ipsa_flags & IPSA_F_NATT) != 0);
1414 /* get the pointer to the ESP header */
1415 if (assoc->ipsa_encr_alg == SADB_EALG_NULL) {
1416 /* authentication-only ESP */
1417 espstart = ic->ic_crypto_data.cd_offset;
1418 processed_len = ic->ic_crypto_data.cd_length;
1419 } else {
1420 /* encryption present */
1421 ivlen = assoc->ipsa_iv_len;
1422 if (assoc->ipsa_auth_alg == SADB_AALG_NONE) {
1423 /* encryption-only ESP */
1424 espstart = ic->ic_crypto_data.cd_offset -
1425 sizeof (esph_t) - assoc->ipsa_iv_len;
1426 processed_len = ic->ic_crypto_data.cd_length +
1427 ivlen;
1428 } else {
1429 /* encryption with authentication */
1430 espstart = ic->ic_crypto_dual_data.dd_offset1;
1431 processed_len = ic->ic_crypto_dual_data.dd_len2 +
1432 ivlen;
1436 esph = (esph_t *)(data_mp->b_rptr + espstart);
1438 if (assoc->ipsa_auth_alg != IPSA_AALG_NONE ||
1439 (assoc->ipsa_flags & IPSA_F_COMBINED)) {
1441 * Authentication passed if we reach this point.
1442 * Packets with authentication will have the ICV
1443 * after the crypto data. Adjust b_wptr before
1444 * making padlen checks.
1446 ESP_BUMP_STAT(espstack, good_auth);
1447 data_mp->b_wptr -= assoc->ipsa_mac_len;
1450 * Check replay window here!
1451 * For right now, assume keysock will set the replay window
1452 * size to zero for SAs that have an unspecified sender.
1453 * This may change...
1456 if (!sadb_replay_check(assoc, esph->esph_replay)) {
1458 * Log the event. As of now we print out an event.
1459 * Do not print the replay failure number, or else
1460 * syslog cannot collate the error messages. Printing
1461 * the replay number that failed opens a denial-of-
1462 * service attack.
1464 ipsec_assocfailure(info.mi_idnum, 0, 0,
1465 SL_ERROR | SL_WARN,
1466 "Replay failed for ESP spi 0x%x, dst %s.\n",
1467 assoc->ipsa_spi, assoc->ipsa_dstaddr,
1468 assoc->ipsa_addrfam, espstack->ipsecesp_netstack);
1469 ESP_BUMP_STAT(espstack, replay_failures);
1470 counter = DROPPER(ipss, ipds_esp_replay);
1471 goto drop_and_bail;
1474 if (is_natt) {
1475 ASSERT(ira->ira_flags & IRAF_ESP_UDP_PORTS);
1476 ASSERT(ira->ira_esp_udp_ports != 0);
1477 esp_port_freshness(ira->ira_esp_udp_ports, assoc);
1481 esp_set_usetime(assoc, B_TRUE);
1483 if (!esp_age_bytes(assoc, processed_len, B_TRUE)) {
1484 /* The ipsa has hit hard expiration, LOG and AUDIT. */
1485 ipsec_assocfailure(info.mi_idnum, 0, 0,
1486 SL_ERROR | SL_WARN,
1487 "ESP association 0x%x, dst %s had bytes expire.\n",
1488 assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam,
1489 espstack->ipsecesp_netstack);
1490 ESP_BUMP_STAT(espstack, bytes_expired);
1491 counter = DROPPER(ipss, ipds_esp_bytes_expire);
1492 goto drop_and_bail;
1496 * Remove ESP header and padding from packet. I hope the compiler
1497 * spews "branch, predict taken" code for this.
1500 if (esp_strip_header(data_mp, (ira->ira_flags & IRAF_IS_IPV4),
1501 ivlen, &counter, espstack)) {
1503 if (is_system_labeled() && assoc->ipsa_tsl != NULL) {
1504 if (!ip_recv_attr_replace_label(ira, assoc->ipsa_tsl)) {
1505 ip_drop_packet(data_mp, B_TRUE, ira->ira_ill,
1506 DROPPER(ipss, ipds_ah_nomem),
1507 &espstack->esp_dropper);
1508 BUMP_MIB(ira->ira_ill->ill_ip_mib,
1509 ipIfStatsInDiscards);
1510 return (NULL);
1513 if (is_natt)
1514 return (esp_fix_natt_checksums(data_mp, assoc));
1516 if (assoc->ipsa_state == IPSA_STATE_IDLE) {
1518 * Cluster buffering case. Tell caller that we're
1519 * handling the packet.
1521 sadb_buf_pkt(assoc, data_mp, ira);
1522 return (NULL);
1525 return (data_mp);
1528 esp1dbg(espstack, ("esp_in_done: esp_strip_header() failed\n"));
1529 drop_and_bail:
1530 IP_ESP_BUMP_STAT(ipss, in_discards);
1531 ip_drop_packet(data_mp, B_TRUE, ira->ira_ill, counter,
1532 &espstack->esp_dropper);
1533 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
1534 return (NULL);
1538 * Called upon failing the inbound ICV check. The message passed as
1539 * argument is freed.
1541 static void
1542 esp_log_bad_auth(mblk_t *mp, ip_recv_attr_t *ira)
1544 ipsa_t *assoc = ira->ira_ipsec_esp_sa;
1545 netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
1546 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1547 ipsec_stack_t *ipss = ns->netstack_ipsec;
1550 * Log the event. Don't print to the console, block
1551 * potential denial-of-service attack.
1553 ESP_BUMP_STAT(espstack, bad_auth);
1555 ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN,
1556 "ESP Authentication failed for spi 0x%x, dst %s.\n",
1557 assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam,
1558 espstack->ipsecesp_netstack);
1560 IP_ESP_BUMP_STAT(ipss, in_discards);
1561 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
1562 DROPPER(ipss, ipds_esp_bad_auth),
1563 &espstack->esp_dropper);
1568 * Invoked for outbound packets after ESP processing. If the packet
1569 * also requires AH, performs the AH SA selection and AH processing.
1571 * Returns data_mp (possibly with AH added) unless data_mp was consumed
1572 * due to an error, or queued due to async. crypto or an ACQUIRE trigger.
1574 static mblk_t *
1575 esp_do_outbound_ah(mblk_t *data_mp, ip_xmit_attr_t *ixa)
1577 ipsec_action_t *ap;
1579 ap = ixa->ixa_ipsec_action;
1580 if (ap == NULL) {
1581 ipsec_policy_t *pp = ixa->ixa_ipsec_policy;
1582 ap = pp->ipsp_act;
1585 if (!ap->ipa_want_ah)
1586 return (data_mp);
1589 * Normally the AH SA would have already been put in place
1590 * but it could have been flushed so we need to look for it.
1592 if (ixa->ixa_ipsec_ah_sa == NULL) {
1593 if (!ipsec_outbound_sa(data_mp, ixa, IPPROTO_AH)) {
1594 sadb_acquire(data_mp, ixa, B_TRUE, B_FALSE);
1595 return (NULL);
1598 ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
1600 data_mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(data_mp, ixa);
1601 return (data_mp);
1606 * Kernel crypto framework callback invoked after completion of async
1607 * crypto requests for outbound packets.
1609 static void
1610 esp_kcf_callback_outbound(void *arg, int status)
1612 mblk_t *mp = (mblk_t *)arg;
1613 mblk_t *async_mp;
1614 netstack_t *ns;
1615 ipsec_stack_t *ipss;
1616 ipsecesp_stack_t *espstack;
1617 mblk_t *data_mp;
1618 ip_xmit_attr_t ixas;
1619 ipsec_crypto_t *ic;
1620 ill_t *ill;
1623 * First remove the ipsec_crypto_t mblk
1624 * Note that we need to ipsec_free_crypto_data(mp) once done with ic.
1626 async_mp = ipsec_remove_crypto_data(mp, &ic);
1627 ASSERT(async_mp != NULL);
1630 * Extract the ip_xmit_attr_t from the first mblk.
1631 * Verifies that the netstack and ill is still around; could
1632 * have vanished while kEf was doing its work.
1633 * On succesful return we have a nce_t and the ill/ipst can't
1634 * disappear until we do the nce_refrele in ixa_cleanup.
1636 data_mp = async_mp->b_cont;
1637 async_mp->b_cont = NULL;
1638 if (!ip_xmit_attr_from_mblk(async_mp, &ixas)) {
1639 /* Disappeared on us - no ill/ipst for MIB */
1640 /* We have nowhere to do stats since ixa_ipst could be NULL */
1641 if (ixas.ixa_nce != NULL) {
1642 ill = ixas.ixa_nce->nce_ill;
1643 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
1644 ip_drop_output("ipIfStatsOutDiscards", data_mp, ill);
1646 freemsg(data_mp);
1647 goto done;
1649 ns = ixas.ixa_ipst->ips_netstack;
1650 espstack = ns->netstack_ipsecesp;
1651 ipss = ns->netstack_ipsec;
1652 ill = ixas.ixa_nce->nce_ill;
1654 if (status == CRYPTO_SUCCESS) {
1656 * If a ICV was computed, it was stored by the
1657 * crypto framework at the end of the packet.
1659 ipha_t *ipha = (ipha_t *)data_mp->b_rptr;
1661 esp_set_usetime(ixas.ixa_ipsec_esp_sa, B_FALSE);
1662 /* NAT-T packet. */
1663 if (IPH_HDR_VERSION(ipha) == IP_VERSION &&
1664 ipha->ipha_protocol == IPPROTO_UDP)
1665 esp_prepare_udp(ns, data_mp, ipha);
1667 /* do AH processing if needed */
1668 data_mp = esp_do_outbound_ah(data_mp, &ixas);
1669 if (data_mp == NULL)
1670 goto done;
1672 (void) ip_output_post_ipsec(data_mp, &ixas);
1673 } else {
1674 /* Outbound shouldn't see invalid MAC */
1675 ASSERT(status != CRYPTO_INVALID_MAC);
1677 esp1dbg(espstack,
1678 ("esp_kcf_callback_outbound: crypto failed with 0x%x\n",
1679 status));
1680 ESP_BUMP_STAT(espstack, crypto_failures);
1681 ESP_BUMP_STAT(espstack, out_discards);
1682 ip_drop_packet(data_mp, B_FALSE, ill,
1683 DROPPER(ipss, ipds_esp_crypto_failed),
1684 &espstack->esp_dropper);
1685 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
1687 done:
1688 ixa_cleanup(&ixas);
1689 (void) ipsec_free_crypto_data(mp);
1693 * Kernel crypto framework callback invoked after completion of async
1694 * crypto requests for inbound packets.
1696 static void
1697 esp_kcf_callback_inbound(void *arg, int status)
1699 mblk_t *mp = (mblk_t *)arg;
1700 mblk_t *async_mp;
1701 netstack_t *ns;
1702 ipsecesp_stack_t *espstack;
1703 ipsec_stack_t *ipss;
1704 mblk_t *data_mp;
1705 ip_recv_attr_t iras;
1706 ipsec_crypto_t *ic;
1709 * First remove the ipsec_crypto_t mblk
1710 * Note that we need to ipsec_free_crypto_data(mp) once done with ic.
1712 async_mp = ipsec_remove_crypto_data(mp, &ic);
1713 ASSERT(async_mp != NULL);
1716 * Extract the ip_recv_attr_t from the first mblk.
1717 * Verifies that the netstack and ill is still around; could
1718 * have vanished while kEf was doing its work.
1720 data_mp = async_mp->b_cont;
1721 async_mp->b_cont = NULL;
1722 if (!ip_recv_attr_from_mblk(async_mp, &iras)) {
1723 /* The ill or ip_stack_t disappeared on us */
1724 ip_drop_input("ip_recv_attr_from_mblk", data_mp, NULL);
1725 freemsg(data_mp);
1726 goto done;
1729 ns = iras.ira_ill->ill_ipst->ips_netstack;
1730 espstack = ns->netstack_ipsecesp;
1731 ipss = ns->netstack_ipsec;
1733 if (status == CRYPTO_SUCCESS) {
1734 data_mp = esp_in_done(data_mp, &iras, ic);
1735 if (data_mp == NULL)
1736 goto done;
1738 /* finish IPsec processing */
1739 ip_input_post_ipsec(data_mp, &iras);
1740 } else if (status == CRYPTO_INVALID_MAC) {
1741 esp_log_bad_auth(data_mp, &iras);
1742 } else {
1743 esp1dbg(espstack,
1744 ("esp_kcf_callback: crypto failed with 0x%x\n",
1745 status));
1746 ESP_BUMP_STAT(espstack, crypto_failures);
1747 IP_ESP_BUMP_STAT(ipss, in_discards);
1748 ip_drop_packet(data_mp, B_TRUE, iras.ira_ill,
1749 DROPPER(ipss, ipds_esp_crypto_failed),
1750 &espstack->esp_dropper);
1751 BUMP_MIB(iras.ira_ill->ill_ip_mib, ipIfStatsInDiscards);
1753 done:
1754 ira_cleanup(&iras, B_TRUE);
1755 (void) ipsec_free_crypto_data(mp);
1759 * Invoked on crypto framework failure during inbound and outbound processing.
