tcp: accept untimestamped keepalive segments only if flags==TH_ACK
[unleashed.git] / kernel / net / tcp / tcp_input.c
blob248ec32162b18d29076e03a733d9c599ae776405
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2016 Joyent, Inc.
26 * Copyright (c) 2014 by Delphix. All rights reserved.
29 /* This file contains all TCP input processing functions. */
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/strsun.h>
34 #include <sys/strsubr.h>
35 #include <sys/stropts.h>
36 #include <sys/strlog.h>
37 #define _SUN_TPI_VERSION 2
38 #include <sys/tihdr.h>
39 #include <sys/suntpi.h>
40 #include <sys/xti_inet.h>
41 #include <sys/squeue_impl.h>
42 #include <sys/squeue.h>
44 #include <inet/common.h>
45 #include <inet/ip.h>
46 #include <inet/tcp.h>
47 #include <inet/tcp_impl.h>
48 #include <inet/proto_set.h>
49 #include <inet/ipsec_impl.h>
52 * RFC7323-recommended phrasing of TSTAMP option, for easier parsing
55 #ifdef _BIG_ENDIAN
56 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
57 (TCPOPT_TSTAMP << 8) | 10)
58 #else
59 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
60 (TCPOPT_NOP << 8) | TCPOPT_NOP)
61 #endif
64 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days
66 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz))
69 * Since tcp_listener is not cleared atomically with tcp_detached
70 * being cleared we need this extra bit to tell a detached connection
71 * apart from one that is in the process of being accepted.
73 #define TCP_IS_DETACHED_NONEAGER(tcp) \
74 (TCP_IS_DETACHED(tcp) && \
75 (!(tcp)->tcp_hard_binding))
78 * Steps to do when a tcp_t moves to TIME-WAIT state.
80 * This connection is done, we don't need to account for it. Decrement
81 * the listener connection counter if needed.
83 * Decrement the connection counter of the stack. Note that this counter
84 * is per CPU. So the total number of connections in a stack is the sum of all
85 * of them. Since there is no lock for handling all of them exclusively, the
86 * resulting sum is only an approximation.
88 * Unconditionally clear the exclusive binding bit so this TIME-WAIT
89 * connection won't interfere with new ones.
91 * Start the TIME-WAIT timer. If upper layer has not closed the connection,
92 * the timer is handled within the context of this tcp_t. When the timer
93 * fires, tcp_clean_death() is called. If upper layer closes the connection
94 * during this period, tcp_time_wait_append() will be called to add this
95 * tcp_t to the global TIME-WAIT list. Note that this means that the
96 * actual wait time in TIME-WAIT state will be longer than the
97 * tcps_time_wait_interval since the period before upper layer closes the
98 * connection is not accounted for when tcp_time_wait_append() is called.
100 * If upper layer has closed the connection, call tcp_time_wait_append()
101 * directly.
104 #define SET_TIME_WAIT(tcps, tcp, connp) \
106 (tcp)->tcp_state = TCPS_TIME_WAIT; \
107 if ((tcp)->tcp_listen_cnt != NULL) \
108 TCP_DECR_LISTEN_CNT(tcp); \
109 atomic_dec_64( \
110 (uint64_t *)&(tcps)->tcps_sc[CPU->cpu_seqid]->tcp_sc_conn_cnt); \
111 (connp)->conn_exclbind = 0; \
112 if (!TCP_IS_DETACHED(tcp)) { \
113 TCP_TIMER_RESTART(tcp, (tcps)->tcps_time_wait_interval); \
114 } else { \
115 tcp_time_wait_append(tcp); \
116 TCP_DBGSTAT(tcps, tcp_rput_time_wait); \
121 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
122 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
123 * data, TCP will not respond with an ACK. RFC 793 requires that
124 * TCP responds with an ACK for such a bogus ACK. By not following
125 * the RFC, we prevent TCP from getting into an ACK storm if somehow
126 * an attacker successfully spoofs an acceptable segment to our
127 * peer; or when our peer is "confused."
129 static uint32_t tcp_drop_ack_unsent_cnt = 10;
132 * To protect TCP against attacker using a small window and requesting
133 * large amount of data (DoS attack by conuming memory), TCP checks the
134 * window advertised in the last ACK of the 3-way handshake. TCP uses
135 * the tcp_mss (the size of one packet) value for comparion. The window
136 * should be larger than tcp_mss. But while a sane TCP should advertise
137 * a receive window larger than or equal to 4*MSS to avoid stop and go
138 * tarrfic, not all TCP stacks do that. This is especially true when
139 * tcp_mss is a big value.
141 * To work around this issue, an additional fixed value for comparison
142 * is also used. If the advertised window is smaller than both tcp_mss
143 * and tcp_init_wnd_chk, the ACK is considered as invalid. So for large
144 * tcp_mss value (say, 8K), a window larger than tcp_init_wnd_chk but
145 * smaller than 8K is considered to be OK.
147 static uint32_t tcp_init_wnd_chk = 4096;
149 /* Process ICMP source quench message or not. */
150 static boolean_t tcp_icmp_source_quench = B_FALSE;
152 static boolean_t tcp_outbound_squeue_switch = B_FALSE;
154 static mblk_t *tcp_conn_create_v4(conn_t *, conn_t *, mblk_t *,
155 ip_recv_attr_t *);
156 static mblk_t *tcp_conn_create_v6(conn_t *, conn_t *, mblk_t *,
157 ip_recv_attr_t *);
158 static boolean_t tcp_drop_q0(tcp_t *);
159 static void tcp_icmp_error_ipv6(tcp_t *, mblk_t *, ip_recv_attr_t *);
160 static mblk_t *tcp_input_add_ancillary(tcp_t *, mblk_t *, ip_pkt_t *,
161 ip_recv_attr_t *);
162 static void tcp_input_listener(void *, mblk_t *, void *, ip_recv_attr_t *);
163 static void tcp_process_options(tcp_t *, tcpha_t *);
164 static mblk_t *tcp_reass(tcp_t *, mblk_t *, uint32_t);
165 static void tcp_reass_elim_overlap(tcp_t *, mblk_t *);
166 static void tcp_rsrv_input(void *, mblk_t *, void *, ip_recv_attr_t *);
167 static void tcp_set_rto(tcp_t *, time_t);
170 * Set the MSS associated with a particular tcp based on its current value,
171 * and a new one passed in. Observe minimums and maximums, and reset other
172 * state variables that we want to view as multiples of MSS.
174 * The value of MSS could be either increased or descreased.
176 void
177 tcp_mss_set(tcp_t *tcp, uint32_t mss)
179 uint32_t mss_max;
180 tcp_stack_t *tcps = tcp->tcp_tcps;
181 conn_t *connp = tcp->tcp_connp;
183 if (connp->conn_ipversion == IPV4_VERSION)
184 mss_max = tcps->tcps_mss_max_ipv4;
185 else
186 mss_max = tcps->tcps_mss_max_ipv6;
188 if (mss < tcps->tcps_mss_min)
189 mss = tcps->tcps_mss_min;
190 if (mss > mss_max)
191 mss = mss_max;
193 * Unless naglim has been set by our client to
194 * a non-mss value, force naglim to track mss.
195 * This can help to aggregate small writes.
197 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
198 tcp->tcp_naglim = mss;
200 * TCP should be able to buffer at least 4 MSS data for obvious
201 * performance reason.
203 if ((mss << 2) > connp->conn_sndbuf)
204 connp->conn_sndbuf = mss << 2;
207 * Set the send lowater to at least twice of MSS.
209 if ((mss << 1) > connp->conn_sndlowat)
210 connp->conn_sndlowat = mss << 1;
213 * Update tcp_cwnd according to the new value of MSS. Keep the
214 * previous ratio to preserve the transmit rate.
216 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
217 tcp->tcp_cwnd_cnt = 0;
219 tcp->tcp_mss = mss;
220 (void) tcp_maxpsz_set(tcp, B_TRUE);
224 * Extract option values from a tcp header. We put any found values into the
225 * tcpopt struct and return a bitmask saying which options were found.
228 tcp_parse_options(tcpha_t *tcpha, tcp_opt_t *tcpopt)
230 uchar_t *endp;
231 int len;
232 uint32_t mss;
233 uchar_t *up = (uchar_t *)tcpha;
234 int found = 0;
235 int32_t sack_len;
236 tcp_seq sack_begin, sack_end;
237 tcp_t *tcp;
239 endp = up + TCP_HDR_LENGTH(tcpha);
240 up += TCP_MIN_HEADER_LENGTH;
242 * If timestamp option is aligned as recommended in RFC 7323 Appendix
243 * A, and is the only option, return quickly.
245 if (TCP_HDR_LENGTH(tcpha) == (uint32_t)TCP_MIN_HEADER_LENGTH +
246 TCPOPT_REAL_TS_LEN &&
247 OK_32PTR(up) &&
248 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
249 tcpopt->tcp_opt_ts_val = ABE32_TO_U32((up+4));
250 tcpopt->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
252 return (TCP_OPT_TSTAMP_PRESENT);
254 while (up < endp) {
255 len = endp - up;
256 switch (*up) {
257 case TCPOPT_EOL:
258 break;
260 case TCPOPT_NOP:
261 up++;
262 continue;
264 case TCPOPT_MAXSEG:
265 if (len < TCPOPT_MAXSEG_LEN ||
266 up[1] != TCPOPT_MAXSEG_LEN)
267 break;
269 mss = BE16_TO_U16(up+2);
270 /* Caller must handle tcp_mss_min and tcp_mss_max_* */
271 tcpopt->tcp_opt_mss = mss;
272 found |= TCP_OPT_MSS_PRESENT;
274 up += TCPOPT_MAXSEG_LEN;
275 continue;
277 case TCPOPT_WSCALE:
278 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
279 break;
281 if (up[2] > TCP_MAX_WINSHIFT)
282 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
283 else
284 tcpopt->tcp_opt_wscale = up[2];
285 found |= TCP_OPT_WSCALE_PRESENT;
287 up += TCPOPT_WS_LEN;
288 continue;
290 case TCPOPT_SACK_PERMITTED:
291 if (len < TCPOPT_SACK_OK_LEN ||
292 up[1] != TCPOPT_SACK_OK_LEN)
293 break;
294 found |= TCP_OPT_SACK_OK_PRESENT;
295 up += TCPOPT_SACK_OK_LEN;
296 continue;
298 case TCPOPT_SACK:
299 if (len <= 2 || up[1] <= 2 || len < up[1])
300 break;
302 /* If TCP is not interested in SACK blks... */
303 if ((tcp = tcpopt->tcp) == NULL) {
304 up += up[1];
305 continue;
307 sack_len = up[1] - TCPOPT_HEADER_LEN;
308 up += TCPOPT_HEADER_LEN;
311 * If the list is empty, allocate one and assume
312 * nothing is sack'ed.
314 if (tcp->tcp_notsack_list == NULL) {
315 tcp_notsack_update(&(tcp->tcp_notsack_list),
316 tcp->tcp_suna, tcp->tcp_snxt,
317 &(tcp->tcp_num_notsack_blk),
318 &(tcp->tcp_cnt_notsack_list));
321 * Make sure tcp_notsack_list is not NULL.
322 * This happens when kmem_alloc(KM_NOSLEEP)
323 * returns NULL.
325 if (tcp->tcp_notsack_list == NULL) {
326 up += sack_len;
327 continue;
329 tcp->tcp_fack = tcp->tcp_suna;
332 while (sack_len > 0) {
333 if (up + 8 > endp) {
334 up = endp;
335 break;
337 sack_begin = BE32_TO_U32(up);
338 up += 4;
339 sack_end = BE32_TO_U32(up);
340 up += 4;
341 sack_len -= 8;
343 * Bounds checking. Make sure the SACK
344 * info is within tcp_suna and tcp_snxt.
345 * If this SACK blk is out of bound, ignore
346 * it but continue to parse the following
347 * blks.
349 if (SEQ_LEQ(sack_end, sack_begin) ||
350 SEQ_LT(sack_begin, tcp->tcp_suna) ||
351 SEQ_GT(sack_end, tcp->tcp_snxt)) {
352 continue;
354 tcp_notsack_insert(&(tcp->tcp_notsack_list),
355 sack_begin, sack_end,
356 &(tcp->tcp_num_notsack_blk),
357 &(tcp->tcp_cnt_notsack_list));
358 if (SEQ_GT(sack_end, tcp->tcp_fack)) {
359 tcp->tcp_fack = sack_end;
362 found |= TCP_OPT_SACK_PRESENT;
363 continue;
365 case TCPOPT_TSTAMP:
366 if (len < TCPOPT_TSTAMP_LEN ||
367 up[1] != TCPOPT_TSTAMP_LEN)
368 break;
370 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
371 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
373 found |= TCP_OPT_TSTAMP_PRESENT;
375 up += TCPOPT_TSTAMP_LEN;
376 continue;
378 default:
379 if (len <= 1 || len < (int)up[1] || up[1] == 0)
380 break;
381 up += up[1];
382 continue;
384 break;
386 return (found);
390 * Process all TCP option in SYN segment. Note that this function should
391 * be called after tcp_set_destination() is called so that the necessary info
392 * from IRE is already set in the tcp structure.
394 * This function sets up the correct tcp_mss value according to the
395 * MSS option value and our header size. It also sets up the window scale
396 * and timestamp values, and initialize SACK info blocks. But it does not
397 * change receive window size after setting the tcp_mss value. The caller
398 * should do the appropriate change.
400 static void
401 tcp_process_options(tcp_t *tcp, tcpha_t *tcpha)
403 int options;
404 tcp_opt_t tcpopt;
405 uint32_t mss_max;
406 char *tmp_tcph;
407 tcp_stack_t *tcps = tcp->tcp_tcps;
408 conn_t *connp = tcp->tcp_connp;
410 tcpopt.tcp = NULL;
411 options = tcp_parse_options(tcpha, &tcpopt);
414 * Process MSS option. Note that MSS option value does not account
415 * for IP or TCP options. This means that it is equal to MTU - minimum
416 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
417 * IPv6.
419 if (!(options & TCP_OPT_MSS_PRESENT)) {
420 if (connp->conn_ipversion == IPV4_VERSION)
421 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
422 else
423 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
424 } else {
425 if (connp->conn_ipversion == IPV4_VERSION)
426 mss_max = tcps->tcps_mss_max_ipv4;
427 else
428 mss_max = tcps->tcps_mss_max_ipv6;
429 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
430 tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
431 else if (tcpopt.tcp_opt_mss > mss_max)
432 tcpopt.tcp_opt_mss = mss_max;
435 /* Process Window Scale option. */
436 if (options & TCP_OPT_WSCALE_PRESENT) {
437 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
438 tcp->tcp_snd_ws_ok = B_TRUE;
439 } else {
440 tcp->tcp_snd_ws = B_FALSE;
441 tcp->tcp_snd_ws_ok = B_FALSE;
442 tcp->tcp_rcv_ws = B_FALSE;
445 /* Process Timestamp option. */
446 if ((options & TCP_OPT_TSTAMP_PRESENT) &&
447 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
448 tmp_tcph = (char *)tcp->tcp_tcpha;
450 tcp->tcp_snd_ts_ok = B_TRUE;
451 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
452 tcp->tcp_last_rcv_lbolt = ddi_get_lbolt64();
453 ASSERT(OK_32PTR(tmp_tcph));
454 ASSERT(connp->conn_ht_ulp_len == TCP_MIN_HEADER_LENGTH);
456 /* Fill in our template header with basic timestamp option. */
457 tmp_tcph += connp->conn_ht_ulp_len;
458 tmp_tcph[0] = TCPOPT_NOP;
459 tmp_tcph[1] = TCPOPT_NOP;
460 tmp_tcph[2] = TCPOPT_TSTAMP;
461 tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
462 connp->conn_ht_iphc_len += TCPOPT_REAL_TS_LEN;
463 connp->conn_ht_ulp_len += TCPOPT_REAL_TS_LEN;
464 tcp->tcp_tcpha->tha_offset_and_reserved += (3 << 4);
465 } else {
466 tcp->tcp_snd_ts_ok = B_FALSE;
470 * Process SACK options. If SACK is enabled for this connection,
471 * then allocate the SACK info structure. Note the following ways
472 * when tcp_snd_sack_ok is set to true.
474 * For active connection: in tcp_set_destination() called in
475 * tcp_connect().
477 * For passive connection: in tcp_set_destination() called in
478 * tcp_input_listener().
480 * That's the reason why the extra TCP_IS_DETACHED() check is there.
481 * That check makes sure that if we did not send a SACK OK option,
482 * we will not enable SACK for this connection even though the other
483 * side sends us SACK OK option. For active connection, the SACK
484 * info structure has already been allocated. So we need to free
485 * it if SACK is disabled.
487 if ((options & TCP_OPT_SACK_OK_PRESENT) &&
488 (tcp->tcp_snd_sack_ok ||
489 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
490 ASSERT(tcp->tcp_num_sack_blk == 0);
491 ASSERT(tcp->tcp_notsack_list == NULL);
493 tcp->tcp_snd_sack_ok = B_TRUE;
494 if (tcp->tcp_snd_ts_ok) {
495 tcp->tcp_max_sack_blk = 3;
496 } else {
497 tcp->tcp_max_sack_blk = 4;
499 } else if (tcp->tcp_snd_sack_ok) {
501 * Resetting tcp_snd_sack_ok to B_FALSE so that
502 * no SACK info will be used for this
503 * connection. This assumes that SACK usage
504 * permission is negotiated. This may need
505 * to be changed once this is clarified.
507 ASSERT(tcp->tcp_num_sack_blk == 0);
508 ASSERT(tcp->tcp_notsack_list == NULL);
509 tcp->tcp_snd_sack_ok = B_FALSE;
513 * Now we know the exact TCP/IP header length, subtract
514 * that from tcp_mss to get our side's MSS.
516 tcp->tcp_mss -= connp->conn_ht_iphc_len;
519 * Here we assume that the other side's header size will be equal to
520 * our header size. We calculate the real MSS accordingly. Need to
521 * take into additional stuffs IPsec puts in.
523 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
525 tcpopt.tcp_opt_mss -= connp->conn_ht_iphc_len +
526 tcp->tcp_ipsec_overhead -
527 ((connp->conn_ipversion == IPV4_VERSION ?
528 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
531 * Set MSS to the smaller one of both ends of the connection.
532 * We should not have called tcp_mss_set() before, but our
533 * side of the MSS should have been set to a proper value
534 * by tcp_set_destination(). tcp_mss_set() will also set up the
535 * STREAM head parameters properly.
537 * If we have a larger-than-16-bit window but the other side
538 * didn't want to do window scale, tcp_rwnd_set() will take
539 * care of that.
541 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
544 * Initialize tcp_cwnd value. After tcp_mss_set(), tcp_mss has been
545 * updated properly.
547 TCP_SET_INIT_CWND(tcp, tcp->tcp_mss, tcps->tcps_slow_start_initial);
551 * Add a new piece to the tcp reassembly queue. If the gap at the beginning
552 * is filled, return as much as we can. The message passed in may be
553 * multi-part, chained using b_cont. "start" is the starting sequence
554 * number for this piece.
556 static mblk_t *
557 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
559 uint32_t end;
560 mblk_t *mp1;
561 mblk_t *mp2;
562 mblk_t *next_mp;
563 uint32_t u1;
564 tcp_stack_t *tcps = tcp->tcp_tcps;
567 /* Walk through all the new pieces. */
568 do {
569 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
570 (uintptr_t)INT_MAX);
571 end = start + (int)(mp->b_wptr - mp->b_rptr);
572 next_mp = mp->b_cont;
573 if (start == end) {
574 /* Empty. Blast it. */
575 freeb(mp);
576 continue;
578 mp->b_cont = NULL;
579 TCP_REASS_SET_SEQ(mp, start);
580 TCP_REASS_SET_END(mp, end);
581 mp1 = tcp->tcp_reass_tail;
582 if (!mp1) {
583 tcp->tcp_reass_tail = mp;
584 tcp->tcp_reass_head = mp;
585 TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs);
586 TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes,
587 end - start);
588 continue;
590 /* New stuff completely beyond tail? */
591 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
592 /* Link it on end. */
593 mp1->b_cont = mp;
594 tcp->tcp_reass_tail = mp;
595 TCPS_BUMP_MIB(tcps, tcpInDataUnorderSegs);
596 TCPS_UPDATE_MIB(tcps, tcpInDataUnorderBytes,
597 end - start);
598 continue;
600 mp1 = tcp->tcp_reass_head;
601 u1 = TCP_REASS_SEQ(mp1);
602 /* New stuff at the front? */
603 if (SEQ_LT(start, u1)) {
604 /* Yes... Check for overlap. */
605 mp->b_cont = mp1;
606 tcp->tcp_reass_head = mp;
607 tcp_reass_elim_overlap(tcp, mp);
608 continue;
611 * The new piece fits somewhere between the head and tail.
612 * We find our slot, where mp1 precedes us and mp2 trails.
614 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
615 u1 = TCP_REASS_SEQ(mp2);
616 if (SEQ_LEQ(start, u1))
617 break;
619 /* Link ourselves in */
620 mp->b_cont = mp2;
621 mp1->b_cont = mp;
623 /* Trim overlap with following mblk(s) first */
624 tcp_reass_elim_overlap(tcp, mp);
626 /* Trim overlap with preceding mblk */
627 tcp_reass_elim_overlap(tcp, mp1);
629 } while (start = end, mp = next_mp);
630 mp1 = tcp->tcp_reass_head;
631 /* Anything ready to go? */
632 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
633 return (NULL);
634 /* Eat what we can off the queue */
635 for (;;) {
636 mp = mp1->b_cont;
637 end = TCP_REASS_END(mp1);
638 TCP_REASS_SET_SEQ(mp1, 0);
639 TCP_REASS_SET_END(mp1, 0);
640 if (!mp) {
641 tcp->tcp_reass_tail = NULL;
642 break;
644 if (end != TCP_REASS_SEQ(mp)) {
645 mp1->b_cont = NULL;
646 break;
648 mp1 = mp;
650 mp1 = tcp->tcp_reass_head;
651 tcp->tcp_reass_head = mp;
652 return (mp1);
655 /* Eliminate any overlap that mp may have over later mblks */
656 static void
657 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
659 uint32_t end;
660 mblk_t *mp1;
661 uint32_t u1;
662 tcp_stack_t *tcps = tcp->tcp_tcps;
664 end = TCP_REASS_END(mp);
665 while ((mp1 = mp->b_cont) != NULL) {
666 u1 = TCP_REASS_SEQ(mp1);
667 if (!SEQ_GT(end, u1))
668 break;
669 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
670 mp->b_wptr -= end - u1;
671 TCP_REASS_SET_END(mp, u1);
672 TCPS_BUMP_MIB(tcps, tcpInDataPartDupSegs);
673 TCPS_UPDATE_MIB(tcps, tcpInDataPartDupBytes,
674 end - u1);
675 break;
677 mp->b_cont = mp1->b_cont;
678 TCP_REASS_SET_SEQ(mp1, 0);
679 TCP_REASS_SET_END(mp1, 0);
680 freeb(mp1);
681 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
682 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes, end - u1);
684 if (!mp1)
685 tcp->tcp_reass_tail = mp;
689 * This function does PAWS protection check, per RFC 7323 section 5. Requires
690 * that timestamp options are already processed into tcpoptp. Returns B_TRUE if
691 * the segment passes the PAWS test, else returns B_FALSE.
693 boolean_t
694 tcp_paws_check(tcp_t *tcp, const tcp_opt_t *tcpoptp)
696 if (TSTMP_LT(tcpoptp->tcp_opt_ts_val,
697 tcp->tcp_ts_recent)) {
698 if (LBOLT_FASTPATH64 <
699 (tcp->tcp_last_rcv_lbolt + PAWS_TIMEOUT)) {
700 /* This segment is not acceptable. */
701 return (B_FALSE);
702 } else {
704 * Connection has been idle for
705 * too long. Reset the timestamp
707 tcp->tcp_ts_recent =
708 tcpoptp->tcp_opt_ts_val;
711 return (B_TRUE);
715 * Defense for the SYN attack -
716 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
717 * one from the list of droppable eagers. This list is a subset of q0.
718 * see comments before the definition of MAKE_DROPPABLE().
719 * 2. Don't drop a SYN request before its first timeout. This gives every
720 * request at least til the first timeout to complete its 3-way handshake.
721 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
722 * requests currently on the queue that has timed out. This will be used
723 * as an indicator of whether an attack is under way, so that appropriate
724 * actions can be taken. (It's incremented in tcp_timer() and decremented
725 * either when eager goes into ESTABLISHED, or gets freed up.)
