4757 ZFS embedded-data block pointers ("zero block compression")
[unleashed.git] / usr / src / uts / common / fs / zfs / spa_misc.c
blob1c5743ac4ed04e788d14b314629676d07531f13d
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/spa_boot.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zio_compress.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zap.h>
36 #include <sys/zil.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/arc.h>
50 #include <sys/ddt.h>
51 #include "zfs_prop.h"
52 #include "zfeature_common.h"
55 * SPA locking
57 * There are four basic locks for managing spa_t structures:
59 * spa_namespace_lock (global mutex)
61 * This lock must be acquired to do any of the following:
63 * - Lookup a spa_t by name
64 * - Add or remove a spa_t from the namespace
65 * - Increase spa_refcount from non-zero
66 * - Check if spa_refcount is zero
67 * - Rename a spa_t
68 * - add/remove/attach/detach devices
69 * - Held for the duration of create/destroy/import/export
71 * It does not need to handle recursion. A create or destroy may
72 * reference objects (files or zvols) in other pools, but by
73 * definition they must have an existing reference, and will never need
74 * to lookup a spa_t by name.
76 * spa_refcount (per-spa refcount_t protected by mutex)
78 * This reference count keep track of any active users of the spa_t. The
79 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
80 * the refcount is never really 'zero' - opening a pool implicitly keeps
81 * some references in the DMU. Internally we check against spa_minref, but
82 * present the image of a zero/non-zero value to consumers.
84 * spa_config_lock[] (per-spa array of rwlocks)
86 * This protects the spa_t from config changes, and must be held in
87 * the following circumstances:
89 * - RW_READER to perform I/O to the spa
90 * - RW_WRITER to change the vdev config
92 * The locking order is fairly straightforward:
94 * spa_namespace_lock -> spa_refcount
96 * The namespace lock must be acquired to increase the refcount from 0
97 * or to check if it is zero.
99 * spa_refcount -> spa_config_lock[]
101 * There must be at least one valid reference on the spa_t to acquire
102 * the config lock.
104 * spa_namespace_lock -> spa_config_lock[]
106 * The namespace lock must always be taken before the config lock.
109 * The spa_namespace_lock can be acquired directly and is globally visible.
111 * The namespace is manipulated using the following functions, all of which
112 * require the spa_namespace_lock to be held.
114 * spa_lookup() Lookup a spa_t by name.
116 * spa_add() Create a new spa_t in the namespace.
118 * spa_remove() Remove a spa_t from the namespace. This also
119 * frees up any memory associated with the spa_t.
121 * spa_next() Returns the next spa_t in the system, or the
122 * first if NULL is passed.
124 * spa_evict_all() Shutdown and remove all spa_t structures in
125 * the system.
127 * spa_guid_exists() Determine whether a pool/device guid exists.
129 * The spa_refcount is manipulated using the following functions:
131 * spa_open_ref() Adds a reference to the given spa_t. Must be
132 * called with spa_namespace_lock held if the
133 * refcount is currently zero.
135 * spa_close() Remove a reference from the spa_t. This will
136 * not free the spa_t or remove it from the
137 * namespace. No locking is required.
139 * spa_refcount_zero() Returns true if the refcount is currently
140 * zero. Must be called with spa_namespace_lock
141 * held.
143 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
144 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
145 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
147 * To read the configuration, it suffices to hold one of these locks as reader.
148 * To modify the configuration, you must hold all locks as writer. To modify
149 * vdev state without altering the vdev tree's topology (e.g. online/offline),
150 * you must hold SCL_STATE and SCL_ZIO as writer.
152 * We use these distinct config locks to avoid recursive lock entry.
153 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
154 * block allocations (SCL_ALLOC), which may require reading space maps
155 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
157 * The spa config locks cannot be normal rwlocks because we need the
158 * ability to hand off ownership. For example, SCL_ZIO is acquired
159 * by the issuing thread and later released by an interrupt thread.
160 * They do, however, obey the usual write-wanted semantics to prevent
161 * writer (i.e. system administrator) starvation.
163 * The lock acquisition rules are as follows:
165 * SCL_CONFIG
166 * Protects changes to the vdev tree topology, such as vdev
167 * add/remove/attach/detach. Protects the dirty config list
168 * (spa_config_dirty_list) and the set of spares and l2arc devices.
170 * SCL_STATE
171 * Protects changes to pool state and vdev state, such as vdev
172 * online/offline/fault/degrade/clear. Protects the dirty state list
173 * (spa_state_dirty_list) and global pool state (spa_state).
175 * SCL_ALLOC
176 * Protects changes to metaslab groups and classes.
177 * Held as reader by metaslab_alloc() and metaslab_claim().
179 * SCL_ZIO
180 * Held by bp-level zios (those which have no io_vd upon entry)
181 * to prevent changes to the vdev tree. The bp-level zio implicitly
182 * protects all of its vdev child zios, which do not hold SCL_ZIO.
184 * SCL_FREE
185 * Protects changes to metaslab groups and classes.
186 * Held as reader by metaslab_free(). SCL_FREE is distinct from
187 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
188 * blocks in zio_done() while another i/o that holds either
189 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
191 * SCL_VDEV
192 * Held as reader to prevent changes to the vdev tree during trivial
193 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
194 * other locks, and lower than all of them, to ensure that it's safe
195 * to acquire regardless of caller context.
197 * In addition, the following rules apply:
199 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
200 * The lock ordering is SCL_CONFIG > spa_props_lock.
202 * (b) I/O operations on leaf vdevs. For any zio operation that takes
203 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
204 * or zio_write_phys() -- the caller must ensure that the config cannot
205 * cannot change in the interim, and that the vdev cannot be reopened.
206 * SCL_STATE as reader suffices for both.
208 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
210 * spa_vdev_enter() Acquire the namespace lock and the config lock
211 * for writing.