1761 static void
1762 esp_crypto_failed(mblk_t *data_mp, boolean_t is_inbound, int kef_rc,
1763 ill_t *ill, ipsecesp_stack_t *espstack)
1765 ipsec_stack_t *ipss = espstack->ipsecesp_netstack->netstack_ipsec;
1767 esp1dbg(espstack, ("crypto failed for %s ESP with 0x%x\n",
1768 is_inbound ? "inbound" : "outbound", kef_rc));
1769 ip_drop_packet(data_mp, is_inbound, ill,
1770 DROPPER(ipss, ipds_esp_crypto_failed),
1771 &espstack->esp_dropper);
1772 ESP_BUMP_STAT(espstack, crypto_failures);
1773 if (is_inbound)
1774 IP_ESP_BUMP_STAT(ipss, in_discards);
1775 else
1776 ESP_BUMP_STAT(espstack, out_discards);
1780 * A statement-equivalent macro, _cr MUST point to a modifiable
1781 * crypto_call_req_t.
1783 #define ESP_INIT_CALLREQ(_cr, _mp, _callback) \
1784 (_cr)->cr_flag = CRYPTO_SKIP_REQID|CRYPTO_ALWAYS_QUEUE; \
1785 (_cr)->cr_callback_arg = (_mp); \
1786 (_cr)->cr_callback_func = (_callback)
1788 #define ESP_INIT_CRYPTO_MAC(mac, icvlen, icvbuf) { \
1789 (mac)->cd_format = CRYPTO_DATA_RAW; \
1790 (mac)->cd_offset = 0; \
1791 (mac)->cd_length = icvlen; \
1792 (mac)->cd_raw.iov_base = (char *)icvbuf; \
1793 (mac)->cd_raw.iov_len = icvlen; \
1796 #define ESP_INIT_CRYPTO_DATA(data, mp, off, len) { \
1797 if (MBLKL(mp) >= (len) + (off)) { \
1798 (data)->cd_format = CRYPTO_DATA_RAW; \
1799 (data)->cd_raw.iov_base = (char *)(mp)->b_rptr; \
1800 (data)->cd_raw.iov_len = MBLKL(mp); \
1801 (data)->cd_offset = off; \
1802 } else { \
1803 (data)->cd_format = CRYPTO_DATA_MBLK; \
1804 (data)->cd_mp = mp; \
1805 (data)->cd_offset = off; \
1807 (data)->cd_length = len; \
1810 #define ESP_INIT_CRYPTO_DUAL_DATA(data, mp, off1, len1, off2, len2) { \
1811 (data)->dd_format = CRYPTO_DATA_MBLK; \
1812 (data)->dd_mp = mp; \
1813 (data)->dd_len1 = len1; \
1814 (data)->dd_offset1 = off1; \
1815 (data)->dd_len2 = len2; \
1816 (data)->dd_offset2 = off2; \
1820 * Returns data_mp if successfully completed the request. Returns
1821 * NULL if it failed (and increments InDiscards) or if it is pending.
1823 static mblk_t *
1824 esp_submit_req_inbound(mblk_t *esp_mp, ip_recv_attr_t *ira,
1825 ipsa_t *assoc, uint_t esph_offset)
1827 uint_t auth_offset, msg_len, auth_len;
1828 crypto_call_req_t call_req, *callrp;
1829 mblk_t *mp;
1830 esph_t *esph_ptr;
1831 int kef_rc;
1832 uint_t icv_len = assoc->ipsa_mac_len;
1833 crypto_ctx_template_t auth_ctx_tmpl;
1834 boolean_t do_auth, do_encr, force;
1835 uint_t encr_offset, encr_len;
1836 uint_t iv_len = assoc->ipsa_iv_len;
1837 crypto_ctx_template_t encr_ctx_tmpl;
1838 ipsec_crypto_t *ic, icstack;
1839 uchar_t *iv_ptr;
1840 netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
1841 ipsec_stack_t *ipss = ns->netstack_ipsec;
1842 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
1844 do_auth = assoc->ipsa_auth_alg != SADB_AALG_NONE;
1845 do_encr = assoc->ipsa_encr_alg != SADB_EALG_NULL;
1846 force = (assoc->ipsa_flags & IPSA_F_ASYNC);
1848 #ifdef IPSEC_LATENCY_TEST
1849 kef_rc = CRYPTO_SUCCESS;
1850 #else
1851 kef_rc = CRYPTO_FAILED;
1852 #endif
1855 * An inbound packet is of the form:
1856 * [IP,options,ESP,IV,data,ICV,pad]
1858 esph_ptr = (esph_t *)(esp_mp->b_rptr + esph_offset);
1859 iv_ptr = (uchar_t *)(esph_ptr + 1);
1860 /* Packet length starting at IP header ending after ESP ICV. */
1861 msg_len = MBLKL(esp_mp);
1863 encr_offset = esph_offset + sizeof (esph_t) + iv_len;
1864 encr_len = msg_len - encr_offset;
1867 * Counter mode algs need a nonce. This is setup in sadb_common_add().
1868 * If for some reason we are using a SA which does not have a nonce
1869 * then we must fail here.
1871 if ((assoc->ipsa_flags & IPSA_F_COUNTERMODE) &&
1872 (assoc->ipsa_nonce == NULL)) {
1873 ip_drop_packet(esp_mp, B_TRUE, ira->ira_ill,
1874 DROPPER(ipss, ipds_esp_nomem), &espstack->esp_dropper);
1875 return (NULL);
1878 if (force) {
1879 /* We are doing asynch; allocate mblks to hold state */
1880 if ((mp = ip_recv_attr_to_mblk(ira)) == NULL ||
1881 (mp = ipsec_add_crypto_data(mp, &ic)) == NULL) {
1882 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
1883 ip_drop_input("ipIfStatsInDiscards", esp_mp,
1884 ira->ira_ill);
1885 return (NULL);
1887 linkb(mp, esp_mp);
1888 callrp = &call_req;
1889 ESP_INIT_CALLREQ(callrp, mp, esp_kcf_callback_inbound);
1890 } else {
1892 * If we know we are going to do sync then ipsec_crypto_t
1893 * should be on the stack.
1895 ic = &icstack;
1896 bzero(ic, sizeof (*ic));
1897 callrp = NULL;
1900 if (do_auth) {
1901 /* authentication context template */
1902 IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH,
1903 auth_ctx_tmpl);
1905 /* ICV to be verified */
1906 ESP_INIT_CRYPTO_MAC(&ic->ic_crypto_mac,
1907 icv_len, esp_mp->b_wptr - icv_len);
1909 /* authentication starts at the ESP header */
1910 auth_offset = esph_offset;
1911 auth_len = msg_len - auth_offset - icv_len;
1912 if (!do_encr) {
1913 /* authentication only */
1914 /* initialize input data argument */
1915 ESP_INIT_CRYPTO_DATA(&ic->ic_crypto_data,
1916 esp_mp, auth_offset, auth_len);
1918 /* call the crypto framework */
1919 kef_rc = crypto_mac_verify(&assoc->ipsa_amech,
1920 &ic->ic_crypto_data,
1921 &assoc->ipsa_kcfauthkey, auth_ctx_tmpl,
1922 &ic->ic_crypto_mac, callrp);
1926 if (do_encr) {
1927 /* encryption template */
1928 IPSEC_CTX_TMPL(assoc, ipsa_encrtmpl, IPSEC_ALG_ENCR,
1929 encr_ctx_tmpl);
1931 /* Call the nonce update function. Also passes in IV */
1932 (assoc->ipsa_noncefunc)(assoc, (uchar_t *)esph_ptr, encr_len,
1933 iv_ptr, &ic->ic_cmm, &ic->ic_crypto_data);
1935 if (!do_auth) {
1936 /* decryption only */
1937 /* initialize input data argument */
1938 ESP_INIT_CRYPTO_DATA(&ic->ic_crypto_data,
1939 esp_mp, encr_offset, encr_len);
1941 /* call the crypto framework */
1942 kef_rc = crypto_decrypt((crypto_mechanism_t *)
1943 &ic->ic_cmm, &ic->ic_crypto_data,
1944 &assoc->ipsa_kcfencrkey, encr_ctx_tmpl,
1945 NULL, callrp);
1949 if (do_auth && do_encr) {
1950 /* dual operation */
1951 /* initialize input data argument */
1952 ESP_INIT_CRYPTO_DUAL_DATA(&ic->ic_crypto_dual_data,
1953 esp_mp, auth_offset, auth_len,
1954 encr_offset, encr_len - icv_len);
1956 /* specify IV */
1957 ic->ic_crypto_dual_data.dd_miscdata = (char *)iv_ptr;
1959 /* call the framework */
1960 kef_rc = crypto_mac_verify_decrypt(&assoc->ipsa_amech,
1961 &assoc->ipsa_emech, &ic->ic_crypto_dual_data,
1962 &assoc->ipsa_kcfauthkey, &assoc->ipsa_kcfencrkey,
1963 auth_ctx_tmpl, encr_ctx_tmpl, &ic->ic_crypto_mac,
1964 NULL, callrp);
1967 switch (kef_rc) {
1968 case CRYPTO_SUCCESS:
1969 ESP_BUMP_STAT(espstack, crypto_sync);
1970 esp_mp = esp_in_done(esp_mp, ira, ic);
1971 if (force) {
1972 /* Free mp after we are done with ic */
1973 mp = ipsec_free_crypto_data(mp);
1974 (void) ip_recv_attr_free_mblk(mp);
1976 return (esp_mp);
1977 case CRYPTO_QUEUED:
1978 /* esp_kcf_callback_inbound() will be invoked on completion */
1979 ESP_BUMP_STAT(espstack, crypto_async);
1980 return (NULL);
1981 case CRYPTO_INVALID_MAC:
1982 if (force) {
1983 mp = ipsec_free_crypto_data(mp);
1984 esp_mp = ip_recv_attr_free_mblk(mp);
1986 ESP_BUMP_STAT(espstack, crypto_sync);
1987 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
1988 esp_log_bad_auth(esp_mp, ira);
1989 /* esp_mp was passed to ip_drop_packet */
1990 return (NULL);
1993 if (force) {
1994 mp = ipsec_free_crypto_data(mp);
1995 esp_mp = ip_recv_attr_free_mblk(mp);
1997 BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
1998 esp_crypto_failed(esp_mp, B_TRUE, kef_rc, ira->ira_ill, espstack);
1999 /* esp_mp was passed to ip_drop_packet */
2000 return (NULL);
2004 * Compute the IP and UDP checksums -- common code for both keepalives and
2005 * actual ESP-in-UDP packets. Be flexible with multiple mblks because ESP
2006 * uses mblk-insertion to insert the UDP header.
2007 * TODO - If there is an easy way to prep a packet for HW checksums, make
2008 * it happen here.
2009 * Note that this is used before both before calling ip_output_simple and
2010 * in the esp datapath. The former could use IXAF_SET_ULP_CKSUM but not the
2011 * latter.
