update libressl to 2.8.2
[unleashed.git] / lib / libcrypto / bn / bn_lcl.h
blobb8319dd700daf6a6c17163ddbc68b1d85f82bf75
1 /* $OpenBSD: bn_lcl.h,v 1.29 2018/07/23 18:14:32 tb Exp $ */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
58 /* ====================================================================
59 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
112 #ifndef HEADER_BN_LCL_H
113 #define HEADER_BN_LCL_H
115 #include <openssl/opensslconf.h>
117 #include <openssl/bn.h>
119 __BEGIN_HIDDEN_DECLS
122 * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
125 * For window size 'w' (w >= 2) and a random 'b' bits exponent,
126 * the number of multiplications is a constant plus on average
128 * 2^(w-1) + (b-w)/(w+1);
130 * here 2^(w-1) is for precomputing the table (we actually need
131 * entries only for windows that have the lowest bit set), and
132 * (b-w)/(w+1) is an approximation for the expected number of
133 * w-bit windows, not counting the first one.
135 * Thus we should use
137 * w >= 6 if b > 671
138 * w = 5 if 671 > b > 239
139 * w = 4 if 239 > b > 79
140 * w = 3 if 79 > b > 23
141 * w <= 2 if 23 > b
143 * (with draws in between). Very small exponents are often selected
144 * with low Hamming weight, so we use w = 1 for b <= 23.
146 #define BN_window_bits_for_exponent_size(b) \
147 ((b) > 671 ? 6 : \
148 (b) > 239 ? 5 : \
149 (b) > 79 ? 4 : \
150 (b) > 23 ? 3 : 1)
153 /* BN_mod_exp_mont_consttime is based on the assumption that the
154 * L1 data cache line width of the target processor is at least
155 * the following value.
157 #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 )
158 #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
160 /* Window sizes optimized for fixed window size modular exponentiation
161 * algorithm (BN_mod_exp_mont_consttime).
163 * To achieve the security goals of BN_mode_exp_mont_consttime, the
164 * maximum size of the window must not exceed
165 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH).
167 * Window size thresholds are defined for cache line sizes of 32 and 64,
168 * cache line sizes where log_2(32)=5 and log_2(64)=6 respectively. A
169 * window size of 7 should only be used on processors that have a 128
170 * byte or greater cache line size.
172 #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
174 # define BN_window_bits_for_ctime_exponent_size(b) \
175 ((b) > 937 ? 6 : \
176 (b) > 306 ? 5 : \
177 (b) > 89 ? 4 : \
178 (b) > 22 ? 3 : 1)
179 # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
181 #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
183 # define BN_window_bits_for_ctime_exponent_size(b) \
184 ((b) > 306 ? 5 : \
185 (b) > 89 ? 4 : \
186 (b) > 22 ? 3 : 1)
187 # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
189 #endif
192 /* Pentium pro 16,16,16,32,64 */
193 /* Alpha 16,16,16,16.64 */
194 #define BN_MULL_SIZE_NORMAL (16) /* 32 */
195 #define BN_MUL_RECURSIVE_SIZE_NORMAL (16) /* 32 less than */
196 #define BN_SQR_RECURSIVE_SIZE_NORMAL (16) /* 32 */
197 #define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32) /* 32 */
198 #define BN_MONT_CTX_SET_SIZE_WORD (64) /* 32 */
200 #if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
202 * BN_UMULT_HIGH section.