213 * spa_vdev_exit() Release the config lock, wait for all I/O
214 * to complete, sync the updated configs to the
215 * cache, and release the namespace lock.
217 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
218 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
219 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
221 * spa_rename() is also implemented within this file since it requires
222 * manipulation of the namespace.
225 static avl_tree_t spa_namespace_avl;
226 kmutex_t spa_namespace_lock;
227 static kcondvar_t spa_namespace_cv;
228 static int spa_active_count;
229 int spa_max_replication_override = SPA_DVAS_PER_BP;
231 static kmutex_t spa_spare_lock;
232 static avl_tree_t spa_spare_avl;
233 static kmutex_t spa_l2cache_lock;
234 static avl_tree_t spa_l2cache_avl;
236 kmem_cache_t *spa_buffer_pool;
237 int spa_mode_global;
239 #ifdef ZFS_DEBUG
240 /* Everything except dprintf and spa is on by default in debug builds */
241 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
242 #else
243 int zfs_flags = 0;
244 #endif
247 * zfs_recover can be set to nonzero to attempt to recover from
248 * otherwise-fatal errors, typically caused by on-disk corruption. When
249 * set, calls to zfs_panic_recover() will turn into warning messages.
250 * This should only be used as a last resort, as it typically results
251 * in leaked space, or worse.
253 int zfs_recover = 0;
256 * Expiration time in milliseconds. This value has two meanings. First it is
257 * used to determine when the spa_deadman() logic should fire. By default the
258 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
259 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
260 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
261 * in a system panic.
263 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
266 * Check time in milliseconds. This defines the frequency at which we check
267 * for hung I/O.
269 uint64_t zfs_deadman_checktime_ms = 5000ULL;
272 * Override the zfs deadman behavior via /etc/system. By default the
273 * deadman is enabled except on VMware and sparc deployments.
275 int zfs_deadman_enabled = -1;
278 * The worst case is single-sector max-parity RAID-Z blocks, in which
279 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
280 * times the size; so just assume that. Add to this the fact that
281 * we can have up to 3 DVAs per bp, and one more factor of 2 because
282 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
283 * the worst case is:
284 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
286 int spa_asize_inflation = 24;
289 * ==========================================================================
290 * SPA config locking
291 * ==========================================================================
293 static void
294 spa_config_lock_init(spa_t *spa)
296 for (int i = 0; i < SCL_LOCKS; i++) {
297 spa_config_lock_t *scl = &spa->spa_config_lock[i];
298 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
299 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
300 refcount_create_untracked(&scl->scl_count);
301 scl->scl_writer = NULL;
302 scl->scl_write_wanted = 0;
306 static void
307 spa_config_lock_destroy(spa_t *spa)
309 for (int i = 0; i < SCL_LOCKS; i++) {
310 spa_config_lock_t *scl = &spa->spa_config_lock[i];
311 mutex_destroy(&scl->scl_lock);
312 cv_destroy(&scl->scl_cv);
313 refcount_destroy(&scl->scl_count);
314 ASSERT(scl->scl_writer == NULL);
315 ASSERT(scl->scl_write_wanted == 0);
320 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
322 for (int i = 0; i < SCL_LOCKS; i++) {
323 spa_config_lock_t *scl = &spa->spa_config_lock[i];
324 if (!(locks & (1 << i)))
325 continue;
326 mutex_enter(&scl->scl_lock);
327 if (rw == RW_READER) {
328 if (scl->scl_writer || scl->scl_write_wanted) {
329 mutex_exit(&scl->scl_lock);
330 spa_config_exit(spa, locks ^ (1 << i), tag);
331 return (0);
333 } else {
334 ASSERT(scl->scl_writer != curthread);
335 if (!refcount_is_zero(&scl->scl_count)) {
336 mutex_exit(&scl->scl_lock);
337 spa_config_exit(spa, locks ^ (1 << i), tag);
338 return (0);
340 scl->scl_writer = curthread;
342 (void) refcount_add(&scl->scl_count, tag);
343 mutex_exit(&scl->scl_lock);
345 return (1);
348 void
349 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
351 int wlocks_held = 0;
353 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
355 for (int i = 0; i < SCL_LOCKS; i++) {
356 spa_config_lock_t *scl = &spa->spa_config_lock[i];
357 if (scl->scl_writer == curthread)
358 wlocks_held |= (1 << i);
359 if (!(locks & (1 << i)))
360 continue;
361 mutex_enter(&scl->scl_lock);
362 if (rw == RW_READER) {
363 while (scl->scl_writer || scl->scl_write_wanted) {
364 cv_wait(&scl->scl_cv, &scl->scl_lock);
366 } else {
367 ASSERT(scl->scl_writer != curthread);
368 while (!refcount_is_zero(&scl->scl_count)) {
369 scl->scl_write_wanted++;
370 cv_wait(&scl->scl_cv, &scl->scl_lock);
371 scl->scl_write_wanted--;
373 scl->scl_writer = curthread;
375 (void) refcount_add(&scl->scl_count, tag);
376 mutex_exit(&scl->scl_lock);
378 ASSERT(wlocks_held <= locks);
381 void
382 spa_config_exit(spa_t *spa, int locks, void *tag)
384 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
385 spa_config_lock_t *scl = &spa->spa_config_lock[i];
386 if (!(locks & (1 << i)))
387 continue;
388 mutex_enter(&scl->scl_lock);
389 ASSERT(!refcount_is_zero(&scl->scl_count));
390 if (refcount_remove(&scl->scl_count, tag) == 0) {
391 ASSERT(scl->scl_writer == NULL ||
392 scl->scl_writer == curthread);
393 scl->scl_writer = NULL; /* OK in either case */
394 cv_broadcast(&scl->scl_cv);
396 mutex_exit(&scl->scl_lock);
401 spa_config_held(spa_t *spa, int locks, krw_t rw)
403 int locks_held = 0;
405 for (int i = 0; i < SCL_LOCKS; i++) {
406 spa_config_lock_t *scl = &spa->spa_config_lock[i];
407 if (!(locks & (1 << i)))
408 continue;
409 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
410 (rw == RW_WRITER && scl->scl_writer == curthread))
411 locks_held |= 1 << i;
414 return (locks_held);
418 * ==========================================================================
419 * SPA namespace functions
420 * ==========================================================================
424 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
425 * Returns NULL if no matching spa_t is found.