2013 static void
2014 esp_prepare_udp(netstack_t *ns, mblk_t *mp, ipha_t *ipha)
2016 int offset;
2017 uint32_t cksum;
2018 uint16_t *arr;
2019 mblk_t *udpmp = mp;
2020 uint_t hlen = IPH_HDR_LENGTH(ipha);
2022 ASSERT(MBLKL(mp) >= sizeof (ipha_t));
2024 ipha->ipha_hdr_checksum = 0;
2025 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
2027 if (ns->netstack_udp->us_do_checksum) {
2028 ASSERT(MBLKL(udpmp) >= sizeof (udpha_t));
2029 /* arr points to the IP header. */
2030 arr = (uint16_t *)ipha;
2031 IP_STAT(ns->netstack_ip, ip_out_sw_cksum);
2032 IP_STAT_UPDATE(ns->netstack_ip, ip_out_sw_cksum_bytes,
2033 ntohs(htons(ipha->ipha_length) - hlen));
2034 /* arr[6-9] are the IP addresses. */
2035 cksum = IP_UDP_CSUM_COMP + arr[6] + arr[7] + arr[8] + arr[9] +
2036 ntohs(htons(ipha->ipha_length) - hlen);
2037 cksum = IP_CSUM(mp, hlen, cksum);
2038 offset = hlen + UDP_CHECKSUM_OFFSET;
2039 while (offset >= MBLKL(udpmp)) {
2040 offset -= MBLKL(udpmp);
2041 udpmp = udpmp->b_cont;
2043 /* arr points to the UDP header's checksum field. */
2044 arr = (uint16_t *)(udpmp->b_rptr + offset);
2045 *arr = cksum;
2050 * taskq handler so we can send the NAT-T keepalive on a separate thread.
2052 static void
2053 actually_send_keepalive(void *arg)
2055 mblk_t *mp = (mblk_t *)arg;
2056 ip_xmit_attr_t ixas;
2057 netstack_t *ns;
2058 netstackid_t stackid;
2060 stackid = (netstackid_t)(uintptr_t)mp->b_prev;
2061 mp->b_prev = NULL;
2062 ns = netstack_find_by_stackid(stackid);
2063 if (ns == NULL) {
2064 /* Disappeared */
2065 ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2066 freemsg(mp);
2067 return;
2070 bzero(&ixas, sizeof (ixas));
2071 ixas.ixa_zoneid = ALL_ZONES;
2072 ixas.ixa_cred = kcred;
2073 ixas.ixa_cpid = NOPID;
2074 ixas.ixa_tsl = NULL;
2075 ixas.ixa_ipst = ns->netstack_ip;
2076 /* No ULP checksum; done by esp_prepare_udp */
2077 ixas.ixa_flags = (IXAF_IS_IPV4 | IXAF_NO_IPSEC | IXAF_VERIFY_SOURCE);
2079 (void) ip_output_simple(mp, &ixas);
2080 ixa_cleanup(&ixas);
2081 netstack_rele(ns);
2085 * Send a one-byte UDP NAT-T keepalive.
2087 void
2088 ipsecesp_send_keepalive(ipsa_t *assoc)
2090 mblk_t *mp;
2091 ipha_t *ipha;
2092 udpha_t *udpha;
2093 netstack_t *ns = assoc->ipsa_netstack;
2095 ASSERT(MUTEX_NOT_HELD(&assoc->ipsa_lock));
2097 mp = allocb(sizeof (ipha_t) + sizeof (udpha_t) + 1, BPRI_HI);
2098 if (mp == NULL)
2099 return;
2100 ipha = (ipha_t *)mp->b_rptr;
2101 ipha->ipha_version_and_hdr_length = IP_SIMPLE_HDR_VERSION;
2102 ipha->ipha_type_of_service = 0;
2103 ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (udpha_t) + 1);
2104 /* Use the low-16 of the SPI so we have some clue where it came from. */
2105 ipha->ipha_ident = *(((uint16_t *)(&assoc->ipsa_spi)) + 1);
2106 ipha->ipha_fragment_offset_and_flags = 0; /* Too small to fragment! */
2107 ipha->ipha_ttl = 0xFF;
2108 ipha->ipha_protocol = IPPROTO_UDP;
2109 ipha->ipha_hdr_checksum = 0;
2110 ipha->ipha_src = assoc->ipsa_srcaddr[0];
2111 ipha->ipha_dst = assoc->ipsa_dstaddr[0];
2112 udpha = (udpha_t *)(ipha + 1);
2113 udpha->uha_src_port = (assoc->ipsa_local_nat_port != 0) ?
2114 assoc->ipsa_local_nat_port : htons(IPPORT_IKE_NATT);
2115 udpha->uha_dst_port = (assoc->ipsa_remote_nat_port != 0) ?
2116 assoc->ipsa_remote_nat_port : htons(IPPORT_IKE_NATT);
2117 udpha->uha_length = htons(sizeof (udpha_t) + 1);
2118 udpha->uha_checksum = 0;
2119 mp->b_wptr = (uint8_t *)(udpha + 1);
2120 *(mp->b_wptr++) = 0xFF;
2122 esp_prepare_udp(ns, mp, ipha);
2125 * We're holding an isaf_t bucket lock, so pawn off the actual
2126 * packet transmission to another thread. Just in case syncq
2127 * processing causes a same-bucket packet to be processed.
2129 mp->b_prev = (mblk_t *)(uintptr_t)ns->netstack_stackid;
2131 if (taskq_dispatch(esp_taskq, actually_send_keepalive, mp,
2132 TQ_NOSLEEP) == 0) {
2133 /* Assume no memory if taskq_dispatch() fails. */
2134 mp->b_prev = NULL;
2135 ip_drop_packet(mp, B_FALSE, NULL,
2136 DROPPER(ns->netstack_ipsec, ipds_esp_nomem),
2137 &ns->netstack_ipsecesp->esp_dropper);
2142 * Returns mp if successfully completed the request. Returns
2143 * NULL if it failed (and increments InDiscards) or if it is pending.
2145 static mblk_t *
2146 esp_submit_req_outbound(mblk_t *data_mp, ip_xmit_attr_t *ixa, ipsa_t *assoc,
2147 uchar_t *icv_buf, uint_t payload_len)
2149 uint_t auth_len;
2150 crypto_call_req_t call_req, *callrp;
2151 mblk_t *esp_mp;
2152 esph_t *esph_ptr;
2153 mblk_t *mp;
2154 int kef_rc = CRYPTO_FAILED;
2155 uint_t icv_len = assoc->ipsa_mac_len;
2156 crypto_ctx_template_t auth_ctx_tmpl;
2157 boolean_t do_auth, do_encr, force;
2158 uint_t iv_len = assoc->ipsa_iv_len;
2159 crypto_ctx_template_t encr_ctx_tmpl;
2160 boolean_t is_natt = ((assoc->ipsa_flags & IPSA_F_NATT) != 0);
2161 size_t esph_offset = (is_natt ? UDPH_SIZE : 0);
2162 netstack_t *ns = ixa->ixa_ipst->ips_netstack;
2163 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
2164 ipsec_crypto_t *ic, icstack;
2165 uchar_t *iv_ptr;
2166 crypto_data_t *cd_ptr = NULL;
2167 ill_t *ill = ixa->ixa_nce->nce_ill;
2168 ipsec_stack_t *ipss = ns->netstack_ipsec;
2170 esp3dbg(espstack, ("esp_submit_req_outbound:%s",
2171 is_natt ? "natt" : "not natt"));
2173 do_encr = assoc->ipsa_encr_alg != SADB_EALG_NULL;
2174 do_auth = assoc->ipsa_auth_alg != SADB_AALG_NONE;
2175 force = (assoc->ipsa_flags & IPSA_F_ASYNC);
2177 #ifdef IPSEC_LATENCY_TEST
2178 kef_rc = CRYPTO_SUCCESS;
2179 #else
2180 kef_rc = CRYPTO_FAILED;
2181 #endif
2184 * Outbound IPsec packets are of the form:
2185 * [IP,options] -> [ESP,IV] -> [data] -> [pad,ICV]
2186 * unless it's NATT, then it's
2187 * [IP,options] -> [udp][ESP,IV] -> [data] -> [pad,ICV]
2188 * Get a pointer to the mblk containing the ESP header.
2190 ASSERT(data_mp->b_cont != NULL);
2191 esp_mp = data_mp->b_cont;
2192 esph_ptr = (esph_t *)(esp_mp->b_rptr + esph_offset);
2193 iv_ptr = (uchar_t *)(esph_ptr + 1);
2196 * Combined mode algs need a nonce. This is setup in sadb_common_add().
2197 * If for some reason we are using a SA which does not have a nonce
2198 * then we must fail here.
2200 if ((assoc->ipsa_flags & IPSA_F_COUNTERMODE) &&
2201 (assoc->ipsa_nonce == NULL)) {
2202 ip_drop_packet(data_mp, B_FALSE, NULL,
2203 DROPPER(ipss, ipds_esp_nomem), &espstack->esp_dropper);
2204 return (NULL);
2207 if (force) {
2208 /* We are doing asynch; allocate mblks to hold state */
2209 if ((mp = ip_xmit_attr_to_mblk(ixa)) == NULL ||
2210 (mp = ipsec_add_crypto_data(mp, &ic)) == NULL) {
2211 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2212 ip_drop_output("ipIfStatsOutDiscards", data_mp, ill);
2213 freemsg(data_mp);
2214 return (NULL);
2217 linkb(mp, data_mp);
2218 callrp = &call_req;
2219 ESP_INIT_CALLREQ(callrp, mp, esp_kcf_callback_outbound);
2220 } else {
2222 * If we know we are going to do sync then ipsec_crypto_t
2223 * should be on the stack.
2225 ic = &icstack;
2226 bzero(ic, sizeof (*ic));
2227 callrp = NULL;
2231 if (do_auth) {
2232 /* authentication context template */
2233 IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH,
2234 auth_ctx_tmpl);
2236 /* where to store the computed mac */
2237 ESP_INIT_CRYPTO_MAC(&ic->ic_crypto_mac,
2238 icv_len, icv_buf);
2240 /* authentication starts at the ESP header */
2241 auth_len = payload_len + iv_len + sizeof (esph_t);
2242 if (!do_encr) {
2243 /* authentication only */
2244 /* initialize input data argument */
2245 ESP_INIT_CRYPTO_DATA(&ic->ic_crypto_data,
2246 esp_mp, esph_offset, auth_len);
2248 /* call the crypto framework */
2249 kef_rc = crypto_mac(&assoc->ipsa_amech,
2250 &ic->ic_crypto_data,
2251 &assoc->ipsa_kcfauthkey, auth_ctx_tmpl,
2252 &ic->ic_crypto_mac, callrp);
2256 if (do_encr) {
2257 /* encryption context template */
2258 IPSEC_CTX_TMPL(assoc, ipsa_encrtmpl, IPSEC_ALG_ENCR,
2259 encr_ctx_tmpl);
2260 /* Call the nonce update function. */
2261 (assoc->ipsa_noncefunc)(assoc, (uchar_t *)esph_ptr, payload_len,
2262 iv_ptr, &ic->ic_cmm, &ic->ic_crypto_data);
2264 if (!do_auth) {
2265 /* encryption only, skip mblk that contains ESP hdr */
2266 /* initialize input data argument */
2267 ESP_INIT_CRYPTO_DATA(&ic->ic_crypto_data,
2268 esp_mp->b_cont, 0, payload_len);
2271 * For combined mode ciphers, the ciphertext is the same
2272 * size as the clear text, the ICV should follow the
2273 * ciphertext. To convince the kcf to allow in-line
2274 * encryption, with an ICV, use ipsec_out_crypto_mac
2275 * to point to the same buffer as the data. The calling
2276 * function need to ensure the buffer is large enough to
2277 * include the ICV.
2279 * The IV is already written to the packet buffer, the
2280 * nonce setup function copied it to the params struct
2281 * for the cipher to use.
2283 if (assoc->ipsa_flags & IPSA_F_COMBINED) {
2284 bcopy(&ic->ic_crypto_data,
2285 &ic->ic_crypto_mac,
2286 sizeof (crypto_data_t));
2287 ic->ic_crypto_mac.cd_length =
2288 payload_len + icv_len;
2289 cd_ptr = &ic->ic_crypto_mac;
2292 /* call the crypto framework */
2293 kef_rc = crypto_encrypt((crypto_mechanism_t *)
2294 &ic->ic_cmm, &ic->ic_crypto_data,
2295 &assoc->ipsa_kcfencrkey, encr_ctx_tmpl,
2296 cd_ptr, callrp);
2301 if (do_auth && do_encr) {
2303 * Encryption and authentication:
2304 * Pass the pointer to the mblk chain starting at the ESP
2305 * header to the framework. Skip the ESP header mblk
2306 * for encryption, which is reflected by an encryption
2307 * offset equal to the length of that mblk. Start
2308 * the authentication at the ESP header, i.e. use an
2309 * authentication offset of zero.
