Merge remote-tracking branch 'origin/master' into nuke_nca
[unleashed.git] / kernel / fs / sockfs / socksyscalls.c
blob2b471105b083ea9c6b5e38e244a3a2fdf0041777
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved.
25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
26 * Copyright 2015, Joyent, Inc. All rights reserved.
29 #include <sys/types.h>
30 #include <sys/t_lock.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/cred.h>
36 #include <sys/kmem.h>
37 #include <sys/sysmacros.h>
38 #include <sys/vfs.h>
39 #include <sys/vnode.h>
40 #include <sys/debug.h>
41 #include <sys/errno.h>
42 #include <sys/time.h>
43 #include <sys/file.h>
44 #include <sys/user.h>
45 #include <sys/stream.h>
46 #include <sys/strsubr.h>
47 #include <sys/strsun.h>
48 #include <sys/sunddi.h>
49 #include <sys/esunddi.h>
50 #include <sys/flock.h>
51 #include <sys/modctl.h>
52 #include <sys/cmn_err.h>
53 #include <sys/vmsystm.h>
54 #include <sys/policy.h>
55 #include <sys/limits.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
60 #include <sys/isa_defs.h>
61 #include <sys/inttypes.h>
62 #include <sys/systm.h>
63 #include <sys/cpuvar.h>
64 #include <sys/filio.h>
65 #include <sys/sendfile.h>
66 #include <sys/ddi.h>
67 #include <vm/seg.h>
68 #include <vm/seg_map.h>
69 #include <vm/seg_kpm.h>
71 #include "sockcommon.h"
72 #include "sockfilter_impl.h"
73 #include "socktpi.h"
75 #ifdef SOCK_TEST
76 int do_useracc = 1; /* Controlled by setting SO_DEBUG to 4 */
77 #else
78 #define do_useracc 1
79 #endif /* SOCK_TEST */
81 extern int xnet_truncate_print;
84 * Kernel component of socket creation.
86 * First the library calls this with a NULL devpath. If this fails
87 * to find a transport (using solookup) the library will look in /etc/netconfig
88 * for the appropriate transport. If one is found it will pass in the
89 * devpath for the kernel to use.
91 int
92 so_socket(int family, int type_w_flags, int protocol, char *devpath)
94 struct sonode *so;
95 vnode_t *vp;
96 struct file *fp;
97 int fd;
98 int error;
99 int type;
101 type = type_w_flags & SOCK_TYPE_MASK;
102 type_w_flags &= ~SOCK_TYPE_MASK;
103 if (type_w_flags & ~(SOCK_CLOEXEC|SOCK_NDELAY|SOCK_NONBLOCK))
104 return (set_errno(EINVAL));
106 if (devpath != NULL) {
107 char *buf;
108 size_t kdevpathlen = 0;
110 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
111 if ((error = copyinstr(devpath, buf,
112 MAXPATHLEN, &kdevpathlen)) != 0) {
113 kmem_free(buf, MAXPATHLEN);
114 return (set_errno(error));
116 so = socket_create(family, type, protocol, buf, NULL,
117 SOCKET_SLEEP, CRED(), &error);
118 kmem_free(buf, MAXPATHLEN);
119 } else {
120 so = socket_create(family, type, protocol, NULL, NULL,
121 SOCKET_SLEEP, CRED(), &error);
123 if (so == NULL)
124 return (set_errno(error));
126 /* Allocate a file descriptor for the socket */
127 vp = SOTOV(so);
128 if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) {
129 (void) socket_close(so, 0, CRED());
130 socket_destroy(so);
131 return (set_errno(error));
135 * Now fill in the entries that falloc reserved
137 if (type_w_flags & SOCK_NDELAY) {
138 so->so_state |= SS_NDELAY;
139 fp->f_flag |= FNDELAY;
141 if (type_w_flags & SOCK_NONBLOCK) {
142 so->so_state |= SS_NONBLOCK;
143 fp->f_flag |= FNONBLOCK;
145 mutex_exit(&fp->f_tlock);
146 setf(fd, fp);
147 if ((type_w_flags & SOCK_CLOEXEC) != 0) {
148 f_setfd(fd, FD_CLOEXEC);
151 return (fd);
155 * Map from a file descriptor to a socket node.