427 spa_t *
428 spa_lookup(const char *name)
430 static spa_t search; /* spa_t is large; don't allocate on stack */
431 spa_t *spa;
432 avl_index_t where;
433 char *cp;
435 ASSERT(MUTEX_HELD(&spa_namespace_lock));
437 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
440 * If it's a full dataset name, figure out the pool name and
441 * just use that.
443 cp = strpbrk(search.spa_name, "/@#");
444 if (cp != NULL)
445 *cp = '\0';
447 spa = avl_find(&spa_namespace_avl, &search, &where);
449 return (spa);
453 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
454 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
455 * looking for potentially hung I/Os.
457 void
458 spa_deadman(void *arg)
460 spa_t *spa = arg;
463 * Disable the deadman timer if the pool is suspended.
465 if (spa_suspended(spa)) {
466 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
467 return;
470 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
471 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
472 ++spa->spa_deadman_calls);
473 if (zfs_deadman_enabled)
474 vdev_deadman(spa->spa_root_vdev);
478 * Create an uninitialized spa_t with the given name. Requires
479 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
480 * exist by calling spa_lookup() first.
482 spa_t *
483 spa_add(const char *name, nvlist_t *config, const char *altroot)
485 spa_t *spa;
486 spa_config_dirent_t *dp;
487 cyc_handler_t hdlr;
488 cyc_time_t when;
490 ASSERT(MUTEX_HELD(&spa_namespace_lock));
492 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
494 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
495 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
496 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
497 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
498 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
499 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
500 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
501 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
502 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
503 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
505 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
506 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
507 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
508 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
510 for (int t = 0; t < TXG_SIZE; t++)
511 bplist_create(&spa->spa_free_bplist[t]);
513 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
514 spa->spa_state = POOL_STATE_UNINITIALIZED;
515 spa->spa_freeze_txg = UINT64_MAX;
516 spa->spa_final_txg = UINT64_MAX;
517 spa->spa_load_max_txg = UINT64_MAX;
518 spa->spa_proc = &p0;
519 spa->spa_proc_state = SPA_PROC_NONE;
521 hdlr.cyh_func = spa_deadman;
522 hdlr.cyh_arg = spa;
523 hdlr.cyh_level = CY_LOW_LEVEL;
525 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
528 * This determines how often we need to check for hung I/Os after
529 * the cyclic has already fired. Since checking for hung I/Os is
530 * an expensive operation we don't want to check too frequently.
531 * Instead wait for 5 seconds before checking again.
533 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
534 when.cyt_when = CY_INFINITY;
535 mutex_enter(&cpu_lock);
536 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
537 mutex_exit(&cpu_lock);
539 refcount_create(&spa->spa_refcount);
540 spa_config_lock_init(spa);
542 avl_add(&spa_namespace_avl, spa);
545 * Set the alternate root, if there is one.
547 if (altroot) {
548 spa->spa_root = spa_strdup(altroot);
549 spa_active_count++;
553 * Every pool starts with the default cachefile
555 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
556 offsetof(spa_config_dirent_t, scd_link));
558 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
559 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
560 list_insert_head(&spa->spa_config_list, dp);
562 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
563 KM_SLEEP) == 0);
565 if (config != NULL) {
566 nvlist_t *features;
568 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
569 &features) == 0) {
570 VERIFY(nvlist_dup(features, &spa->spa_label_features,
571 0) == 0);
574 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
577 if (spa->spa_label_features == NULL) {
578 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
579 KM_SLEEP) == 0);
582 spa->spa_iokstat = kstat_create("zfs", 0, name,
583 "disk", KSTAT_TYPE_IO, 1, 0);
584 if (spa->spa_iokstat) {
585 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
586 kstat_install(spa->spa_iokstat);
589 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
592 * As a pool is being created, treat all features as disabled by
593 * setting SPA_FEATURE_DISABLED for all entries in the feature
594 * refcount cache.
596 for (int i = 0; i < SPA_FEATURES; i++) {
597 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
600 return (spa);
604 * Removes a spa_t from the namespace, freeing up any memory used. Requires
605 * spa_namespace_lock. This is called only after the spa_t has been closed and
606 * deactivated.