726 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
727 * # of timeout drops back to <= q0len/32 => SYN alert off
729 static boolean_t
730 tcp_drop_q0(tcp_t *tcp)
732 tcp_t *eager;
733 mblk_t *mp;
734 tcp_stack_t *tcps = tcp->tcp_tcps;
736 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
737 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
739 /* Pick oldest eager from the list of droppable eagers */
740 eager = tcp->tcp_eager_prev_drop_q0;
742 /* If list is empty. return B_FALSE */
743 if (eager == tcp) {
744 return (B_FALSE);
747 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
748 if ((mp = allocb(0, BPRI_HI)) == NULL)
749 return (B_FALSE);
752 * Take this eager out from the list of droppable eagers since we are
753 * going to drop it.
755 MAKE_UNDROPPABLE(eager);
757 if (tcp->tcp_connp->conn_debug) {
758 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
759 "tcp_drop_q0: listen half-open queue (max=%d) overflow"
760 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
761 tcp->tcp_conn_req_cnt_q0,
762 tcp_display(tcp, NULL, DISP_PORT_ONLY));
765 TCPS_BUMP_MIB(tcps, tcpHalfOpenDrop);
767 /* Put a reference on the conn as we are enqueueing it in the sqeue */
768 CONN_INC_REF(eager->tcp_connp);
770 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
771 tcp_clean_death_wrapper, eager->tcp_connp, NULL,
772 SQ_FILL, SQTAG_TCP_DROP_Q0);
774 return (B_TRUE);
778 * Handle a SYN on an AF_INET6 socket; can be either IPv4 or IPv6
780 static mblk_t *
781 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
782 ip_recv_attr_t *ira)
784 tcp_t *ltcp = lconnp->conn_tcp;
785 tcp_t *tcp = connp->conn_tcp;
786 mblk_t *tpi_mp;
787 ipha_t *ipha;
788 ip6_t *ip6h;
789 sin6_t sin6;
790 uint_t ifindex = ira->ira_ruifindex;
791 tcp_stack_t *tcps = tcp->tcp_tcps;
793 if (ira->ira_flags & IRAF_IS_IPV4) {
794 ipha = (ipha_t *)mp->b_rptr;
796 connp->conn_ipversion = IPV4_VERSION;
797 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
798 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
799 connp->conn_saddr_v6 = connp->conn_laddr_v6;
801 sin6 = sin6_null;
802 sin6.sin6_addr = connp->conn_faddr_v6;
803 sin6.sin6_port = connp->conn_fport;
804 sin6.sin6_family = AF_INET6;
805 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
806 IPCL_ZONEID(lconnp), tcps->tcps_netstack);
808 if (connp->conn_recv_ancillary.crb_recvdstaddr) {
809 sin6_t sin6d;
811 sin6d = sin6_null;
812 sin6d.sin6_addr = connp->conn_laddr_v6;
813 sin6d.sin6_port = connp->conn_lport;
814 sin6d.sin6_family = AF_INET;
815 tpi_mp = mi_tpi_extconn_ind(NULL,
816 (char *)&sin6d, sizeof (sin6_t),
817 (char *)&tcp,
818 (t_scalar_t)sizeof (intptr_t),
819 (char *)&sin6d, sizeof (sin6_t),
820 (t_scalar_t)ltcp->tcp_conn_req_seqnum);
821 } else {
822 tpi_mp = mi_tpi_conn_ind(NULL,
823 (char *)&sin6, sizeof (sin6_t),
824 (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
825 (t_scalar_t)ltcp->tcp_conn_req_seqnum);
827 } else {
828 ip6h = (ip6_t *)mp->b_rptr;
830 connp->conn_ipversion = IPV6_VERSION;
831 connp->conn_laddr_v6 = ip6h->ip6_dst;
832 connp->conn_faddr_v6 = ip6h->ip6_src;
833 connp->conn_saddr_v6 = connp->conn_laddr_v6;
835 sin6 = sin6_null;
836 sin6.sin6_addr = connp->conn_faddr_v6;
837 sin6.sin6_port = connp->conn_fport;
838 sin6.sin6_family = AF_INET6;
839 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
840 sin6.__sin6_src_id = ip_srcid_find_addr(&connp->conn_laddr_v6,
841 IPCL_ZONEID(lconnp), tcps->tcps_netstack);
843 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
844 /* Pass up the scope_id of remote addr */
845 sin6.sin6_scope_id = ifindex;
846 } else {
847 sin6.sin6_scope_id = 0;
849 if (connp->conn_recv_ancillary.crb_recvdstaddr) {
850 sin6_t sin6d;
852 sin6d = sin6_null;
853 sin6.sin6_addr = connp->conn_laddr_v6;
854 sin6d.sin6_port = connp->conn_lport;
855 sin6d.sin6_family = AF_INET6;
856 if (IN6_IS_ADDR_LINKSCOPE(&connp->conn_laddr_v6))
857 sin6d.sin6_scope_id = ifindex;
859 tpi_mp = mi_tpi_extconn_ind(NULL,
860 (char *)&sin6d, sizeof (sin6_t),
861 (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
862 (char *)&sin6d, sizeof (sin6_t),
863 (t_scalar_t)ltcp->tcp_conn_req_seqnum);
864 } else {
865 tpi_mp = mi_tpi_conn_ind(NULL,
866 (char *)&sin6, sizeof (sin6_t),
867 (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
868 (t_scalar_t)ltcp->tcp_conn_req_seqnum);
872 tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
873 return (tpi_mp);
876 /* Handle a SYN on an AF_INET socket */
877 static mblk_t *
878 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, mblk_t *mp,
879 ip_recv_attr_t *ira)
881 tcp_t *ltcp = lconnp->conn_tcp;
882 tcp_t *tcp = connp->conn_tcp;
883 sin_t sin;
884 mblk_t *tpi_mp = NULL;
885 tcp_stack_t *tcps = tcp->tcp_tcps;
886 ipha_t *ipha;
888 ASSERT(ira->ira_flags & IRAF_IS_IPV4);
889 ipha = (ipha_t *)mp->b_rptr;
891 connp->conn_ipversion = IPV4_VERSION;
892 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_laddr_v6);
893 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_faddr_v6);
894 connp->conn_saddr_v6 = connp->conn_laddr_v6;
896 sin = sin_null;
897 sin.sin_addr.s_addr = connp->conn_faddr_v4;
898 sin.sin_port = connp->conn_fport;
899 sin.sin_family = AF_INET;
900 if (lconnp->conn_recv_ancillary.crb_recvdstaddr) {
901 sin_t sind;
903 sind = sin_null;
904 sind.sin_addr.s_addr = connp->conn_laddr_v4;
905 sind.sin_port = connp->conn_lport;
906 sind.sin_family = AF_INET;
907 tpi_mp = mi_tpi_extconn_ind(NULL,
908 (char *)&sind, sizeof (sin_t), (char *)&tcp,
909 (t_scalar_t)sizeof (intptr_t), (char *)&sind,
910 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
911 } else {
912 tpi_mp = mi_tpi_conn_ind(NULL,
913 (char *)&sin, sizeof (sin_t),
914 (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
915 (t_scalar_t)ltcp->tcp_conn_req_seqnum);
918 tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
919 return (tpi_mp);
923 * Called via squeue to get on to eager's perimeter. It sends a
924 * TH_RST if eager is in the fanout table. The listener wants the
925 * eager to disappear either by means of tcp_eager_blowoff() or
926 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
927 * called (via squeue) if the eager cannot be inserted in the
928 * fanout table in tcp_input_listener().
930 /* ARGSUSED */
931 void
932 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
934 conn_t *econnp = (conn_t *)arg;
935 tcp_t *eager = econnp->conn_tcp;
936 tcp_t *listener = eager->tcp_listener;
939 * We could be called because listener is closing. Since
940 * the eager was using listener's queue's, we avoid
941 * using the listeners queues from now on.
943 ASSERT(eager->tcp_detached);
944 econnp->conn_rq = NULL;
945 econnp->conn_wq = NULL;
948 * An eager's conn_fanout will be NULL if it's a duplicate
949 * for an existing 4-tuples in the conn fanout table.
950 * We don't want to send an RST out in such case.
952 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
953 tcp_xmit_ctl("tcp_eager_kill, can't wait",
954 eager, eager->tcp_snxt, 0, TH_RST);
957 /* We are here because listener wants this eager gone */
958 if (listener != NULL) {
959 mutex_enter(&listener->tcp_eager_lock);
960 tcp_eager_unlink(eager);
961 if (eager->tcp_tconnind_started) {
963 * The eager has sent a conn_ind up to the
964 * listener but listener decides to close
965 * instead. We need to drop the extra ref
966 * placed on eager in tcp_input_data() before
967 * sending the conn_ind to listener.
969 CONN_DEC_REF(econnp);
971 mutex_exit(&listener->tcp_eager_lock);
972 CONN_DEC_REF(listener->tcp_connp);
975 if (eager->tcp_state != TCPS_CLOSED)
976 tcp_close_detached(eager);
980 * Reset any eager connection hanging off this listener marked
981 * with 'seqnum' and then reclaim it's resources.
983 boolean_t
984 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum)
986 tcp_t *eager;
987 mblk_t *mp;
989 eager = listener;
990 mutex_enter(&listener->tcp_eager_lock);
991 do {
992 eager = eager->tcp_eager_next_q;
993 if (eager == NULL) {
994 mutex_exit(&listener->tcp_eager_lock);
995 return (B_FALSE);
997 } while (eager->tcp_conn_req_seqnum != seqnum);
999 if (eager->tcp_closemp_used) {
1000 mutex_exit(&listener->tcp_eager_lock);
1001 return (B_TRUE);
1003 eager->tcp_closemp_used = B_TRUE;
1004 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1005 CONN_INC_REF(eager->tcp_connp);
1006 mutex_exit(&listener->tcp_eager_lock);
1007 mp = &eager->tcp_closemp;
1008 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
1009 eager->tcp_connp, NULL, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
1010 return (B_TRUE);
1014 * Reset any eager connection hanging off this listener
1015 * and then reclaim it's resources.
1017 void
1018 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
1020 tcp_t *eager;
1021 mblk_t *mp;
1022 tcp_stack_t *tcps = listener->tcp_tcps;
1024 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
1026 if (!q0_only) {
1027 /* First cleanup q */
1028 TCP_STAT(tcps, tcp_eager_blowoff_q);
1029 eager = listener->tcp_eager_next_q;
1030 while (eager != NULL) {
1031 if (!eager->tcp_closemp_used) {
1032 eager->tcp_closemp_used = B_TRUE;
1033 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1034 CONN_INC_REF(eager->tcp_connp);
1035 mp = &eager->tcp_closemp;
1036 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
1037 tcp_eager_kill, eager->tcp_connp, NULL,
1038 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
1040 eager = eager->tcp_eager_next_q;
1043 /* Then cleanup q0 */
1044 TCP_STAT(tcps, tcp_eager_blowoff_q0);
1045 eager = listener->tcp_eager_next_q0;
1046 while (eager != listener) {
1047 if (!eager->tcp_closemp_used) {
1048 eager->tcp_closemp_used = B_TRUE;
1049 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1050 CONN_INC_REF(eager->tcp_connp);
1051 mp = &eager->tcp_closemp;
1052 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
1053 tcp_eager_kill, eager->tcp_connp, NULL, SQ_FILL,
1054 SQTAG_TCP_EAGER_CLEANUP_Q0);
1056 eager = eager->tcp_eager_next_q0;
1061 * If we are an eager connection hanging off a listener that hasn't
1062 * formally accepted the connection yet, get off his list and blow off
1063 * any data that we have accumulated.
1065 void
1066 tcp_eager_unlink(tcp_t *tcp)
1068 tcp_t *listener = tcp->tcp_listener;
1070 ASSERT(listener != NULL);
1071 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
1072 if (tcp->tcp_eager_next_q0 != NULL) {
1073 ASSERT(tcp->tcp_eager_prev_q0 != NULL);
1075 /* Remove the eager tcp from q0 */
1076 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
1077 tcp->tcp_eager_prev_q0;
1078 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
1079 tcp->tcp_eager_next_q0;
1080 ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
1081 listener->tcp_conn_req_cnt_q0--;
1083 tcp->tcp_eager_next_q0 = NULL;
1084 tcp->tcp_eager_prev_q0 = NULL;
1087 * Take the eager out, if it is in the list of droppable
1088 * eagers.
1090 MAKE_UNDROPPABLE(tcp);
1092 if (tcp->tcp_syn_rcvd_timeout != 0) {
1093 /* we have timed out before */
1094 ASSERT(listener->tcp_syn_rcvd_timeout > 0);
1095 listener->tcp_syn_rcvd_timeout--;
1097 } else {
1098 tcp_t **tcpp = &listener->tcp_eager_next_q;
1099 tcp_t *prev = NULL;
1101 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
1102 if (tcpp[0] == tcp) {
1103 if (listener->tcp_eager_last_q == tcp) {
1105 * If we are unlinking the last
1106 * element on the list, adjust
1107 * tail pointer. Set tail pointer
1108 * to nil when list is empty.
1110 ASSERT(tcp->tcp_eager_next_q == NULL);
1111 if (listener->tcp_eager_last_q ==
1112 listener->tcp_eager_next_q) {
1113 listener->tcp_eager_last_q =
1114 NULL;
1115 } else {
1117 * We won't get here if there
1118 * is only one eager in the
1119 * list.
1121 ASSERT(prev != NULL);
1122 listener->tcp_eager_last_q =
1123 prev;
1126 tcpp[0] = tcp->tcp_eager_next_q;
1127 tcp->tcp_eager_next_q = NULL;
1128 tcp->tcp_eager_last_q = NULL;
1129 ASSERT(listener->tcp_conn_req_cnt_q > 0);
1130 listener->tcp_conn_req_cnt_q--;
1131 break;
1133 prev = tcpp[0];
1136 tcp->tcp_listener = NULL;
1139 /* BEGIN CSTYLED */
1142 * The sockfs ACCEPT path:
1143 * =======================
1145 * The eager is now established in its own perimeter as soon as SYN is
1146 * received in tcp_input_listener(). When sockfs receives conn_ind, it
1147 * completes the accept processing on the acceptor STREAM. The sending
1148 * of conn_ind part is common for both sockfs listener and a TLI/XTI
1149 * listener but a TLI/XTI listener completes the accept processing
1150 * on the listener perimeter.
1152 * Common control flow for 3 way handshake:
1153 * ----------------------------------------
1155 * incoming SYN (listener perimeter) -> tcp_input_listener()
1157 * incoming SYN-ACK-ACK (eager perim) -> tcp_input_data()
1158 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind()
1160 * Sockfs ACCEPT Path:
1161 * -------------------
1163 * open acceptor stream (tcp_open allocates tcp_tli_accept()
1164 * as STREAM entry point)
1166 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_tli_accept()
1168 * tcp_tli_accept() extracts the eager and makes the q->q_ptr <-> eager
1169 * association (we are not behind eager's squeue but sockfs is protecting us
1170 * and no one knows about this stream yet. The STREAMS entry point q->q_info
1171 * is changed to point at tcp_wput().
1173 * tcp_accept_common() sends any deferred eagers via tcp_send_pending() to
1174 * listener (done on listener's perimeter).
1176 * tcp_tli_accept() calls tcp_accept_finish() on eagers perimeter to finish
1177 * accept.
1179 * TLI/XTI client ACCEPT path:
1180 * ---------------------------
1182 * soaccept() sends T_CONN_RES on the listener STREAM.
1184 * tcp_tli_accept() -> tcp_accept_swap() complete the processing and send
1185 * a M_SETOPS mblk to eager perimeter to finish accept (tcp_accept_finish()).
1187 * Locks:
1188 * ======
1190 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
1191 * and listeners->tcp_eager_next_q.
1193 * Referencing:
1194 * ============
1196 * 1) We start out in tcp_input_listener by eager placing a ref on
1197 * listener and listener adding eager to listeners->tcp_eager_next_q0.
1199 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
1200 * doing so we place a ref on the eager. This ref is finally dropped at the
1201 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
1202 * reference is dropped by the squeue framework.
1204 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
1206 * The reference must be released by the same entity that added the reference
1207 * In the above scheme, the eager is the entity that adds and releases the
1208 * references. Note that tcp_accept_finish executes in the squeue of the eager
1209 * (albeit after it is attached to the acceptor stream). Though 1. executes
1210 * in the listener's squeue, the eager is nascent at this point and the
1211 * reference can be considered to have been added on behalf of the eager.
1213 * Eager getting a Reset or listener closing:
1214 * ==========================================
1216 * Once the listener and eager are linked, the listener never does the unlink.
1217 * If the listener needs to close, tcp_eager_cleanup() is called which queues
1218 * a message on all eager perimeter. The eager then does the unlink, clears
1219 * any pointers to the listener's queue and drops the reference to the
1220 * listener. The listener waits in tcp_close outside the squeue until its
1221 * refcount has dropped to 1. This ensures that the listener has waited for
1222 * all eagers to clear their association with the listener.
1224 * Similarly, if eager decides to go away, it can unlink itself and close.
1225 * When the T_CONN_RES comes down, we check if eager has closed. Note that
1226 * the reference to eager is still valid because of the extra ref we put
1227 * in tcp_send_conn_ind.
1229 * Listener can always locate the eager under the protection
1230 * of the listener->tcp_eager_lock, and then do a refhold
1231 * on the eager during the accept processing.
1233 * The acceptor stream accesses the eager in the accept processing
1234 * based on the ref placed on eager before sending T_conn_ind.
1235 * The only entity that can negate this refhold is a listener close
1236 * which is mutually exclusive with an active acceptor stream.
1238 * Eager's reference on the listener
1239 * ===================================
1241 * If the accept happens (even on a closed eager) the eager drops its
1242 * reference on the listener at the start of tcp_accept_finish. If the
1243 * eager is killed due to an incoming RST before the T_conn_ind is sent up,
1244 * the reference is dropped in tcp_closei_local. If the listener closes,
1245 * the reference is dropped in tcp_eager_kill. In all cases the reference
1246 * is dropped while executing in the eager's context (squeue).
1248 /* END CSTYLED */
1250 /* Process the SYN packet, mp, directed at the listener 'tcp' */
1253 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
1254 * tcp_input_data will not see any packets for listeners since the listener
1255 * has conn_recv set to tcp_input_listener.
1257 /* ARGSUSED */
1258 static void
1259 tcp_input_listener(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
1261 tcpha_t *tcpha;
1262 uint32_t seg_seq;
1263 tcp_t *eager;
1264 int err;
1265 conn_t *econnp = NULL;
1266 squeue_t *new_sqp;
1267 mblk_t *mp1;
1268 uint_t ip_hdr_len;
1269 conn_t *lconnp = (conn_t *)arg;
1270 tcp_t *listener = lconnp->conn_tcp;
1271 tcp_stack_t *tcps = listener->tcp_tcps;
1272 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
1273 uint_t flags;
1274 mblk_t *tpi_mp;
1275 uint_t ifindex = ira->ira_ruifindex;
1276 boolean_t tlc_set = B_FALSE;
1278 ip_hdr_len = ira->ira_ip_hdr_length;
1279 tcpha = (tcpha_t *)&mp->b_rptr[ip_hdr_len];
1280 flags = (unsigned int)tcpha->tha_flags & 0xFF;
1282 DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, lconnp->conn_ixa,
1283 __dtrace_tcp_void_ip_t *, mp->b_rptr, tcp_t *, listener,
1284 __dtrace_tcp_tcph_t *, tcpha);
1286 if (!(flags & TH_SYN)) {
1287 if ((flags & TH_RST) || (flags & TH_URG)) {
1288 freemsg(mp);
1289 return;
1291 if (flags & TH_ACK) {
1292 /* Note this executes in listener's squeue */
1293 tcp_xmit_listeners_reset(mp, ira, ipst, lconnp);
1294 return;
1297 freemsg(mp);
1298 return;
1301 if (listener->tcp_state != TCPS_LISTEN)
1302 goto error2;
1304 ASSERT(IPCL_IS_BOUND(lconnp));
1306 mutex_enter(&listener->tcp_eager_lock);
1309 * The system is under memory pressure, so we need to do our part
1310 * to relieve the pressure. So we only accept new request if there
1311 * is nothing waiting to be accepted or waiting to complete the 3-way
1312 * handshake. This means that busy listener will not get too many
1313 * new requests which they cannot handle in time while non-busy
1314 * listener is still functioning properly.
1316 if (tcps->tcps_reclaim && (listener->tcp_conn_req_cnt_q > 0 ||
1317 listener->tcp_conn_req_cnt_q0 > 0)) {
1318 mutex_exit(&listener->tcp_eager_lock);
1319 TCP_STAT(tcps, tcp_listen_mem_drop);
1320 goto error2;
1323 if (listener->tcp_conn_req_cnt_q >= listener->tcp_conn_req_max) {
1324 mutex_exit(&listener->tcp_eager_lock);
1325 TCP_STAT(tcps, tcp_listendrop);
1326 TCPS_BUMP_MIB(tcps, tcpListenDrop);
1327 if (lconnp->conn_debug) {
1328 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
1329 "tcp_input_listener: listen backlog (max=%d) "
1330 "overflow (%d pending) on %s",
1331 listener->tcp_conn_req_max,
1332 listener->tcp_conn_req_cnt_q,
1333 tcp_display(listener, NULL, DISP_PORT_ONLY));
1335 goto error2;
1338 if (listener->tcp_conn_req_cnt_q0 >=
1339 listener->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
1341 * Q0 is full. Drop a pending half-open req from the queue
1342 * to make room for the new SYN req. Also mark the time we
1343 * drop a SYN.
1345 * A more aggressive defense against SYN attack will
1346 * be to set the "tcp_syn_defense" flag now.
1348 TCP_STAT(tcps, tcp_listendropq0);
1349 listener->tcp_last_rcv_lbolt = ddi_get_lbolt64();
1350 if (!tcp_drop_q0(listener)) {
1351 mutex_exit(&listener->tcp_eager_lock);
1352 TCPS_BUMP_MIB(tcps, tcpListenDropQ0);
1353 if (lconnp->conn_debug) {
1354 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
1355 "tcp_input_listener: listen half-open "
1356 "queue (max=%d) full (%d pending) on %s",
1357 tcps->tcps_conn_req_max_q0,
1358 listener->tcp_conn_req_cnt_q0,
1359 tcp_display(listener, NULL,
1360 DISP_PORT_ONLY));
1362 goto error2;
1367 * Enforce the limit set on the number of connections per listener.
1368 * Note that tlc_cnt starts with 1. So need to add 1 to tlc_max
1369 * for comparison.
1371 if (listener->tcp_listen_cnt != NULL) {
1372 tcp_listen_cnt_t *tlc = listener->tcp_listen_cnt;
1373 int64_t now;
1375 if (atomic_inc_32_nv(&tlc->tlc_cnt) > tlc->tlc_max + 1) {
1376 mutex_exit(&listener->tcp_eager_lock);
1377 now = ddi_get_lbolt64();
1378 atomic_dec_32(&tlc->tlc_cnt);
1379 TCP_STAT(tcps, tcp_listen_cnt_drop);
1380 tlc->tlc_drop++;
1381 if (now - tlc->tlc_report_time >
1382 MSEC_TO_TICK(TCP_TLC_REPORT_INTERVAL)) {
1383 zcmn_err(lconnp->conn_zoneid, CE_WARN,
1384 "Listener (port %d) connection max (%u) "
1385 "reached: %u attempts dropped total\n",
1386 ntohs(listener->tcp_connp->conn_lport),
1387 tlc->tlc_max, tlc->tlc_drop);
1388 tlc->tlc_report_time = now;
1390 goto error2;
1392 tlc_set = B_TRUE;
1395 mutex_exit(&listener->tcp_eager_lock);
1398 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
1399 * or based on the ring (for packets from GLD). Otherwise it is
1400 * set based on lbolt i.e., a somewhat random number.
1402 ASSERT(ira->ira_sqp != NULL);
1403 new_sqp = ira->ira_sqp;
1405 econnp = (conn_t *)tcp_get_conn(arg2, tcps);
1406 if (econnp == NULL)
1407 goto error2;
1409 ASSERT(econnp->conn_netstack == lconnp->conn_netstack);
1410 econnp->conn_sqp = new_sqp;
1411 econnp->conn_initial_sqp = new_sqp;
1412 econnp->conn_ixa->ixa_sqp = new_sqp;
1414 econnp->conn_fport = tcpha->tha_lport;
1415 econnp->conn_lport = tcpha->tha_fport;
1417 err = conn_inherit_parent(lconnp, econnp);
1418 if (err != 0)
1419 goto error3;
1421 /* We already know the laddr of the new connection is ours */
1422 econnp->conn_ixa->ixa_src_generation = ipst->ips_src_generation;
1424 ASSERT(OK_32PTR(mp->b_rptr));
1425 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION ||
1426 IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
1428 if (lconnp->conn_family == AF_INET) {
1429 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION);
1430 tpi_mp = tcp_conn_create_v4(lconnp, econnp, mp, ira);
1431 } else {
1432 tpi_mp = tcp_conn_create_v6(lconnp, econnp, mp, ira);
1435 if (tpi_mp == NULL)
1436 goto error3;
1438 eager = econnp->conn_tcp;
1439 eager->tcp_detached = B_TRUE;
1440 SOCK_CONNID_INIT(eager->tcp_connid);
1443 * Initialize the eager's tcp_t and inherit some parameters from
1444 * the listener.