156 * Returns with the file descriptor held i.e. the caller has to
157 * use releasef when done with the file descriptor.
159 struct sonode *
160 getsonode(int sock, int *errorp, file_t **fpp)
162 file_t *fp;
163 vnode_t *vp;
164 struct sonode *so;
166 if ((fp = getf(sock)) == NULL) {
167 *errorp = EBADF;
168 eprintline(*errorp);
169 return (NULL);
171 vp = fp->f_vnode;
172 /* Check if it is a socket */
173 if (vp->v_type != VSOCK) {
174 releasef(sock);
175 *errorp = ENOTSOCK;
176 eprintline(*errorp);
177 return (NULL);
180 * Use the stream head to find the real socket vnode.
181 * This is needed when namefs sits above sockfs.
183 if (vp->v_stream) {
184 ASSERT(vp->v_stream->sd_vnode);
185 vp = vp->v_stream->sd_vnode;
187 so = VTOSO(vp);
188 if (so->so_is_stream) {
189 releasef(sock);
190 *errorp = ENOTSOCK;
191 eprintsoline(so, *errorp);
192 return (NULL);
194 } else {
195 so = VTOSO(vp);
197 if (fpp)
198 *fpp = fp;
199 return (so);
203 * Allocate and copyin a sockaddr.
204 * Ensures NULL termination for AF_UNIX addresses by extending them
205 * with one NULL byte if need be. Verifies that the length is not
206 * excessive to prevent an application from consuming all of kernel
207 * memory. Returns NULL when an error occurred.
209 static struct sockaddr *
210 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp,
211 int *errorp)
213 char *faddr;
214 size_t namelen = (size_t)*namelenp;
216 ASSERT(namelen != 0);
217 if (namelen > SO_MAXARGSIZE) {
218 *errorp = EINVAL;
219 eprintsoline(so, *errorp);
220 return (NULL);
223 faddr = (char *)kmem_alloc(namelen, KM_SLEEP);
224 if (copyin(name, faddr, namelen)) {
225 kmem_free(faddr, namelen);
226 *errorp = EFAULT;
227 eprintsoline(so, *errorp);
228 return (NULL);
232 * Add space for NULL termination if needed.
233 * Do a quick check if the last byte is NUL.
235 if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') {
236 /* Check if there is any NULL termination */
237 size_t i;
238 int foundnull = 0;
240 for (i = sizeof (name->sa_family); i < namelen; i++) {
241 if (faddr[i] == '\0') {
242 foundnull = 1;
243 break;
246 if (!foundnull) {
247 /* Add extra byte for NUL padding */
248 char *nfaddr;
250 nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP);
251 bcopy(faddr, nfaddr, namelen);
252 kmem_free(faddr, namelen);
254 /* NUL terminate */
255 nfaddr[namelen] = '\0';
256 namelen++;
257 ASSERT((socklen_t)namelen == namelen);
258 *namelenp = (socklen_t)namelen;
259 faddr = nfaddr;
262 return ((struct sockaddr *)faddr);
266 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
268 static int
269 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp,
270 void *kaddr, socklen_t klen)
272 if (uaddr != NULL) {
273 if (ulen > klen)
274 ulen = klen;
276 if (ulen != 0) {
277 if (copyout(kaddr, uaddr, ulen))
278 return (EFAULT);
280 } else
281 ulen = 0;
283 if (ulenp != NULL) {
284 if (copyout(&ulen, ulenp, sizeof (ulen)))
285 return (EFAULT);
287 return (0);
291 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL.
292 * If klen is greater than ulen it still uses the non-truncated
293 * klen to update ulenp.
295 static int
296 copyout_name(void *uaddr, socklen_t ulen, void *ulenp,
297 void *kaddr, socklen_t klen)
299 if (uaddr != NULL) {
300 if (ulen >= klen)
301 ulen = klen;
302 else if (ulen != 0 && xnet_truncate_print) {
303 printf("sockfs: truncating copyout of address using "
304 "XNET semantics for pid = %d. Lengths %d, %d\n",
305 curproc->p_pid, klen, ulen);
308 if (ulen != 0) {
309 if (copyout(kaddr, uaddr, ulen))
310 return (EFAULT);
311 } else
312 klen = 0;
313 } else
314 klen = 0;
316 if (ulenp != NULL) {
317 if (copyout(&klen, ulenp, sizeof (klen)))
318 return (EFAULT);
320 return (0);
324 * The socketpair() code in libsocket creates two sockets (using
325 * the /etc/netconfig fallback if needed) before calling this routine
326 * to connect the two sockets together.