608 void
609 spa_remove(spa_t *spa)
611 spa_config_dirent_t *dp;
613 ASSERT(MUTEX_HELD(&spa_namespace_lock));
614 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
616 nvlist_free(spa->spa_config_splitting);
618 avl_remove(&spa_namespace_avl, spa);
619 cv_broadcast(&spa_namespace_cv);
621 if (spa->spa_root) {
622 spa_strfree(spa->spa_root);
623 spa_active_count--;
626 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
627 list_remove(&spa->spa_config_list, dp);
628 if (dp->scd_path != NULL)
629 spa_strfree(dp->scd_path);
630 kmem_free(dp, sizeof (spa_config_dirent_t));
633 list_destroy(&spa->spa_config_list);
635 nvlist_free(spa->spa_label_features);
636 nvlist_free(spa->spa_load_info);
637 spa_config_set(spa, NULL);
639 mutex_enter(&cpu_lock);
640 if (spa->spa_deadman_cycid != CYCLIC_NONE)
641 cyclic_remove(spa->spa_deadman_cycid);
642 mutex_exit(&cpu_lock);
643 spa->spa_deadman_cycid = CYCLIC_NONE;
645 refcount_destroy(&spa->spa_refcount);
647 spa_config_lock_destroy(spa);
649 kstat_delete(spa->spa_iokstat);
650 spa->spa_iokstat = NULL;
652 for (int t = 0; t < TXG_SIZE; t++)
653 bplist_destroy(&spa->spa_free_bplist[t]);
655 cv_destroy(&spa->spa_async_cv);
656 cv_destroy(&spa->spa_proc_cv);
657 cv_destroy(&spa->spa_scrub_io_cv);
658 cv_destroy(&spa->spa_suspend_cv);
660 mutex_destroy(&spa->spa_async_lock);
661 mutex_destroy(&spa->spa_errlist_lock);
662 mutex_destroy(&spa->spa_errlog_lock);
663 mutex_destroy(&spa->spa_history_lock);
664 mutex_destroy(&spa->spa_proc_lock);
665 mutex_destroy(&spa->spa_props_lock);
666 mutex_destroy(&spa->spa_scrub_lock);
667 mutex_destroy(&spa->spa_suspend_lock);
668 mutex_destroy(&spa->spa_vdev_top_lock);
669 mutex_destroy(&spa->spa_iokstat_lock);
671 kmem_free(spa, sizeof (spa_t));
675 * Given a pool, return the next pool in the namespace, or NULL if there is
676 * none. If 'prev' is NULL, return the first pool.
678 spa_t *
679 spa_next(spa_t *prev)
681 ASSERT(MUTEX_HELD(&spa_namespace_lock));
683 if (prev)
684 return (AVL_NEXT(&spa_namespace_avl, prev));
685 else
686 return (avl_first(&spa_namespace_avl));
690 * ==========================================================================
691 * SPA refcount functions
692 * ==========================================================================
696 * Add a reference to the given spa_t. Must have at least one reference, or
697 * have the namespace lock held.
699 void
700 spa_open_ref(spa_t *spa, void *tag)
702 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
703 MUTEX_HELD(&spa_namespace_lock));
704 (void) refcount_add(&spa->spa_refcount, tag);
708 * Remove a reference to the given spa_t. Must have at least one reference, or
709 * have the namespace lock held.
711 void
712 spa_close(spa_t *spa, void *tag)
714 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
715 MUTEX_HELD(&spa_namespace_lock));
716 (void) refcount_remove(&spa->spa_refcount, tag);
720 * Check to see if the spa refcount is zero. Must be called with
721 * spa_namespace_lock held. We really compare against spa_minref, which is the
722 * number of references acquired when opening a pool
724 boolean_t
725 spa_refcount_zero(spa_t *spa)
727 ASSERT(MUTEX_HELD(&spa_namespace_lock));
729 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
733 * ==========================================================================
734 * SPA spare and l2cache tracking
735 * ==========================================================================
739 * Hot spares and cache devices are tracked using the same code below,
740 * for 'auxiliary' devices.
743 typedef struct spa_aux {
744 uint64_t aux_guid;
745 uint64_t aux_pool;
746 avl_node_t aux_avl;
747 int aux_count;
748 } spa_aux_t;
750 static int
751 spa_aux_compare(const void *a, const void *b)
753 const spa_aux_t *sa = a;
754 const spa_aux_t *sb = b;
756 if (sa->aux_guid < sb->aux_guid)
757 return (-1);
758 else if (sa->aux_guid > sb->aux_guid)
759 return (1);
760 else
761 return (0);
764 void
765 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
767 avl_index_t where;
768 spa_aux_t search;
769 spa_aux_t *aux;
771 search.aux_guid = vd->vdev_guid;
772 if ((aux = avl_find(avl, &search, &where)) != NULL) {
773 aux->aux_count++;
774 } else {
775 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
776 aux->aux_guid = vd->vdev_guid;
777 aux->aux_count = 1;
778 avl_insert(avl, aux, where);
782 void
783 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
785 spa_aux_t search;
786 spa_aux_t *aux;
787 avl_index_t where;
789 search.aux_guid = vd->vdev_guid;
790 aux = avl_find(avl, &search, &where);
792 ASSERT(aux != NULL);
794 if (--aux->aux_count == 0) {
795 avl_remove(avl, aux);
796 kmem_free(aux, sizeof (spa_aux_t));
797 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
798 aux->aux_pool = 0ULL;
802 boolean_t
803 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
805 spa_aux_t search, *found;
807 search.aux_guid = guid;
808 found = avl_find(avl, &search, NULL);
810 if (pool) {
811 if (found)
812 *pool = found->aux_pool;
813 else
814 *pool = 0ULL;
817 if (refcnt) {
818 if (found)
819 *refcnt = found->aux_count;
820 else
821 *refcnt = 0;
824 return (found != NULL);
827 void
828 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
830 spa_aux_t search, *found;
831 avl_index_t where;
833 search.aux_guid = vd->vdev_guid;
834 found = avl_find(avl, &search, &where);
835 ASSERT(found != NULL);
836 ASSERT(found->aux_pool == 0ULL);
838 found->aux_pool = spa_guid(vd->vdev_spa);
842 * Spares are tracked globally due to the following constraints:
844 * - A spare may be part of multiple pools.
845 * - A spare may be added to a pool even if it's actively in use within
846 * another pool.
847 * - A spare in use in any pool can only be the source of a replacement if
848 * the target is a spare in the same pool.
850 * We keep track of all spares on the system through the use of a reference
851 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
852 * spare, then we bump the reference count in the AVL tree. In addition, we set
853 * the 'vdev_isspare' member to indicate that the device is a spare (active or
854 * inactive). When a spare is made active (used to replace a device in the
855 * pool), we also keep track of which pool its been made a part of.
857 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
858 * called under the spa_namespace lock as part of vdev reconfiguration. The
859 * separate spare lock exists for the status query path, which does not need to
860 * be completely consistent with respect to other vdev configuration changes.