2311 ESP_INIT_CRYPTO_DUAL_DATA(&ic->ic_crypto_dual_data,
2312 esp_mp, MBLKL(esp_mp), payload_len, esph_offset, auth_len);
2314 /* specify IV */
2315 ic->ic_crypto_dual_data.dd_miscdata = (char *)iv_ptr;
2317 /* call the framework */
2318 kef_rc = crypto_encrypt_mac(&assoc->ipsa_emech,
2319 &assoc->ipsa_amech, NULL,
2320 &assoc->ipsa_kcfencrkey, &assoc->ipsa_kcfauthkey,
2321 encr_ctx_tmpl, auth_ctx_tmpl,
2322 &ic->ic_crypto_dual_data,
2323 &ic->ic_crypto_mac, callrp);
2326 switch (kef_rc) {
2327 case CRYPTO_SUCCESS:
2328 ESP_BUMP_STAT(espstack, crypto_sync);
2329 esp_set_usetime(assoc, B_FALSE);
2330 if (force) {
2331 mp = ipsec_free_crypto_data(mp);
2332 data_mp = ip_xmit_attr_free_mblk(mp);
2334 if (is_natt)
2335 esp_prepare_udp(ns, data_mp, (ipha_t *)data_mp->b_rptr);
2336 return (data_mp);
2337 case CRYPTO_QUEUED:
2338 /* esp_kcf_callback_outbound() will be invoked on completion */
2339 ESP_BUMP_STAT(espstack, crypto_async);
2340 return (NULL);
2343 if (force) {
2344 mp = ipsec_free_crypto_data(mp);
2345 data_mp = ip_xmit_attr_free_mblk(mp);
2347 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2348 esp_crypto_failed(data_mp, B_FALSE, kef_rc, NULL, espstack);
2349 /* data_mp was passed to ip_drop_packet */
2350 return (NULL);
2354 * Handle outbound IPsec processing for IPv4 and IPv6
2356 * Returns data_mp if successfully completed the request. Returns
2357 * NULL if it failed (and increments InDiscards) or if it is pending.
2359 static mblk_t *
2360 esp_outbound(mblk_t *data_mp, ip_xmit_attr_t *ixa)
2362 mblk_t *espmp, *tailmp;
2363 ipha_t *ipha;
2364 ip6_t *ip6h;
2365 esph_t *esph_ptr, *iv_ptr;
2366 uint_t af;
2367 uint8_t *nhp;
2368 uintptr_t divpoint, datalen, adj, padlen, i, alloclen;
2369 uintptr_t esplen = sizeof (esph_t);
2370 uint8_t protocol;
2371 ipsa_t *assoc;
2372 uint_t iv_len, block_size, mac_len = 0;
2373 uchar_t *icv_buf;
2374 udpha_t *udpha;
2375 boolean_t is_natt = B_FALSE;
2376 netstack_t *ns = ixa->ixa_ipst->ips_netstack;
2377 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
2378 ipsec_stack_t *ipss = ns->netstack_ipsec;
2379 ill_t *ill = ixa->ixa_nce->nce_ill;
2380 boolean_t need_refrele = B_FALSE;
2382 ESP_BUMP_STAT(espstack, out_requests);
2385 * <sigh> We have to copy the message here, because TCP (for example)
2386 * keeps a dupb() of the message lying around for retransmission.
2387 * Since ESP changes the whole of the datagram, we have to create our
2388 * own copy lest we clobber TCP's data. Since we have to copy anyway,
2389 * we might as well make use of msgpullup() and get the mblk into one
2390 * contiguous piece!
2392 tailmp = msgpullup(data_mp, -1);
2393 if (tailmp == NULL) {
2394 esp0dbg(("esp_outbound: msgpullup() failed, "
2395 "dropping packet.\n"));
2396 ip_drop_packet(data_mp, B_FALSE, ill,
2397 DROPPER(ipss, ipds_esp_nomem),
2398 &espstack->esp_dropper);
2399 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2400 return (NULL);
2402 freemsg(data_mp);
2403 data_mp = tailmp;
2405 assoc = ixa->ixa_ipsec_esp_sa;
2406 ASSERT(assoc != NULL);
2409 * Get the outer IP header in shape to escape this system..
2411 if (is_system_labeled() && (assoc->ipsa_otsl != NULL)) {
2413 * Need to update packet with any CIPSO option and update
2414 * ixa_tsl to capture the new label.
2415 * We allocate a separate ixa for that purpose.
2417 ixa = ip_xmit_attr_duplicate(ixa);
2418 if (ixa == NULL) {
2419 ip_drop_packet(data_mp, B_FALSE, ill,
2420 DROPPER(ipss, ipds_esp_nomem),
2421 &espstack->esp_dropper);
2422 return (NULL);
2424 need_refrele = B_TRUE;
2426 label_hold(assoc->ipsa_otsl);
2427 ip_xmit_attr_replace_tsl(ixa, assoc->ipsa_otsl);
2429 data_mp = sadb_whack_label(data_mp, assoc, ixa,
2430 DROPPER(ipss, ipds_esp_nomem), &espstack->esp_dropper);
2431 if (data_mp == NULL) {
2432 /* Packet dropped by sadb_whack_label */
2433 ixa_refrele(ixa);
2434 return (NULL);
2439 * Reality check....
2441 ipha = (ipha_t *)data_mp->b_rptr; /* So we can call esp_acquire(). */
2443 if (ixa->ixa_flags & IXAF_IS_IPV4) {
2444 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
2446 af = AF_INET;
2447 divpoint = IPH_HDR_LENGTH(ipha);
2448 datalen = ntohs(ipha->ipha_length) - divpoint;
2449 nhp = (uint8_t *)&ipha->ipha_protocol;
2450 } else {
2451 ip_pkt_t ipp;
2453 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
2455 af = AF_INET6;
2456 ip6h = (ip6_t *)ipha;
2457 bzero(&ipp, sizeof (ipp));
2458 divpoint = ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp, NULL);
2459 if (ipp.ipp_dstopts != NULL &&
2460 ipp.ipp_dstopts->ip6d_nxt != IPPROTO_ROUTING) {
2462 * Destination options are tricky. If we get in here,
2463 * then we have a terminal header following the
2464 * destination options. We need to adjust backwards
2465 * so we insert ESP BEFORE the destination options
2466 * bag. (So that the dstopts get encrypted!)
2468 * Since this is for outbound packets only, we know
2469 * that non-terminal destination options only precede
2470 * routing headers.
2472 divpoint -= ipp.ipp_dstoptslen;
2474 datalen = ntohs(ip6h->ip6_plen) + sizeof (ip6_t) - divpoint;
2476 if (ipp.ipp_rthdr != NULL) {
2477 nhp = &ipp.ipp_rthdr->ip6r_nxt;
2478 } else if (ipp.ipp_hopopts != NULL) {
2479 nhp = &ipp.ipp_hopopts->ip6h_nxt;
2480 } else {
2481 ASSERT(divpoint == sizeof (ip6_t));
2482 /* It's probably IP + ESP. */
2483 nhp = &ip6h->ip6_nxt;
2487 mac_len = assoc->ipsa_mac_len;
2489 if (assoc->ipsa_flags & IPSA_F_NATT) {
2490 /* wedge in UDP header */
2491 is_natt = B_TRUE;
2492 esplen += UDPH_SIZE;
2496 * Set up ESP header and encryption padding for ENCR PI request.
2499 /* Determine the padding length. Pad to 4-bytes for no-encryption. */
2500 if (assoc->ipsa_encr_alg != SADB_EALG_NULL) {
2501 iv_len = assoc->ipsa_iv_len;
2502 block_size = assoc->ipsa_datalen;
2505 * Pad the data to the length of the cipher block size.
2506 * Include the two additional bytes (hence the - 2) for the
2507 * padding length and the next header. Take this into account
2508 * when calculating the actual length of the padding.
2510 ASSERT(ISP2(iv_len));
2511 padlen = ((unsigned)(block_size - datalen - 2)) &
2512 (block_size - 1);
2513 } else {
2514 iv_len = 0;
2515 padlen = ((unsigned)(sizeof (uint32_t) - datalen - 2)) &
2516 (sizeof (uint32_t) - 1);
2519 /* Allocate ESP header and IV. */
2520 esplen += iv_len;
2523 * Update association byte-count lifetimes. Don't forget to take
2524 * into account the padding length and next-header (hence the + 2).
2526 * Use the amount of data fed into the "encryption algorithm". This
2527 * is the IV, the data length, the padding length, and the final two
2528 * bytes (padlen, and next-header).
2532 if (!esp_age_bytes(assoc, datalen + padlen + iv_len + 2, B_FALSE)) {
2533 ip_drop_packet(data_mp, B_FALSE, ill,
2534 DROPPER(ipss, ipds_esp_bytes_expire),
2535 &espstack->esp_dropper);
2536 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2537 if (need_refrele)
2538 ixa_refrele(ixa);
2539 return (NULL);
2542 espmp = allocb(esplen, BPRI_HI);
2543 if (espmp == NULL) {
2544 ESP_BUMP_STAT(espstack, out_discards);
2545 esp1dbg(espstack, ("esp_outbound: can't allocate espmp.\n"));
2546 ip_drop_packet(data_mp, B_FALSE, ill,
2547 DROPPER(ipss, ipds_esp_nomem),
2548 &espstack->esp_dropper);
2549 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2550 if (need_refrele)
2551 ixa_refrele(ixa);
2552 return (NULL);
2554 espmp->b_wptr += esplen;
2555 esph_ptr = (esph_t *)espmp->b_rptr;
2557 if (is_natt) {
2558 esp3dbg(espstack, ("esp_outbound: NATT"));
2560 udpha = (udpha_t *)espmp->b_rptr;
2561 udpha->uha_src_port = (assoc->ipsa_local_nat_port != 0) ?
2562 assoc->ipsa_local_nat_port : htons(IPPORT_IKE_NATT);
2563 udpha->uha_dst_port = (assoc->ipsa_remote_nat_port != 0) ?
2564 assoc->ipsa_remote_nat_port : htons(IPPORT_IKE_NATT);
2566 * Set the checksum to 0, so that the esp_prepare_udp() call
2567 * can do the right thing.
2569 udpha->uha_checksum = 0;
2570 esph_ptr = (esph_t *)(udpha + 1);
2573 esph_ptr->esph_spi = assoc->ipsa_spi;
2575 esph_ptr->esph_replay = htonl(atomic_inc_32_nv(&assoc->ipsa_replay));
2576 if (esph_ptr->esph_replay == 0 && assoc->ipsa_replay_wsize != 0) {
2578 * XXX We have replay counter wrapping.
2579 * We probably want to nuke this SA (and its peer).
2581 ipsec_assocfailure(info.mi_idnum, 0, 0,
2582 SL_ERROR | SL_CONSOLE | SL_WARN,
2583 "Outbound ESP SA (0x%x, %s) has wrapped sequence.\n",
2584 esph_ptr->esph_spi, assoc->ipsa_dstaddr, af,
2585 espstack->ipsecesp_netstack);
2587 ESP_BUMP_STAT(espstack, out_discards);
2588 sadb_replay_delete(assoc);
2589 ip_drop_packet(data_mp, B_FALSE, ill,
2590 DROPPER(ipss, ipds_esp_replay),
2591 &espstack->esp_dropper);
2592 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2593 if (need_refrele)
2594 ixa_refrele(ixa);
2595 return (NULL);
2598 iv_ptr = (esph_ptr + 1);
2600 * iv_ptr points to the mblk which will contain the IV once we have
2601 * written it there. This mblk will be part of a mblk chain that
2602 * will make up the packet.
2604 * For counter mode algorithms, the IV is a 64 bit quantity, it
2605 * must NEVER repeat in the lifetime of the SA, otherwise an
2606 * attacker who had recorded enough packets might be able to
2607 * determine some clear text.
2609 * To ensure this does not happen, the IV is stored in the SA and
2610 * incremented for each packet, the IV is then copied into the
2611 * "packet" for transmission to the receiving system. The IV will
2612 * also be copied into the nonce, when the packet is encrypted.
2614 * CBC mode algorithms use a random IV for each packet. We do not
2615 * require the highest quality random bits, but for best security
2616 * with CBC mode ciphers, the value must be unlikely to repeat and
2617 * must not be known in advance to an adversary capable of influencing
2618 * the clear text.