204 * No, I'm not trying to overwhelm you when stating that the
205 * product of N-bit numbers is 2*N bits wide:-) No, I don't expect
206 * you to be impressed when I say that if the compiler doesn't
207 * support 2*N integer type, then you have to replace every N*N
208 * multiplication with 4 (N/2)*(N/2) accompanied by some shifts
209 * and additions which unavoidably results in severe performance
210 * penalties. Of course provided that the hardware is capable of
211 * producing 2*N result... That's when you normally start
212 * considering assembler implementation. However! It should be
213 * pointed out that some CPUs (most notably Alpha, PowerPC and
214 * upcoming IA-64 family:-) provide *separate* instruction
215 * calculating the upper half of the product placing the result
216 * into a general purpose register. Now *if* the compiler supports
217 * inline assembler, then it's not impossible to implement the
218 * "bignum" routines (and have the compiler optimize 'em)
219 * exhibiting "native" performance in C. That's what BN_UMULT_HIGH
220 * macro is about:-)
222 * <appro@fy.chalmers.se>
224 # if defined(__alpha)
225 # if defined(__GNUC__) && __GNUC__>=2
226 # define BN_UMULT_HIGH(a,b) ({ \
227 BN_ULONG ret; \
228 asm ("umulh %1,%2,%0" \
229 : "=r"(ret) \
230 : "r"(a), "r"(b)); \
231 ret; })
232 # endif /* compiler */
233 # elif defined(_ARCH_PPC) && defined(_LP64)
234 # if defined(__GNUC__) && __GNUC__>=2
235 # define BN_UMULT_HIGH(a,b) ({ \
236 BN_ULONG ret; \
237 asm ("mulhdu %0,%1,%2" \
238 : "=r"(ret) \
239 : "r"(a), "r"(b)); \
240 ret; })
241 # endif /* compiler */
242 # elif defined(__x86_64) || defined(__x86_64__)
243 # if defined(__GNUC__) && __GNUC__>=2
244 # define BN_UMULT_HIGH(a,b) ({ \
245 BN_ULONG ret,discard; \
246 asm ("mulq %3" \
247 : "=a"(discard),"=d"(ret) \
248 : "a"(a), "g"(b) \
249 : "cc"); \
250 ret; })
251 # define BN_UMULT_LOHI(low,high,a,b) \
252 asm ("mulq %3" \
253 : "=a"(low),"=d"(high) \
254 : "a"(a),"g"(b) \
255 : "cc");
256 # endif
257 # elif defined(__mips) && defined(_LP64)
258 # if defined(__GNUC__) && __GNUC__>=2
259 # if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4) /* "h" constraint is no more since 4.4 */
260 # define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64)
261 # define BN_UMULT_LOHI(low,high,a,b) ({ \
262 __uint128_t ret=(__uint128_t)(a)*(b); \
263 (high)=ret>>64; (low)=ret; })
264 # else
265 # define BN_UMULT_HIGH(a,b) ({ \
266 BN_ULONG ret; \
267 asm ("dmultu %1,%2" \
268 : "=h"(ret) \
269 : "r"(a), "r"(b) : "l"); \
270 ret; })
271 # define BN_UMULT_LOHI(low,high,a,b)\
272 asm ("dmultu %2,%3" \
273 : "=l"(low),"=h"(high) \
274 : "r"(a), "r"(b));
275 # endif
276 # endif
277 # endif /* cpu */
278 #endif /* OPENSSL_NO_ASM */
280 /*************************************************************
281 * Using the long long type
283 #define Lw(t) (((BN_ULONG)(t))&BN_MASK2)
284 #define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
286 #ifdef BN_DEBUG_RAND
287 #define bn_clear_top2max(a) \
289 int ind = (a)->dmax - (a)->top; \
290 BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
291 for (; ind != 0; ind--) \
292 *(++ftl) = 0x0; \
294 #else
295 #define bn_clear_top2max(a)
296 #endif
298 #ifdef BN_LLONG
299 #define mul_add(r,a,w,c) { \
300 BN_ULLONG t; \
301 t=(BN_ULLONG)w * (a) + (r) + (c); \
302 (r)= Lw(t); \
303 (c)= Hw(t); \
306 #define mul(r,a,w,c) { \
307 BN_ULLONG t; \
308 t=(BN_ULLONG)w * (a) + (c); \
309 (r)= Lw(t); \
310 (c)= Hw(t); \
313 #define sqr(r0,r1,a) { \
314 BN_ULLONG t; \
315 t=(BN_ULLONG)(a)*(a); \
316 (r0)=Lw(t); \
317 (r1)=Hw(t); \
320 #elif defined(BN_UMULT_LOHI)
321 #define mul_add(r,a,w,c) { \
322 BN_ULONG high,low,ret,tmp=(a); \
323 ret = (r); \
324 BN_UMULT_LOHI(low,high,w,tmp); \
325 ret += (c); \
326 (c) = (ret<(c))?1:0; \
327 (c) += high; \
328 ret += low; \
329 (c) += (ret<low)?1:0; \
330 (r) = ret; \
333 #define mul(r,a,w,c) { \
334 BN_ULONG high,low,ret,ta=(a); \
335 BN_UMULT_LOHI(low,high,w,ta); \
336 ret = low + (c); \
337 (c) = high; \
338 (c) += (ret<low)?1:0; \
339 (r) = ret; \
342 #define sqr(r0,r1,a) { \
343 BN_ULONG tmp=(a); \
344 BN_UMULT_LOHI(r0,r1,tmp,tmp); \
347 #elif defined(BN_UMULT_HIGH)
348 #define mul_add(r,a,w,c) { \