863 static int
864 spa_spare_compare(const void *a, const void *b)
866 return (spa_aux_compare(a, b));
869 void
870 spa_spare_add(vdev_t *vd)
872 mutex_enter(&spa_spare_lock);
873 ASSERT(!vd->vdev_isspare);
874 spa_aux_add(vd, &spa_spare_avl);
875 vd->vdev_isspare = B_TRUE;
876 mutex_exit(&spa_spare_lock);
879 void
880 spa_spare_remove(vdev_t *vd)
882 mutex_enter(&spa_spare_lock);
883 ASSERT(vd->vdev_isspare);
884 spa_aux_remove(vd, &spa_spare_avl);
885 vd->vdev_isspare = B_FALSE;
886 mutex_exit(&spa_spare_lock);
889 boolean_t
890 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
892 boolean_t found;
894 mutex_enter(&spa_spare_lock);
895 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
896 mutex_exit(&spa_spare_lock);
898 return (found);
901 void
902 spa_spare_activate(vdev_t *vd)
904 mutex_enter(&spa_spare_lock);
905 ASSERT(vd->vdev_isspare);
906 spa_aux_activate(vd, &spa_spare_avl);
907 mutex_exit(&spa_spare_lock);
911 * Level 2 ARC devices are tracked globally for the same reasons as spares.
912 * Cache devices currently only support one pool per cache device, and so
913 * for these devices the aux reference count is currently unused beyond 1.
916 static int
917 spa_l2cache_compare(const void *a, const void *b)
919 return (spa_aux_compare(a, b));
922 void
923 spa_l2cache_add(vdev_t *vd)
925 mutex_enter(&spa_l2cache_lock);
926 ASSERT(!vd->vdev_isl2cache);
927 spa_aux_add(vd, &spa_l2cache_avl);
928 vd->vdev_isl2cache = B_TRUE;
929 mutex_exit(&spa_l2cache_lock);
932 void
933 spa_l2cache_remove(vdev_t *vd)
935 mutex_enter(&spa_l2cache_lock);
936 ASSERT(vd->vdev_isl2cache);
937 spa_aux_remove(vd, &spa_l2cache_avl);
938 vd->vdev_isl2cache = B_FALSE;
939 mutex_exit(&spa_l2cache_lock);
942 boolean_t
943 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
945 boolean_t found;
947 mutex_enter(&spa_l2cache_lock);
948 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
949 mutex_exit(&spa_l2cache_lock);
951 return (found);
954 void
955 spa_l2cache_activate(vdev_t *vd)
957 mutex_enter(&spa_l2cache_lock);
958 ASSERT(vd->vdev_isl2cache);
959 spa_aux_activate(vd, &spa_l2cache_avl);
960 mutex_exit(&spa_l2cache_lock);
964 * ==========================================================================
965 * SPA vdev locking
966 * ==========================================================================
970 * Lock the given spa_t for the purpose of adding or removing a vdev.
971 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
972 * It returns the next transaction group for the spa_t.
974 uint64_t
975 spa_vdev_enter(spa_t *spa)
977 mutex_enter(&spa->spa_vdev_top_lock);
978 mutex_enter(&spa_namespace_lock);
979 return (spa_vdev_config_enter(spa));
983 * Internal implementation for spa_vdev_enter(). Used when a vdev
984 * operation requires multiple syncs (i.e. removing a device) while
985 * keeping the spa_namespace_lock held.
987 uint64_t
988 spa_vdev_config_enter(spa_t *spa)
990 ASSERT(MUTEX_HELD(&spa_namespace_lock));
992 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
994 return (spa_last_synced_txg(spa) + 1);
998 * Used in combination with spa_vdev_config_enter() to allow the syncing
999 * of multiple transactions without releasing the spa_namespace_lock.
1001 void
1002 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1004 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1006 int config_changed = B_FALSE;
1008 ASSERT(txg > spa_last_synced_txg(spa));
1010 spa->spa_pending_vdev = NULL;
1013 * Reassess the DTLs.
1015 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1017 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1018 config_changed = B_TRUE;
1019 spa->spa_config_generation++;
1023 * Verify the metaslab classes.
1025 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1026 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1028 spa_config_exit(spa, SCL_ALL, spa);
1031 * Panic the system if the specified tag requires it. This
1032 * is useful for ensuring that configurations are updated
1033 * transactionally.
1035 if (zio_injection_enabled)
1036 zio_handle_panic_injection(spa, tag, 0);
1039 * Note: this txg_wait_synced() is important because it ensures
1040 * that there won't be more than one config change per txg.
1041 * This allows us to use the txg as the generation number.
1043 if (error == 0)
1044 txg_wait_synced(spa->spa_dsl_pool, txg);
1046 if (vd != NULL) {
1047 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1048 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1049 vdev_free(vd);
1050 spa_config_exit(spa, SCL_ALL, spa);
1054 * If the config changed, update the config cache.
1056 if (config_changed)
1057 spa_config_sync(spa, B_FALSE, B_TRUE);
1061 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1062 * locking of spa_vdev_enter(), we also want make sure the transactions have
1063 * synced to disk, and then update the global configuration cache with the new
1064 * information.
1067 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1069 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1070 mutex_exit(&spa_namespace_lock);
1071 mutex_exit(&spa->spa_vdev_top_lock);
1073 return (error);
1077 * Lock the given spa_t for the purpose of changing vdev state.
1079 void
1080 spa_vdev_state_enter(spa_t *spa, int oplocks)
1082 int locks = SCL_STATE_ALL | oplocks;
1085 * Root pools may need to read of the underlying devfs filesystem
1086 * when opening up a vdev. Unfortunately if we're holding the
1087 * SCL_ZIO lock it will result in a deadlock when we try to issue
1088 * the read from the root filesystem. Instead we "prefetch"
1089 * the associated vnodes that we need prior to opening the
1090 * underlying devices and cache them so that we can prevent
1091 * any I/O when we are doing the actual open.