328 * For a SOCK_STREAM socketpair a listener is needed - in that case this
329 * routine will create a new file descriptor as part of accepting the
330 * connection. The library socketpair() will check if svs[2] has changed
331 * in which case it will close the changed fd.
333 * Note that this code could use the TPI feature of accepting the connection
334 * on the listening endpoint. However, that would require significant changes
335 * to soaccept.
338 so_socketpair(int sv[2])
340 int svs[2];
341 struct sonode *so1, *so2;
342 int error;
343 int orig_flags;
344 struct sockaddr_ux *name;
345 size_t namelen;
346 sotpi_info_t *sti1;
347 sotpi_info_t *sti2;
349 dprint(1, ("so_socketpair(%p)\n", (void *)sv));
351 error = useracc(sv, sizeof (svs), B_WRITE);
352 if (error && do_useracc)
353 return (set_errno(EFAULT));
355 if (copyin(sv, svs, sizeof (svs)))
356 return (set_errno(EFAULT));
358 if ((so1 = getsonode(svs[0], &error, NULL)) == NULL)
359 return (set_errno(error));
361 if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) {
362 releasef(svs[0]);
363 return (set_errno(error));
366 if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) {
367 error = EOPNOTSUPP;
368 goto done;
371 sti1 = SOTOTPI(so1);
372 sti2 = SOTOTPI(so2);
375 * The code below makes assumptions about the "sockfs" implementation.
376 * So make sure that the correct implementation is really used.
378 ASSERT(so1->so_ops == &sotpi_sonodeops);
379 ASSERT(so2->so_ops == &sotpi_sonodeops);
381 if (so1->so_type == SOCK_DGRAM) {
383 * Bind both sockets and connect them with each other.
384 * Need to allocate name/namelen for soconnect.
386 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED());
387 if (error) {
388 eprintsoline(so1, error);
389 goto done;
391 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
392 if (error) {
393 eprintsoline(so2, error);
394 goto done;
396 namelen = sizeof (struct sockaddr_ux);
397 name = kmem_alloc(namelen, KM_SLEEP);
398 name->sou_family = AF_UNIX;
399 name->sou_addr = sti2->sti_ux_laddr;
400 error = socket_connect(so1,
401 (struct sockaddr *)name,
402 (socklen_t)namelen,
403 0, _SOCONNECT_NOXLATE, CRED());
404 if (error) {
405 kmem_free(name, namelen);
406 eprintsoline(so1, error);
407 goto done;
409 name->sou_addr = sti1->sti_ux_laddr;
410 error = socket_connect(so2,
411 (struct sockaddr *)name,
412 (socklen_t)namelen,
413 0, _SOCONNECT_NOXLATE, CRED());
414 kmem_free(name, namelen);
415 if (error) {
416 eprintsoline(so2, error);
417 goto done;
419 releasef(svs[0]);
420 releasef(svs[1]);
421 } else {
423 * Bind both sockets, with so1 being a listener.
424 * Connect so2 to so1 - nonblocking to avoid waiting for
425 * soaccept to complete.
426 * Accept a connection on so1. Pass out the new fd as sv[0].
427 * The library will detect the changed fd and close
428 * the original one.
430 struct sonode *nso;
431 struct vnode *nvp;
432 struct file *nfp;
433 int nfd;
436 * We could simply call socket_listen() here (which would do the
437 * binding automatically) if the code didn't rely on passing
438 * _SOBIND_NOXLATE to the TPI implementation of socket_bind().