349 BN_ULONG high,low,ret,tmp=(a); \
350 ret = (r); \
351 high= BN_UMULT_HIGH(w,tmp); \
352 ret += (c); \
353 low = (w) * tmp; \
354 (c) = (ret<(c))?1:0; \
355 (c) += high; \
356 ret += low; \
357 (c) += (ret<low)?1:0; \
358 (r) = ret; \
361 #define mul(r,a,w,c) { \
362 BN_ULONG high,low,ret,ta=(a); \
363 low = (w) * ta; \
364 high= BN_UMULT_HIGH(w,ta); \
365 ret = low + (c); \
366 (c) = high; \
367 (c) += (ret<low)?1:0; \
368 (r) = ret; \
371 #define sqr(r0,r1,a) { \
372 BN_ULONG tmp=(a); \
373 (r0) = tmp * tmp; \
374 (r1) = BN_UMULT_HIGH(tmp,tmp); \
377 #else
378 /*************************************************************
379 * No long long type
382 #define LBITS(a) ((a)&BN_MASK2l)
383 #define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l)
384 #define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2)
386 #define mul64(l,h,bl,bh) \
388 BN_ULONG m,m1,lt,ht; \
390 lt=l; \
391 ht=h; \
392 m =(bh)*(lt); \
393 lt=(bl)*(lt); \
394 m1=(bl)*(ht); \
395 ht =(bh)*(ht); \
396 m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
397 ht+=HBITS(m); \
398 m1=L2HBITS(m); \
399 lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
400 (l)=lt; \
401 (h)=ht; \
404 #define sqr64(lo,ho,in) \
406 BN_ULONG l,h,m; \
408 h=(in); \
409 l=LBITS(h); \
410 h=HBITS(h); \
411 m =(l)*(h); \
412 l*=l; \
413 h*=h; \
414 h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
415 m =(m&BN_MASK2l)<<(BN_BITS4+1); \
416 l=(l+m)&BN_MASK2; if (l < m) h++; \
417 (lo)=l; \
418 (ho)=h; \
421 #define mul_add(r,a,bl,bh,c) { \
422 BN_ULONG l,h; \
424 h= (a); \
425 l=LBITS(h); \
426 h=HBITS(h); \
427 mul64(l,h,(bl),(bh)); \
429 /* non-multiply part */ \
430 l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
431 (c)=(r); \
432 l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
433 (c)=h&BN_MASK2; \
434 (r)=l; \
437 #define mul(r,a,bl,bh,c) { \
438 BN_ULONG l,h; \
440 h= (a); \
441 l=LBITS(h); \
442 h=HBITS(h); \
443 mul64(l,h,(bl),(bh)); \
445 /* non-multiply part */ \
446 l+=(c); if ((l&BN_MASK2) < (c)) h++; \
447 (c)=h&BN_MASK2; \
448 (r)=l&BN_MASK2; \
450 #endif /* !BN_LLONG */
452 void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
453 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
454 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
455 void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
456 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
457 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
458 int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
459 int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b,
460 int cl, int dl);
461 void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
462 int dna, int dnb, BN_ULONG *t);
463 void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
464 int n, int tna, int tnb, BN_ULONG *t);
465 void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
466 void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
467 void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
468 BN_ULONG *t);
469 void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
470 BN_ULONG *t);
471 BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
472 int cl, int dl);
473 BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
474 int cl, int dl);
475 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num);
477 #define bn_wexpand(a,words) (((words) <= (a)->dmax)?(a):bn_expand2((a),(words)))
478 BIGNUM *bn_expand2(BIGNUM *a, int words);
479 BIGNUM *bn_expand(BIGNUM *a, int bits);
481 BIGNUM *bn_dup_expand(const BIGNUM *a, int words); /* unused */
483 /* Bignum consistency macros
484 * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
485 * bignum data after direct manipulations on the data. There is also an
486 * "internal" macro, bn_check_top(), for verifying that there are no leading
487 * zeroes. Unfortunately, some auditing is required due to the fact that
488 * bn_fix_top() has become an overabused duct-tape because bignum data is
489 * occasionally passed around in an inconsistent state. So the following
490 * changes have been made to sort this out;
491 * - bn_fix_top()s implementation has been moved to bn_correct_top()
492 * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
493 * bn_check_top() is as before.