1093 if (spa_is_root(spa)) {
1094 int low = locks & ~(SCL_ZIO - 1);
1095 int high = locks & ~low;
1097 spa_config_enter(spa, high, spa, RW_WRITER);
1098 vdev_hold(spa->spa_root_vdev);
1099 spa_config_enter(spa, low, spa, RW_WRITER);
1100 } else {
1101 spa_config_enter(spa, locks, spa, RW_WRITER);
1103 spa->spa_vdev_locks = locks;
1107 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1109 boolean_t config_changed = B_FALSE;
1111 if (vd != NULL || error == 0)
1112 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1113 0, 0, B_FALSE);
1115 if (vd != NULL) {
1116 vdev_state_dirty(vd->vdev_top);
1117 config_changed = B_TRUE;
1118 spa->spa_config_generation++;
1121 if (spa_is_root(spa))
1122 vdev_rele(spa->spa_root_vdev);
1124 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1125 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1128 * If anything changed, wait for it to sync. This ensures that,
1129 * from the system administrator's perspective, zpool(1M) commands
1130 * are synchronous. This is important for things like zpool offline:
1131 * when the command completes, you expect no further I/O from ZFS.
1133 if (vd != NULL)
1134 txg_wait_synced(spa->spa_dsl_pool, 0);
1137 * If the config changed, update the config cache.
1139 if (config_changed) {
1140 mutex_enter(&spa_namespace_lock);
1141 spa_config_sync(spa, B_FALSE, B_TRUE);
1142 mutex_exit(&spa_namespace_lock);
1145 return (error);
1149 * ==========================================================================
1150 * Miscellaneous functions
1151 * ==========================================================================
1154 void
1155 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1157 if (!nvlist_exists(spa->spa_label_features, feature)) {
1158 fnvlist_add_boolean(spa->spa_label_features, feature);
1160 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1161 * dirty the vdev config because lock SCL_CONFIG is not held.
1162 * Thankfully, in this case we don't need to dirty the config
1163 * because it will be written out anyway when we finish
1164 * creating the pool.
1166 if (tx->tx_txg != TXG_INITIAL)
1167 vdev_config_dirty(spa->spa_root_vdev);
1171 void
1172 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1174 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1175 vdev_config_dirty(spa->spa_root_vdev);
1179 * Rename a spa_t.
1182 spa_rename(const char *name, const char *newname)
1184 spa_t *spa;
1185 int err;
1188 * Lookup the spa_t and grab the config lock for writing. We need to
1189 * actually open the pool so that we can sync out the necessary labels.
1190 * It's OK to call spa_open() with the namespace lock held because we
1191 * allow recursive calls for other reasons.
1193 mutex_enter(&spa_namespace_lock);
1194 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1195 mutex_exit(&spa_namespace_lock);
1196 return (err);
1199 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1201 avl_remove(&spa_namespace_avl, spa);
1202 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1203 avl_add(&spa_namespace_avl, spa);
1206 * Sync all labels to disk with the new names by marking the root vdev
1207 * dirty and waiting for it to sync. It will pick up the new pool name
1208 * during the sync.
1210 vdev_config_dirty(spa->spa_root_vdev);
1212 spa_config_exit(spa, SCL_ALL, FTAG);
1214 txg_wait_synced(spa->spa_dsl_pool, 0);
1217 * Sync the updated config cache.
1219 spa_config_sync(spa, B_FALSE, B_TRUE);
1221 spa_close(spa, FTAG);
1223 mutex_exit(&spa_namespace_lock);
1225 return (0);
1229 * Return the spa_t associated with given pool_guid, if it exists. If
1230 * device_guid is non-zero, determine whether the pool exists *and* contains
1231 * a device with the specified device_guid.
1233 spa_t *
1234 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1236 spa_t *spa;
1237 avl_tree_t *t = &spa_namespace_avl;
1239 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1241 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1242 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1243 continue;
1244 if (spa->spa_root_vdev == NULL)
1245 continue;
1246 if (spa_guid(spa) == pool_guid) {
1247 if (device_guid == 0)
1248 break;
1250 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1251 device_guid) != NULL)
1252 break;
1255 * Check any devices we may be in the process of adding.
1257 if (spa->spa_pending_vdev) {
1258 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1259 device_guid) != NULL)
1260 break;
1265 return (spa);
1269 * Determine whether a pool with the given pool_guid exists.
1271 boolean_t
1272 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1274 return (spa_by_guid(pool_guid, device_guid) != NULL);
1277 char *
1278 spa_strdup(const char *s)
1280 size_t len;
1281 char *new;
1283 len = strlen(s);
1284 new = kmem_alloc(len + 1, KM_SLEEP);
1285 bcopy(s, new, len);
1286 new[len] = '\0';
1288 return (new);
1291 void
1292 spa_strfree(char *s)
1294 kmem_free(s, strlen(s) + 1);
1297 uint64_t
1298 spa_get_random(uint64_t range)
1300 uint64_t r;
1302 ASSERT(range != 0);
1304 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1306 return (r % range);
1309 uint64_t
1310 spa_generate_guid(spa_t *spa)
1312 uint64_t guid = spa_get_random(-1ULL);
1314 if (spa != NULL) {
1315 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1316 guid = spa_get_random(-1ULL);
1317 } else {
1318 while (guid == 0 || spa_guid_exists(guid, 0))
1319 guid = spa_get_random(-1ULL);
1322 return (guid);
1325 void
1326 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1328 char type[256];
1329 char *checksum = NULL;
1330 char *compress = NULL;
1332 if (bp != NULL) {
1333 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1334 dmu_object_byteswap_t bswap =
1335 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1336 (void) snprintf(type, sizeof (type), "bswap %s %s",
1337 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1338 "metadata" : "data",
1339 dmu_ot_byteswap[bswap].ob_name);
1340 } else {
1341 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1342 sizeof (type));
1344 if (!BP_IS_EMBEDDED(bp)) {
1345 checksum =
1346 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1348 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1351 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1352 compress);
1355 void
1356 spa_freeze(spa_t *spa)
1358 uint64_t freeze_txg = 0;
1360 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1361 if (spa->spa_freeze_txg == UINT64_MAX) {
1362 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1363 spa->spa_freeze_txg = freeze_txg;
1365 spa_config_exit(spa, SCL_ALL, FTAG);
1366 if (freeze_txg != 0)
1367 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1370 void
1371 zfs_panic_recover(const char *fmt, ...)