1446 tcp_init_values(eager, listener);
1448 ASSERT((econnp->conn_ixa->ixa_flags &
1449 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
1450 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO)) ==
1451 (IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
1452 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO));
1454 if (!tcps->tcps_dev_flow_ctl)
1455 econnp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
1457 /* Prepare for diffing against previous packets */
1458 eager->tcp_recvifindex = 0;
1459 eager->tcp_recvhops = 0xffffffffU;
1461 if (!(ira->ira_flags & IRAF_IS_IPV4) && econnp->conn_bound_if == 0) {
1462 if (IN6_IS_ADDR_LINKSCOPE(&econnp->conn_faddr_v6) ||
1463 IN6_IS_ADDR_LINKSCOPE(&econnp->conn_laddr_v6)) {
1464 econnp->conn_incoming_ifindex = ifindex;
1465 econnp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1466 econnp->conn_ixa->ixa_scopeid = ifindex;
1470 if ((ira->ira_flags & (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS)) ==
1471 (IRAF_IS_IPV4|IRAF_IPV4_OPTIONS) &&
1472 tcps->tcps_rev_src_routes) {
1473 ipha_t *ipha = (ipha_t *)mp->b_rptr;
1474 ip_pkt_t *ipp = &econnp->conn_xmit_ipp;
1476 /* Source routing option copyover (reverse it) */
1477 err = ip_find_hdr_v4(ipha, ipp, B_TRUE);
1478 if (err != 0) {
1479 freemsg(tpi_mp);
1480 goto error3;
1482 ip_pkt_source_route_reverse_v4(ipp);
1485 ASSERT(eager->tcp_conn.tcp_eager_conn_ind == NULL);
1486 ASSERT(!eager->tcp_tconnind_started);
1488 * If the SYN came with a credential, it's a loopback packet; attach
1489 * the credential to the TPI message.
1491 if (ira->ira_cred != NULL)
1492 mblk_setcred(tpi_mp, ira->ira_cred, ira->ira_cpid);
1494 eager->tcp_conn.tcp_eager_conn_ind = tpi_mp;
1495 ASSERT(eager->tcp_ordrel_mp == NULL);
1497 /* Inherit the listener's non-STREAMS flag */
1498 if (IPCL_IS_NONSTR(lconnp)) {
1499 econnp->conn_flags |= IPCL_NONSTR;
1500 /* All non-STREAMS tcp_ts are sockets */
1501 eager->tcp_issocket = B_TRUE;
1502 } else {
1504 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
1505 * at close time, we will always have that to send up.
1506 * Otherwise, we need to do special handling in case the
1507 * allocation fails at that time.
1509 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
1510 goto error3;
1513 * Now that the IP addresses and ports are setup in econnp we
1514 * can do the IPsec policy work.
1516 if (ira->ira_flags & IRAF_IPSEC_SECURE) {
1517 if (lconnp->conn_policy != NULL) {
1519 * Inherit the policy from the listener; use
1520 * actions from ira
1522 if (!ip_ipsec_policy_inherit(econnp, lconnp, ira)) {
1523 CONN_DEC_REF(econnp);
1524 freemsg(mp);
1525 goto error3;
1531 * tcp_set_destination() may set tcp_rwnd according to the route
1532 * metrics. If it does not, the eager's receive window will be set
1533 * to the listener's receive window later in this function.
1535 eager->tcp_rwnd = 0;
1538 * Since we will clear tcp_listener before we clear tcp_detached
1539 * in the accept code we need tcp_hard_binding aka tcp_accept_inprogress
1540 * so we can tell a TCP_IS_DETACHED_NONEAGER apart.
1542 eager->tcp_hard_binding = B_TRUE;
1544 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
1545 TCP_BIND_HASH(econnp->conn_lport)], eager, 0);
1547 SOCK_CONNID_BUMP(eager->tcp_connid);
1550 * Adapt our mss, ttl, ... based on the remote address.
1553 if (tcp_set_destination(eager) != 0) {
1554 TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1555 /* Undo the bind_hash_insert */
1556 tcp_bind_hash_remove(eager);
1557 goto error3;
1560 /* Process all TCP options. */
1561 tcp_process_options(eager, tcpha);
1563 /* Is the other end ECN capable? */
1564 if (tcps->tcps_ecn_permitted >= 1 &&
1565 (tcpha->tha_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
1566 eager->tcp_ecn_ok = B_TRUE;
1570 * The listener's conn_rcvbuf should be the default window size or a
1571 * window size changed via SO_RCVBUF option. First round up the
1572 * eager's tcp_rwnd to the nearest MSS. Then find out the window
1573 * scale option value if needed. Call tcp_rwnd_set() to finish the
1574 * setting.
1576 * Note if there is a rpipe metric associated with the remote host,
1577 * we should not inherit receive window size from listener.
1579 eager->tcp_rwnd = MSS_ROUNDUP(
1580 (eager->tcp_rwnd == 0 ? econnp->conn_rcvbuf :
1581 eager->tcp_rwnd), eager->tcp_mss);
1582 if (eager->tcp_snd_ws_ok)
1583 tcp_set_ws_value(eager);
1585 * Note that this is the only place tcp_rwnd_set() is called for
1586 * accepting a connection. We need to call it here instead of
1587 * after the 3-way handshake because we need to tell the other
1588 * side our rwnd in the SYN-ACK segment.
1590 (void) tcp_rwnd_set(eager, eager->tcp_rwnd);
1592 ASSERT(eager->tcp_connp->conn_rcvbuf != 0 &&
1593 eager->tcp_connp->conn_rcvbuf == eager->tcp_rwnd);
1595 ASSERT(econnp->conn_rcvbuf != 0 &&
1596 econnp->conn_rcvbuf == eager->tcp_rwnd);
1598 /* Put a ref on the listener for the eager. */
1599 CONN_INC_REF(lconnp);
1600 mutex_enter(&listener->tcp_eager_lock);
1601 listener->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
1602 eager->tcp_eager_next_q0 = listener->tcp_eager_next_q0;
1603 listener->tcp_eager_next_q0 = eager;
1604 eager->tcp_eager_prev_q0 = listener;
1606 /* Set tcp_listener before adding it to tcp_conn_fanout */
1607 eager->tcp_listener = listener;
1608 eager->tcp_saved_listener = listener;
1611 * Set tcp_listen_cnt so that when the connection is done, the counter
1612 * is decremented.
1614 eager->tcp_listen_cnt = listener->tcp_listen_cnt;
1617 * Tag this detached tcp vector for later retrieval
1618 * by our listener client in tcp_accept().
1620 eager->tcp_conn_req_seqnum = listener->tcp_conn_req_seqnum;
1621 listener->tcp_conn_req_cnt_q0++;
1622 if (++listener->tcp_conn_req_seqnum == -1) {
1624 * -1 is "special" and defined in TPI as something
1625 * that should never be used in T_CONN_IND
1627 ++listener->tcp_conn_req_seqnum;
1629 mutex_exit(&listener->tcp_eager_lock);
1631 if (listener->tcp_syn_defense) {
1632 /* Don't drop the SYN that comes from a good IP source */
1633 ipaddr_t *addr_cache;
1635 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
1636 if (addr_cache != NULL && econnp->conn_faddr_v4 ==
1637 addr_cache[IP_ADDR_CACHE_HASH(econnp->conn_faddr_v4)]) {
1638 eager->tcp_dontdrop = B_TRUE;
1643 * We need to insert the eager in its own perimeter but as soon
1644 * as we do that, we expose the eager to the classifier and
1645 * should not touch any field outside the eager's perimeter.
1646 * So do all the work necessary before inserting the eager
1647 * in its own perimeter. Be optimistic that conn_connect()
1648 * will succeed but undo everything if it fails.
1650 seg_seq = ntohl(tcpha->tha_seq);
1651 eager->tcp_irs = seg_seq;
1652 eager->tcp_rack = seg_seq;
1653 eager->tcp_rnxt = seg_seq + 1;
1654 eager->tcp_tcpha->tha_ack = htonl(eager->tcp_rnxt);
1655 TCPS_BUMP_MIB(tcps, tcpPassiveOpens);
1656 eager->tcp_state = TCPS_SYN_RCVD;
1657 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1658 econnp->conn_ixa, void, NULL, tcp_t *, eager, void, NULL,
1659 int32_t, TCPS_LISTEN);
1661 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
1662 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
1663 if (mp1 == NULL) {
1665 * Increment the ref count as we are going to
1666 * enqueueing an mp in squeue
1668 CONN_INC_REF(econnp);
1669 goto error;
1673 * We need to start the rto timer. In normal case, we start
1674 * the timer after sending the packet on the wire (or at
1675 * least believing that packet was sent by waiting for
1676 * conn_ip_output() to return). Since this is the first packet
1677 * being sent on the wire for the eager, our initial tcp_rto
1678 * is at least tcp_rexmit_interval_min which is a fairly
1679 * large value to allow the algorithm to adjust slowly to large
1680 * fluctuations of RTT during first few transmissions.
1682 * Starting the timer first and then sending the packet in this
1683 * case shouldn't make much difference since tcp_rexmit_interval_min
1684 * is of the order of several 100ms and starting the timer
1685 * first and then sending the packet will result in difference
1686 * of few micro seconds.
1688 * Without this optimization, we are forced to hold the fanout
1689 * lock across the ipcl_bind_insert() and sending the packet
1690 * so that we don't race against an incoming packet (maybe RST)
1691 * for this eager.
1693 * It is necessary to acquire an extra reference on the eager
1694 * at this point and hold it until after tcp_send_data() to
1695 * ensure against an eager close race.
1698 CONN_INC_REF(econnp);
1700 TCP_TIMER_RESTART(eager, eager->tcp_rto);
1703 * Insert the eager in its own perimeter now. We are ready to deal
1704 * with any packets on eager.
1706 if (ipcl_conn_insert(econnp) != 0)
1707 goto error;
1709 ASSERT(econnp->conn_ixa->ixa_notify_cookie == econnp->conn_tcp);
1710 freemsg(mp);
1712 * Send the SYN-ACK. Use the right squeue so that conn_ixa is
1713 * only used by one thread at a time.
1715 if (econnp->conn_sqp == lconnp->conn_sqp) {
1716 DTRACE_TCP5(send, mblk_t *, NULL, ip_xmit_attr_t *,
1717 econnp->conn_ixa, __dtrace_tcp_void_ip_t *, mp1->b_rptr,
1718 tcp_t *, eager, __dtrace_tcp_tcph_t *,
1719 &mp1->b_rptr[econnp->conn_ixa->ixa_ip_hdr_length]);
1720 (void) conn_ip_output(mp1, econnp->conn_ixa);
1721 CONN_DEC_REF(econnp);
1722 } else {
1723 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_send_synack,
1724 econnp, NULL, SQ_PROCESS, SQTAG_TCP_SEND_SYNACK);
1726 return;
1727 error:
1728 freemsg(mp1);
1729 eager->tcp_closemp_used = B_TRUE;
1730 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
1731 mp1 = &eager->tcp_closemp;
1732 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
1733 econnp, NULL, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
1736 * If a connection already exists, send the mp to that connections so
1737 * that it can be appropriately dealt with.
1739 ipst = tcps->tcps_netstack->netstack_ip;
1741 if ((econnp = ipcl_classify(mp, ira, ipst)) != NULL) {
1742 if (!IPCL_IS_CONNECTED(econnp)) {
1744 * Something bad happened. ipcl_conn_insert()
1745 * failed because a connection already existed
1746 * in connected hash but we can't find it
1747 * anymore (someone blew it away). Just
1748 * free this message and hopefully remote
1749 * will retransmit at which time the SYN can be
1750 * treated as a new connection or dealth with
1751 * a TH_RST if a connection already exists.
1753 CONN_DEC_REF(econnp);
1754 freemsg(mp);
1755 } else {
1756 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, tcp_input_data,
1757 econnp, ira, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
1759 } else {
1760 /* Nobody wants this packet */
1761 freemsg(mp);
1763 return;
1764 error3:
1765 CONN_DEC_REF(econnp);
1766 error2:
1767 freemsg(mp);
1768 if (tlc_set)
1769 atomic_dec_32(&listener->tcp_listen_cnt->tlc_cnt);
1773 * In an ideal case of vertical partition in NUMA architecture, its
1774 * beneficial to have the listener and all the incoming connections
1775 * tied to the same squeue. The other constraint is that incoming
1776 * connections should be tied to the squeue attached to interrupted
1777 * CPU for obvious locality reason so this leaves the listener to
1778 * be tied to the same squeue. Our only problem is that when listener
1779 * is binding, the CPU that will get interrupted by the NIC whose
1780 * IP address the listener is binding to is not even known. So
1781 * the code below allows us to change that binding at the time the
1782 * CPU is interrupted by virtue of incoming connection's squeue.
1784 * This is usefull only in case of a listener bound to a specific IP
1785 * address. For other kind of listeners, they get bound the
1786 * very first time and there is no attempt to rebind them.
1788 void
1789 tcp_input_listener_unbound(void *arg, mblk_t *mp, void *arg2,
1790 ip_recv_attr_t *ira)
1792 conn_t *connp = (conn_t *)arg;
1793 squeue_t *sqp = (squeue_t *)arg2;
1794 squeue_t *new_sqp;
1795 uint32_t conn_flags;
1798 * IP sets ira_sqp to either the senders conn_sqp (for loopback)
1799 * or based on the ring (for packets from GLD). Otherwise it is
1800 * set based on lbolt i.e., a somewhat random number.
1802 ASSERT(ira->ira_sqp != NULL);
1803 new_sqp = ira->ira_sqp;
1805 if (connp->conn_fanout == NULL)
1806 goto done;
1808 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
1809 mutex_enter(&connp->conn_fanout->connf_lock);
1810 mutex_enter(&connp->conn_lock);
1812 * No one from read or write side can access us now
1813 * except for already queued packets on this squeue.
1814 * But since we haven't changed the squeue yet, they
1815 * can't execute. If they are processed after we have
1816 * changed the squeue, they are sent back to the
1817 * correct squeue down below.
1818 * But a listner close can race with processing of
1819 * incoming SYN. If incoming SYN processing changes
1820 * the squeue then the listener close which is waiting
1821 * to enter the squeue would operate on the wrong
1822 * squeue. Hence we don't change the squeue here unless
1823 * the refcount is exactly the minimum refcount. The
1824 * minimum refcount of 4 is counted as - 1 each for
1825 * TCP and IP, 1 for being in the classifier hash, and
1826 * 1 for the mblk being processed.
1829 if (connp->conn_ref != 4 ||
1830 connp->conn_tcp->tcp_state != TCPS_LISTEN) {
1831 mutex_exit(&connp->conn_lock);
1832 mutex_exit(&connp->conn_fanout->connf_lock);
1833 goto done;
1835 if (connp->conn_sqp != new_sqp) {
1836 while (connp->conn_sqp != new_sqp)
1837 (void) atomic_cas_ptr(&connp->conn_sqp, sqp,
1838 new_sqp);
1839 /* No special MT issues for outbound ixa_sqp hint */
1840 connp->conn_ixa->ixa_sqp = new_sqp;
1843 do {
1844 conn_flags = connp->conn_flags;
1845 conn_flags |= IPCL_FULLY_BOUND;
1846 (void) atomic_cas_32(&connp->conn_flags,
1847 connp->conn_flags, conn_flags);
1848 } while (!(connp->conn_flags & IPCL_FULLY_BOUND));
1850 mutex_exit(&connp->conn_fanout->connf_lock);
1851 mutex_exit(&connp->conn_lock);
1854 * Assume we have picked a good squeue for the listener. Make
1855 * subsequent SYNs not try to change the squeue.
1857 connp->conn_recv = tcp_input_listener;
1860 done:
1861 if (connp->conn_sqp != sqp) {
1862 CONN_INC_REF(connp);
1863 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
1864 ira, SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
1865 } else {
1866 tcp_input_listener(connp, mp, sqp, ira);
1871 * Send up all messages queued on tcp_rcv_list.
1873 uint_t
1874 tcp_rcv_drain(tcp_t *tcp)
1876 mblk_t *mp;
1877 uint_t ret = 0;
1878 #ifdef DEBUG
1879 uint_t cnt = 0;
1880 #endif
1881 queue_t *q = tcp->tcp_connp->conn_rq;
1883 /* Can't drain on an eager connection */
1884 if (tcp->tcp_listener != NULL)
1885 return (ret);
1887 /* Can't be a non-STREAMS connection */
1888 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1890 /* No need for the push timer now. */
1891 if (tcp->tcp_push_tid != 0) {
1892 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
1893 tcp->tcp_push_tid = 0;
1897 * Handle two cases here: we are currently fused or we were
1898 * previously fused and have some urgent data to be delivered
1899 * upstream. The latter happens because we either ran out of
1900 * memory or were detached and therefore sending the SIGURG was
1901 * deferred until this point. In either case we pass control
1902 * over to tcp_fuse_rcv_drain() since it may need to complete
1903 * some work.
1905 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
1906 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
1907 &tcp->tcp_fused_sigurg_mp))
1908 return (ret);
1911 while ((mp = tcp->tcp_rcv_list) != NULL) {
1912 tcp->tcp_rcv_list = mp->b_next;
1913 mp->b_next = NULL;
1914 #ifdef DEBUG
1915 cnt += msgdsize(mp);
1916 #endif
1917 putnext(q, mp);
1919 #ifdef DEBUG
1920 ASSERT(cnt == tcp->tcp_rcv_cnt);
1921 #endif
1922 tcp->tcp_rcv_last_head = NULL;
1923 tcp->tcp_rcv_last_tail = NULL;
1924 tcp->tcp_rcv_cnt = 0;
1926 if (canputnext(q))
1927 return (tcp_rwnd_reopen(tcp));
1929 return (ret);
1933 * Queue data on tcp_rcv_list which is a b_next chain.
1934 * tcp_rcv_last_head/tail is the last element of this chain.
1935 * Each element of the chain is a b_cont chain.
1937 * M_DATA messages are added to the current element.
1938 * Other messages are added as new (b_next) elements.
1940 void
1941 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len, cred_t *cr)
1943 ASSERT(seg_len == msgdsize(mp));
1944 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
1946 if (tcp->tcp_rcv_list == NULL) {
1947 ASSERT(tcp->tcp_rcv_last_head == NULL);
1948 tcp->tcp_rcv_list = mp;
1949 tcp->tcp_rcv_last_head = mp;
1950 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
1951 tcp->tcp_rcv_last_tail->b_cont = mp;
1952 } else {
1953 tcp->tcp_rcv_last_head->b_next = mp;
1954 tcp->tcp_rcv_last_head = mp;
1957 while (mp->b_cont)
1958 mp = mp->b_cont;
1960 tcp->tcp_rcv_last_tail = mp;
1961 tcp->tcp_rcv_cnt += seg_len;
1962 tcp->tcp_rwnd -= seg_len;
1965 /* Generate an ACK-only (no data) segment for a TCP endpoint */
1966 mblk_t *
1967 tcp_ack_mp(tcp_t *tcp)
1969 uint32_t seq_no;
1970 tcp_stack_t *tcps = tcp->tcp_tcps;
1971 conn_t *connp = tcp->tcp_connp;
1974 * There are a few cases to be considered while setting the sequence no.
1975 * Essentially, we can come here while processing an unacceptable pkt
1976 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
1977 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
1978 * If we are here for a zero window probe, stick with suna. In all
1979 * other cases, we check if suna + swnd encompasses snxt and set
1980 * the sequence number to snxt, if so. If snxt falls outside the
1981 * window (the receiver probably shrunk its window), we will go with
1982 * suna + swnd, otherwise the sequence no will be unacceptable to the
1983 * receiver.
1985 if (tcp->tcp_zero_win_probe) {
1986 seq_no = tcp->tcp_suna;
1987 } else if (tcp->tcp_state == TCPS_SYN_RCVD) {
1988 ASSERT(tcp->tcp_swnd == 0);
1989 seq_no = tcp->tcp_snxt;
1990 } else {
1991 seq_no = SEQ_GT(tcp->tcp_snxt,
1992 (tcp->tcp_suna + tcp->tcp_swnd)) ?
1993 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
1996 if (tcp->tcp_valid_bits) {
1998 * For the complex case where we have to send some
1999 * controls (FIN or SYN), let tcp_xmit_mp do it.
2001 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
2002 NULL, B_FALSE));
2003 } else {
2004 /* Generate a simple ACK */
2005 int data_length;
2006 uchar_t *rptr;
2007 tcpha_t *tcpha;
2008 mblk_t *mp1;
2009 int32_t total_hdr_len;
2010 int32_t tcp_hdr_len;
2011 int32_t num_sack_blk = 0;
2012 int32_t sack_opt_len;
2013 ip_xmit_attr_t *ixa = connp->conn_ixa;
2016 * Allocate space for TCP + IP headers
2017 * and link-level header
2019 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
2020 num_sack_blk = MIN(tcp->tcp_max_sack_blk,
2021 tcp->tcp_num_sack_blk);
2022 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
2023 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
2024 total_hdr_len = connp->conn_ht_iphc_len + sack_opt_len;
2025 tcp_hdr_len = connp->conn_ht_ulp_len + sack_opt_len;
2026 } else {
2027 total_hdr_len = connp->conn_ht_iphc_len;
2028 tcp_hdr_len = connp->conn_ht_ulp_len;
2030 mp1 = allocb(total_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
2031 if (!mp1)
2032 return (NULL);
2034 /* Update the latest receive window size in TCP header. */
2035 tcp->tcp_tcpha->tha_win =
2036 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2037 /* copy in prototype TCP + IP header */
2038 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
2039 mp1->b_rptr = rptr;
2040 mp1->b_wptr = rptr + total_hdr_len;
2041 bcopy(connp->conn_ht_iphc, rptr, connp->conn_ht_iphc_len);
2043 tcpha = (tcpha_t *)&rptr[ixa->ixa_ip_hdr_length];
2045 /* Set the TCP sequence number. */
2046 tcpha->tha_seq = htonl(seq_no);
2048 /* Set up the TCP flag field. */
2049 tcpha->tha_flags = (uchar_t)TH_ACK;
2050 if (tcp->tcp_ecn_echo_on)
2051 tcpha->tha_flags |= TH_ECE;
2053 tcp->tcp_rack = tcp->tcp_rnxt;
2054 tcp->tcp_rack_cnt = 0;
2056 /* fill in timestamp option if in use */
2057 if (tcp->tcp_snd_ts_ok) {
2058 uint32_t llbolt = (uint32_t)LBOLT_FASTPATH;
2060 U32_TO_BE32(llbolt,
2061 (char *)tcpha + TCP_MIN_HEADER_LENGTH+4);
2062 U32_TO_BE32(tcp->tcp_ts_recent,
2063 (char *)tcpha + TCP_MIN_HEADER_LENGTH+8);
2066 /* Fill in SACK options */
2067 if (num_sack_blk > 0) {
2068 uchar_t *wptr = (uchar_t *)tcpha +
2069 connp->conn_ht_ulp_len;
2070 sack_blk_t *tmp;
2071 int32_t i;
2073 wptr[0] = TCPOPT_NOP;
2074 wptr[1] = TCPOPT_NOP;
2075 wptr[2] = TCPOPT_SACK;
2076 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
2077 sizeof (sack_blk_t);
2078 wptr += TCPOPT_REAL_SACK_LEN;
2080 tmp = tcp->tcp_sack_list;
2081 for (i = 0; i < num_sack_blk; i++) {
2082 U32_TO_BE32(tmp[i].begin, wptr);
2083 wptr += sizeof (tcp_seq);
2084 U32_TO_BE32(tmp[i].end, wptr);
2085 wptr += sizeof (tcp_seq);
2087 tcpha->tha_offset_and_reserved +=
2088 ((num_sack_blk * 2 + 1) << 4);
2091 ixa->ixa_pktlen = total_hdr_len;
2093 if (ixa->ixa_flags & IXAF_IS_IPV4) {
2094 ((ipha_t *)rptr)->ipha_length = htons(total_hdr_len);
2095 } else {
2096 ip6_t *ip6 = (ip6_t *)rptr;
2098 ip6->ip6_plen = htons(total_hdr_len - IPV6_HDR_LEN);
2102 * Prime pump for checksum calculation in IP. Include the
2103 * adjustment for a source route if any.