2620 if (!update_iv((uint8_t *)iv_ptr, espstack->esp_pfkey_q, assoc,
2621 espstack)) {
2622 ip_drop_packet(data_mp, B_FALSE, ill,
2623 DROPPER(ipss, ipds_esp_iv_wrap), &espstack->esp_dropper);
2624 if (need_refrele)
2625 ixa_refrele(ixa);
2626 return (NULL);
2629 /* Fix the IP header. */
2630 alloclen = padlen + 2 + mac_len;
2631 adj = alloclen + (espmp->b_wptr - espmp->b_rptr);
2633 protocol = *nhp;
2635 if (ixa->ixa_flags & IXAF_IS_IPV4) {
2636 ipha->ipha_length = htons(ntohs(ipha->ipha_length) + adj);
2637 if (is_natt) {
2638 *nhp = IPPROTO_UDP;
2639 udpha->uha_length = htons(ntohs(ipha->ipha_length) -
2640 IPH_HDR_LENGTH(ipha));
2641 } else {
2642 *nhp = IPPROTO_ESP;
2644 ipha->ipha_hdr_checksum = 0;
2645 ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha);
2646 } else {
2647 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) + adj);
2648 *nhp = IPPROTO_ESP;
2651 /* I've got the two ESP mblks, now insert them. */
2653 esp2dbg(espstack, ("data_mp before outbound ESP adjustment:\n"));
2654 esp2dbg(espstack, (dump_msg(data_mp)));
2656 if (!esp_insert_esp(data_mp, espmp, divpoint, espstack)) {
2657 ESP_BUMP_STAT(espstack, out_discards);
2658 /* NOTE: esp_insert_esp() only fails if there's no memory. */
2659 ip_drop_packet(data_mp, B_FALSE, ill,
2660 DROPPER(ipss, ipds_esp_nomem),
2661 &espstack->esp_dropper);
2662 freeb(espmp);
2663 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2664 if (need_refrele)
2665 ixa_refrele(ixa);
2666 return (NULL);
2669 /* Append padding (and leave room for ICV). */
2670 for (tailmp = data_mp; tailmp->b_cont != NULL; tailmp = tailmp->b_cont)
2672 if (tailmp->b_wptr + alloclen > tailmp->b_datap->db_lim) {
2673 tailmp->b_cont = allocb(alloclen, BPRI_HI);
2674 if (tailmp->b_cont == NULL) {
2675 ESP_BUMP_STAT(espstack, out_discards);
2676 esp0dbg(("esp_outbound: Can't allocate tailmp.\n"));
2677 ip_drop_packet(data_mp, B_FALSE, ill,
2678 DROPPER(ipss, ipds_esp_nomem),
2679 &espstack->esp_dropper);
2680 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
2681 if (need_refrele)
2682 ixa_refrele(ixa);
2683 return (NULL);
2685 tailmp = tailmp->b_cont;
2689 * If there's padding, N bytes of padding must be of the form 0x1,
2690 * 0x2, 0x3... 0xN.
2692 for (i = 0; i < padlen; ) {
2693 i++;
2694 *tailmp->b_wptr++ = i;
2696 *tailmp->b_wptr++ = i;
2697 *tailmp->b_wptr++ = protocol;
2699 esp2dbg(espstack, ("data_Mp before encryption:\n"));
2700 esp2dbg(espstack, (dump_msg(data_mp)));
2703 * Okay. I've set up the pre-encryption ESP. Let's do it!
2706 if (mac_len > 0) {
2707 ASSERT(tailmp->b_wptr + mac_len <= tailmp->b_datap->db_lim);
2708 icv_buf = tailmp->b_wptr;
2709 tailmp->b_wptr += mac_len;
2710 } else {
2711 icv_buf = NULL;
2714 data_mp = esp_submit_req_outbound(data_mp, ixa, assoc, icv_buf,
2715 datalen + padlen + 2);
2716 if (need_refrele)
2717 ixa_refrele(ixa);
2718 return (data_mp);
2722 * IP calls this to validate the ICMP errors that
2723 * we got from the network.
2725 mblk_t *
2726 ipsecesp_icmp_error(mblk_t *data_mp, ip_recv_attr_t *ira)
2728 netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
2729 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
2730 ipsec_stack_t *ipss = ns->netstack_ipsec;
2733 * Unless we get an entire packet back, this function is useless.
2734 * Why?
2736 * 1.) Partial packets are useless, because the "next header"
2737 * is at the end of the decrypted ESP packet. Without the
2738 * whole packet, this is useless.
2740 * 2.) If we every use a stateful cipher, such as a stream or a
2741 * one-time pad, we can't do anything.
2743 * Since the chances of us getting an entire packet back are very
2744 * very small, we discard here.
2746 IP_ESP_BUMP_STAT(ipss, in_discards);
2747 ip_drop_packet(data_mp, B_TRUE, ira->ira_ill,
2748 DROPPER(ipss, ipds_esp_icmp),
2749 &espstack->esp_dropper);
2750 return (NULL);
2754 * Construct an SADB_REGISTER message with the current algorithms.
2755 * This function gets called when 'ipsecalgs -s' is run or when
2756 * in.iked (or other KMD) starts.
2758 static boolean_t
2759 esp_register_out(uint32_t sequence, uint32_t pid, uint_t serial,
2760 ipsecesp_stack_t *espstack, cred_t *cr)
2762 mblk_t *pfkey_msg_mp, *keysock_out_mp;
2763 sadb_msg_t *samsg;
2764 sadb_supported_t *sasupp_auth = NULL;
2765 sadb_supported_t *sasupp_encr = NULL;
2766 sadb_alg_t *saalg;
2767 uint_t allocsize = sizeof (*samsg);
2768 uint_t i, numalgs_snap;
2769 int current_aalgs;
2770 ipsec_alginfo_t **authalgs;
2771 uint_t num_aalgs;
2772 int current_ealgs;
2773 ipsec_alginfo_t **encralgs;
2774 uint_t num_ealgs;
2775 ipsec_stack_t *ipss = espstack->ipsecesp_netstack->netstack_ipsec;
2776 sadb_sens_t *sens;
2777 size_t sens_len = 0;
2778 sadb_ext_t *nextext;
2779 ts_label_t *sens_tsl = NULL;
2781 /* Allocate the KEYSOCK_OUT. */
2782 keysock_out_mp = sadb_keysock_out(serial);
2783 if (keysock_out_mp == NULL) {
2784 esp0dbg(("esp_register_out: couldn't allocate mblk.\n"));
2785 return (B_FALSE);
2788 if (is_system_labeled() && (cr != NULL)) {
2789 sens_tsl = crgetlabel(cr);
2790 if (sens_tsl != NULL) {
2791 sens_len = sadb_sens_len_from_label(sens_tsl);
2792 allocsize += sens_len;
2797 * Allocate the PF_KEY message that follows KEYSOCK_OUT.
2800 rw_enter(&ipss->ipsec_alg_lock, RW_READER);
2802 * Fill SADB_REGISTER message's algorithm descriptors. Hold
2803 * down the lock while filling it.
2805 * Return only valid algorithms, so the number of algorithms
2806 * to send up may be less than the number of algorithm entries
2807 * in the table.
2809 authalgs = ipss->ipsec_alglists[IPSEC_ALG_AUTH];
2810 for (num_aalgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++)
2811 if (authalgs[i] != NULL && ALG_VALID(authalgs[i]))
2812 num_aalgs++;
2814 if (num_aalgs != 0) {
2815 allocsize += (num_aalgs * sizeof (*saalg));
2816 allocsize += sizeof (*sasupp_auth);
2818 encralgs = ipss->ipsec_alglists[IPSEC_ALG_ENCR];
2819 for (num_ealgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++)
2820 if (encralgs[i] != NULL && ALG_VALID(encralgs[i]))
2821 num_ealgs++;
2823 if (num_ealgs != 0) {
2824 allocsize += (num_ealgs * sizeof (*saalg));
2825 allocsize += sizeof (*sasupp_encr);
2827 keysock_out_mp->b_cont = allocb(allocsize, BPRI_HI);
2828 if (keysock_out_mp->b_cont == NULL) {
2829 rw_exit(&ipss->ipsec_alg_lock);
2830 freemsg(keysock_out_mp);
2831 return (B_FALSE);
2833 pfkey_msg_mp = keysock_out_mp->b_cont;
2834 pfkey_msg_mp->b_wptr += allocsize;
2836 nextext = (sadb_ext_t *)(pfkey_msg_mp->b_rptr + sizeof (*samsg));
2838 if (num_aalgs != 0) {
2839 sasupp_auth = (sadb_supported_t *)nextext;
2840 saalg = (sadb_alg_t *)(sasupp_auth + 1);
2842 ASSERT(((ulong_t)saalg & 0x7) == 0);
2844 numalgs_snap = 0;
2845 for (i = 0;
2846 ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_aalgs));
2847 i++) {
2848 if (authalgs[i] == NULL || !ALG_VALID(authalgs[i]))
2849 continue;
2851 saalg->sadb_alg_id = authalgs[i]->alg_id;
2852 saalg->sadb_alg_ivlen = 0;
2853 saalg->sadb_alg_minbits = authalgs[i]->alg_ef_minbits;
2854 saalg->sadb_alg_maxbits = authalgs[i]->alg_ef_maxbits;
2855 saalg->sadb_x_alg_increment =
2856 authalgs[i]->alg_increment;
2857 saalg->sadb_x_alg_saltbits = SADB_8TO1(
2858 authalgs[i]->alg_saltlen);
2859 numalgs_snap++;
2860 saalg++;
2862 ASSERT(numalgs_snap == num_aalgs);
2863 #ifdef DEBUG
2865 * Reality check to make sure I snagged all of the
2866 * algorithms.
2868 for (; i < IPSEC_MAX_ALGS; i++) {
2869 if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) {
2870 cmn_err(CE_PANIC, "esp_register_out()! "
2871 "Missed aalg #%d.\n", i);
2874 #endif /* DEBUG */
2875 nextext = (sadb_ext_t *)saalg;
2878 if (num_ealgs != 0) {
2879 sasupp_encr = (sadb_supported_t *)nextext;
2880 saalg = (sadb_alg_t *)(sasupp_encr + 1);
2882 numalgs_snap = 0;
2883 for (i = 0;
2884 ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_ealgs)); i++) {
2885 if (encralgs[i] == NULL || !ALG_VALID(encralgs[i]))
2886 continue;
2887 saalg->sadb_alg_id = encralgs[i]->alg_id;
2888 saalg->sadb_alg_ivlen = encralgs[i]->alg_ivlen;
2889 saalg->sadb_alg_minbits = encralgs[i]->alg_ef_minbits;
2890 saalg->sadb_alg_maxbits = encralgs[i]->alg_ef_maxbits;
2892 * We could advertise the ICV length, except there
2893 * is not a value in sadb_x_algb to do this.
2894 * saalg->sadb_alg_maclen = encralgs[i]->alg_maclen;
2896 saalg->sadb_x_alg_increment =
2897 encralgs[i]->alg_increment;
2898 saalg->sadb_x_alg_saltbits =
2899 SADB_8TO1(encralgs[i]->alg_saltlen);
2901 numalgs_snap++;
2902 saalg++;
2904 ASSERT(numalgs_snap == num_ealgs);
2905 #ifdef DEBUG
2907 * Reality check to make sure I snagged all of the
2908 * algorithms.
2910 for (; i < IPSEC_MAX_ALGS; i++) {
2911 if (encralgs[i] != NULL && ALG_VALID(encralgs[i])) {
2912 cmn_err(CE_PANIC, "esp_register_out()! "
2913 "Missed ealg #%d.\n", i);
2916 #endif /* DEBUG */
2917 nextext = (sadb_ext_t *)saalg;
2920 current_aalgs = num_aalgs;
2921 current_ealgs = num_ealgs;
2923 rw_exit(&ipss->ipsec_alg_lock);
2925 if (sens_tsl != NULL) {
2926 sens = (sadb_sens_t *)nextext;
2927 sadb_sens_from_label(sens, SADB_EXT_SENSITIVITY,
2928 sens_tsl, sens_len);
2930 nextext = (sadb_ext_t *)(((uint8_t *)sens) + sens_len);
2933 /* Now fill the rest of the SADB_REGISTER message. */
2935 samsg = (sadb_msg_t *)pfkey_msg_mp->b_rptr;
2936 samsg->sadb_msg_version = PF_KEY_V2;
2937 samsg->sadb_msg_type = SADB_REGISTER;
2938 samsg->sadb_msg_errno = 0;
2939 samsg->sadb_msg_satype = SADB_SATYPE_ESP;
2940 samsg->sadb_msg_len = SADB_8TO64(allocsize);
2941 samsg->sadb_msg_reserved = 0;
2943 * Assume caller has sufficient sequence/pid number info. If it's one
2944 * from me over a new alg., I could give two hoots about sequence.