1373 va_list adx;
1375 va_start(adx, fmt);
1376 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1377 va_end(adx);
1381 * This is a stripped-down version of strtoull, suitable only for converting
1382 * lowercase hexadecimal numbers that don't overflow.
1384 uint64_t
1385 strtonum(const char *str, char **nptr)
1387 uint64_t val = 0;
1388 char c;
1389 int digit;
1391 while ((c = *str) != '\0') {
1392 if (c >= '0' && c <= '9')
1393 digit = c - '0';
1394 else if (c >= 'a' && c <= 'f')
1395 digit = 10 + c - 'a';
1396 else
1397 break;
1399 val *= 16;
1400 val += digit;
1402 str++;
1405 if (nptr)
1406 *nptr = (char *)str;
1408 return (val);
1412 * ==========================================================================
1413 * Accessor functions
1414 * ==========================================================================
1417 boolean_t
1418 spa_shutting_down(spa_t *spa)
1420 return (spa->spa_async_suspended);
1423 dsl_pool_t *
1424 spa_get_dsl(spa_t *spa)
1426 return (spa->spa_dsl_pool);
1429 boolean_t
1430 spa_is_initializing(spa_t *spa)
1432 return (spa->spa_is_initializing);
1435 blkptr_t *
1436 spa_get_rootblkptr(spa_t *spa)
1438 return (&spa->spa_ubsync.ub_rootbp);
1441 void
1442 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1444 spa->spa_uberblock.ub_rootbp = *bp;
1447 void
1448 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1450 if (spa->spa_root == NULL)
1451 buf[0] = '\0';
1452 else
1453 (void) strncpy(buf, spa->spa_root, buflen);
1457 spa_sync_pass(spa_t *spa)
1459 return (spa->spa_sync_pass);
1462 char *
1463 spa_name(spa_t *spa)
1465 return (spa->spa_name);
1468 uint64_t
1469 spa_guid(spa_t *spa)
1471 dsl_pool_t *dp = spa_get_dsl(spa);
1472 uint64_t guid;
1475 * If we fail to parse the config during spa_load(), we can go through
1476 * the error path (which posts an ereport) and end up here with no root
1477 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1478 * this case.
1480 if (spa->spa_root_vdev == NULL)
1481 return (spa->spa_config_guid);
1483 guid = spa->spa_last_synced_guid != 0 ?
1484 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1487 * Return the most recently synced out guid unless we're
1488 * in syncing context.
1490 if (dp && dsl_pool_sync_context(dp))
1491 return (spa->spa_root_vdev->vdev_guid);
1492 else
1493 return (guid);
1496 uint64_t
1497 spa_load_guid(spa_t *spa)
1500 * This is a GUID that exists solely as a reference for the
1501 * purposes of the arc. It is generated at load time, and
1502 * is never written to persistent storage.
1504 return (spa->spa_load_guid);
1507 uint64_t
1508 spa_last_synced_txg(spa_t *spa)
1510 return (spa->spa_ubsync.ub_txg);
1513 uint64_t
1514 spa_first_txg(spa_t *spa)
1516 return (spa->spa_first_txg);
1519 uint64_t
1520 spa_syncing_txg(spa_t *spa)
1522 return (spa->spa_syncing_txg);
1525 pool_state_t
1526 spa_state(spa_t *spa)
1528 return (spa->spa_state);
1531 spa_load_state_t
1532 spa_load_state(spa_t *spa)
1534 return (spa->spa_load_state);
1537 uint64_t
1538 spa_freeze_txg(spa_t *spa)
1540 return (spa->spa_freeze_txg);
1543 /* ARGSUSED */
1544 uint64_t
1545 spa_get_asize(spa_t *spa, uint64_t lsize)
1547 return (lsize * spa_asize_inflation);
1550 uint64_t
1551 spa_get_dspace(spa_t *spa)
1553 return (spa->spa_dspace);
1556 void
1557 spa_update_dspace(spa_t *spa)
1559 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1560 ddt_get_dedup_dspace(spa);
1564 * Return the failure mode that has been set to this pool. The default
1565 * behavior will be to block all I/Os when a complete failure occurs.
1567 uint8_t
1568 spa_get_failmode(spa_t *spa)
1570 return (spa->spa_failmode);
1573 boolean_t
1574 spa_suspended(spa_t *spa)
1576 return (spa->spa_suspended);
1579 uint64_t
1580 spa_version(spa_t *spa)
1582 return (spa->spa_ubsync.ub_version);
1585 boolean_t
1586 spa_deflate(spa_t *spa)
1588 return (spa->spa_deflate);
1591 metaslab_class_t *
1592 spa_normal_class(spa_t *spa)
1594 return (spa->spa_normal_class);
1597 metaslab_class_t *
1598 spa_log_class(spa_t *spa)
1600 return (spa->spa_log_class);
1604 spa_max_replication(spa_t *spa)
1607 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1608 * handle BPs with more than one DVA allocated. Set our max
1609 * replication level accordingly.