2105 data_length = tcp_hdr_len + connp->conn_sum;
2106 data_length = (data_length >> 16) + (data_length & 0xFFFF);
2107 tcpha->tha_sum = htons(data_length);
2109 if (tcp->tcp_ip_forward_progress) {
2110 tcp->tcp_ip_forward_progress = B_FALSE;
2111 connp->conn_ixa->ixa_flags |= IXAF_REACH_CONF;
2112 } else {
2113 connp->conn_ixa->ixa_flags &= ~IXAF_REACH_CONF;
2115 return (mp1);
2120 * Dummy socket upcalls for if/when the conn_t gets detached from a
2121 * direct-callback sonode via a user-driven close(). Easy to catch with
2122 * DTrace FBT, and should be mostly harmless.
2125 /* ARGSUSED */
2126 static sock_upper_handle_t
2127 tcp_dummy_newconn(sock_upper_handle_t x, sock_lower_handle_t y,
2128 sock_downcalls_t *z, cred_t *cr, pid_t pid, sock_upcalls_t **ignored)
2130 ASSERT(0); /* Panic in debug, otherwise ignore. */
2131 return (NULL);
2134 /* ARGSUSED */
2135 static void
2136 tcp_dummy_connected(sock_upper_handle_t x, sock_connid_t y, cred_t *cr,
2137 pid_t pid)
2139 ASSERT(x == NULL);
2140 /* Normally we'd crhold(cr) and attach it to socket state. */
2141 /* LINTED */
2144 /* ARGSUSED */
2145 static int
2146 tcp_dummy_disconnected(sock_upper_handle_t x, sock_connid_t y, int blah)
2148 ASSERT(0); /* Panic in debug, otherwise ignore. */
2149 return (-1);
2152 /* ARGSUSED */
2153 static void
2154 tcp_dummy_opctl(sock_upper_handle_t x, sock_opctl_action_t y, uintptr_t blah)
2156 ASSERT(x == NULL);
2157 /* We really want this one to be a harmless NOP for now. */
2158 /* LINTED */
2161 /* ARGSUSED */
2162 static ssize_t
2163 tcp_dummy_recv(sock_upper_handle_t x, mblk_t *mp, size_t len, int flags,
2164 int *error, boolean_t *push)
2166 ASSERT(x == NULL);
2169 * Consume the message, set ESHUTDOWN, and return an error.
2170 * Nobody's home!
2172 freemsg(mp);
2173 *error = ESHUTDOWN;
2174 return (-1);
2177 /* ARGSUSED */
2178 static void
2179 tcp_dummy_set_proto_props(sock_upper_handle_t x, struct sock_proto_props *y)
2181 ASSERT(0); /* Panic in debug, otherwise ignore. */
2184 /* ARGSUSED */
2185 static void
2186 tcp_dummy_txq_full(sock_upper_handle_t x, boolean_t y)
2188 ASSERT(0); /* Panic in debug, otherwise ignore. */
2191 /* ARGSUSED */
2192 static void
2193 tcp_dummy_signal_oob(sock_upper_handle_t x, ssize_t len)
2195 ASSERT(x == NULL);
2196 /* Otherwise, this would signal socket state about OOB data. */
2199 /* ARGSUSED */
2200 static void
2201 tcp_dummy_set_error(sock_upper_handle_t x, int err)
2203 ASSERT(0); /* Panic in debug, otherwise ignore. */
2206 /* ARGSUSED */
2207 static void
2208 tcp_dummy_onearg(sock_upper_handle_t x)
2210 ASSERT(0); /* Panic in debug, otherwise ignore. */
2213 static sock_upcalls_t tcp_dummy_upcalls = {
2214 tcp_dummy_newconn,
2215 tcp_dummy_connected,
2216 tcp_dummy_disconnected,
2217 tcp_dummy_opctl,
2218 tcp_dummy_recv,
2219 tcp_dummy_set_proto_props,
2220 tcp_dummy_txq_full,
2221 tcp_dummy_signal_oob,
2222 tcp_dummy_onearg,
2223 tcp_dummy_set_error,
2224 tcp_dummy_onearg
2228 * Handle M_DATA messages from IP. Its called directly from IP via
2229 * squeue for received IP packets.
2231 * The first argument is always the connp/tcp to which the mp belongs.
2232 * There are no exceptions to this rule. The caller has already put
2233 * a reference on this connp/tcp and once tcp_input_data() returns,
2234 * the squeue will do the refrele.
2236 * The TH_SYN for the listener directly go to tcp_input_listener via
2237 * squeue. ICMP errors go directly to tcp_icmp_input().
2239 * sqp: NULL = recursive, sqp != NULL means called from squeue
2241 void
2242 tcp_input_data(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
2244 int32_t bytes_acked;
2245 int32_t gap;
2246 mblk_t *mp1;
2247 uint_t flags;
2248 uint32_t new_swnd = 0;
2249 uchar_t *iphdr;
2250 uchar_t *rptr;
2251 int32_t rgap;
2252 uint32_t seg_ack;
2253 int seg_len;
2254 uint_t ip_hdr_len;
2255 uint32_t seg_seq;
2256 tcpha_t *tcpha;
2257 int urp;
2258 tcp_opt_t tcpopt;
2259 ip_pkt_t ipp;
2260 boolean_t ofo_seg = B_FALSE; /* Out of order segment */
2261 uint32_t cwnd;
2262 uint32_t add;
2263 int npkt;
2264 int mss;
2265 conn_t *connp = (conn_t *)arg;
2266 squeue_t *sqp = (squeue_t *)arg2;
2267 tcp_t *tcp = connp->conn_tcp;
2268 tcp_stack_t *tcps = tcp->tcp_tcps;
2269 sock_upcalls_t *sockupcalls;
2272 * RST from fused tcp loopback peer should trigger an unfuse.
2274 if (tcp->tcp_fused) {
2275 TCP_STAT(tcps, tcp_fusion_aborted);
2276 tcp_unfuse(tcp);
2279 iphdr = mp->b_rptr;
2280 rptr = mp->b_rptr;
2281 ASSERT(OK_32PTR(rptr));
2283 ip_hdr_len = ira->ira_ip_hdr_length;
2284 if (connp->conn_recv_ancillary.crb_all != 0) {
2286 * Record packet information in the ip_pkt_t
2288 ipp.ipp_fields = 0;
2289 if (ira->ira_flags & IRAF_IS_IPV4) {
2290 (void) ip_find_hdr_v4((ipha_t *)rptr, &ipp,
2291 B_FALSE);
2292 } else {
2293 uint8_t nexthdrp;
2296 * IPv6 packets can only be received by applications
2297 * that are prepared to receive IPv6 addresses.
2298 * The IP fanout must ensure this.
2300 ASSERT(connp->conn_family == AF_INET6);
2302 (void) ip_find_hdr_v6(mp, (ip6_t *)rptr, &ipp,
2303 &nexthdrp);
2304 ASSERT(nexthdrp == IPPROTO_TCP);
2306 /* Could have caused a pullup? */
2307 iphdr = mp->b_rptr;
2308 rptr = mp->b_rptr;
2311 ASSERT(DB_TYPE(mp) == M_DATA);
2312 ASSERT(mp->b_next == NULL);
2314 tcpha = (tcpha_t *)&rptr[ip_hdr_len];
2315 seg_seq = ntohl(tcpha->tha_seq);
2316 seg_ack = ntohl(tcpha->tha_ack);
2317 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
2318 seg_len = (int)(mp->b_wptr - rptr) -
2319 (ip_hdr_len + TCP_HDR_LENGTH(tcpha));
2320 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
2321 do {
2322 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
2323 (uintptr_t)INT_MAX);
2324 seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
2325 } while ((mp1 = mp1->b_cont) != NULL &&
2326 mp1->b_datap->db_type == M_DATA);
2329 DTRACE_TCP5(receive, mblk_t *, NULL, ip_xmit_attr_t *, connp->conn_ixa,
2330 __dtrace_tcp_void_ip_t *, iphdr, tcp_t *, tcp,
2331 __dtrace_tcp_tcph_t *, tcpha);
2333 if (tcp->tcp_state == TCPS_TIME_WAIT) {
2334 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
2335 seg_len, tcpha, ira);
2336 return;
2339 if (sqp != NULL) {
2341 * This is the correct place to update tcp_last_recv_time. Note
2342 * that it is also updated for tcp structure that belongs to
2343 * global and listener queues which do not really need updating.
2344 * But that should not cause any harm. And it is updated for
2345 * all kinds of incoming segments, not only for data segments.
2347 tcp->tcp_last_recv_time = LBOLT_FASTPATH;
2350 flags = (unsigned int)tcpha->tha_flags & 0xFF;
2352 BUMP_LOCAL(tcp->tcp_ibsegs);
2353 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
2355 if ((flags & TH_URG) && sqp != NULL) {
2357 * TCP can't handle urgent pointers that arrive before
2358 * the connection has been accept()ed since it can't
2359 * buffer OOB data. Discard segment if this happens.
2361 * We can't just rely on a non-null tcp_listener to indicate
2362 * that the accept() has completed since unlinking of the
2363 * eager and completion of the accept are not atomic.
2364 * tcp_detached, when it is not set (B_FALSE) indicates
2365 * that the accept() has completed.
2367 * Nor can it reassemble urgent pointers, so discard
2368 * if it's not the next segment expected.
2370 * Otherwise, collapse chain into one mblk (discard if
2371 * that fails). This makes sure the headers, retransmitted
2372 * data, and new data all are in the same mblk.
2374 ASSERT(mp != NULL);
2375 if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
2376 freemsg(mp);
2377 return;
2379 /* Update pointers into message */
2380 iphdr = rptr = mp->b_rptr;
2381 tcpha = (tcpha_t *)&rptr[ip_hdr_len];
2382 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
2384 * Since we can't handle any data with this urgent
2385 * pointer that is out of sequence, we expunge
2386 * the data. This allows us to still register
2387 * the urgent mark and generate the M_PCSIG,
2388 * which we can do.
2390 mp->b_wptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
2391 seg_len = 0;
2395 sockupcalls = connp->conn_upcalls;
2396 /* A conn_t may have belonged to a now-closed socket. Be careful. */
2397 if (sockupcalls == NULL)
2398 sockupcalls = &tcp_dummy_upcalls;
2400 switch (tcp->tcp_state) {
2401 case TCPS_SYN_SENT:
2402 if (connp->conn_final_sqp == NULL &&
2403 tcp_outbound_squeue_switch && sqp != NULL) {
2404 ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
2405 connp->conn_final_sqp = sqp;
2406 if (connp->conn_final_sqp != connp->conn_sqp) {
2407 DTRACE_PROBE1(conn__final__sqp__switch,
2408 conn_t *, connp);
2409 CONN_INC_REF(connp);
2410 SQUEUE_SWITCH(connp, connp->conn_final_sqp);
2411 SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2412 tcp_input_data, connp, ira, ip_squeue_flag,
2413 SQTAG_CONNECT_FINISH);
2414 return;
2416 DTRACE_PROBE1(conn__final__sqp__same, conn_t *, connp);
2418 if (flags & TH_ACK) {
2420 * Note that our stack cannot send data before a
2421 * connection is established, therefore the
2422 * following check is valid. Otherwise, it has
2423 * to be changed.
2425 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
2426 SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2427 freemsg(mp);
2428 if (flags & TH_RST)
2429 return;
2430 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
2431 tcp, seg_ack, 0, TH_RST);
2432 return;
2434 ASSERT(tcp->tcp_suna + 1 == seg_ack);
2436 if (flags & TH_RST) {
2437 if (flags & TH_ACK) {
2438 DTRACE_TCP5(connect__refused, mblk_t *, NULL,
2439 ip_xmit_attr_t *, connp->conn_ixa,
2440 void_ip_t *, iphdr, tcp_t *, tcp,
2441 tcph_t *, tcpha);
2442 (void) tcp_clean_death(tcp, ECONNREFUSED);
2444 freemsg(mp);
2445 return;
2447 if (!(flags & TH_SYN)) {
2448 freemsg(mp);
2449 return;
2452 /* Process all TCP options. */
2453 tcp_process_options(tcp, tcpha);
2455 * The following changes our rwnd to be a multiple of the
2456 * MIN(peer MSS, our MSS) for performance reason.
2458 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(connp->conn_rcvbuf,
2459 tcp->tcp_mss));
2461 /* Is the other end ECN capable? */
2462 if (tcp->tcp_ecn_ok) {
2463 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
2464 tcp->tcp_ecn_ok = B_FALSE;
2468 * Clear ECN flags because it may interfere with later
2469 * processing.
2471 flags &= ~(TH_ECE|TH_CWR);
2473 tcp->tcp_irs = seg_seq;
2474 tcp->tcp_rack = seg_seq;
2475 tcp->tcp_rnxt = seg_seq + 1;
2476 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
2477 if (!TCP_IS_DETACHED(tcp)) {
2478 /* Allocate room for SACK options if needed. */
2479 connp->conn_wroff = connp->conn_ht_iphc_len;
2480 if (tcp->tcp_snd_sack_ok)
2481 connp->conn_wroff += TCPOPT_MAX_SACK_LEN;
2482 if (!tcp->tcp_loopback)
2483 connp->conn_wroff += tcps->tcps_wroff_xtra;
2485 (void) proto_set_tx_wroff(connp->conn_rq, connp,
2486 connp->conn_wroff);
2488 if (flags & TH_ACK) {
2490 * If we can't get the confirmation upstream, pretend
2491 * we didn't even see this one.
2493 * XXX: how can we pretend we didn't see it if we
2494 * have updated rnxt et. al.
2496 * For loopback we defer sending up the T_CONN_CON
2497 * until after some checks below.
2499 mp1 = NULL;
2501 * tcp_sendmsg() checks tcp_state without entering
2502 * the squeue so tcp_state should be updated before
2503 * sending up connection confirmation. Probe the
2504 * state change below when we are sure the connection
2505 * confirmation has been sent.
2507 tcp->tcp_state = TCPS_ESTABLISHED;
2508 if (!tcp_conn_con(tcp, iphdr, mp,
2509 tcp->tcp_loopback ? &mp1 : NULL, ira)) {
2510 tcp->tcp_state = TCPS_SYN_SENT;
2511 freemsg(mp);
2512 return;
2514 TCPS_CONN_INC(tcps);
2515 /* SYN was acked - making progress */
2516 tcp->tcp_ip_forward_progress = B_TRUE;
2518 /* One for the SYN */
2519 tcp->tcp_suna = tcp->tcp_iss + 1;
2520 tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
2523 * If SYN was retransmitted, need to reset all
2524 * retransmission info. This is because this
2525 * segment will be treated as a dup ACK.
2527 if (tcp->tcp_rexmit) {
2528 tcp->tcp_rexmit = B_FALSE;
2529 tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
2530 tcp->tcp_rexmit_max = tcp->tcp_snxt;
2531 tcp->tcp_ms_we_have_waited = 0;
2534 * Set tcp_cwnd back to 1 MSS, per
2535 * recommendation from
2536 * draft-floyd-incr-init-win-01.txt,
2537 * Increasing TCP's Initial Window.
2539 tcp->tcp_cwnd = tcp->tcp_mss;
2542 tcp->tcp_swl1 = seg_seq;
2543 tcp->tcp_swl2 = seg_ack;
2545 new_swnd = ntohs(tcpha->tha_win);
2546 tcp->tcp_swnd = new_swnd;
2547 if (new_swnd > tcp->tcp_max_swnd)
2548 tcp->tcp_max_swnd = new_swnd;
2551 * Always send the three-way handshake ack immediately
2552 * in order to make the connection complete as soon as
2553 * possible on the accepting host.
2555 flags |= TH_ACK_NEEDED;
2558 * Trace connect-established here.
2560 DTRACE_TCP5(connect__established, mblk_t *, NULL,
2561 ip_xmit_attr_t *, tcp->tcp_connp->conn_ixa,
2562 void_ip_t *, iphdr, tcp_t *, tcp, tcph_t *, tcpha);
2564 /* Trace change from SYN_SENT -> ESTABLISHED here */
2565 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2566 connp->conn_ixa, void, NULL, tcp_t *, tcp,
2567 void, NULL, int32_t, TCPS_SYN_SENT);
2570 * Special case for loopback. At this point we have
2571 * received SYN-ACK from the remote endpoint. In
2572 * order to ensure that both endpoints reach the
2573 * fused state prior to any data exchange, the final
2574 * ACK needs to be sent before we indicate T_CONN_CON
2575 * to the module upstream.
2577 if (tcp->tcp_loopback) {
2578 mblk_t *ack_mp;
2580 ASSERT(!tcp->tcp_unfusable);
2581 ASSERT(mp1 != NULL);
2583 * For loopback, we always get a pure SYN-ACK
2584 * and only need to send back the final ACK
2585 * with no data (this is because the other
2586 * tcp is ours and we don't do T/TCP). This
2587 * final ACK triggers the passive side to
2588 * perform fusion in ESTABLISHED state.
2590 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
2591 if (tcp->tcp_ack_tid != 0) {
2592 (void) TCP_TIMER_CANCEL(tcp,
2593 tcp->tcp_ack_tid);
2594 tcp->tcp_ack_tid = 0;
2596 tcp_send_data(tcp, ack_mp);
2597 BUMP_LOCAL(tcp->tcp_obsegs);
2598 TCPS_BUMP_MIB(tcps, tcpOutAck);
2600 if (!IPCL_IS_NONSTR(connp)) {
2601 /* Send up T_CONN_CON */
2602 if (ira->ira_cred != NULL) {
2603 mblk_setcred(mp1,
2604 ira->ira_cred,
2605 ira->ira_cpid);
2607 putnext(connp->conn_rq, mp1);
2608 } else {
2609 (*sockupcalls->su_connected)
2610 (connp->conn_upper_handle,
2611 tcp->tcp_connid,
2612 ira->ira_cred,
2613 ira->ira_cpid);
2614 freemsg(mp1);
2617 freemsg(mp);
2618 return;
2621 * Forget fusion; we need to handle more
2622 * complex cases below. Send the deferred
2623 * T_CONN_CON message upstream and proceed
2624 * as usual. Mark this tcp as not capable
2625 * of fusion.
2627 TCP_STAT(tcps, tcp_fusion_unfusable);
2628 tcp->tcp_unfusable = B_TRUE;
2629 if (!IPCL_IS_NONSTR(connp)) {
2630 if (ira->ira_cred != NULL) {
2631 mblk_setcred(mp1, ira->ira_cred,
2632 ira->ira_cpid);
2634 putnext(connp->conn_rq, mp1);
2635 } else {
2636 (*sockupcalls->su_connected)
2637 (connp->conn_upper_handle,
2638 tcp->tcp_connid, ira->ira_cred,
2639 ira->ira_cpid);
2640 freemsg(mp1);
2645 * Check to see if there is data to be sent. If
2646 * yes, set the transmit flag. Then check to see
2647 * if received data processing needs to be done.
2648 * If not, go straight to xmit_check. This short
2649 * cut is OK as we don't support T/TCP.
2651 if (tcp->tcp_unsent)
2652 flags |= TH_XMIT_NEEDED;
2654 if (seg_len == 0 && !(flags & TH_URG)) {
2655 freemsg(mp);
2656 goto xmit_check;
2659 flags &= ~TH_SYN;
2660 seg_seq++;
2661 break;
2663 tcp->tcp_state = TCPS_SYN_RCVD;
2664 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2665 connp->conn_ixa, void_ip_t *, NULL, tcp_t *, tcp,
2666 tcph_t *, NULL, int32_t, TCPS_SYN_SENT);
2667 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
2668 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
2669 if (mp1 != NULL) {
2670 tcp_send_data(tcp, mp1);
2671 TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
2673 freemsg(mp);
2674 return;
2675 case TCPS_SYN_RCVD:
2676 if (flags & TH_ACK) {
2677 uint32_t pinit_wnd;
2680 * In this state, a SYN|ACK packet is either bogus
2681 * because the other side must be ACKing our SYN which
2682 * indicates it has seen the ACK for their SYN and
2683 * shouldn't retransmit it or we're crossing SYNs
2684 * on active open.
2686 if ((flags & TH_SYN) && !tcp->tcp_active_open) {
2687 freemsg(mp);
2688 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
2689 tcp, seg_ack, 0, TH_RST);
2690 return;
2693 * NOTE: RFC 793 pg. 72 says this should be
2694 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
2695 * but that would mean we have an ack that ignored
2696 * our SYN.
2698 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
2699 SEQ_GT(seg_ack, tcp->tcp_snxt)) {
2700 freemsg(mp);
2701 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
2702 tcp, seg_ack, 0, TH_RST);
2703 return;
2706 * No sane TCP stack will send such a small window
2707 * without receiving any data. Just drop this invalid
2708 * ACK. We also shorten the abort timeout in case
2709 * this is an attack.
2711 pinit_wnd = ntohs(tcpha->tha_win) << tcp->tcp_snd_ws;
2712 if (pinit_wnd < tcp->tcp_mss &&
2713 pinit_wnd < tcp_init_wnd_chk) {
2714 freemsg(mp);
2715 TCP_STAT(tcps, tcp_zwin_ack_syn);
2716 tcp->tcp_second_ctimer_threshold =
2717 tcp_early_abort * SECONDS;
2718 return;
2721 break;
2722 case TCPS_LISTEN:
2724 * Only a TLI listener can come through this path when a
2725 * acceptor is going back to be a listener and a packet
2726 * for the acceptor hits the classifier. For a socket
2727 * listener, this can never happen because a listener
2728 * can never accept connection on itself and hence a
2729 * socket acceptor can not go back to being a listener.
2731 ASSERT(!TCP_IS_SOCKET(tcp));
2732 /*FALLTHRU*/
2733 case TCPS_CLOSED:
2734 case TCPS_BOUND: {
2735 conn_t *new_connp;
2736 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
2739 * Don't accept any input on a closed tcp as this TCP logically
2740 * does not exist on the system. Don't proceed further with
2741 * this TCP. For instance, this packet could trigger another
2742 * close of this tcp which would be disastrous for tcp_refcnt.
2743 * tcp_close_detached / tcp_clean_death / tcp_closei_local must
2744 * be called at most once on a TCP. In this case we need to
2745 * refeed the packet into the classifier and figure out where
2746 * the packet should go.
2748 new_connp = ipcl_classify(mp, ira, ipst);
2749 if (new_connp != NULL) {
2750 /* Drops ref on new_connp */
2751 tcp_reinput(new_connp, mp, ira, ipst);
2752 return;
2754 /* We failed to classify. For now just drop the packet */
2755 freemsg(mp);
2756 return;
2758 case TCPS_IDLE:
2760 * Handle the case where the tcp_clean_death() has happened
2761 * on a connection (application hasn't closed yet) but a packet
2762 * was already queued on squeue before tcp_clean_death()
2763 * was processed. Calling tcp_clean_death() twice on same
2764 * connection can result in weird behaviour.
2766 freemsg(mp);
2767 return;
2768 default:
2769 break;
2773 * Already on the correct queue/perimeter.
2774 * If this is a detached connection and not an eager
2775 * connection hanging off a listener then new data
2776 * (past the FIN) will cause a reset.
2777 * We do a special check here where it
2778 * is out of the main line, rather than check
2779 * if we are detached every time we see new
2780 * data down below.
2782 if (TCP_IS_DETACHED_NONEAGER(tcp) &&
2783 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
2784 TCPS_BUMP_MIB(tcps, tcpInClosed);
2785 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
2786 freemsg(mp);
2787 tcp_xmit_ctl("new data when detached", tcp,
2788 tcp->tcp_snxt, 0, TH_RST);
2789 (void) tcp_clean_death(tcp, EPROTO);
2790 return;
2793 mp->b_rptr = (uchar_t *)tcpha + TCP_HDR_LENGTH(tcpha);
2794 urp = ntohs(tcpha->tha_urp) - TCP_OLD_URP_INTERPRETATION;
2795 new_swnd = ntohs(tcpha->tha_win) <<
2796 ((tcpha->tha_flags & TH_SYN) ? 0 : tcp->tcp_snd_ws);
2799 * We are interested in two TCP options: timestamps (if negotiated) and
2800 * SACK (if negotiated). Skip option parsing if neither is negotiated.
2802 if (tcp->tcp_snd_ts_ok || tcp->tcp_snd_sack_ok) {
2803 int options;
2804 if (tcp->tcp_snd_sack_ok)
2805 tcpopt.tcp = tcp;
2806 else
2807 tcpopt.tcp = NULL;
2808 options = tcp_parse_options(tcpha, &tcpopt);
2810 * RST segments must not be subject to PAWS and are not
2811 * required to have timestamps.