494 * - if BN_DEBUG *is* defined;
495 * - bn_check_top() tries to pollute unused words even if the bignum 'top' is
496 * consistent. (ed: only if BN_DEBUG_RAND is defined)
497 * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
498 * The idea is to have debug builds flag up inconsistent bignums when they
499 * occur. If that occurs in a bn_fix_top(), we examine the code in question; if
500 * the use of bn_fix_top() was appropriate (ie. it follows directly after code
501 * that manipulates the bignum) it is converted to bn_correct_top(), and if it
502 * was not appropriate, we convert it permanently to bn_check_top() and track
503 * down the cause of the bug. Eventually, no internal code should be using the
504 * bn_fix_top() macro. External applications and libraries should try this with
505 * their own code too, both in terms of building against the openssl headers
506 * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
507 * defined. This not only improves external code, it provides more test
508 * coverage for openssl's own code.
511 #ifdef BN_DEBUG
513 /* We only need assert() when debugging */
514 #include <assert.h>
516 #ifdef BN_DEBUG_RAND
517 #define bn_pollute(a) \
518 do { \
519 const BIGNUM *_bnum1 = (a); \
520 if(_bnum1->top < _bnum1->dmax) { \
521 unsigned char _tmp_char; \
522 /* We cast away const without the compiler knowing, any \
523 * *genuinely* constant variables that aren't mutable \
524 * wouldn't be constructed with top!=dmax. */ \
525 BN_ULONG *_not_const; \
526 memcpy(&_not_const, &_bnum1->d, sizeof(BN_ULONG*)); \
527 arc4random_buf(&_tmp_char, 1); \
528 memset((unsigned char *)(_not_const + _bnum1->top), _tmp_char, \
529 (_bnum1->dmax - _bnum1->top) * sizeof(BN_ULONG)); \
531 } while(0)
532 #else
533 #define bn_pollute(a)
534 #endif
536 #define bn_check_top(a) \
537 do { \
538 const BIGNUM *_bnum2 = (a); \
539 if (_bnum2 != NULL) { \
540 assert((_bnum2->top == 0) || \
541 (_bnum2->d[_bnum2->top - 1] != 0)); \
542 bn_pollute(_bnum2); \
544 } while(0)
546 #define bn_fix_top(a) bn_check_top(a)
548 #define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
549 #define bn_wcheck_size(bn, words) \
550 do { \
551 const BIGNUM *_bnum2 = (bn); \
552 assert(words <= (_bnum2)->dmax && words >= (_bnum2)->top); \
553 } while(0)
555 #else /* !BN_DEBUG */
557 #define bn_pollute(a)
558 #define bn_check_top(a)
559 #define bn_fix_top(a) bn_correct_top(a)
560 #define bn_check_size(bn, bits)
561 #define bn_wcheck_size(bn, words)
563 #endif
565 #define bn_correct_top(a) \
567 BN_ULONG *ftl; \
568 int tmp_top = (a)->top; \
569 if (tmp_top > 0) \
571 for (ftl= &((a)->d[tmp_top-1]); tmp_top > 0; tmp_top--) \
572 if (*(ftl--)) break; \
573 (a)->top = tmp_top; \
575 bn_pollute(a); \
578 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
579 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
580 void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
581 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
582 BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, int num);
583 BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, int num);
585 int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom);
587 /* Explicitly const time / non-const time versions for internal use */
588 int BN_mod_exp_ct(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
589 const BIGNUM *m, BN_CTX *ctx);
590 int BN_mod_exp_nonct(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
591 const BIGNUM *m, BN_CTX *ctx);
592 int BN_mod_exp_mont_ct(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
593 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
594 int BN_mod_exp_mont_nonct(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
595 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
596 int BN_div_nonct(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
597 BN_CTX *ctx);
598 int BN_div_ct(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
599 BN_CTX *ctx);
600 #define BN_mod_ct(rem,m,d,ctx) BN_div_ct(NULL,(rem),(m),(d),(ctx))
601 #define BN_mod_nonct(rem,m,d,ctx) BN_div_nonct(NULL,(rem),(m),(d),(ctx))
602 BIGNUM *BN_mod_inverse_ct(BIGNUM *ret, const BIGNUM *a, const BIGNUM *n,
603 BN_CTX *ctx);
604 BIGNUM *BN_mod_inverse_nonct(BIGNUM *ret, const BIGNUM *a, const BIGNUM *n,
605 BN_CTX *ctx);
606 int BN_gcd_ct(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
607 int BN_gcd_nonct(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
609 int BN_swap_ct(BN_ULONG swap, BIGNUM *a, BIGNUM *b, size_t nwords);
611 __END_HIDDEN_DECLS
612 #endif