2946 samsg->sadb_msg_seq = sequence;
2947 samsg->sadb_msg_pid = pid;
2949 if (sasupp_auth != NULL) {
2950 sasupp_auth->sadb_supported_len = SADB_8TO64(
2951 sizeof (*sasupp_auth) + sizeof (*saalg) * current_aalgs);
2952 sasupp_auth->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
2953 sasupp_auth->sadb_supported_reserved = 0;
2956 if (sasupp_encr != NULL) {
2957 sasupp_encr->sadb_supported_len = SADB_8TO64(
2958 sizeof (*sasupp_encr) + sizeof (*saalg) * current_ealgs);
2959 sasupp_encr->sadb_supported_exttype =
2960 SADB_EXT_SUPPORTED_ENCRYPT;
2961 sasupp_encr->sadb_supported_reserved = 0;
2964 if (espstack->esp_pfkey_q != NULL)
2965 putnext(espstack->esp_pfkey_q, keysock_out_mp);
2966 else {
2967 freemsg(keysock_out_mp);
2968 return (B_FALSE);
2971 return (B_TRUE);
2975 * Invoked when the algorithm table changes. Causes SADB_REGISTER
2976 * messages continaining the current list of algorithms to be
2977 * sent up to the ESP listeners.
2979 void
2980 ipsecesp_algs_changed(netstack_t *ns)
2982 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
2985 * Time to send a PF_KEY SADB_REGISTER message to ESP listeners
2986 * everywhere. (The function itself checks for NULL esp_pfkey_q.)
2988 (void) esp_register_out(0, 0, 0, espstack, NULL);
2992 * Stub function that taskq_dispatch() invokes to take the mblk (in arg)
2993 * and send() it into ESP and IP again.
2995 static void
2996 inbound_task(void *arg)
2998 mblk_t *mp = (mblk_t *)arg;
2999 mblk_t *async_mp;
3000 ip_recv_attr_t iras;
3002 async_mp = mp;
3003 mp = async_mp->b_cont;
3004 async_mp->b_cont = NULL;
3005 if (!ip_recv_attr_from_mblk(async_mp, &iras)) {
3006 /* The ill or ip_stack_t disappeared on us */
3007 ip_drop_input("ip_recv_attr_from_mblk", mp, NULL);
3008 freemsg(mp);
3009 goto done;
3012 esp_inbound_restart(mp, &iras);
3013 done:
3014 ira_cleanup(&iras, B_TRUE);
3018 * Restart ESP after the SA has been added.
3020 static void
3021 esp_inbound_restart(mblk_t *mp, ip_recv_attr_t *ira)
3023 esph_t *esph;
3024 netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
3025 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
3027 esp2dbg(espstack, ("in ESP inbound_task"));
3028 ASSERT(espstack != NULL);
3030 mp = ipsec_inbound_esp_sa(mp, ira, &esph);
3031 if (mp == NULL)
3032 return;
3034 ASSERT(esph != NULL);
3035 ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
3036 ASSERT(ira->ira_ipsec_esp_sa != NULL);
3038 mp = ira->ira_ipsec_esp_sa->ipsa_input_func(mp, esph, ira);
3039 if (mp == NULL) {
3041 * Either it failed or is pending. In the former case
3042 * ipIfStatsInDiscards was increased.
3044 return;
3047 ip_input_post_ipsec(mp, ira);
3051 * Now that weak-key passed, actually ADD the security association, and
3052 * send back a reply ADD message.
3054 static int
3055 esp_add_sa_finish(mblk_t *mp, sadb_msg_t *samsg, keysock_in_t *ksi,
3056 int *diagnostic, ipsecesp_stack_t *espstack)
3058 isaf_t *primary = NULL, *secondary;
3059 boolean_t clone = B_FALSE, is_inbound = B_FALSE;
3060 ipsa_t *larval = NULL;
3061 ipsacq_t *acqrec;
3062 iacqf_t *acq_bucket;
3063 mblk_t *acq_msgs = NULL;
3064 int rc;
3065 mblk_t *lpkt;
3066 int error;
3067 ipsa_query_t sq;
3068 ipsec_stack_t *ipss = espstack->ipsecesp_netstack->netstack_ipsec;
3071 * Locate the appropriate table(s).
3073 sq.spp = &espstack->esp_sadb; /* XXX */
3074 error = sadb_form_query(ksi, IPSA_Q_SA|IPSA_Q_DST,
3075 IPSA_Q_SA|IPSA_Q_DST|IPSA_Q_INBOUND|IPSA_Q_OUTBOUND,
3076 &sq, diagnostic);
3077 if (error)
3078 return (error);
3081 * Use the direction flags provided by the KMD to determine
3082 * if the inbound or outbound table should be the primary
3083 * for this SA. If these flags were absent then make this
3084 * decision based on the addresses.
3086 if (sq.assoc->sadb_sa_flags & IPSA_F_INBOUND) {
3087 primary = sq.inbound;
3088 secondary = sq.outbound;
3089 is_inbound = B_TRUE;
3090 if (sq.assoc->sadb_sa_flags & IPSA_F_OUTBOUND)
3091 clone = B_TRUE;
3092 } else if (sq.assoc->sadb_sa_flags & IPSA_F_OUTBOUND) {
3093 primary = sq.outbound;
3094 secondary = sq.inbound;
3097 if (primary == NULL) {
3099 * The KMD did not set a direction flag, determine which
3100 * table to insert the SA into based on addresses.
3102 switch (ksi->ks_in_dsttype) {
3103 case KS_IN_ADDR_MBCAST:
3104 clone = B_TRUE; /* All mcast SAs can be bidirectional */
3105 sq.assoc->sadb_sa_flags |= IPSA_F_OUTBOUND;
3106 /* FALLTHRU */
3108 * If the source address is either one of mine, or unspecified
3109 * (which is best summed up by saying "not 'not mine'"),
3110 * then the association is potentially bi-directional,
3111 * in that it can be used for inbound traffic and outbound
3112 * traffic. The best example of such an SA is a multicast
3113 * SA (which allows me to receive the outbound traffic).
3115 case KS_IN_ADDR_ME:
3116 sq.assoc->sadb_sa_flags |= IPSA_F_INBOUND;
3117 primary = sq.inbound;
3118 secondary = sq.outbound;
3119 if (ksi->ks_in_srctype != KS_IN_ADDR_NOTME)
3120 clone = B_TRUE;
3121 is_inbound = B_TRUE;
3122 break;
3124 * If the source address literally not mine (either
3125 * unspecified or not mine), then this SA may have an
3126 * address that WILL be mine after some configuration.
3127 * We pay the price for this by making it a bi-directional
3128 * SA.
3130 case KS_IN_ADDR_NOTME:
3131 sq.assoc->sadb_sa_flags |= IPSA_F_OUTBOUND;
3132 primary = sq.outbound;
3133 secondary = sq.inbound;
3134 if (ksi->ks_in_srctype != KS_IN_ADDR_ME) {
3135 sq.assoc->sadb_sa_flags |= IPSA_F_INBOUND;
3136 clone = B_TRUE;
3138 break;
3139 default:
3140 *diagnostic = SADB_X_DIAGNOSTIC_BAD_DST;
3141 return (EINVAL);
3146 * Find a ACQUIRE list entry if possible. If we've added an SA that
3147 * suits the needs of an ACQUIRE list entry, we can eliminate the
3148 * ACQUIRE list entry and transmit the enqueued packets. Use the
3149 * high-bit of the sequence number to queue it. Key off destination
3150 * addr, and change acqrec's state.
3153 if (samsg->sadb_msg_seq & IACQF_LOWEST_SEQ) {
3154 acq_bucket = &(sq.sp->sdb_acq[sq.outhash]);
3155 mutex_enter(&acq_bucket->iacqf_lock);
3156 for (acqrec = acq_bucket->iacqf_ipsacq; acqrec != NULL;
3157 acqrec = acqrec->ipsacq_next) {
3158 mutex_enter(&acqrec->ipsacq_lock);
3160 * Q: I only check sequence. Should I check dst?
3161 * A: Yes, check dest because those are the packets
3162 * that are queued up.
3164 if (acqrec->ipsacq_seq == samsg->sadb_msg_seq &&
3165 IPSA_ARE_ADDR_EQUAL(sq.dstaddr,
3166 acqrec->ipsacq_dstaddr, acqrec->ipsacq_addrfam))
3167 break;
3168 mutex_exit(&acqrec->ipsacq_lock);
3170 if (acqrec != NULL) {
3172 * AHA! I found an ACQUIRE record for this SA.
3173 * Grab the msg list, and free the acquire record.
3174 * I already am holding the lock for this record,
3175 * so all I have to do is free it.
3177 acq_msgs = acqrec->ipsacq_mp;
3178 acqrec->ipsacq_mp = NULL;
3179 mutex_exit(&acqrec->ipsacq_lock);
3180 sadb_destroy_acquire(acqrec,
3181 espstack->ipsecesp_netstack);
3183 mutex_exit(&acq_bucket->iacqf_lock);
3187 * Find PF_KEY message, and see if I'm an update. If so, find entry
3188 * in larval list (if there).
3190 if (samsg->sadb_msg_type == SADB_UPDATE) {
3191 mutex_enter(&sq.inbound->isaf_lock);
3192 larval = ipsec_getassocbyspi(sq.inbound, sq.assoc->sadb_sa_spi,
3193 ALL_ZEROES_PTR, sq.dstaddr, sq.dst->sin_family);
3194 mutex_exit(&sq.inbound->isaf_lock);
3196 if ((larval == NULL) ||
3197 (larval->ipsa_state != IPSA_STATE_LARVAL)) {
3198 *diagnostic = SADB_X_DIAGNOSTIC_SA_NOTFOUND;
3199 if (larval != NULL) {
3200 IPSA_REFRELE(larval);
3202 esp0dbg(("Larval update, but larval disappeared.\n"));
3203 return (ESRCH);
3204 } /* Else sadb_common_add unlinks it for me! */
3207 if (larval != NULL) {
3209 * Hold again, because sadb_common_add() consumes a reference,
3210 * and we don't want to clear_lpkt() without a reference.
3212 IPSA_REFHOLD(larval);
3215 rc = sadb_common_add(espstack->esp_pfkey_q,
3216 mp, samsg, ksi, primary, secondary, larval, clone, is_inbound,
3217 diagnostic, espstack->ipsecesp_netstack, &espstack->esp_sadb);
3219 if (larval != NULL) {
3220 if (rc == 0) {
3221 lpkt = sadb_clear_lpkt(larval);
3222 if (lpkt != NULL) {
3223 rc = !taskq_dispatch(esp_taskq, inbound_task,
3224 lpkt, TQ_NOSLEEP);
3227 IPSA_REFRELE(larval);
3231 * How much more stack will I create with all of these
3232 * esp_outbound() calls?
3235 /* Handle the packets queued waiting for the SA */
3236 while (acq_msgs != NULL) {
3237 mblk_t *asyncmp;
3238 mblk_t *data_mp;
3239 ip_xmit_attr_t ixas;
3240 ill_t *ill;
3242 asyncmp = acq_msgs;
3243 acq_msgs = acq_msgs->b_next;
3244 asyncmp->b_next = NULL;
3247 * Extract the ip_xmit_attr_t from the first mblk.
3248 * Verifies that the netstack and ill is still around; could
3249 * have vanished while iked was doing its work.
3250 * On succesful return we have a nce_t and the ill/ipst can't
3251 * disappear until we do the nce_refrele in ixa_cleanup.
3253 data_mp = asyncmp->b_cont;
3254 asyncmp->b_cont = NULL;
3255 if (!ip_xmit_attr_from_mblk(asyncmp, &ixas)) {
3256 ESP_BUMP_STAT(espstack, out_discards);
3257 ip_drop_packet(data_mp, B_FALSE, NULL,
3258 DROPPER(ipss, ipds_sadb_acquire_timeout),
3259 &espstack->esp_dropper);
3260 } else if (rc != 0) {
3261 ill = ixas.ixa_nce->nce_ill;
3262 ESP_BUMP_STAT(espstack, out_discards);
3263 ip_drop_packet(data_mp, B_FALSE, ill,
3264 DROPPER(ipss, ipds_sadb_acquire_timeout),
3265 &espstack->esp_dropper);
3266 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
3267 } else {
3268 esp_outbound_finish(data_mp, &ixas);
3270 ixa_cleanup(&ixas);
3273 return (rc);
3277 * Process one of the queued messages (from ipsacq_mp) once the SA
3278 * has been added.