2812 * In addition, some TCP stacks (eg. Microsoft's) send
2813 * keepalive segments without timestamps even if timestamps are
2814 * negotiated on the connection. Keepalive segments are not
2815 * well-specified, but in practice they are ACK segments,
2816 * either empty or containing one garbage byte.
2818 boolean_t keepalive = (flags == TH_ACK) && (seg_len == 0 ||
2819 seg_len == 1) && (seg_seq + 1 == tcp->tcp_rnxt);
2820 if (tcp->tcp_snd_ts_ok && !(flags & TH_RST) && !keepalive) {
2822 * Per RFC 7323 section 3.2., silently drop non-RST
2823 * segments without expected TSopt. This is a 'SHOULD'
2824 * requirement.
2826 if (!(options & TCP_OPT_TSTAMP_PRESENT)) {
2828 * Leave a breadcrumb for people to detect this
2829 * behavior.
2831 DTRACE_TCP1(droppedtimestamp, tcp_t *, tcp);
2832 freemsg(mp);
2833 return;
2836 if (!tcp_paws_check(tcp, &tcpopt)) {
2838 * This segment is not acceptable.
2839 * Drop it and send back an ACK.
2841 freemsg(mp);
2842 flags |= TH_ACK_NEEDED;
2843 goto ack_check;
2847 try_again:;
2848 mss = tcp->tcp_mss;
2849 gap = seg_seq - tcp->tcp_rnxt;
2850 rgap = tcp->tcp_rwnd - (gap + seg_len);
2852 * gap is the amount of sequence space between what we expect to see
2853 * and what we got for seg_seq. A positive value for gap means
2854 * something got lost. A negative value means we got some old stuff.
2856 if (gap < 0) {
2857 /* Old stuff present. Is the SYN in there? */
2858 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
2859 (seg_len != 0)) {
2860 flags &= ~TH_SYN;
2861 seg_seq++;
2862 urp--;
2863 /* Recompute the gaps after noting the SYN. */
2864 goto try_again;
2866 TCPS_BUMP_MIB(tcps, tcpInDataDupSegs);
2867 TCPS_UPDATE_MIB(tcps, tcpInDataDupBytes,
2868 (seg_len > -gap ? -gap : seg_len));
2869 /* Remove the old stuff from seg_len. */
2870 seg_len += gap;
2872 * Anything left?
2873 * Make sure to check for unack'd FIN when rest of data
2874 * has been previously ack'd.
2876 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
2878 * Resets are only valid if they lie within our offered
2879 * window. If the RST bit is set, we just ignore this
2880 * segment.
2882 if (flags & TH_RST) {
2883 freemsg(mp);
2884 return;
2888 * The arriving of dup data packets indicate that we
2889 * may have postponed an ack for too long, or the other
2890 * side's RTT estimate is out of shape. Start acking
2891 * more often.
2893 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
2894 tcp->tcp_rack_cnt >= 1 &&
2895 tcp->tcp_rack_abs_max > 2) {
2896 tcp->tcp_rack_abs_max--;
2898 tcp->tcp_rack_cur_max = 1;
2901 * This segment is "unacceptable". None of its
2902 * sequence space lies within our advertized window.
2904 * Adjust seg_len to the original value for tracing.
2906 seg_len -= gap;
2907 if (connp->conn_debug) {
2908 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
2909 "tcp_rput: unacceptable, gap %d, rgap %d, "
2910 "flags 0x%x, seg_seq %u, seg_ack %u, "
2911 "seg_len %d, rnxt %u, snxt %u, %s",
2912 gap, rgap, flags, seg_seq, seg_ack,
2913 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
2914 tcp_display(tcp, NULL,
2915 DISP_ADDR_AND_PORT));
2919 * Arrange to send an ACK in response to the
2920 * unacceptable segment per RFC 793 page 69. There
2921 * is only one small difference between ours and the
2922 * acceptability test in the RFC - we accept ACK-only
2923 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
2924 * will be generated.
2926 * Note that we have to ACK an ACK-only packet at least
2927 * for stacks that send 0-length keep-alives with
2928 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
2929 * section 4.2.3.6. As long as we don't ever generate
2930 * an unacceptable packet in response to an incoming
2931 * packet that is unacceptable, it should not cause
2932 * "ACK wars".
2934 flags |= TH_ACK_NEEDED;
2937 * Continue processing this segment in order to use the
2938 * ACK information it contains, but skip all other
2939 * sequence-number processing. Processing the ACK
2940 * information is necessary in order to
2941 * re-synchronize connections that may have lost
2942 * synchronization.
2944 * We clear seg_len and flag fields related to
2945 * sequence number processing as they are not
2946 * to be trusted for an unacceptable segment.
2948 seg_len = 0;
2949 flags &= ~(TH_SYN | TH_FIN | TH_URG);
2950 goto process_ack;
2953 /* Fix seg_seq, and chew the gap off the front. */
2954 seg_seq = tcp->tcp_rnxt;
2955 urp += gap;
2956 do {
2957 mblk_t *mp2;
2958 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
2959 (uintptr_t)UINT_MAX);
2960 gap += (uint_t)(mp->b_wptr - mp->b_rptr);
2961 if (gap > 0) {
2962 mp->b_rptr = mp->b_wptr - gap;
2963 break;
2965 mp2 = mp;
2966 mp = mp->b_cont;
2967 freeb(mp2);
2968 } while (gap < 0);
2970 * If the urgent data has already been acknowledged, we
2971 * should ignore TH_URG below
2973 if (urp < 0)
2974 flags &= ~TH_URG;
2977 * rgap is the amount of stuff received out of window. A negative
2978 * value is the amount out of window.
2980 if (rgap < 0) {
2981 mblk_t *mp2;
2983 if (tcp->tcp_rwnd == 0) {
2984 TCPS_BUMP_MIB(tcps, tcpInWinProbe);
2985 } else {
2986 TCPS_BUMP_MIB(tcps, tcpInDataPastWinSegs);
2987 TCPS_UPDATE_MIB(tcps, tcpInDataPastWinBytes, -rgap);
2991 * seg_len does not include the FIN, so if more than
2992 * just the FIN is out of window, we act like we don't
2993 * see it. (If just the FIN is out of window, rgap
2994 * will be zero and we will go ahead and acknowledge
2995 * the FIN.)
2997 flags &= ~TH_FIN;
2999 /* Fix seg_len and make sure there is something left. */
3000 seg_len += rgap;
3001 if (seg_len <= 0) {
3003 * Resets are only valid if they lie within our offered
3004 * window. If the RST bit is set, we just ignore this
3005 * segment.
3007 if (flags & TH_RST) {
3008 freemsg(mp);
3009 return;
3012 /* Per RFC 793, we need to send back an ACK. */
3013 flags |= TH_ACK_NEEDED;
3016 * Send SIGURG as soon as possible i.e. even
3017 * if the TH_URG was delivered in a window probe
3018 * packet (which will be unacceptable).
3020 * We generate a signal if none has been generated
3021 * for this connection or if this is a new urgent
3022 * byte. Also send a zero-length "unmarked" message
3023 * to inform SIOCATMARK that this is not the mark.
3025 * tcp_urp_last_valid is cleared when the T_exdata_ind
3026 * is sent up. This plus the check for old data
3027 * (gap >= 0) handles the wraparound of the sequence
3028 * number space without having to always track the
3029 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
3030 * this max in its rcv_up variable).
3032 * This prevents duplicate SIGURGS due to a "late"
3033 * zero-window probe when the T_EXDATA_IND has already
3034 * been sent up.
3036 if ((flags & TH_URG) &&
3037 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
3038 tcp->tcp_urp_last))) {
3039 if (IPCL_IS_NONSTR(connp)) {
3040 if (!TCP_IS_DETACHED(tcp)) {
3041 (*sockupcalls->su_signal_oob)
3042 (connp->conn_upper_handle,
3043 urp);
3045 } else {
3046 mp1 = allocb(0, BPRI_MED);
3047 if (mp1 == NULL) {
3048 freemsg(mp);
3049 return;
3051 if (!TCP_IS_DETACHED(tcp) &&
3052 !putnextctl1(connp->conn_rq,
3053 M_PCSIG, SIGURG)) {
3054 /* Try again on the rexmit. */
3055 freemsg(mp1);
3056 freemsg(mp);
3057 return;
3060 * If the next byte would be the mark
3061 * then mark with MARKNEXT else mark
3062 * with NOTMARKNEXT.
3064 if (gap == 0 && urp == 0)
3065 mp1->b_flag |= MSGMARKNEXT;
3066 else
3067 mp1->b_flag |= MSGNOTMARKNEXT;
3068 freemsg(tcp->tcp_urp_mark_mp);
3069 tcp->tcp_urp_mark_mp = mp1;
3070 flags |= TH_SEND_URP_MARK;
3072 tcp->tcp_urp_last_valid = B_TRUE;
3073 tcp->tcp_urp_last = urp + seg_seq;
3076 * If this is a zero window probe, continue to
3077 * process the ACK part. But we need to set seg_len
3078 * to 0 to avoid data processing. Otherwise just
3079 * drop the segment and send back an ACK.
3081 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
3082 flags &= ~(TH_SYN | TH_URG);
3083 seg_len = 0;
3084 goto process_ack;
3085 } else {
3086 freemsg(mp);
3087 goto ack_check;
3090 /* Pitch out of window stuff off the end. */
3091 rgap = seg_len;
3092 mp2 = mp;
3093 do {
3094 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
3095 (uintptr_t)INT_MAX);
3096 rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
3097 if (rgap < 0) {
3098 mp2->b_wptr += rgap;
3099 if ((mp1 = mp2->b_cont) != NULL) {
3100 mp2->b_cont = NULL;
3101 freemsg(mp1);
3103 break;
3105 } while ((mp2 = mp2->b_cont) != NULL);
3107 ok:;
3109 * TCP should check ECN info for segments inside the window only.
3110 * Therefore the check should be done here.
3112 if (tcp->tcp_ecn_ok) {
3113 if (flags & TH_CWR) {
3114 tcp->tcp_ecn_echo_on = B_FALSE;
3117 * Note that both ECN_CE and CWR can be set in the
3118 * same segment. In this case, we once again turn
3119 * on ECN_ECHO.
3121 if (connp->conn_ipversion == IPV4_VERSION) {
3122 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
3124 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
3125 tcp->tcp_ecn_echo_on = B_TRUE;
3127 } else {
3128 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
3130 if ((vcf & htonl(IPH_ECN_CE << 20)) ==
3131 htonl(IPH_ECN_CE << 20)) {
3132 tcp->tcp_ecn_echo_on = B_TRUE;
3138 * Check whether we can update tcp_ts_recent. This test is from RFC
3139 * 7323, section 5.3.
3141 if (tcp->tcp_snd_ts_ok && !(flags & TH_RST) &&
3142 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
3143 SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
3144 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
3145 tcp->tcp_last_rcv_lbolt = LBOLT_FASTPATH64;
3148 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
3150 * FIN in an out of order segment. We record this in
3151 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
3152 * Clear the FIN so that any check on FIN flag will fail.
3153 * Remember that FIN also counts in the sequence number
3154 * space. So we need to ack out of order FIN only segments.
3156 if (flags & TH_FIN) {
3157 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
3158 tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
3159 flags &= ~TH_FIN;
3160 flags |= TH_ACK_NEEDED;
3162 if (seg_len > 0) {
3163 /* Fill in the SACK blk list. */
3164 if (tcp->tcp_snd_sack_ok) {
3165 tcp_sack_insert(tcp->tcp_sack_list,
3166 seg_seq, seg_seq + seg_len,
3167 &(tcp->tcp_num_sack_blk));
3171 * Attempt reassembly and see if we have something
3172 * ready to go.
3174 mp = tcp_reass(tcp, mp, seg_seq);
3175 /* Always ack out of order packets */
3176 flags |= TH_ACK_NEEDED | TH_PUSH;
3177 if (mp) {
3178 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
3179 (uintptr_t)INT_MAX);
3180 seg_len = mp->b_cont ? msgdsize(mp) :
3181 (int)(mp->b_wptr - mp->b_rptr);
3182 seg_seq = tcp->tcp_rnxt;
3184 * A gap is filled and the seq num and len
3185 * of the gap match that of a previously
3186 * received FIN, put the FIN flag back in.
3188 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3189 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3190 flags |= TH_FIN;
3191 tcp->tcp_valid_bits &=
3192 ~TCP_OFO_FIN_VALID;
3194 if (tcp->tcp_reass_tid != 0) {
3195 (void) TCP_TIMER_CANCEL(tcp,
3196 tcp->tcp_reass_tid);
3198 * Restart the timer if there is still
3199 * data in the reassembly queue.
3201 if (tcp->tcp_reass_head != NULL) {
3202 tcp->tcp_reass_tid = TCP_TIMER(
3203 tcp, tcp_reass_timer,
3204 tcps->tcps_reass_timeout);
3205 } else {
3206 tcp->tcp_reass_tid = 0;
3209 } else {
3211 * Keep going even with NULL mp.
3212 * There may be a useful ACK or something else
3213 * we don't want to miss.
3215 * But TCP should not perform fast retransmit
3216 * because of the ack number. TCP uses
3217 * seg_len == 0 to determine if it is a pure
3218 * ACK. And this is not a pure ACK.
3220 seg_len = 0;
3221 ofo_seg = B_TRUE;
3223 if (tcps->tcps_reass_timeout != 0 &&
3224 tcp->tcp_reass_tid == 0) {
3225 tcp->tcp_reass_tid = TCP_TIMER(tcp,
3226 tcp_reass_timer,
3227 tcps->tcps_reass_timeout);
3231 } else if (seg_len > 0) {
3232 TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs);
3233 TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, seg_len);
3235 * If an out of order FIN was received before, and the seq
3236 * num and len of the new segment match that of the FIN,
3237 * put the FIN flag back in.
3239 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
3240 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
3241 flags |= TH_FIN;
3242 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
3245 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
3246 if (flags & TH_RST) {
3247 freemsg(mp);
3248 switch (tcp->tcp_state) {
3249 case TCPS_SYN_RCVD:
3250 (void) tcp_clean_death(tcp, ECONNREFUSED);
3251 break;
3252 case TCPS_ESTABLISHED:
3253 case TCPS_FIN_WAIT_1:
3254 case TCPS_FIN_WAIT_2:
3255 case TCPS_CLOSE_WAIT:
3256 (void) tcp_clean_death(tcp, ECONNRESET);
3257 break;
3258 case TCPS_CLOSING:
3259 case TCPS_LAST_ACK:
3260 (void) tcp_clean_death(tcp, 0);
3261 break;
3262 default:
3263 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
3264 (void) tcp_clean_death(tcp, ENXIO);
3265 break;
3267 return;
3269 if (flags & TH_SYN) {
3271 * See RFC 793, Page 71
3273 * The seq number must be in the window as it should
3274 * be "fixed" above. If it is outside window, it should
3275 * be already rejected. Note that we allow seg_seq to be
3276 * rnxt + rwnd because we want to accept 0 window probe.
3278 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
3279 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
3280 freemsg(mp);
3282 * If the ACK flag is not set, just use our snxt as the
3283 * seq number of the RST segment.
3285 if (!(flags & TH_ACK)) {
3286 seg_ack = tcp->tcp_snxt;
3288 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
3289 TH_RST|TH_ACK);
3290 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
3291 (void) tcp_clean_death(tcp, ECONNRESET);
3292 return;
3295 * urp could be -1 when the urp field in the packet is 0
3296 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
3297 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
3299 if (flags & TH_URG && urp >= 0) {
3300 if (!tcp->tcp_urp_last_valid ||
3301 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
3303 * Non-STREAMS sockets handle the urgent data a litte
3304 * differently from STREAMS based sockets. There is no
3305 * need to mark any mblks with the MSG{NOT,}MARKNEXT
3306 * flags to keep SIOCATMARK happy. Instead a
3307 * su_signal_oob upcall is made to update the mark.
3308 * Neither is a T_EXDATA_IND mblk needed to be
3309 * prepended to the urgent data. The urgent data is
3310 * delivered using the su_recv upcall, where we set
3311 * the MSG_OOB flag to indicate that it is urg data.
3313 * Neither TH_SEND_URP_MARK nor TH_MARKNEXT_NEEDED
3314 * are used by non-STREAMS sockets.
3316 if (IPCL_IS_NONSTR(connp)) {
3317 if (!TCP_IS_DETACHED(tcp)) {
3318 (*sockupcalls->su_signal_oob)
3319 (connp->conn_upper_handle, urp);
3321 } else {
3323 * If we haven't generated the signal yet for
3324 * this urgent pointer value, do it now. Also,
3325 * send up a zero-length M_DATA indicating
3326 * whether or not this is the mark. The latter
3327 * is not needed when a T_EXDATA_IND is sent up.
3328 * However, if there are allocation failures
3329 * this code relies on the sender retransmitting
3330 * and the socket code for determining the mark
3331 * should not block waiting for the peer to
3332 * transmit. Thus, for simplicity we always
3333 * send up the mark indication.
3335 mp1 = allocb(0, BPRI_MED);
3336 if (mp1 == NULL) {
3337 freemsg(mp);
3338 return;
3340 if (!TCP_IS_DETACHED(tcp) &&
3341 !putnextctl1(connp->conn_rq, M_PCSIG,
3342 SIGURG)) {
3343 /* Try again on the rexmit. */
3344 freemsg(mp1);
3345 freemsg(mp);
3346 return;
3349 * Mark with NOTMARKNEXT for now.
3350 * The code below will change this to MARKNEXT
3351 * if we are at the mark.
3353 * If there are allocation failures (e.g. in
3354 * dupmsg below) the next time tcp_input_data
3355 * sees the urgent segment it will send up the
3356 * MSGMARKNEXT message.
3358 mp1->b_flag |= MSGNOTMARKNEXT;
3359 freemsg(tcp->tcp_urp_mark_mp);
3360 tcp->tcp_urp_mark_mp = mp1;
3361 flags |= TH_SEND_URP_MARK;
3362 #ifdef DEBUG
3363 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3364 "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
3365 "last %x, %s",
3366 seg_seq, urp, tcp->tcp_urp_last,
3367 tcp_display(tcp, NULL, DISP_PORT_ONLY));
3368 #endif /* DEBUG */
3370 tcp->tcp_urp_last_valid = B_TRUE;
3371 tcp->tcp_urp_last = urp + seg_seq;
3372 } else if (tcp->tcp_urp_mark_mp != NULL) {
3374 * An allocation failure prevented the previous
3375 * tcp_input_data from sending up the allocated
3376 * MSG*MARKNEXT message - send it up this time
3377 * around.
3379 flags |= TH_SEND_URP_MARK;
3383 * If the urgent byte is in this segment, make sure that it is
3384 * all by itself. This makes it much easier to deal with the
3385 * possibility of an allocation failure on the T_exdata_ind.
3386 * Note that seg_len is the number of bytes in the segment, and
3387 * urp is the offset into the segment of the urgent byte.
3388 * urp < seg_len means that the urgent byte is in this segment.
3390 if (urp < seg_len) {
3391 if (seg_len != 1) {
3392 uint32_t tmp_rnxt;
3394 * Break it up and feed it back in.
3395 * Re-attach the IP header.
3397 mp->b_rptr = iphdr;
3398 if (urp > 0) {
3400 * There is stuff before the urgent
3401 * byte.
3403 mp1 = dupmsg(mp);
3404 if (!mp1) {
3406 * Trim from urgent byte on.
3407 * The rest will come back.
3409 (void) adjmsg(mp,
3410 urp - seg_len);
3411 tcp_input_data(connp,
3412 mp, NULL, ira);
3413 return;
3415 (void) adjmsg(mp1, urp - seg_len);
3416 /* Feed this piece back in. */
3417 tmp_rnxt = tcp->tcp_rnxt;
3418 tcp_input_data(connp, mp1, NULL, ira);
3420 * If the data passed back in was not
3421 * processed (ie: bad ACK) sending
3422 * the remainder back in will cause a
3423 * loop. In this case, drop the
3424 * packet and let the sender try
3425 * sending a good packet.
3427 if (tmp_rnxt == tcp->tcp_rnxt) {
3428 freemsg(mp);
3429 return;
3432 if (urp != seg_len - 1) {
3433 uint32_t tmp_rnxt;
3435 * There is stuff after the urgent
3436 * byte.
3438 mp1 = dupmsg(mp);
3439 if (!mp1) {
3441 * Trim everything beyond the
3442 * urgent byte. The rest will
3443 * come back.
3445 (void) adjmsg(mp,
3446 urp + 1 - seg_len);
3447 tcp_input_data(connp,
3448 mp, NULL, ira);
3449 return;
3451 (void) adjmsg(mp1, urp + 1 - seg_len);
3452 tmp_rnxt = tcp->tcp_rnxt;
3453 tcp_input_data(connp, mp1, NULL, ira);
3455 * If the data passed back in was not
3456 * processed (ie: bad ACK) sending
3457 * the remainder back in will cause a
3458 * loop. In this case, drop the
3459 * packet and let the sender try
3460 * sending a good packet.
3462 if (tmp_rnxt == tcp->tcp_rnxt) {
3463 freemsg(mp);
3464 return;
3467 tcp_input_data(connp, mp, NULL, ira);
3468 return;
3471 * This segment contains only the urgent byte. We
3472 * have to allocate the T_exdata_ind, if we can.
3474 if (IPCL_IS_NONSTR(connp)) {
3475 int error;
3477 (*sockupcalls->su_recv)
3478 (connp->conn_upper_handle, mp, seg_len,
3479 MSG_OOB, &error, NULL);
3481 * We should never be in middle of a
3482 * fallback, the squeue guarantees that.
3484 ASSERT(error != EOPNOTSUPP);
3485 mp = NULL;
3486 goto update_ack;
3487 } else if (!tcp->tcp_urp_mp) {
3488 struct T_exdata_ind *tei;
3489 mp1 = allocb(sizeof (struct T_exdata_ind),
3490 BPRI_MED);
3491 if (!mp1) {
3493 * Sigh... It'll be back.
3494 * Generate any MSG*MARK message now.
3496 freemsg(mp);
3497 seg_len = 0;
3498 if (flags & TH_SEND_URP_MARK) {
3501 ASSERT(tcp->tcp_urp_mark_mp);
3502 tcp->tcp_urp_mark_mp->b_flag &=
3503 ~MSGNOTMARKNEXT;
3504 tcp->tcp_urp_mark_mp->b_flag |=
3505 MSGMARKNEXT;
3507 goto ack_check;
3509 mp1->b_datap->db_type = M_PROTO;
3510 tei = (struct T_exdata_ind *)mp1->b_rptr;
3511 tei->PRIM_type = T_EXDATA_IND;
3512 tei->MORE_flag = 0;
3513 mp1->b_wptr = (uchar_t *)&tei[1];
3514 tcp->tcp_urp_mp = mp1;
3515 #ifdef DEBUG
3516 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3517 "tcp_rput: allocated exdata_ind %s",
3518 tcp_display(tcp, NULL,
3519 DISP_PORT_ONLY));
3520 #endif /* DEBUG */
3522 * There is no need to send a separate MSG*MARK
3523 * message since the T_EXDATA_IND will be sent
3524 * now.
3526 flags &= ~TH_SEND_URP_MARK;
3527 freemsg(tcp->tcp_urp_mark_mp);
3528 tcp->tcp_urp_mark_mp = NULL;
3531 * Now we are all set. On the next putnext upstream,
3532 * tcp_urp_mp will be non-NULL and will get prepended
3533 * to what has to be this piece containing the urgent
3534 * byte. If for any reason we abort this segment below,
3535 * if it comes back, we will have this ready, or it
3536 * will get blown off in close.
3538 } else if (urp == seg_len) {
3540 * The urgent byte is the next byte after this sequence
3541 * number. If this endpoint is non-STREAMS, then there
3542 * is nothing to do here since the socket has already
3543 * been notified about the urg pointer by the
3544 * su_signal_oob call above.
3546 * In case of STREAMS, some more work might be needed.
3547 * If there is data it is marked with MSGMARKNEXT and
3548 * and any tcp_urp_mark_mp is discarded since it is not
3549 * needed. Otherwise, if the code above just allocated
3550 * a zero-length tcp_urp_mark_mp message, that message
3551 * is tagged with MSGMARKNEXT. Sending up these
3552 * MSGMARKNEXT messages makes SIOCATMARK work correctly
3553 * even though the T_EXDATA_IND will not be sent up
3554 * until the urgent byte arrives.