1611 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1612 return (1);
1613 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1617 spa_prev_software_version(spa_t *spa)
1619 return (spa->spa_prev_software_version);
1622 uint64_t
1623 spa_deadman_synctime(spa_t *spa)
1625 return (spa->spa_deadman_synctime);
1628 uint64_t
1629 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1631 uint64_t asize = DVA_GET_ASIZE(dva);
1632 uint64_t dsize = asize;
1634 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1636 if (asize != 0 && spa->spa_deflate) {
1637 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1638 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1641 return (dsize);
1644 uint64_t
1645 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1647 uint64_t dsize = 0;
1649 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1650 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1652 return (dsize);
1655 uint64_t
1656 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1658 uint64_t dsize = 0;
1660 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1662 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1663 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1665 spa_config_exit(spa, SCL_VDEV, FTAG);
1667 return (dsize);
1671 * ==========================================================================
1672 * Initialization and Termination
1673 * ==========================================================================
1676 static int
1677 spa_name_compare(const void *a1, const void *a2)
1679 const spa_t *s1 = a1;
1680 const spa_t *s2 = a2;
1681 int s;
1683 s = strcmp(s1->spa_name, s2->spa_name);
1684 if (s > 0)
1685 return (1);
1686 if (s < 0)
1687 return (-1);
1688 return (0);
1692 spa_busy(void)
1694 return (spa_active_count);
1697 void
1698 spa_boot_init()
1700 spa_config_load();
1703 void
1704 spa_init(int mode)
1706 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1707 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1708 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1709 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1711 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1712 offsetof(spa_t, spa_avl));
1714 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1715 offsetof(spa_aux_t, aux_avl));
1717 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1718 offsetof(spa_aux_t, aux_avl));
1720 spa_mode_global = mode;
1722 #ifdef _KERNEL
1723 spa_arch_init();
1724 #else
1725 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1726 arc_procfd = open("/proc/self/ctl", O_WRONLY);
1727 if (arc_procfd == -1) {
1728 perror("could not enable watchpoints: "
1729 "opening /proc/self/ctl failed: ");
1730 } else {
1731 arc_watch = B_TRUE;
1734 #endif
1736 refcount_init();
1737 unique_init();
1738 range_tree_init();
1739 zio_init();
1740 dmu_init();
1741 zil_init();
1742 vdev_cache_stat_init();
1743 zfs_prop_init();
1744 zpool_prop_init();
1745 zpool_feature_init();
1746 spa_config_load();
1747 l2arc_start();
1750 void
1751 spa_fini(void)
1753 l2arc_stop();
1755 spa_evict_all();
1757 vdev_cache_stat_fini();
1758 zil_fini();
1759 dmu_fini();
1760 zio_fini();
1761 range_tree_fini();
1762 unique_fini();
1763 refcount_fini();
1765 avl_destroy(&spa_namespace_avl);
1766 avl_destroy(&spa_spare_avl);
1767 avl_destroy(&spa_l2cache_avl);
1769 cv_destroy(&spa_namespace_cv);
1770 mutex_destroy(&spa_namespace_lock);
1771 mutex_destroy(&spa_spare_lock);
1772 mutex_destroy(&spa_l2cache_lock);
1776 * Return whether this pool has slogs. No locking needed.
1777 * It's not a problem if the wrong answer is returned as it's only for
1778 * performance and not correctness
1780 boolean_t
1781 spa_has_slogs(spa_t *spa)
1783 return (spa->spa_log_class->mc_rotor != NULL);
1786 spa_log_state_t
1787 spa_get_log_state(spa_t *spa)
1789 return (spa->spa_log_state);
1792 void
1793 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1795 spa->spa_log_state = state;
1798 boolean_t
1799 spa_is_root(spa_t *spa)
1801 return (spa->spa_is_root);
1804 boolean_t
1805 spa_writeable(spa_t *spa)
1807 return (!!(spa->spa_mode & FWRITE));
1811 spa_mode(spa_t *spa)
1813 return (spa->spa_mode);
1816 uint64_t
1817 spa_bootfs(spa_t *spa)
1819 return (spa->spa_bootfs);
1822 uint64_t
1823 spa_delegation(spa_t *spa)
1825 return (spa->spa_delegation);
1828 objset_t *
1829 spa_meta_objset(spa_t *spa)
1831 return (spa->spa_meta_objset);
1834 enum zio_checksum
1835 spa_dedup_checksum(spa_t *spa)
1837 return (spa->spa_dedup_checksum);
1841 * Reset pool scan stat per scan pass (or reboot).
1843 void
1844 spa_scan_stat_init(spa_t *spa)
1846 /* data not stored on disk */
1847 spa->spa_scan_pass_start = gethrestime_sec();
1848 spa->spa_scan_pass_exam = 0;
1849 vdev_scan_stat_init(spa->spa_root_vdev);
1853 * Get scan stats for zpool status reports
1856 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1858 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1860 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1861 return (SET_ERROR(ENOENT));
1862 bzero(ps, sizeof (pool_scan_stat_t));
1864 /* data stored on disk */
1865 ps->pss_func = scn->scn_phys.scn_func;
1866 ps->pss_start_time = scn->scn_phys.scn_start_time;
1867 ps->pss_end_time = scn->scn_phys.scn_end_time;
1868 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1869 ps->pss_examined = scn->scn_phys.scn_examined;
1870 ps->pss_to_process = scn->scn_phys.scn_to_process;
1871 ps->pss_processed = scn->scn_phys.scn_processed;
1872 ps->pss_errors = scn->scn_phys.scn_errors;
1873 ps->pss_state = scn->scn_phys.scn_state;
1875 /* data not stored on disk */
1876 ps->pss_pass_start = spa->spa_scan_pass_start;
1877 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1879 return (0);
1882 boolean_t
1883 spa_debug_enabled(spa_t *spa)
1885 return (spa->spa_debug);