3280 static void
3281 esp_outbound_finish(mblk_t *data_mp, ip_xmit_attr_t *ixa)
3283 netstack_t *ns = ixa->ixa_ipst->ips_netstack;
3284 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
3285 ipsec_stack_t *ipss = ns->netstack_ipsec;
3286 ill_t *ill = ixa->ixa_nce->nce_ill;
3288 if (!ipsec_outbound_sa(data_mp, ixa, IPPROTO_ESP)) {
3289 ESP_BUMP_STAT(espstack, out_discards);
3290 ip_drop_packet(data_mp, B_FALSE, ill,
3291 DROPPER(ipss, ipds_sadb_acquire_timeout),
3292 &espstack->esp_dropper);
3293 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
3294 return;
3297 data_mp = esp_outbound(data_mp, ixa);
3298 if (data_mp == NULL)
3299 return;
3301 /* do AH processing if needed */
3302 data_mp = esp_do_outbound_ah(data_mp, ixa);
3303 if (data_mp == NULL)
3304 return;
3306 (void) ip_output_post_ipsec(data_mp, ixa);
3310 * Add new ESP security association. This may become a generic AH/ESP
3311 * routine eventually.
3313 static int
3314 esp_add_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic, netstack_t *ns)
3316 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
3317 sadb_address_t *srcext =
3318 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
3319 sadb_address_t *dstext =
3320 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
3321 sadb_address_t *isrcext =
3322 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_SRC];
3323 sadb_address_t *idstext =
3324 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_INNER_DST];
3325 sadb_address_t *nttext_loc =
3326 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC];
3327 sadb_address_t *nttext_rem =
3328 (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM];
3329 sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH];
3330 sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT];
3331 struct sockaddr_in *src, *dst;
3332 struct sockaddr_in *natt_loc, *natt_rem;
3333 struct sockaddr_in6 *natt_loc6, *natt_rem6;
3334 sadb_lifetime_t *soft =
3335 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT];
3336 sadb_lifetime_t *hard =
3337 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD];
3338 sadb_lifetime_t *idle =
3339 (sadb_lifetime_t *)ksi->ks_in_extv[SADB_X_EXT_LIFETIME_IDLE];
3340 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
3341 ipsec_stack_t *ipss = ns->netstack_ipsec;
3345 /* I need certain extensions present for an ADD message. */
3346 if (srcext == NULL) {
3347 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC;
3348 return (EINVAL);
3350 if (dstext == NULL) {
3351 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
3352 return (EINVAL);
3354 if (isrcext == NULL && idstext != NULL) {
3355 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_SRC;
3356 return (EINVAL);
3358 if (isrcext != NULL && idstext == NULL) {
3359 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_INNER_DST;
3360 return (EINVAL);
3362 if (assoc == NULL) {
3363 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
3364 return (EINVAL);
3366 if (ekey == NULL && assoc->sadb_sa_encrypt != SADB_EALG_NULL) {
3367 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_EKEY;
3368 return (EINVAL);
3371 src = (struct sockaddr_in *)(srcext + 1);
3372 dst = (struct sockaddr_in *)(dstext + 1);
3373 natt_loc = (struct sockaddr_in *)(nttext_loc + 1);
3374 natt_loc6 = (struct sockaddr_in6 *)(nttext_loc + 1);
3375 natt_rem = (struct sockaddr_in *)(nttext_rem + 1);
3376 natt_rem6 = (struct sockaddr_in6 *)(nttext_rem + 1);
3378 /* Sundry ADD-specific reality checks. */
3379 /* XXX STATS : Logging/stats here? */
3381 if ((assoc->sadb_sa_state != SADB_SASTATE_MATURE) &&
3382 (assoc->sadb_sa_state != SADB_X_SASTATE_ACTIVE_ELSEWHERE)) {
3383 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE;
3384 return (EINVAL);
3386 if (assoc->sadb_sa_encrypt == SADB_EALG_NONE) {
3387 *diagnostic = SADB_X_DIAGNOSTIC_BAD_EALG;
3388 return (EINVAL);
3391 #ifndef IPSEC_LATENCY_TEST
3392 if (assoc->sadb_sa_encrypt == SADB_EALG_NULL &&
3393 assoc->sadb_sa_auth == SADB_AALG_NONE) {
3394 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG;
3395 return (EINVAL);
3397 #endif
3399 if (assoc->sadb_sa_flags & ~espstack->esp_sadb.s_addflags) {
3400 *diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS;
3401 return (EINVAL);
3404 if ((*diagnostic = sadb_hardsoftchk(hard, soft, idle)) != 0) {
3405 return (EINVAL);
3407 ASSERT(src->sin_family == dst->sin_family);
3409 if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_LOC) {
3410 if (nttext_loc == NULL) {
3411 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_LOC;
3412 return (EINVAL);
3415 if (natt_loc->sin_family == AF_INET6 &&
3416 !IN6_IS_ADDR_V4MAPPED(&natt_loc6->sin6_addr)) {
3417 *diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_NATT_LOC;
3418 return (EINVAL);
3422 if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_REM) {
3423 if (nttext_rem == NULL) {
3424 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_REM;
3425 return (EINVAL);
3427 if (natt_rem->sin_family == AF_INET6 &&
3428 !IN6_IS_ADDR_V4MAPPED(&natt_rem6->sin6_addr)) {
3429 *diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_NATT_REM;
3430 return (EINVAL);
3435 /* Stuff I don't support, for now. XXX Diagnostic? */
3436 if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL)
3437 return (EOPNOTSUPP);
3439 if ((*diagnostic = sadb_labelchk(ksi)) != 0)
3440 return (EINVAL);
3443 * XXX Policy : I'm not checking identities at this time,
3444 * but if I did, I'd do them here, before I sent
3445 * the weak key check up to the algorithm.
3448 rw_enter(&ipss->ipsec_alg_lock, RW_READER);
3451 * First locate the authentication algorithm.
3453 #ifdef IPSEC_LATENCY_TEST
3454 if (akey != NULL && assoc->sadb_sa_auth != SADB_AALG_NONE) {
3455 #else
3456 if (akey != NULL) {
3457 #endif
3458 ipsec_alginfo_t *aalg;
3460 aalg = ipss->ipsec_alglists[IPSEC_ALG_AUTH]
3461 [assoc->sadb_sa_auth];
3462 if (aalg == NULL || !ALG_VALID(aalg)) {
3463 rw_exit(&ipss->ipsec_alg_lock);
3464 esp1dbg(espstack, ("Couldn't find auth alg #%d.\n",
3465 assoc->sadb_sa_auth));
3466 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG;
3467 return (EINVAL);
3471 * Sanity check key sizes.
3472 * Note: It's not possible to use SADB_AALG_NONE because
3473 * this auth_alg is not defined with ALG_FLAG_VALID. If this
3474 * ever changes, the same check for SADB_AALG_NONE and
3475 * a auth_key != NULL should be made here ( see below).
3477 if (!ipsec_valid_key_size(akey->sadb_key_bits, aalg)) {
3478 rw_exit(&ipss->ipsec_alg_lock);
3479 *diagnostic = SADB_X_DIAGNOSTIC_BAD_AKEYBITS;
3480 return (EINVAL);
3482 ASSERT(aalg->alg_mech_type != CRYPTO_MECHANISM_INVALID);
3484 /* check key and fix parity if needed */
3485 if (ipsec_check_key(aalg->alg_mech_type, akey, B_TRUE,
3486 diagnostic) != 0) {
3487 rw_exit(&ipss->ipsec_alg_lock);
3488 return (EINVAL);
3493 * Then locate the encryption algorithm.
3495 if (ekey != NULL) {
3496 uint_t keybits;
3497 ipsec_alginfo_t *ealg;
3499 ealg = ipss->ipsec_alglists[IPSEC_ALG_ENCR]
3500 [assoc->sadb_sa_encrypt];
3501 if (ealg == NULL || !ALG_VALID(ealg)) {
3502 rw_exit(&ipss->ipsec_alg_lock);
3503 esp1dbg(espstack, ("Couldn't find encr alg #%d.\n",
3504 assoc->sadb_sa_encrypt));
3505 *diagnostic = SADB_X_DIAGNOSTIC_BAD_EALG;
3506 return (EINVAL);
3510 * Sanity check key sizes. If the encryption algorithm is
3511 * SADB_EALG_NULL but the encryption key is NOT
3512 * NULL then complain.
3514 * The keying material includes salt bits if required by
3515 * algorithm and optionally the Initial IV, check the
3516 * length of whats left.
3518 keybits = ekey->sadb_key_bits;
3519 keybits -= ekey->sadb_key_reserved;
3520 keybits -= SADB_8TO1(ealg->alg_saltlen);
3521 if ((assoc->sadb_sa_encrypt == SADB_EALG_NULL) ||
3522 (!ipsec_valid_key_size(keybits, ealg))) {
3523 rw_exit(&ipss->ipsec_alg_lock);
3524 *diagnostic = SADB_X_DIAGNOSTIC_BAD_EKEYBITS;
3525 return (EINVAL);
3527 ASSERT(ealg->alg_mech_type != CRYPTO_MECHANISM_INVALID);
3529 /* check key */
3530 if (ipsec_check_key(ealg->alg_mech_type, ekey, B_FALSE,
3531 diagnostic) != 0) {
3532 rw_exit(&ipss->ipsec_alg_lock);
3533 return (EINVAL);
3536 rw_exit(&ipss->ipsec_alg_lock);
3538 return (esp_add_sa_finish(mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi,
3539 diagnostic, espstack));
3543 * Update a security association. Updates come in two varieties. The first
3544 * is an update of lifetimes on a non-larval SA. The second is an update of
3545 * a larval SA, which ends up looking a lot more like an add.
3547 static int
3548 esp_update_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic,
3549 ipsecesp_stack_t *espstack, uint8_t sadb_msg_type)
3551 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
3552 mblk_t *buf_pkt;
3553 int rcode;
3555 sadb_address_t *dstext =
3556 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
3558 if (dstext == NULL) {
3559 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST;
3560 return (EINVAL);
3563 rcode = sadb_update_sa(mp, ksi, &buf_pkt, &espstack->esp_sadb,
3564 diagnostic, espstack->esp_pfkey_q, esp_add_sa,
3565 espstack->ipsecesp_netstack, sadb_msg_type);
3567 if ((assoc->sadb_sa_state != SADB_X_SASTATE_ACTIVE) ||
3568 (rcode != 0)) {
3569 return (rcode);
3572 HANDLE_BUF_PKT(esp_taskq, espstack->ipsecesp_netstack->netstack_ipsec,
3573 espstack->esp_dropper, buf_pkt);
3575 return (rcode);
3578 /* XXX refactor me */
3580 * Delete a security association. This is REALLY likely to be code common to
3581 * both AH and ESP. Find the association, then unlink it.
3583 static int
3584 esp_del_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic,
3585 ipsecesp_stack_t *espstack, uint8_t sadb_msg_type)
3587 sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA];
3588 sadb_address_t *dstext =
3589 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST];
3590 sadb_address_t *srcext =
3591 (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC];
3592 struct sockaddr_in *sin;
3594 if (assoc == NULL) {
3595 if (dstext != NULL) {
3596 sin = (struct sockaddr_in *)(dstext + 1);
3597 } else if (srcext != NULL) {
3598 sin = (struct sockaddr_in *)(srcext + 1);
3599 } else {
3600 *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA;
3601 return (EINVAL);
3603 return (sadb_purge_sa(mp, ksi,
3604 (sin->sin_family == AF_INET6) ? &espstack->esp_sadb.s_v6 :
3605 &espstack->esp_sadb.s_v4, diagnostic,
3606 espstack->esp_pfkey_q));
3609 return (sadb_delget_sa(mp, ksi, &espstack->esp_sadb, diagnostic,
3610 espstack->esp_pfkey_q, sadb_msg_type));
3613 /* XXX refactor me */
3615 * Convert the entire contents of all of ESP's SA tables into PF_KEY SADB_DUMP
3616 * messages.