3556 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
3557 if (seg_len != 0) {
3558 flags |= TH_MARKNEXT_NEEDED;
3559 freemsg(tcp->tcp_urp_mark_mp);
3560 tcp->tcp_urp_mark_mp = NULL;
3561 flags &= ~TH_SEND_URP_MARK;
3562 } else if (tcp->tcp_urp_mark_mp != NULL) {
3563 flags |= TH_SEND_URP_MARK;
3564 tcp->tcp_urp_mark_mp->b_flag &=
3565 ~MSGNOTMARKNEXT;
3566 tcp->tcp_urp_mark_mp->b_flag |=
3567 MSGMARKNEXT;
3570 #ifdef DEBUG
3571 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3572 "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
3573 seg_len, flags,
3574 tcp_display(tcp, NULL, DISP_PORT_ONLY));
3575 #endif /* DEBUG */
3577 #ifdef DEBUG
3578 else {
3579 /* Data left until we hit mark */
3580 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
3581 "tcp_rput: URP %d bytes left, %s",
3582 urp - seg_len, tcp_display(tcp, NULL,
3583 DISP_PORT_ONLY));
3585 #endif /* DEBUG */
3588 process_ack:
3589 if (!(flags & TH_ACK)) {
3590 freemsg(mp);
3591 goto xmit_check;
3594 bytes_acked = (int)(seg_ack - tcp->tcp_suna);
3596 if (bytes_acked > 0)
3597 tcp->tcp_ip_forward_progress = B_TRUE;
3598 if (tcp->tcp_state == TCPS_SYN_RCVD) {
3600 * tcp_sendmsg() checks tcp_state without entering
3601 * the squeue so tcp_state should be updated before
3602 * sending up a connection confirmation or a new
3603 * connection indication.
3605 tcp->tcp_state = TCPS_ESTABLISHED;
3608 * We are seeing the final ack in the three way
3609 * hand shake of a active open'ed connection
3610 * so we must send up a T_CONN_CON
3612 if (tcp->tcp_active_open) {
3613 if (!tcp_conn_con(tcp, iphdr, mp, NULL, ira)) {
3614 freemsg(mp);
3615 tcp->tcp_state = TCPS_SYN_RCVD;
3616 return;
3619 * Don't fuse the loopback endpoints for
3620 * simultaneous active opens.
3622 if (tcp->tcp_loopback) {
3623 TCP_STAT(tcps, tcp_fusion_unfusable);
3624 tcp->tcp_unfusable = B_TRUE;
3627 * For simultaneous active open, trace receipt of final
3628 * ACK as tcp:::connect-established.
3630 DTRACE_TCP5(connect__established, mblk_t *, NULL,
3631 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3632 iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3633 } else if (IPCL_IS_NONSTR(connp)) {
3635 * 3-way handshake has completed, so notify socket
3636 * of the new connection.
3638 * We are here means eager is fine but it can
3639 * get a TH_RST at any point between now and till
3640 * accept completes and disappear. We need to
3641 * ensure that reference to eager is valid after
3642 * we get out of eager's perimeter. So we do
3643 * an extra refhold.
3645 CONN_INC_REF(connp);
3647 if (!tcp_newconn_notify(tcp, ira)) {
3649 * The state-change probe for SYN_RCVD ->
3650 * ESTABLISHED has not fired yet. We reset
3651 * the state to SYN_RCVD so that future
3652 * state-change probes report correct state
3653 * transistions.
3655 tcp->tcp_state = TCPS_SYN_RCVD;
3656 freemsg(mp);
3657 /* notification did not go up, so drop ref */
3658 CONN_DEC_REF(connp);
3659 /* ... and close the eager */
3660 ASSERT(TCP_IS_DETACHED(tcp));
3661 (void) tcp_close_detached(tcp);
3662 return;
3665 * tcp_newconn_notify() changes conn_upcalls and
3666 * connp->conn_upper_handle. Fix things now, in case
3667 * there's data attached to this ack.
3669 if (connp->conn_upcalls != NULL)
3670 sockupcalls = connp->conn_upcalls;
3672 * For passive open, trace receipt of final ACK as
3673 * tcp:::accept-established.
3675 DTRACE_TCP5(accept__established, mlbk_t *, NULL,
3676 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3677 iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3678 } else {
3680 * 3-way handshake complete - this is a STREAMS based
3681 * socket, so pass up the T_CONN_IND.
3683 tcp_t *listener = tcp->tcp_listener;
3684 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind;
3686 tcp->tcp_tconnind_started = B_TRUE;
3687 tcp->tcp_conn.tcp_eager_conn_ind = NULL;
3688 ASSERT(mp != NULL);
3690 * We are here means eager is fine but it can
3691 * get a TH_RST at any point between now and till
3692 * accept completes and disappear. We need to
3693 * ensure that reference to eager is valid after
3694 * we get out of eager's perimeter. So we do
3695 * an extra refhold.
3697 CONN_INC_REF(connp);
3700 * The listener also exists because of the refhold
3701 * done in tcp_input_listener. Its possible that it
3702 * might have closed. We will check that once we
3703 * get inside listeners context.
3705 CONN_INC_REF(listener->tcp_connp);
3706 if (listener->tcp_connp->conn_sqp ==
3707 connp->conn_sqp) {
3709 * We optimize by not calling an SQUEUE_ENTER
3710 * on the listener since we know that the
3711 * listener and eager squeues are the same.
3712 * We are able to make this check safely only
3713 * because neither the eager nor the listener
3714 * can change its squeue. Only an active connect
3715 * can change its squeue
3717 tcp_send_conn_ind(listener->tcp_connp, mp,
3718 listener->tcp_connp->conn_sqp);
3719 CONN_DEC_REF(listener->tcp_connp);
3720 } else if (!tcp->tcp_loopback) {
3721 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
3722 mp, tcp_send_conn_ind,
3723 listener->tcp_connp, NULL, SQ_FILL,
3724 SQTAG_TCP_CONN_IND);
3725 } else {
3726 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
3727 mp, tcp_send_conn_ind,
3728 listener->tcp_connp, NULL, SQ_NODRAIN,
3729 SQTAG_TCP_CONN_IND);
3732 * For passive open, trace receipt of final ACK as
3733 * tcp:::accept-established.
3735 DTRACE_TCP5(accept__established, mlbk_t *, NULL,
3736 ip_xmit_attr_t *, connp->conn_ixa, void_ip_t *,
3737 iphdr, tcp_t *, tcp, tcph_t *, tcpha);
3739 TCPS_CONN_INC(tcps);
3741 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */
3742 bytes_acked--;
3743 /* SYN was acked - making progress */
3744 tcp->tcp_ip_forward_progress = B_TRUE;
3747 * If SYN was retransmitted, need to reset all
3748 * retransmission info as this segment will be
3749 * treated as a dup ACK.
3751 if (tcp->tcp_rexmit) {
3752 tcp->tcp_rexmit = B_FALSE;
3753 tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3754 tcp->tcp_rexmit_max = tcp->tcp_snxt;
3755 tcp->tcp_ms_we_have_waited = 0;
3756 tcp->tcp_cwnd = mss;
3760 * We set the send window to zero here.
3761 * This is needed if there is data to be
3762 * processed already on the queue.
3763 * Later (at swnd_update label), the
3764 * "new_swnd > tcp_swnd" condition is satisfied
3765 * the XMIT_NEEDED flag is set in the current
3766 * (SYN_RCVD) state. This ensures tcp_wput_data() is
3767 * called if there is already data on queue in
3768 * this state.
3770 tcp->tcp_swnd = 0;
3772 if (new_swnd > tcp->tcp_max_swnd)
3773 tcp->tcp_max_swnd = new_swnd;
3774 tcp->tcp_swl1 = seg_seq;
3775 tcp->tcp_swl2 = seg_ack;
3776 tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
3778 /* Trace change from SYN_RCVD -> ESTABLISHED here */
3779 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3780 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3781 int32_t, TCPS_SYN_RCVD);
3783 /* Fuse when both sides are in ESTABLISHED state */
3784 if (tcp->tcp_loopback && do_tcp_fusion)
3785 tcp_fuse(tcp, iphdr, tcpha);
3788 /* This code follows 4.4BSD-Lite2 mostly. */
3789 if (bytes_acked < 0)
3790 goto est;
3793 * If TCP is ECN capable and the congestion experience bit is
3794 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be
3795 * done once per window (or more loosely, per RTT).
3797 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
3798 tcp->tcp_cwr = B_FALSE;
3799 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
3800 if (!tcp->tcp_cwr) {
3801 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
3802 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
3803 tcp->tcp_cwnd = npkt * mss;
3805 * If the cwnd is 0, use the timer to clock out
3806 * new segments. This is required by the ECN spec.
3808 if (npkt == 0) {
3809 TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
3811 * This makes sure that when the ACK comes
3812 * back, we will increase tcp_cwnd by 1 MSS.
3814 tcp->tcp_cwnd_cnt = 0;
3816 tcp->tcp_cwr = B_TRUE;
3818 * This marks the end of the current window of in
3819 * flight data. That is why we don't use
3820 * tcp_suna + tcp_swnd. Only data in flight can
3821 * provide ECN info.
3823 tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
3824 tcp->tcp_ecn_cwr_sent = B_FALSE;
3828 mp1 = tcp->tcp_xmit_head;
3829 if (bytes_acked == 0) {
3830 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
3831 int dupack_cnt;
3833 TCPS_BUMP_MIB(tcps, tcpInDupAck);
3835 * Fast retransmit. When we have seen exactly three
3836 * identical ACKs while we have unacked data
3837 * outstanding we take it as a hint that our peer
3838 * dropped something.
3840 * If TCP is retransmitting, don't do fast retransmit.
3842 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
3843 ! tcp->tcp_rexmit) {
3844 /* Do Limited Transmit */
3845 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
3846 tcps->tcps_dupack_fast_retransmit) {
3848 * RFC 3042
3850 * What we need to do is temporarily
3851 * increase tcp_cwnd so that new
3852 * data can be sent if it is allowed
3853 * by the receive window (tcp_rwnd).
3854 * tcp_wput_data() will take care of
3855 * the rest.
3857 * If the connection is SACK capable,
3858 * only do limited xmit when there
3859 * is SACK info.
3861 * Note how tcp_cwnd is incremented.
3862 * The first dup ACK will increase
3863 * it by 1 MSS. The second dup ACK
3864 * will increase it by 2 MSS. This
3865 * means that only 1 new segment will
3866 * be sent for each dup ACK.
3868 if (tcp->tcp_unsent > 0 &&
3869 (!tcp->tcp_snd_sack_ok ||
3870 (tcp->tcp_snd_sack_ok &&
3871 tcp->tcp_notsack_list != NULL))) {
3872 tcp->tcp_cwnd += mss <<
3873 (tcp->tcp_dupack_cnt - 1);
3874 flags |= TH_LIMIT_XMIT;
3876 } else if (dupack_cnt ==
3877 tcps->tcps_dupack_fast_retransmit) {
3880 * If we have reduced tcp_ssthresh
3881 * because of ECN, do not reduce it again
3882 * unless it is already one window of data
3883 * away. After one window of data, tcp_cwr
3884 * should then be cleared. Note that
3885 * for non ECN capable connection, tcp_cwr
3886 * should always be false.
3888 * Adjust cwnd since the duplicate
3889 * ack indicates that a packet was
3890 * dropped (due to congestion.)
3892 if (!tcp->tcp_cwr) {
3893 npkt = ((tcp->tcp_snxt -
3894 tcp->tcp_suna) >> 1) / mss;
3895 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
3896 mss;
3897 tcp->tcp_cwnd = (npkt +
3898 tcp->tcp_dupack_cnt) * mss;
3900 if (tcp->tcp_ecn_ok) {
3901 tcp->tcp_cwr = B_TRUE;
3902 tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
3903 tcp->tcp_ecn_cwr_sent = B_FALSE;
3907 * We do Hoe's algorithm. Refer to her
3908 * paper "Improving the Start-up Behavior
3909 * of a Congestion Control Scheme for TCP,"
3910 * appeared in SIGCOMM'96.
3912 * Save highest seq no we have sent so far.
3913 * Be careful about the invisible FIN byte.
3915 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
3916 (tcp->tcp_unsent == 0)) {
3917 tcp->tcp_rexmit_max = tcp->tcp_fss;
3918 } else {
3919 tcp->tcp_rexmit_max = tcp->tcp_snxt;
3923 * For SACK:
3924 * Calculate tcp_pipe, which is the
3925 * estimated number of bytes in
3926 * network.
3928 * tcp_fack is the highest sack'ed seq num
3929 * TCP has received.
3931 * tcp_pipe is explained in the above quoted
3932 * Fall and Floyd's paper. tcp_fack is
3933 * explained in Mathis and Mahdavi's
3934 * "Forward Acknowledgment: Refining TCP
3935 * Congestion Control" in SIGCOMM '96.
3937 if (tcp->tcp_snd_sack_ok) {
3938 if (tcp->tcp_notsack_list != NULL) {
3939 tcp->tcp_pipe = tcp->tcp_snxt -
3940 tcp->tcp_fack;
3941 tcp->tcp_sack_snxt = seg_ack;
3942 flags |= TH_NEED_SACK_REXMIT;
3943 } else {
3945 * Always initialize tcp_pipe
3946 * even though we don't have
3947 * any SACK info. If later
3948 * we get SACK info and
3949 * tcp_pipe is not initialized,
3950 * funny things will happen.
3952 tcp->tcp_pipe =
3953 tcp->tcp_cwnd_ssthresh;
3955 } else {
3956 flags |= TH_REXMIT_NEEDED;
3957 } /* tcp_snd_sack_ok */
3959 } else {
3961 * Here we perform congestion
3962 * avoidance, but NOT slow start.
3963 * This is known as the Fast
3964 * Recovery Algorithm.
3966 if (tcp->tcp_snd_sack_ok &&
3967 tcp->tcp_notsack_list != NULL) {
3968 flags |= TH_NEED_SACK_REXMIT;
3969 tcp->tcp_pipe -= mss;
3970 if (tcp->tcp_pipe < 0)
3971 tcp->tcp_pipe = 0;
3972 } else {
3974 * We know that one more packet has
3975 * left the pipe thus we can update
3976 * cwnd.
3978 cwnd = tcp->tcp_cwnd + mss;
3979 if (cwnd > tcp->tcp_cwnd_max)
3980 cwnd = tcp->tcp_cwnd_max;
3981 tcp->tcp_cwnd = cwnd;
3982 if (tcp->tcp_unsent > 0)
3983 flags |= TH_XMIT_NEEDED;
3987 } else if (tcp->tcp_zero_win_probe) {
3989 * If the window has opened, need to arrange
3990 * to send additional data.
3992 if (new_swnd != 0) {
3993 /* tcp_suna != tcp_snxt */
3994 /* Packet contains a window update */
3995 TCPS_BUMP_MIB(tcps, tcpInWinUpdate);
3996 tcp->tcp_zero_win_probe = 0;
3997 tcp->tcp_timer_backoff = 0;
3998 tcp->tcp_ms_we_have_waited = 0;
4001 * Transmit starting with tcp_suna since
4002 * the one byte probe is not ack'ed.
4003 * If TCP has sent more than one identical
4004 * probe, tcp_rexmit will be set. That means
4005 * tcp_ss_rexmit() will send out the one
4006 * byte along with new data. Otherwise,
4007 * fake the retransmission.
4009 flags |= TH_XMIT_NEEDED;
4010 if (!tcp->tcp_rexmit) {
4011 tcp->tcp_rexmit = B_TRUE;
4012 tcp->tcp_dupack_cnt = 0;
4013 tcp->tcp_rexmit_nxt = tcp->tcp_suna;
4014 tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
4018 goto swnd_update;
4022 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
4023 * If the ACK value acks something that we have not yet sent, it might
4024 * be an old duplicate segment. Send an ACK to re-synchronize the
4025 * other side.
4026 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
4027 * state is handled above, so we can always just drop the segment and
4028 * send an ACK here.
4030 * In the case where the peer shrinks the window, we see the new window
4031 * update, but all the data sent previously is queued up by the peer.
4032 * To account for this, in tcp_process_shrunk_swnd(), the sequence
4033 * number, which was already sent, and within window, is recorded.
4034 * tcp_snxt is then updated.
4036 * If the window has previously shrunk, and an ACK for data not yet
4037 * sent, according to tcp_snxt is recieved, it may still be valid. If
4038 * the ACK is for data within the window at the time the window was
4039 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to
4040 * the sequence number ACK'ed.
4042 * If the ACK covers all the data sent at the time the window was
4043 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE.
4045 * Should we send ACKs in response to ACK only segments?
4048 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
4049 if ((tcp->tcp_is_wnd_shrnk) &&
4050 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) {
4051 uint32_t data_acked_ahead_snxt;
4053 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt;
4054 tcp_update_xmit_tail(tcp, seg_ack);
4055 tcp->tcp_unsent -= data_acked_ahead_snxt;
4056 } else {
4057 TCPS_BUMP_MIB(tcps, tcpInAckUnsent);
4058 /* drop the received segment */
4059 freemsg(mp);
4062 * Send back an ACK. If tcp_drop_ack_unsent_cnt is
4063 * greater than 0, check if the number of such
4064 * bogus ACks is greater than that count. If yes,
4065 * don't send back any ACK. This prevents TCP from
4066 * getting into an ACK storm if somehow an attacker
4067 * successfully spoofs an acceptable segment to our
4068 * peer. If this continues (count > 2 X threshold),
4069 * we should abort this connection.
4071 if (tcp_drop_ack_unsent_cnt > 0 &&
4072 ++tcp->tcp_in_ack_unsent >
4073 tcp_drop_ack_unsent_cnt) {
4074 TCP_STAT(tcps, tcp_in_ack_unsent_drop);
4075 if (tcp->tcp_in_ack_unsent > 2 *
4076 tcp_drop_ack_unsent_cnt) {
4077 (void) tcp_clean_death(tcp, EPROTO);
4079 return;
4081 mp = tcp_ack_mp(tcp);
4082 if (mp != NULL) {
4083 BUMP_LOCAL(tcp->tcp_obsegs);
4084 TCPS_BUMP_MIB(tcps, tcpOutAck);
4085 tcp_send_data(tcp, mp);
4087 return;
4089 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack,
4090 tcp->tcp_snxt_shrunk)) {
4091 tcp->tcp_is_wnd_shrnk = B_FALSE;
4095 * TCP gets a new ACK, update the notsack'ed list to delete those
4096 * blocks that are covered by this ACK.
4098 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
4099 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
4100 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
4104 * If we got an ACK after fast retransmit, check to see
4105 * if it is a partial ACK. If it is not and the congestion
4106 * window was inflated to account for the other side's
4107 * cached packets, retract it. If it is, do Hoe's algorithm.
4109 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
4110 ASSERT(tcp->tcp_rexmit == B_FALSE);
4111 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
4112 tcp->tcp_dupack_cnt = 0;
4114 * Restore the orig tcp_cwnd_ssthresh after
4115 * fast retransmit phase.
4117 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
4118 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
4120 tcp->tcp_rexmit_max = seg_ack;
4121 tcp->tcp_cwnd_cnt = 0;
4124 * Remove all notsack info to avoid confusion with
4125 * the next fast retrasnmit/recovery phase.
4127 if (tcp->tcp_snd_sack_ok) {
4128 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list,
4129 tcp);
4131 } else {
4132 if (tcp->tcp_snd_sack_ok &&
4133 tcp->tcp_notsack_list != NULL) {
4134 flags |= TH_NEED_SACK_REXMIT;
4135 tcp->tcp_pipe -= mss;
4136 if (tcp->tcp_pipe < 0)
4137 tcp->tcp_pipe = 0;
4138 } else {
4140 * Hoe's algorithm:
4142 * Retransmit the unack'ed segment and
4143 * restart fast recovery. Note that we
4144 * need to scale back tcp_cwnd to the
4145 * original value when we started fast
4146 * recovery. This is to prevent overly
4147 * aggressive behaviour in sending new
4148 * segments.
4150 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
4151 tcps->tcps_dupack_fast_retransmit * mss;
4152 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
4153 flags |= TH_REXMIT_NEEDED;
4156 } else {
4157 tcp->tcp_dupack_cnt = 0;
4158 if (tcp->tcp_rexmit) {
4160 * TCP is retranmitting. If the ACK ack's all
4161 * outstanding data, update tcp_rexmit_max and
4162 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt
4163 * to the correct value.
4165 * Note that SEQ_LEQ() is used. This is to avoid
4166 * unnecessary fast retransmit caused by dup ACKs
4167 * received when TCP does slow start retransmission
4168 * after a time out. During this phase, TCP may
4169 * send out segments which are already received.
4170 * This causes dup ACKs to be sent back.
4172 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
4173 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
4174 tcp->tcp_rexmit_nxt = seg_ack;
4176 if (seg_ack != tcp->tcp_rexmit_max) {
4177 flags |= TH_XMIT_NEEDED;
4179 } else {
4180 tcp->tcp_rexmit = B_FALSE;
4181 tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
4183 tcp->tcp_ms_we_have_waited = 0;
4187 TCPS_BUMP_MIB(tcps, tcpInAckSegs);
4188 TCPS_UPDATE_MIB(tcps, tcpInAckBytes, bytes_acked);
4189 tcp->tcp_suna = seg_ack;
4190 if (tcp->tcp_zero_win_probe != 0) {
4191 tcp->tcp_zero_win_probe = 0;
4192 tcp->tcp_timer_backoff = 0;
4196 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
4197 * Note that it cannot be the SYN being ack'ed. The code flow
4198 * will not reach here.
4200 if (mp1 == NULL) {
4201 goto fin_acked;
4205 * Update the congestion window.
4207 * If TCP is not ECN capable or TCP is ECN capable but the
4208 * congestion experience bit is not set, increase the tcp_cwnd as
4209 * usual.
4211 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
4212 cwnd = tcp->tcp_cwnd;
4213 add = mss;
4215 if (cwnd >= tcp->tcp_cwnd_ssthresh) {
4217 * This is to prevent an increase of less than 1 MSS of
4218 * tcp_cwnd. With partial increase, tcp_wput_data()
4219 * may send out tinygrams in order to preserve mblk
4220 * boundaries.
4222 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
4223 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
4224 * increased by 1 MSS for every RTTs.
4226 if (tcp->tcp_cwnd_cnt <= 0) {
4227 tcp->tcp_cwnd_cnt = cwnd + add;
4228 } else {
4229 tcp->tcp_cwnd_cnt -= add;
4230 add = 0;
4233 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
4236 /* See if the latest urgent data has been acknowledged */
4237 if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
4238 SEQ_GT(seg_ack, tcp->tcp_urg))
4239 tcp->tcp_valid_bits &= ~TCP_URG_VALID;
4241 /* Can we update the RTT estimates? */
4242 if (tcp->tcp_snd_ts_ok) {
4243 /* Ignore zero timestamp echo-reply. */
4244 if (tcpopt.tcp_opt_ts_ecr != 0) {
4245 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH -
4246 (int32_t)tcpopt.tcp_opt_ts_ecr);
4249 /* If needed, restart the timer. */
4250 if (tcp->tcp_set_timer == 1) {
4251 TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4252 tcp->tcp_set_timer = 0;
4255 * Update tcp_csuna in case the other side stops sending
4256 * us timestamps.
4258 tcp->tcp_csuna = tcp->tcp_snxt;
4259 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
4261 * An ACK sequence we haven't seen before, so get the RTT
4262 * and update the RTO. But first check if the timestamp is
4263 * valid to use.
4265 if ((mp1->b_next != NULL) &&
4266 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
4267 tcp_set_rto(tcp, (int32_t)LBOLT_FASTPATH -
4268 (int32_t)(intptr_t)mp1->b_prev);
4269 else
4270 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
4272 /* Remeber the last sequence to be ACKed */
4273 tcp->tcp_csuna = seg_ack;
4274 if (tcp->tcp_set_timer == 1) {
4275 TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4276 tcp->tcp_set_timer = 0;
4278 } else {
4279 TCPS_BUMP_MIB(tcps, tcpRttNoUpdate);
4282 /* Eat acknowledged bytes off the xmit queue. */
4283 for (;;) {
4284 mblk_t *mp2;
4285 uchar_t *wptr;
4287 wptr = mp1->b_wptr;
4288 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
4289 bytes_acked -= (int)(wptr - mp1->b_rptr);
4290 if (bytes_acked < 0) {
4291 mp1->b_rptr = wptr + bytes_acked;
4293 * Set a new timestamp if all the bytes timed by the
4294 * old timestamp have been ack'ed.
4296 if (SEQ_GT(seg_ack,
4297 (uint32_t)(uintptr_t)(mp1->b_next))) {
4298 mp1->b_prev =
4299 (mblk_t *)(uintptr_t)LBOLT_FASTPATH;
4300 mp1->b_next = NULL;
4302 break;
4304 mp1->b_next = NULL;
4305 mp1->b_prev = NULL;
4306 mp2 = mp1;
4307 mp1 = mp1->b_cont;
4310 * This notification is required for some zero-copy
4311 * clients to maintain a copy semantic. After the data
4312 * is ack'ed, client is safe to modify or reuse the buffer.
4314 if (tcp->tcp_snd_zcopy_aware &&
4315 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
4316 tcp_zcopy_notify(tcp);
4317 freeb(mp2);
4318 if (bytes_acked == 0) {
4319 if (mp1 == NULL) {
4320 /* Everything is ack'ed, clear the tail. */
4321 tcp->tcp_xmit_tail = NULL;
4323 * Cancel the timer unless we are still
4324 * waiting for an ACK for the FIN packet.
4326 if (tcp->tcp_timer_tid != 0 &&
4327 tcp->tcp_snxt == tcp->tcp_suna) {
4328 (void) TCP_TIMER_CANCEL(tcp,
4329 tcp->tcp_timer_tid);
4330 tcp->tcp_timer_tid = 0;
4332 goto pre_swnd_update;
4334 if (mp2 != tcp->tcp_xmit_tail)
4335 break;
4336 tcp->tcp_xmit_tail = mp1;
4337 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
4338 (uintptr_t)INT_MAX);
4339 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
4340 mp1->b_rptr);
4341 break;
4343 if (mp1 == NULL) {
4345 * More was acked but there is nothing more
4346 * outstanding. This means that the FIN was
4347 * just acked or that we're talking to a clown.
4349 fin_acked:
4350 ASSERT(tcp->tcp_fin_sent);
4351 tcp->tcp_xmit_tail = NULL;
4352 if (tcp->tcp_fin_sent) {
4353 /* FIN was acked - making progress */
4354 if (!tcp->tcp_fin_acked)
4355 tcp->tcp_ip_forward_progress = B_TRUE;
4356 tcp->tcp_fin_acked = B_TRUE;
4357 if (tcp->tcp_linger_tid != 0 &&
4358 TCP_TIMER_CANCEL(tcp,
4359 tcp->tcp_linger_tid) >= 0) {
4360 tcp_stop_lingering(tcp);
4361 freemsg(mp);
4362 mp = NULL;
4364 } else {
4366 * We should never get here because
4367 * we have already checked that the
4368 * number of bytes ack'ed should be
4369 * smaller than or equal to what we
4370 * have sent so far (it is the
4371 * acceptability check of the ACK).
4372 * We can only get here if the send
4373 * queue is corrupted.
4375 * Terminate the connection and
4376 * panic the system. It is better
4377 * for us to panic instead of
4378 * continuing to avoid other disaster.
4380 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
4381 tcp->tcp_rnxt, TH_RST|TH_ACK);
4382 panic("Memory corruption "
4383 "detected for connection %s.",
4384 tcp_display(tcp, NULL,
4385 DISP_ADDR_AND_PORT));
4386 /*NOTREACHED*/
4388 goto pre_swnd_update;
4390 ASSERT(mp2 != tcp->tcp_xmit_tail);
4392 if (tcp->tcp_unsent) {
4393 flags |= TH_XMIT_NEEDED;
4395 pre_swnd_update:
4396 tcp->tcp_xmit_head = mp1;
4397 swnd_update:
4399 * The following check is different from most other implementations.
4400 * For bi-directional transfer, when segments are dropped, the
4401 * "normal" check will not accept a window update in those
4402 * retransmitted segemnts. Failing to do that, TCP may send out
4403 * segments which are outside receiver's window. As TCP accepts
4404 * the ack in those retransmitted segments, if the window update in
4405 * the same segment is not accepted, TCP will incorrectly calculates
4406 * that it can send more segments. This can create a deadlock
4407 * with the receiver if its window becomes zero.
4409 if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
4410 SEQ_LT(tcp->tcp_swl1, seg_seq) ||
4411 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
4413 * The criteria for update is:
4415 * 1. the segment acknowledges some data. Or
4416 * 2. the segment is new, i.e. it has a higher seq num. Or
4417 * 3. the segment is not old and the advertised window is
4418 * larger than the previous advertised window.
4420 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
4421 flags |= TH_XMIT_NEEDED;
4422 tcp->tcp_swnd = new_swnd;
4423 if (new_swnd > tcp->tcp_max_swnd)
4424 tcp->tcp_max_swnd = new_swnd;
4425 tcp->tcp_swl1 = seg_seq;
4426 tcp->tcp_swl2 = seg_ack;
4428 est:
4429 if (tcp->tcp_state > TCPS_ESTABLISHED) {
4431 switch (tcp->tcp_state) {
4432 case TCPS_FIN_WAIT_1:
4433 if (tcp->tcp_fin_acked) {
4434 tcp->tcp_state = TCPS_FIN_WAIT_2;
4435 DTRACE_TCP6(state__change, void, NULL,
4436 ip_xmit_attr_t *, connp->conn_ixa,
4437 void, NULL, tcp_t *, tcp, void, NULL,
4438 int32_t, TCPS_FIN_WAIT_1);
4440 * We implement the non-standard BSD/SunOS
4441 * FIN_WAIT_2 flushing algorithm.
4442 * If there is no user attached to this
4443 * TCP endpoint, then this TCP struct
4444 * could hang around forever in FIN_WAIT_2
4445 * state if the peer forgets to send us
4446 * a FIN. To prevent this, we wait only
4447 * 2*MSL (a convenient time value) for
4448 * the FIN to arrive. If it doesn't show up,
4449 * we flush the TCP endpoint. This algorithm,
4450 * though a violation of RFC-793, has worked
4451 * for over 10 years in BSD systems.
4452 * Note: SunOS 4.x waits 675 seconds before
4453 * flushing the FIN_WAIT_2 connection.
4455 TCP_TIMER_RESTART(tcp,
4456 tcp->tcp_fin_wait_2_flush_interval);
4458 break;
4459 case TCPS_FIN_WAIT_2:
4460 break; /* Shutdown hook? */
4461 case TCPS_LAST_ACK:
4462 freemsg(mp);
4463 if (tcp->tcp_fin_acked) {
4464 (void) tcp_clean_death(tcp, 0);
4465 return;
4467 goto xmit_check;
4468 case TCPS_CLOSING:
4469 if (tcp->tcp_fin_acked) {
4470 SET_TIME_WAIT(tcps, tcp, connp);
4471 DTRACE_TCP6(state__change, void, NULL,
4472 ip_xmit_attr_t *, connp->conn_ixa, void,
4473 NULL, tcp_t *, tcp, void, NULL, int32_t,
4474 TCPS_CLOSING);
4476 /*FALLTHRU*/
4477 case TCPS_CLOSE_WAIT:
4478 freemsg(mp);
4479 goto xmit_check;
4480 default:
4481 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
4482 break;
4485 if (flags & TH_FIN) {
4486 /* Make sure we ack the fin */
4487 flags |= TH_ACK_NEEDED;
4488 if (!tcp->tcp_fin_rcvd) {
4489 tcp->tcp_fin_rcvd = B_TRUE;
4490 tcp->tcp_rnxt++;
4491 tcpha = tcp->tcp_tcpha;
4492 tcpha->tha_ack = htonl(tcp->tcp_rnxt);
4495 * Generate the ordrel_ind at the end unless the
4496 * conn is detached or it is a STREAMS based eager.
4497 * In the eager case we defer the notification until
4498 * tcp_accept_finish has run.
4500 if (!TCP_IS_DETACHED(tcp) && (IPCL_IS_NONSTR(connp) ||
4501 (tcp->tcp_listener == NULL &&
4502 !tcp->tcp_hard_binding)))
4503 flags |= TH_ORDREL_NEEDED;
4504 switch (tcp->tcp_state) {
4505 case TCPS_SYN_RCVD:
4506 tcp->tcp_state = TCPS_CLOSE_WAIT;
4507 DTRACE_TCP6(state__change, void, NULL,
4508 ip_xmit_attr_t *, connp->conn_ixa,
4509 void, NULL, tcp_t *, tcp, void, NULL,
4510 int32_t, TCPS_SYN_RCVD);
4511 /* Keepalive? */
4512 break;
4513 case TCPS_ESTABLISHED:
4514 tcp->tcp_state = TCPS_CLOSE_WAIT;
4515 DTRACE_TCP6(state__change, void, NULL,
4516 ip_xmit_attr_t *, connp->conn_ixa,
4517 void, NULL, tcp_t *, tcp, void, NULL,
4518 int32_t, TCPS_ESTABLISHED);
4519 /* Keepalive? */
4520 break;
4521 case TCPS_FIN_WAIT_1:
4522 if (!tcp->tcp_fin_acked) {
4523 tcp->tcp_state = TCPS_CLOSING;
4524 DTRACE_TCP6(state__change, void, NULL,
4525 ip_xmit_attr_t *, connp->conn_ixa,
4526 void, NULL, tcp_t *, tcp, void,
4527 NULL, int32_t, TCPS_FIN_WAIT_1);
4528 break;
4530 /* FALLTHRU */
4531 case TCPS_FIN_WAIT_2:
4532 SET_TIME_WAIT(tcps, tcp, connp);
4533 DTRACE_TCP6(state__change, void, NULL,
4534 ip_xmit_attr_t *, connp->conn_ixa, void,
4535 NULL, tcp_t *, tcp, void, NULL, int32_t,
4536 TCPS_FIN_WAIT_2);
4537 if (seg_len) {
4539 * implies data piggybacked on FIN.
4540 * break to handle data.
4542 break;
4544 freemsg(mp);
4545 goto ack_check;
4549 if (mp == NULL)
4550 goto xmit_check;
4551 if (seg_len == 0) {
4552 freemsg(mp);
4553 goto xmit_check;
4555 if (mp->b_rptr == mp->b_wptr) {
4557 * The header has been consumed, so we remove the
4558 * zero-length mblk here.
4560 mp1 = mp;
4561 mp = mp->b_cont;
4562 freeb(mp1);
4564 update_ack:
4565 tcpha = tcp->tcp_tcpha;
4566 tcp->tcp_rack_cnt++;
4568 uint32_t cur_max;
4570 cur_max = tcp->tcp_rack_cur_max;
4571 if (tcp->tcp_rack_cnt >= cur_max) {
4573 * We have more unacked data than we should - send
4574 * an ACK now.
4576 flags |= TH_ACK_NEEDED;
4577 cur_max++;
4578 if (cur_max > tcp->tcp_rack_abs_max)
4579 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
4580 else
4581 tcp->tcp_rack_cur_max = cur_max;
4582 } else if (TCP_IS_DETACHED(tcp)) {
4583 /* We don't have an ACK timer for detached TCP. */
4584 flags |= TH_ACK_NEEDED;
4585 } else if (seg_len < mss) {
4587 * If we get a segment that is less than an mss, and we
4588 * already have unacknowledged data, and the amount
4589 * unacknowledged is not a multiple of mss, then we
4590 * better generate an ACK now. Otherwise, this may be
4591 * the tail piece of a transaction, and we would rather
4592 * wait for the response.
4594 uint32_t udif;
4595 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
4596 (uintptr_t)INT_MAX);
4597 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
4598 if (udif && (udif % mss))
4599 flags |= TH_ACK_NEEDED;
4600 else
4601 flags |= TH_ACK_TIMER_NEEDED;
4602 } else {
4603 /* Start delayed ack timer */
4604 flags |= TH_ACK_TIMER_NEEDED;
4607 tcp->tcp_rnxt += seg_len;
4608 tcpha->tha_ack = htonl(tcp->tcp_rnxt);
4610 if (mp == NULL)
4611 goto xmit_check;
4613 /* Update SACK list */
4614 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
4615 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
4616 &(tcp->tcp_num_sack_blk));
4619 if (tcp->tcp_urp_mp) {
4620 tcp->tcp_urp_mp->b_cont = mp;
4621 mp = tcp->tcp_urp_mp;
4622 tcp->tcp_urp_mp = NULL;
4623 /* Ready for a new signal. */
4624 tcp->tcp_urp_last_valid = B_FALSE;
4625 #ifdef DEBUG
4626 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4627 "tcp_rput: sending exdata_ind %s",
4628 tcp_display(tcp, NULL, DISP_PORT_ONLY));
4629 #endif /* DEBUG */
4633 * Check for ancillary data changes compared to last segment.
4635 if (connp->conn_recv_ancillary.crb_all != 0) {
4636 mp = tcp_input_add_ancillary(tcp, mp, &ipp, ira);
4637 if (mp == NULL)
4638 return;
4641 if (IPCL_IS_NONSTR(connp)) {
4643 * Non-STREAMS socket
4645 boolean_t push = flags & (TH_PUSH|TH_FIN);
4646 int error;
4648 if ((*sockupcalls->su_recv)(connp->conn_upper_handle,
4649 mp, seg_len, 0, &error, &push) <= 0) {
4651 * We should never be in middle of a
4652 * fallback, the squeue guarantees that.
4654 ASSERT(error != EOPNOTSUPP);
4655 if (error == ENOSPC)
4656 tcp->tcp_rwnd -= seg_len;
4657 } else if (push) {
4658 /* PUSH bit set and sockfs is not flow controlled */
4659 flags |= tcp_rwnd_reopen(tcp);
4661 } else if (tcp->tcp_listener != NULL || tcp->tcp_hard_binding) {
4663 * Side queue inbound data until the accept happens.
4664 * tcp_accept/tcp_rput drains this when the accept happens.
4665 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
4666 * T_EXDATA_IND) it is queued on b_next.
4667 * XXX Make urgent data use this. Requires:
4668 * Removing tcp_listener check for TH_URG
4669 * Making M_PCPROTO and MARK messages skip the eager case
4672 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
4673 } else {
4674 /* Active STREAMS socket */
4675 if (mp->b_datap->db_type != M_DATA ||
4676 (flags & TH_MARKNEXT_NEEDED)) {
4677 if (tcp->tcp_rcv_list != NULL) {
4678 flags |= tcp_rcv_drain(tcp);
4680 ASSERT(tcp->tcp_rcv_list == NULL ||
4681 tcp->tcp_fused_sigurg);
4683 if (flags & TH_MARKNEXT_NEEDED) {
4684 #ifdef DEBUG
4685 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4686 "tcp_rput: sending MSGMARKNEXT %s",
4687 tcp_display(tcp, NULL,
4688 DISP_PORT_ONLY));
4689 #endif /* DEBUG */
4690 mp->b_flag |= MSGMARKNEXT;
4691 flags &= ~TH_MARKNEXT_NEEDED;
4694 putnext(connp->conn_rq, mp);
4695 if (!canputnext(connp->conn_rq))
4696 tcp->tcp_rwnd -= seg_len;
4697 } else if ((flags & (TH_PUSH|TH_FIN)) ||
4698 tcp->tcp_rcv_cnt + seg_len >= connp->conn_rcvbuf >> 3) {
4699 if (tcp->tcp_rcv_list != NULL) {
4701 * Enqueue the new segment first and then
4702 * call tcp_rcv_drain() to send all data
4703 * up. The other way to do this is to
4704 * send all queued data up and then call
4705 * putnext() to send the new segment up.
4706 * This way can remove the else part later
4707 * on.
4709 * We don't do this to avoid one more call to
4710 * canputnext() as tcp_rcv_drain() needs to
4711 * call canputnext().
4713 tcp_rcv_enqueue(tcp, mp, seg_len,
4714 ira->ira_cred);
4715 flags |= tcp_rcv_drain(tcp);
4716 } else {
4717 putnext(connp->conn_rq, mp);
4718 if (!canputnext(connp->conn_rq))
4719 tcp->tcp_rwnd -= seg_len;
4721 } else {
4723 * Enqueue all packets when processing an mblk
4724 * from the co queue and also enqueue normal packets.
4726 tcp_rcv_enqueue(tcp, mp, seg_len, ira->ira_cred);
4729 * Make sure the timer is running if we have data waiting
4730 * for a push bit. This provides resiliency against
4731 * implementations that do not correctly generate push bits.
4733 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
4735 * The connection may be closed at this point, so don't
4736 * do anything for a detached tcp.
4738 if (!TCP_IS_DETACHED(tcp))
4739 tcp->tcp_push_tid = TCP_TIMER(tcp,
4740 tcp_push_timer,
4741 tcps->tcps_push_timer_interval);
4745 xmit_check:
4746 /* Is there anything left to do? */
4747 ASSERT(!(flags & TH_MARKNEXT_NEEDED));
4748 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
4749 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
4750 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
4751 goto done;
4753 /* Any transmit work to do and a non-zero window? */
4754 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
4755 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
4756 if (flags & TH_REXMIT_NEEDED) {
4757 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
4759 TCPS_BUMP_MIB(tcps, tcpOutFastRetrans);
4760 if (snd_size > mss)
4761 snd_size = mss;
4762 if (snd_size > tcp->tcp_swnd)
4763 snd_size = tcp->tcp_swnd;
4764 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
4765 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
4766 B_TRUE);
4768 if (mp1 != NULL) {
4769 tcp->tcp_xmit_head->b_prev =
4770 (mblk_t *)LBOLT_FASTPATH;
4771 tcp->tcp_csuna = tcp->tcp_snxt;
4772 TCPS_BUMP_MIB(tcps, tcpRetransSegs);
4773 TCPS_UPDATE_MIB(tcps, tcpRetransBytes,
4774 snd_size);
4775 tcp_send_data(tcp, mp1);
4778 if (flags & TH_NEED_SACK_REXMIT) {
4779 tcp_sack_rexmit(tcp, &flags);
4782 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
4783 * out new segment. Note that tcp_rexmit should not be
4784 * set, otherwise TH_LIMIT_XMIT should not be set.
4786 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
4787 if (!tcp->tcp_rexmit) {
4788 tcp_wput_data(tcp, NULL, B_FALSE);
4789 } else {
4790 tcp_ss_rexmit(tcp);
4794 * Adjust tcp_cwnd back to normal value after sending
4795 * new data segments.
4797 if (flags & TH_LIMIT_XMIT) {
4798 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
4800 * This will restart the timer. Restarting the
4801 * timer is used to avoid a timeout before the
4802 * limited transmitted segment's ACK gets back.
4804 if (tcp->tcp_xmit_head != NULL)
4805 tcp->tcp_xmit_head->b_prev =
4806 (mblk_t *)LBOLT_FASTPATH;
4809 /* Anything more to do? */
4810 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
4811 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
4812 goto done;
4814 ack_check:
4815 if (flags & TH_SEND_URP_MARK) {
4816 ASSERT(tcp->tcp_urp_mark_mp);
4817 ASSERT(!IPCL_IS_NONSTR(connp));
4819 * Send up any queued data and then send the mark message
4821 if (tcp->tcp_rcv_list != NULL) {
4822 flags |= tcp_rcv_drain(tcp);
4825 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
4826 mp1 = tcp->tcp_urp_mark_mp;
4827 tcp->tcp_urp_mark_mp = NULL;
4829 putnext(connp->conn_rq, mp1);
4830 #ifdef DEBUG
4831 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
4832 "tcp_rput: sending zero-length %s %s",
4833 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
4834 "MSGNOTMARKNEXT"),
4835 tcp_display(tcp, NULL, DISP_PORT_ONLY));
4836 #endif /* DEBUG */
4837 flags &= ~TH_SEND_URP_MARK;
4839 if (flags & TH_ACK_NEEDED) {
4841 * Time to send an ack for some reason.
4843 mp1 = tcp_ack_mp(tcp);
4845 if (mp1 != NULL) {
4846 tcp_send_data(tcp, mp1);
4847 BUMP_LOCAL(tcp->tcp_obsegs);
4848 TCPS_BUMP_MIB(tcps, tcpOutAck);
4850 if (tcp->tcp_ack_tid != 0) {
4851 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4852 tcp->tcp_ack_tid = 0;
4855 if (flags & TH_ACK_TIMER_NEEDED) {
4857 * Arrange for deferred ACK or push wait timeout.
4858 * Start timer if it is not already running.
4860 if (tcp->tcp_ack_tid == 0) {
4861 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
4862 tcp->tcp_localnet ?
4863 tcps->tcps_local_dack_interval :
4864 tcps->tcps_deferred_ack_interval);
4867 if (flags & TH_ORDREL_NEEDED) {
4869 * Notify upper layer about an orderly release. If this is
4870 * a non-STREAMS socket, then just make an upcall. For STREAMS
4871 * we send up an ordrel_ind, unless this is an eager, in which
4872 * case the ordrel will be sent when tcp_accept_finish runs.
4873 * Note that for non-STREAMS we make an upcall even if it is an
4874 * eager, because we have an upper handle to send it to.
4876 ASSERT(IPCL_IS_NONSTR(connp) || tcp->tcp_listener == NULL);
4877 ASSERT(!tcp->tcp_detached);
4879 if (IPCL_IS_NONSTR(connp)) {
4880 ASSERT(tcp->tcp_ordrel_mp == NULL);
4881 tcp->tcp_ordrel_done = B_TRUE;
4882 (*sockupcalls->su_opctl)(connp->conn_upper_handle,
4883 SOCK_OPCTL_SHUT_RECV, 0);
4884 goto done;
4887 if (tcp->tcp_rcv_list != NULL) {
4889 * Push any mblk(s) enqueued from co processing.
4891 flags |= tcp_rcv_drain(tcp);
4893 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
4895 mp1 = tcp->tcp_ordrel_mp;
4896 tcp->tcp_ordrel_mp = NULL;
4897 tcp->tcp_ordrel_done = B_TRUE;
4898 putnext(connp->conn_rq, mp1);
4900 done:
4901 ASSERT(!(flags & TH_MARKNEXT_NEEDED));
4905 * Attach ancillary data to a received TCP segments for the
4906 * ancillary pieces requested by the application that are
4907 * different than they were in the previous data segment.
4909 * Save the "current" values once memory allocation is ok so that
4910 * when memory allocation fails we can just wait for the next data segment.
4912 static mblk_t *
4913 tcp_input_add_ancillary(tcp_t *tcp, mblk_t *mp, ip_pkt_t *ipp,
4914 ip_recv_attr_t *ira)
4916 struct T_optdata_ind *todi;
4917 int optlen;
4918 uchar_t *optptr;
4919 struct T_opthdr *toh;
4920 crb_t addflag; /* Which pieces to add */
4921 mblk_t *mp1;
4922 conn_t *connp = tcp->tcp_connp;
4924 optlen = 0;
4925 addflag.crb_all = 0;
4926 /* If app asked for pktinfo and the index has changed ... */
4927 if (connp->conn_recv_ancillary.crb_ip_recvpktinfo &&
4928 ira->ira_ruifindex != tcp->tcp_recvifindex) {
4929 optlen += sizeof (struct T_opthdr) +
4930 sizeof (struct in6_pktinfo);
4931 addflag.crb_ip_recvpktinfo = 1;
4933 /* If app asked for hoplimit and it has changed ... */
4934 if (connp->conn_recv_ancillary.crb_ipv6_recvhoplimit &&
4935 ipp->ipp_hoplimit != tcp->tcp_recvhops) {
4936 optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
4937 addflag.crb_ipv6_recvhoplimit = 1;
4939 /* If app asked for tclass and it has changed ... */
4940 if (connp->conn_recv_ancillary.crb_ipv6_recvtclass &&
4941 ipp->ipp_tclass != tcp->tcp_recvtclass) {
4942 optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
4943 addflag.crb_ipv6_recvtclass = 1;
4946 * If app asked for hopbyhop headers and it has changed ...
4948 if (connp->conn_recv_ancillary.crb_ipv6_recvhopopts &&
4949 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
4950 (ipp->ipp_fields & IPPF_HOPOPTS),
4951 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
4952 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen;
4953 addflag.crb_ipv6_recvhopopts = 1;
4954 if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
4955 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
4956 ipp->ipp_hopopts, ipp->ipp_hopoptslen))
4957 return (mp);
4959 /* If app asked for dst headers before routing headers ... */
4960 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdrdstopts &&
4961 ip_cmpbuf(tcp->tcp_rthdrdstopts, tcp->tcp_rthdrdstoptslen,
4962 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
4963 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen)) {
4964 optlen += sizeof (struct T_opthdr) +
4965 ipp->ipp_rthdrdstoptslen;
4966 addflag.crb_ipv6_recvrthdrdstopts = 1;
4967 if (!ip_allocbuf((void **)&tcp->tcp_rthdrdstopts,
4968 &tcp->tcp_rthdrdstoptslen,
4969 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
4970 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen))
4971 return (mp);
4973 /* If app asked for routing headers and it has changed ... */
4974 if (connp->conn_recv_ancillary.crb_ipv6_recvrthdr &&
4975 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
4976 (ipp->ipp_fields & IPPF_RTHDR),
4977 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
4978 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
4979 addflag.crb_ipv6_recvrthdr = 1;
4980 if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
4981 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
4982 ipp->ipp_rthdr, ipp->ipp_rthdrlen))
4983 return (mp);
4985 /* If app asked for dest headers and it has changed ... */
4986 if ((connp->conn_recv_ancillary.crb_ipv6_recvdstopts ||
4987 connp->conn_recv_ancillary.crb_old_ipv6_recvdstopts) &&
4988 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
4989 (ipp->ipp_fields & IPPF_DSTOPTS),
4990 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
4991 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
4992 addflag.crb_ipv6_recvdstopts = 1;
4993 if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
4994 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
4995 ipp->ipp_dstopts, ipp->ipp_dstoptslen))
4996 return (mp);
4999 if (optlen == 0) {
5000 /* Nothing to add */
5001 return (mp);
5003 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
5004 if (mp1 == NULL) {
5006 * Defer sending ancillary data until the next TCP segment
5007 * arrives.