3618 static void
3619 esp_dump(mblk_t *mp, keysock_in_t *ksi, ipsecesp_stack_t *espstack)
3621 int error;
3622 sadb_msg_t *samsg;
3625 * Dump each fanout, bailing if error is non-zero.
3628 error = sadb_dump(espstack->esp_pfkey_q, mp, ksi,
3629 &espstack->esp_sadb.s_v4);
3630 if (error != 0)
3631 goto bail;
3633 error = sadb_dump(espstack->esp_pfkey_q, mp, ksi,
3634 &espstack->esp_sadb.s_v6);
3635 bail:
3636 ASSERT(mp->b_cont != NULL);
3637 samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
3638 samsg->sadb_msg_errno = (uint8_t)error;
3639 sadb_pfkey_echo(espstack->esp_pfkey_q, mp,
3640 (sadb_msg_t *)mp->b_cont->b_rptr, ksi, NULL);
3644 * First-cut reality check for an inbound PF_KEY message.
3646 static boolean_t
3647 esp_pfkey_reality_failures(mblk_t *mp, keysock_in_t *ksi,
3648 ipsecesp_stack_t *espstack)
3650 int diagnostic;
3652 if (ksi->ks_in_extv[SADB_EXT_PROPOSAL] != NULL) {
3653 diagnostic = SADB_X_DIAGNOSTIC_PROP_PRESENT;
3654 goto badmsg;
3656 if (ksi->ks_in_extv[SADB_EXT_SUPPORTED_AUTH] != NULL ||
3657 ksi->ks_in_extv[SADB_EXT_SUPPORTED_ENCRYPT] != NULL) {
3658 diagnostic = SADB_X_DIAGNOSTIC_SUPP_PRESENT;
3659 goto badmsg;
3661 return (B_FALSE); /* False ==> no failures */
3663 badmsg:
3664 sadb_pfkey_error(espstack->esp_pfkey_q, mp, EINVAL, diagnostic,
3665 ksi->ks_in_serial);
3666 return (B_TRUE); /* True ==> failures */
3670 * ESP parsing of PF_KEY messages. Keysock did most of the really silly
3671 * error cases. What I receive is a fully-formed, syntactically legal
3672 * PF_KEY message. I then need to check semantics...
3674 * This code may become common to AH and ESP. Stay tuned.
3676 * I also make the assumption that db_ref's are cool. If this assumption
3677 * is wrong, this means that someone other than keysock or me has been
3678 * mucking with PF_KEY messages.
3680 static void
3681 esp_parse_pfkey(mblk_t *mp, ipsecesp_stack_t *espstack)
3683 mblk_t *msg = mp->b_cont;
3684 sadb_msg_t *samsg;
3685 keysock_in_t *ksi;
3686 int error;
3687 int diagnostic = SADB_X_DIAGNOSTIC_NONE;
3689 ASSERT(msg != NULL);
3691 samsg = (sadb_msg_t *)msg->b_rptr;
3692 ksi = (keysock_in_t *)mp->b_rptr;
3695 * If applicable, convert unspecified AF_INET6 to unspecified
3696 * AF_INET. And do other address reality checks.
3698 if (!sadb_addrfix(ksi, espstack->esp_pfkey_q, mp,
3699 espstack->ipsecesp_netstack) ||
3700 esp_pfkey_reality_failures(mp, ksi, espstack)) {
3701 return;
3704 switch (samsg->sadb_msg_type) {
3705 case SADB_ADD:
3706 error = esp_add_sa(mp, ksi, &diagnostic,
3707 espstack->ipsecesp_netstack);
3708 if (error != 0) {
3709 sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
3710 diagnostic, ksi->ks_in_serial);
3712 /* else esp_add_sa() took care of things. */
3713 break;
3714 case SADB_DELETE:
3715 case SADB_X_DELPAIR:
3716 case SADB_X_DELPAIR_STATE:
3717 error = esp_del_sa(mp, ksi, &diagnostic, espstack,
3718 samsg->sadb_msg_type);
3719 if (error != 0) {
3720 sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
3721 diagnostic, ksi->ks_in_serial);
3723 /* Else esp_del_sa() took care of things. */
3724 break;
3725 case SADB_GET:
3726 error = sadb_delget_sa(mp, ksi, &espstack->esp_sadb,
3727 &diagnostic, espstack->esp_pfkey_q, samsg->sadb_msg_type);
3728 if (error != 0) {
3729 sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
3730 diagnostic, ksi->ks_in_serial);
3732 /* Else sadb_get_sa() took care of things. */
3733 break;
3734 case SADB_FLUSH:
3735 sadbp_flush(&espstack->esp_sadb, espstack->ipsecesp_netstack);
3736 sadb_pfkey_echo(espstack->esp_pfkey_q, mp, samsg, ksi, NULL);
3737 break;
3738 case SADB_REGISTER:
3740 * Hmmm, let's do it! Check for extensions (there should
3741 * be none), extract the fields, call esp_register_out(),
3742 * then either free or report an error.
3744 * Keysock takes care of the PF_KEY bookkeeping for this.
3746 if (esp_register_out(samsg->sadb_msg_seq, samsg->sadb_msg_pid,
3747 ksi->ks_in_serial, espstack, msg_getcred(mp, NULL))) {
3748 freemsg(mp);
3749 } else {
3751 * Only way this path hits is if there is a memory
3752 * failure. It will not return B_FALSE because of
3753 * lack of esp_pfkey_q if I am in wput().
3755 sadb_pfkey_error(espstack->esp_pfkey_q, mp, ENOMEM,
3756 diagnostic, ksi->ks_in_serial);
3758 break;
3759 case SADB_UPDATE:
3760 case SADB_X_UPDATEPAIR:
3762 * Find a larval, if not there, find a full one and get
3763 * strict.
3765 error = esp_update_sa(mp, ksi, &diagnostic, espstack,
3766 samsg->sadb_msg_type);
3767 if (error != 0) {
3768 sadb_pfkey_error(espstack->esp_pfkey_q, mp, error,
3769 diagnostic, ksi->ks_in_serial);
3771 /* else esp_update_sa() took care of things. */
3772 break;
3773 case SADB_GETSPI:
3775 * Reserve a new larval entry.
3777 esp_getspi(mp, ksi, espstack);
3778 break;
3779 case SADB_ACQUIRE:
3781 * Find larval and/or ACQUIRE record and kill it (them), I'm
3782 * most likely an error. Inbound ACQUIRE messages should only
3783 * have the base header.
3785 sadb_in_acquire(samsg, &espstack->esp_sadb,
3786 espstack->esp_pfkey_q, espstack->ipsecesp_netstack);
3787 freemsg(mp);
3788 break;
3789 case SADB_DUMP:
3791 * Dump all entries.
3793 esp_dump(mp, ksi, espstack);
3794 /* esp_dump will take care of the return message, etc. */
3795 break;
3796 case SADB_EXPIRE:
3797 /* Should never reach me. */
3798 sadb_pfkey_error(espstack->esp_pfkey_q, mp, EOPNOTSUPP,
3799 diagnostic, ksi->ks_in_serial);
3800 break;
3801 default:
3802 sadb_pfkey_error(espstack->esp_pfkey_q, mp, EINVAL,
3803 SADB_X_DIAGNOSTIC_UNKNOWN_MSG, ksi->ks_in_serial);
3804 break;
3809 * Handle case where PF_KEY says it can't find a keysock for one of my
3810 * ACQUIRE messages.
3812 static void
3813 esp_keysock_no_socket(mblk_t *mp, ipsecesp_stack_t *espstack)
3815 sadb_msg_t *samsg;
3816 keysock_out_err_t *kse = (keysock_out_err_t *)mp->b_rptr;
3818 if (mp->b_cont == NULL) {
3819 freemsg(mp);
3820 return;
3822 samsg = (sadb_msg_t *)mp->b_cont->b_rptr;
3825 * If keysock can't find any registered, delete the acquire record
3826 * immediately, and handle errors.
3828 if (samsg->sadb_msg_type == SADB_ACQUIRE) {
3829 samsg->sadb_msg_errno = kse->ks_err_errno;
3830 samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg));
3832 * Use the write-side of the esp_pfkey_q
3834 sadb_in_acquire(samsg, &espstack->esp_sadb,
3835 WR(espstack->esp_pfkey_q), espstack->ipsecesp_netstack);
3838 freemsg(mp);
3842 * ESP module write put routine.
3844 static void
3845 ipsecesp_wput(queue_t *q, mblk_t *mp)
3847 ipsec_info_t *ii;
3848 struct iocblk *iocp;
3849 ipsecesp_stack_t *espstack = (ipsecesp_stack_t *)q->q_ptr;
3851 esp3dbg(espstack, ("In esp_wput().\n"));
3853 /* NOTE: Each case must take care of freeing or passing mp. */
3854 switch (mp->b_datap->db_type) {
3855 case M_CTL:
3856 if ((mp->b_wptr - mp->b_rptr) < sizeof (ipsec_info_t)) {
3857 /* Not big enough message. */
3858 freemsg(mp);
3859 break;
3861 ii = (ipsec_info_t *)mp->b_rptr;
3863 switch (ii->ipsec_info_type) {
3864 case KEYSOCK_OUT_ERR:
3865 esp1dbg(espstack, ("Got KEYSOCK_OUT_ERR message.\n"));
3866 esp_keysock_no_socket(mp, espstack);
3867 break;
3868 case KEYSOCK_IN:
3869 ESP_BUMP_STAT(espstack, keysock_in);
3870 esp3dbg(espstack, ("Got KEYSOCK_IN message.\n"));
3872 /* Parse the message. */
3873 esp_parse_pfkey(mp, espstack);
3874 break;
3875 case KEYSOCK_HELLO:
3876 sadb_keysock_hello(&espstack->esp_pfkey_q, q, mp,
3877 esp_ager, (void *)espstack, &espstack->esp_event,
3878 SADB_SATYPE_ESP);
3879 break;
3880 default:
3881 esp2dbg(espstack, ("Got M_CTL from above of 0x%x.\n",
3882 ii->ipsec_info_type));
3883 freemsg(mp);
3884 break;
3886 break;
3887 case M_IOCTL:
3888 iocp = (struct iocblk *)mp->b_rptr;
3889 switch (iocp->ioc_cmd) {
3890 case ND_SET:
3891 case ND_GET:
3892 if (nd_getset(q, espstack->ipsecesp_g_nd, mp)) {
3893 qreply(q, mp);
3894 return;
3895 } else {
3896 iocp->ioc_error = ENOENT;
3898 /* FALLTHRU */
3899 default:
3900 /* We really don't support any other ioctls, do we? */
3902 /* Return EINVAL */
3903 if (iocp->ioc_error != ENOENT)
3904 iocp->ioc_error = EINVAL;
3905 iocp->ioc_count = 0;
3906 mp->b_datap->db_type = M_IOCACK;
3907 qreply(q, mp);
3908 return;
3910 default:
3911 esp3dbg(espstack,
3912 ("Got default message, type %d, passing to IP.\n",
3913 mp->b_datap->db_type));
3914 putnext(q, mp);
3919 * Wrapper to allow IP to trigger an ESP association failure message
3920 * during inbound SA selection.
3922 void
3923 ipsecesp_in_assocfailure(mblk_t *mp, char level, ushort_t sl, char *fmt,
3924 uint32_t spi, void *addr, int af, ip_recv_attr_t *ira)
3926 netstack_t *ns = ira->ira_ill->ill_ipst->ips_netstack;
3927 ipsecesp_stack_t *espstack = ns->netstack_ipsecesp;
3928 ipsec_stack_t *ipss = ns->netstack_ipsec;
3930 if (espstack->ipsecesp_log_unknown_spi) {
3931 ipsec_assocfailure(info.mi_idnum, 0, level, sl, fmt, spi,
3932 addr, af, espstack->ipsecesp_netstack);
3935 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
3936 DROPPER(ipss, ipds_esp_no_sa),
3937 &espstack->esp_dropper);
3941 * Initialize the ESP input and output processing functions.
3943 void
3944 ipsecesp_init_funcs(ipsa_t *sa)
3946 if (sa->ipsa_output_func == NULL)
3947 sa->ipsa_output_func = esp_outbound;
3948 if (sa->ipsa_input_func == NULL)
3949 sa->ipsa_input_func = esp_inbound;