5009 return (mp);
5011 mp1->b_cont = mp;
5012 mp = mp1;
5013 mp->b_wptr += sizeof (*todi) + optlen;
5014 mp->b_datap->db_type = M_PROTO;
5015 todi = (struct T_optdata_ind *)mp->b_rptr;
5016 todi->PRIM_type = T_OPTDATA_IND;
5017 todi->DATA_flag = 1; /* MORE data */
5018 todi->OPT_length = optlen;
5019 todi->OPT_offset = sizeof (*todi);
5020 optptr = (uchar_t *)&todi[1];
5022 * If app asked for pktinfo and the index has changed ...
5023 * Note that the local address never changes for the connection.
5025 if (addflag.crb_ip_recvpktinfo) {
5026 struct in6_pktinfo *pkti;
5027 uint_t ifindex;
5029 ifindex = ira->ira_ruifindex;
5030 toh = (struct T_opthdr *)optptr;
5031 toh->level = IPPROTO_IPV6;
5032 toh->name = IPV6_PKTINFO;
5033 toh->len = sizeof (*toh) + sizeof (*pkti);
5034 toh->status = 0;
5035 optptr += sizeof (*toh);
5036 pkti = (struct in6_pktinfo *)optptr;
5037 pkti->ipi6_addr = connp->conn_laddr_v6;
5038 pkti->ipi6_ifindex = ifindex;
5039 optptr += sizeof (*pkti);
5040 ASSERT(OK_32PTR(optptr));
5041 /* Save as "last" value */
5042 tcp->tcp_recvifindex = ifindex;
5044 /* If app asked for hoplimit and it has changed ... */
5045 if (addflag.crb_ipv6_recvhoplimit) {
5046 toh = (struct T_opthdr *)optptr;
5047 toh->level = IPPROTO_IPV6;
5048 toh->name = IPV6_HOPLIMIT;
5049 toh->len = sizeof (*toh) + sizeof (uint_t);
5050 toh->status = 0;
5051 optptr += sizeof (*toh);
5052 *(uint_t *)optptr = ipp->ipp_hoplimit;
5053 optptr += sizeof (uint_t);
5054 ASSERT(OK_32PTR(optptr));
5055 /* Save as "last" value */
5056 tcp->tcp_recvhops = ipp->ipp_hoplimit;
5058 /* If app asked for tclass and it has changed ... */
5059 if (addflag.crb_ipv6_recvtclass) {
5060 toh = (struct T_opthdr *)optptr;
5061 toh->level = IPPROTO_IPV6;
5062 toh->name = IPV6_TCLASS;
5063 toh->len = sizeof (*toh) + sizeof (uint_t);
5064 toh->status = 0;
5065 optptr += sizeof (*toh);
5066 *(uint_t *)optptr = ipp->ipp_tclass;
5067 optptr += sizeof (uint_t);
5068 ASSERT(OK_32PTR(optptr));
5069 /* Save as "last" value */
5070 tcp->tcp_recvtclass = ipp->ipp_tclass;
5072 if (addflag.crb_ipv6_recvhopopts) {
5073 toh = (struct T_opthdr *)optptr;
5074 toh->level = IPPROTO_IPV6;
5075 toh->name = IPV6_HOPOPTS;
5076 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen;
5077 toh->status = 0;
5078 optptr += sizeof (*toh);
5079 bcopy((uchar_t *)ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen);
5080 optptr += ipp->ipp_hopoptslen;
5081 ASSERT(OK_32PTR(optptr));
5082 /* Save as last value */
5083 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
5084 (ipp->ipp_fields & IPPF_HOPOPTS),
5085 ipp->ipp_hopopts, ipp->ipp_hopoptslen);
5087 if (addflag.crb_ipv6_recvrthdrdstopts) {
5088 toh = (struct T_opthdr *)optptr;
5089 toh->level = IPPROTO_IPV6;
5090 toh->name = IPV6_RTHDRDSTOPTS;
5091 toh->len = sizeof (*toh) + ipp->ipp_rthdrdstoptslen;
5092 toh->status = 0;
5093 optptr += sizeof (*toh);
5094 bcopy(ipp->ipp_rthdrdstopts, optptr, ipp->ipp_rthdrdstoptslen);
5095 optptr += ipp->ipp_rthdrdstoptslen;
5096 ASSERT(OK_32PTR(optptr));
5097 /* Save as last value */
5098 ip_savebuf((void **)&tcp->tcp_rthdrdstopts,
5099 &tcp->tcp_rthdrdstoptslen,
5100 (ipp->ipp_fields & IPPF_RTHDRDSTOPTS),
5101 ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
5103 if (addflag.crb_ipv6_recvrthdr) {
5104 toh = (struct T_opthdr *)optptr;
5105 toh->level = IPPROTO_IPV6;
5106 toh->name = IPV6_RTHDR;
5107 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
5108 toh->status = 0;
5109 optptr += sizeof (*toh);
5110 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
5111 optptr += ipp->ipp_rthdrlen;
5112 ASSERT(OK_32PTR(optptr));
5113 /* Save as last value */
5114 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
5115 (ipp->ipp_fields & IPPF_RTHDR),
5116 ipp->ipp_rthdr, ipp->ipp_rthdrlen);
5118 if (addflag.crb_ipv6_recvdstopts) {
5119 toh = (struct T_opthdr *)optptr;
5120 toh->level = IPPROTO_IPV6;
5121 toh->name = IPV6_DSTOPTS;
5122 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
5123 toh->status = 0;
5124 optptr += sizeof (*toh);
5125 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
5126 optptr += ipp->ipp_dstoptslen;
5127 ASSERT(OK_32PTR(optptr));
5128 /* Save as last value */
5129 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
5130 (ipp->ipp_fields & IPPF_DSTOPTS),
5131 ipp->ipp_dstopts, ipp->ipp_dstoptslen);
5133 ASSERT(optptr == mp->b_wptr);
5134 return (mp);
5137 /* The minimum of smoothed mean deviation in RTO calculation. */
5138 #define TCP_SD_MIN 400
5141 * Set RTO for this connection. The formula is from Jacobson and Karels'
5142 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names
5143 * are the same as those in Appendix A.2 of that paper.
5145 * m = new measurement
5146 * sa = smoothed RTT average (8 * average estimates).
5147 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
5149 static void
5150 tcp_set_rto(tcp_t *tcp, clock_t rtt)
5152 long m = TICK_TO_MSEC(rtt);
5153 clock_t sa = tcp->tcp_rtt_sa;
5154 clock_t sv = tcp->tcp_rtt_sd;
5155 clock_t rto;
5156 tcp_stack_t *tcps = tcp->tcp_tcps;
5158 TCPS_BUMP_MIB(tcps, tcpRttUpdate);
5159 tcp->tcp_rtt_update++;
5161 /* tcp_rtt_sa is not 0 means this is a new sample. */
5162 if (sa != 0) {
5164 * Update average estimator:
5165 * new rtt = 7/8 old rtt + 1/8 Error
5168 /* m is now Error in estimate. */
5169 m -= sa >> 3;
5170 if ((sa += m) <= 0) {
5172 * Don't allow the smoothed average to be negative.
5173 * We use 0 to denote reinitialization of the
5174 * variables.
5176 sa = 1;
5180 * Update deviation estimator:
5181 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
5183 if (m < 0)
5184 m = -m;
5185 m -= sv >> 2;
5186 sv += m;
5187 } else {
5189 * This follows BSD's implementation. So the reinitialized
5190 * RTO is 3 * m. We cannot go less than 2 because if the
5191 * link is bandwidth dominated, doubling the window size
5192 * during slow start means doubling the RTT. We want to be
5193 * more conservative when we reinitialize our estimates. 3
5194 * is just a convenient number.
5196 sa = m << 3;
5197 sv = m << 1;
5199 if (sv < TCP_SD_MIN) {
5201 * We do not know that if sa captures the delay ACK
5202 * effect as in a long train of segments, a receiver
5203 * does not delay its ACKs. So set the minimum of sv
5204 * to be TCP_SD_MIN, which is default to 400 ms, twice
5205 * of BSD DATO. That means the minimum of mean
5206 * deviation is 100 ms.
5209 sv = TCP_SD_MIN;
5211 tcp->tcp_rtt_sa = sa;
5212 tcp->tcp_rtt_sd = sv;
5214 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
5216 * Add tcp_rexmit_interval extra in case of extreme environment
5217 * where the algorithm fails to work. The default value of
5218 * tcp_rexmit_interval_extra should be 0.
5220 * As we use a finer grained clock than BSD and update
5221 * RTO for every ACKs, add in another .25 of RTT to the
5222 * deviation of RTO to accomodate burstiness of 1/4 of
5223 * window size.
5225 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
5227 TCP_SET_RTO(tcp, rto);
5229 /* Now, we can reset tcp_timer_backoff to use the new RTO... */
5230 tcp->tcp_timer_backoff = 0;
5233 uint_t
5234 tcp_rwnd_reopen(tcp_t *tcp)
5236 uint_t ret = 0;
5237 uint_t thwin;
5238 conn_t *connp = tcp->tcp_connp;
5240 /* Learn the latest rwnd information that we sent to the other side. */
5241 thwin = ((uint_t)ntohs(tcp->tcp_tcpha->tha_win))
5242 << tcp->tcp_rcv_ws;
5243 /* This is peer's calculated send window (our receive window). */
5244 thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
5246 * Increase the receive window to max. But we need to do receiver
5247 * SWS avoidance. This means that we need to check the increase of
5248 * of receive window is at least 1 MSS.
5250 if (connp->conn_rcvbuf - thwin >= tcp->tcp_mss) {
5252 * If the window that the other side knows is less than max
5253 * deferred acks segments, send an update immediately.
5255 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
5256 TCPS_BUMP_MIB(tcp->tcp_tcps, tcpOutWinUpdate);
5257 ret = TH_ACK_NEEDED;
5259 tcp->tcp_rwnd = connp->conn_rcvbuf;
5261 return (ret);
5265 * Handle a packet that has been reclassified by TCP.
5266 * This function drops the ref on connp that the caller had.
5268 void
5269 tcp_reinput(conn_t *connp, mblk_t *mp, ip_recv_attr_t *ira, ip_stack_t *ipst)
5271 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec;
5273 if (connp->conn_incoming_ifindex != 0 &&
5274 connp->conn_incoming_ifindex != ira->ira_ruifindex) {
5275 freemsg(mp);
5276 CONN_DEC_REF(connp);
5277 return;
5280 if (CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) ||
5281 (ira->ira_flags & IRAF_IPSEC_SECURE)) {
5282 ip6_t *ip6h;
5283 ipha_t *ipha;
5285 if (ira->ira_flags & IRAF_IS_IPV4) {
5286 ipha = (ipha_t *)mp->b_rptr;
5287 ip6h = NULL;
5288 } else {
5289 ipha = NULL;
5290 ip6h = (ip6_t *)mp->b_rptr;
5292 mp = ipsec_check_inbound_policy(mp, connp, ipha, ip6h, ira);
5293 if (mp == NULL) {
5294 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
5295 /* Note that mp is NULL */
5296 ip_drop_input("ipIfStatsInDiscards", mp, NULL);
5297 CONN_DEC_REF(connp);
5298 return;
5302 if (IPCL_IS_TCP(connp)) {
5304 * do not drain, certain use cases can blow
5305 * the stack
5307 SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
5308 connp->conn_recv, connp, ira,
5309 SQ_NODRAIN, SQTAG_IP_TCP_INPUT);
5310 } else {
5311 /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
5312 (connp->conn_recv)(connp, mp, NULL,
5313 ira);
5314 CONN_DEC_REF(connp);
5319 /* ARGSUSED */
5320 static void
5321 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
5323 conn_t *connp = (conn_t *)arg;
5324 tcp_t *tcp = connp->conn_tcp;
5325 queue_t *q = connp->conn_rq;
5327 ASSERT(!IPCL_IS_NONSTR(connp));
5328 mutex_enter(&tcp->tcp_rsrv_mp_lock);
5329 tcp->tcp_rsrv_mp = mp;
5330 mutex_exit(&tcp->tcp_rsrv_mp_lock);
5332 if (TCP_IS_DETACHED(tcp) || q == NULL) {
5333 return;
5336 if (tcp->tcp_fused) {
5337 tcp_fuse_backenable(tcp);
5338 return;
5341 if (canputnext(q)) {
5342 /* Not flow-controlled, open rwnd */
5343 tcp->tcp_rwnd = connp->conn_rcvbuf;
5346 * Send back a window update immediately if TCP is above
5347 * ESTABLISHED state and the increase of the rcv window
5348 * that the other side knows is at least 1 MSS after flow
5349 * control is lifted.
5351 if (tcp->tcp_state >= TCPS_ESTABLISHED &&
5352 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
5353 tcp_xmit_ctl(NULL, tcp,
5354 (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
5355 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
5361 * The read side service routine is called mostly when we get back-enabled as a
5362 * result of flow control relief. Since we don't actually queue anything in
5363 * TCP, we have no data to send out of here. What we do is clear the receive
5364 * window, and send out a window update.
5366 void
5367 tcp_rsrv(queue_t *q)
5369 conn_t *connp = Q_TO_CONN(q);
5370 tcp_t *tcp = connp->conn_tcp;
5371 mblk_t *mp;
5373 /* No code does a putq on the read side */
5374 ASSERT(q->q_first == NULL);
5377 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
5378 * been run. So just return.
5380 mutex_enter(&tcp->tcp_rsrv_mp_lock);
5381 if ((mp = tcp->tcp_rsrv_mp) == NULL) {
5382 mutex_exit(&tcp->tcp_rsrv_mp_lock);
5383 return;
5385 tcp->tcp_rsrv_mp = NULL;
5386 mutex_exit(&tcp->tcp_rsrv_mp_lock);
5388 CONN_INC_REF(connp);
5389 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
5390 NULL, SQ_PROCESS, SQTAG_TCP_RSRV);
5393 /* At minimum we need 8 bytes in the TCP header for the lookup */
5394 #define ICMP_MIN_TCP_HDR 8
5397 * tcp_icmp_input is called as conn_recvicmp to process ICMP error messages
5398 * passed up by IP. The message is always received on the correct tcp_t.
5399 * Assumes that IP has pulled up everything up to and including the ICMP header.
5401 /* ARGSUSED2 */
5402 void
5403 tcp_icmp_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
5405 conn_t *connp = (conn_t *)arg1;
5406 icmph_t *icmph;
5407 ipha_t *ipha;
5408 int iph_hdr_length;
5409 tcpha_t *tcpha;
5410 uint32_t seg_seq;
5411 tcp_t *tcp = connp->conn_tcp;
5413 /* Assume IP provides aligned packets */
5414 ASSERT(OK_32PTR(mp->b_rptr));
5415 ASSERT((MBLKL(mp) >= sizeof (ipha_t)));
5418 * It's possible we have a closed, but not yet destroyed, TCP
5419 * connection. Several fields (e.g. conn_ixa->ixa_ire) are invalid
5420 * in the closed state, so don't take any chances and drop the packet.
5422 if (tcp->tcp_state == TCPS_CLOSED) {
5423 freemsg(mp);
5424 return;
5428 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
5429 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
5431 if (!(ira->ira_flags & IRAF_IS_IPV4)) {
5432 tcp_icmp_error_ipv6(tcp, mp, ira);
5433 return;
5436 /* Skip past the outer IP and ICMP headers */
5437 iph_hdr_length = ira->ira_ip_hdr_length;
5438 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
5440 * If we don't have the correct outer IP header length
5441 * or if we don't have a complete inner IP header
5442 * drop it.
5444 if (iph_hdr_length < sizeof (ipha_t) ||
5445 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
5446 noticmpv4:
5447 freemsg(mp);
5448 return;
5450 ipha = (ipha_t *)&icmph[1];
5452 /* Skip past the inner IP and find the ULP header */
5453 iph_hdr_length = IPH_HDR_LENGTH(ipha);
5454 tcpha = (tcpha_t *)((char *)ipha + iph_hdr_length);
5456 * If we don't have the correct inner IP header length or if the ULP
5457 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
5458 * bytes of TCP header, drop it.
5460 if (iph_hdr_length < sizeof (ipha_t) ||
5461 ipha->ipha_protocol != IPPROTO_TCP ||
5462 (uchar_t *)tcpha + ICMP_MIN_TCP_HDR > mp->b_wptr) {
5463 goto noticmpv4;
5466 seg_seq = ntohl(tcpha->tha_seq);
5467 switch (icmph->icmph_type) {
5468 case ICMP_DEST_UNREACHABLE:
5469 switch (icmph->icmph_code) {
5470 case ICMP_FRAGMENTATION_NEEDED:
5472 * Update Path MTU, then try to send something out.
5474 tcp_update_pmtu(tcp, B_TRUE);
5475 tcp_rexmit_after_error(tcp);
5476 break;
5477 case ICMP_PORT_UNREACHABLE:
5478 case ICMP_PROTOCOL_UNREACHABLE:
5479 switch (tcp->tcp_state) {
5480 case TCPS_SYN_SENT:
5481 case TCPS_SYN_RCVD:
5483 * ICMP can snipe away incipient
5484 * TCP connections as long as
5485 * seq number is same as initial
5486 * send seq number.
5488 if (seg_seq == tcp->tcp_iss) {
5489 (void) tcp_clean_death(tcp,
5490 ECONNREFUSED);
5492 break;
5494 break;
5495 case ICMP_HOST_UNREACHABLE:
5496 case ICMP_NET_UNREACHABLE:
5497 /* Record the error in case we finally time out. */
5498 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
5499 tcp->tcp_client_errno = EHOSTUNREACH;
5500 else
5501 tcp->tcp_client_errno = ENETUNREACH;
5502 if (tcp->tcp_state == TCPS_SYN_RCVD) {
5503 if (tcp->tcp_listener != NULL &&
5504 tcp->tcp_listener->tcp_syn_defense) {
5506 * Ditch the half-open connection if we
5507 * suspect a SYN attack is under way.
5509 (void) tcp_clean_death(tcp,
5510 tcp->tcp_client_errno);
5513 break;
5514 default:
5515 break;
5517 break;
5518 case ICMP_SOURCE_QUENCH: {
5520 * use a global boolean to control
5521 * whether TCP should respond to ICMP_SOURCE_QUENCH.
5522 * The default is false.
5524 if (tcp_icmp_source_quench) {
5526 * Reduce the sending rate as if we got a
5527 * retransmit timeout
5529 uint32_t npkt;
5531 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
5532 tcp->tcp_mss;
5533 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
5534 tcp->tcp_cwnd = tcp->tcp_mss;
5535 tcp->tcp_cwnd_cnt = 0;
5537 break;
5540 freemsg(mp);
5544 * tcp_icmp_error_ipv6 is called from tcp_icmp_input to process ICMPv6
5545 * error messages passed up by IP.
5546 * Assumes that IP has pulled up all the extension headers as well
5547 * as the ICMPv6 header.
5549 static void
5550 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, ip_recv_attr_t *ira)
5552 icmp6_t *icmp6;
5553 ip6_t *ip6h;
5554 uint16_t iph_hdr_length = ira->ira_ip_hdr_length;
5555 tcpha_t *tcpha;
5556 uint8_t *nexthdrp;
5557 uint32_t seg_seq;
5560 * Verify that we have a complete IP header.
5562 ASSERT((MBLKL(mp) >= sizeof (ip6_t)));
5564 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
5565 ip6h = (ip6_t *)&icmp6[1];
5567 * Verify if we have a complete ICMP and inner IP header.
5569 if ((uchar_t *)&ip6h[1] > mp->b_wptr) {
5570 noticmpv6:
5571 freemsg(mp);
5572 return;
5575 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
5576 goto noticmpv6;
5577 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
5579 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
5580 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the
5581 * packet.
5583 if ((*nexthdrp != IPPROTO_TCP) ||
5584 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
5585 goto noticmpv6;
5588 seg_seq = ntohl(tcpha->tha_seq);
5589 switch (icmp6->icmp6_type) {
5590 case ICMP6_PACKET_TOO_BIG:
5592 * Update Path MTU, then try to send something out.
5594 tcp_update_pmtu(tcp, B_TRUE);
5595 tcp_rexmit_after_error(tcp);
5596 break;
5597 case ICMP6_DST_UNREACH:
5598 switch (icmp6->icmp6_code) {
5599 case ICMP6_DST_UNREACH_NOPORT:
5600 if (((tcp->tcp_state == TCPS_SYN_SENT) ||
5601 (tcp->tcp_state == TCPS_SYN_RCVD)) &&
5602 (seg_seq == tcp->tcp_iss)) {
5603 (void) tcp_clean_death(tcp, ECONNREFUSED);
5605 break;
5606 case ICMP6_DST_UNREACH_ADMIN:
5607 case ICMP6_DST_UNREACH_NOROUTE:
5608 case ICMP6_DST_UNREACH_BEYONDSCOPE:
5609 case ICMP6_DST_UNREACH_ADDR:
5610 /* Record the error in case we finally time out. */
5611 tcp->tcp_client_errno = EHOSTUNREACH;
5612 if (((tcp->tcp_state == TCPS_SYN_SENT) ||
5613 (tcp->tcp_state == TCPS_SYN_RCVD)) &&
5614 (seg_seq == tcp->tcp_iss)) {
5615 if (tcp->tcp_listener != NULL &&
5616 tcp->tcp_listener->tcp_syn_defense) {
5618 * Ditch the half-open connection if we
5619 * suspect a SYN attack is under way.
5621 (void) tcp_clean_death(tcp,
5622 tcp->tcp_client_errno);
5627 break;
5628 default:
5629 break;
5631 break;
5632 case ICMP6_PARAM_PROB:
5633 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
5634 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
5635 (uchar_t *)ip6h + icmp6->icmp6_pptr ==
5636 (uchar_t *)nexthdrp) {
5637 if (tcp->tcp_state == TCPS_SYN_SENT ||
5638 tcp->tcp_state == TCPS_SYN_RCVD) {
5639 (void) tcp_clean_death(tcp, ECONNREFUSED);
5641 break;
5643 break;
5645 case ICMP6_TIME_EXCEEDED:
5646 default:
5647 break;
5649 freemsg(mp);
5653 * CALLED OUTSIDE OF SQUEUE! It can not follow any pointers that tcp might
5654 * change. But it can refer to fields like tcp_suna and tcp_snxt.
5656 * Function tcp_verifyicmp is called as conn_verifyicmp to verify the ICMP
5657 * error messages received by IP. The message is always received on the correct
5658 * tcp_t.
5660 /* ARGSUSED */
5661 boolean_t
5662 tcp_verifyicmp(conn_t *connp, void *arg2, icmph_t *icmph, icmp6_t *icmp6,
5663 ip_recv_attr_t *ira)
5665 tcpha_t *tcpha = (tcpha_t *)arg2;
5666 uint32_t seq = ntohl(tcpha->tha_seq);
5667 tcp_t *tcp = connp->conn_tcp;
5670 * TCP sequence number contained in payload of the ICMP error message
5671 * should be within the range SND.UNA <= SEG.SEQ < SND.NXT. Otherwise,
5672 * the message is either a stale ICMP error, or an attack from the
5673 * network. Fail the verification.
5675 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
5676 return (B_FALSE);
5678 /* For "too big" we also check the ignore flag */
5679 if (ira->ira_flags & IRAF_IS_IPV4) {
5680 ASSERT(icmph != NULL);
5681 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
5682 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED &&
5683 tcp->tcp_tcps->tcps_ignore_path_mtu)
5684 return (B_FALSE);
5685 } else {
5686 ASSERT(icmp6 != NULL);
5687 if (icmp6->icmp6_type == ICMP6_PACKET_TOO_BIG &&
5688 tcp->tcp_tcps->tcps_ignore_path_mtu)
5689 return (B_FALSE);
5691 return (B_TRUE);