440 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC|
441 _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR,
442 CRED());
443 if (error) {
444 eprintsoline(so1, error);
445 goto done;
447 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED());
448 if (error) {
449 eprintsoline(so2, error);
450 goto done;
453 namelen = sizeof (struct sockaddr_ux);
454 name = kmem_alloc(namelen, KM_SLEEP);
455 name->sou_family = AF_UNIX;
456 name->sou_addr = sti1->sti_ux_laddr;
457 error = socket_connect(so2,
458 (struct sockaddr *)name,
459 (socklen_t)namelen,
460 FNONBLOCK, _SOCONNECT_NOXLATE, CRED());
461 kmem_free(name, namelen);
462 if (error) {
463 if (error != EINPROGRESS) {
464 eprintsoline(so2, error); goto done;
468 error = socket_accept(so1, 0, CRED(), &nso);
469 if (error) {
470 eprintsoline(so1, error);
471 goto done;
474 /* wait for so2 being SS_CONNECTED ignoring signals */
475 mutex_enter(&so2->so_lock);
476 error = sowaitconnected(so2, 0, 1);
477 mutex_exit(&so2->so_lock);
478 if (error != 0) {
479 (void) socket_close(nso, 0, CRED());
480 socket_destroy(nso);
481 eprintsoline(so2, error);
482 goto done;
485 nvp = SOTOV(nso);
486 if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) {
487 (void) socket_close(nso, 0, CRED());
488 socket_destroy(nso);
489 eprintsoline(nso, error);
490 goto done;
493 * copy over FNONBLOCK and FNDELAY flags should they exist
495 if (so1->so_state & SS_NONBLOCK)
496 nfp->f_flag |= FNONBLOCK;
497 if (so1->so_state & SS_NDELAY)
498 nfp->f_flag |= FNDELAY;
501 * fill in the entries that falloc reserved
503 mutex_exit(&nfp->f_tlock);
504 setf(nfd, nfp);
507 * get the original flags before we release
509 VERIFY(f_getfd_error(svs[0], &orig_flags) == 0);
511 releasef(svs[0]);
512 releasef(svs[1]);
515 * If FD_CLOEXEC was set on the filedescriptor we're
516 * swapping out, we should set it on the new one too.
518 if (orig_flags & FD_CLOEXEC) {
519 f_setfd(nfd, FD_CLOEXEC);
523 * The socketpair library routine will close the original
524 * svs[0] when this code passes out a different file
525 * descriptor.
527 svs[0] = nfd;
529 if (copyout(svs, sv, sizeof (svs))) {
530 (void) closeandsetf(nfd, NULL);
531 eprintline(EFAULT);
532 return (set_errno(EFAULT));
535 return (0);
537 done:
538 releasef(svs[0]);
539 releasef(svs[1]);
540 return (set_errno(error));
544 bind(int sock, struct sockaddr *name, socklen_t namelen)
546 struct sonode *so;
547 int error;
549 dprint(1, ("bind(%d, %p, %d)\n",
550 sock, (void *)name, namelen));
552 if ((so = getsonode(sock, &error, NULL)) == NULL)
553 return (set_errno(error));
555 /* Allocate and copyin name */
557 * X/Open test does not expect EFAULT with NULL name and non-zero
558 * namelen.
560 if (name != NULL && namelen != 0) {
561 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
562 name = copyin_name(so, name, &namelen, &error);
563 if (name == NULL) {
564 releasef(sock);
565 return (set_errno(error));
567 } else {
568 name = NULL;
569 namelen = 0;
572 error = socket_bind(so, name, namelen, 0, CRED());
573 done:
574 releasef(sock);
575 if (name != NULL)
576 kmem_free(name, (size_t)namelen);
578 if (error)
579 return (set_errno(error));
580 return (0);
584 listen(int sock, int backlog)
586 struct sonode *so;
587 int error;
589 dprint(1, ("listen(%d, %d)\n",
590 sock, backlog));
592 if ((so = getsonode(sock, &error, NULL)) == NULL)
593 return (set_errno(error));
595 error = socket_listen(so, backlog, CRED());
597 releasef(sock);
598 if (error)
599 return (set_errno(error));
600 return (0);
604 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int flags)
606 struct sonode *so;
607 file_t *fp;
608 int error;
609 socklen_t namelen;
610 struct sonode *nso;
611 struct vnode *nvp;
612 struct file *nfp;
613 int nfd;
614 int ssflags;
615 struct sockaddr *addrp;
616 socklen_t addrlen;
618 dprint(1, ("accept(%d, %p, %p)\n",
619 sock, (void *)name, (void *)namelenp));
621 if (flags & ~(SOCK_CLOEXEC|SOCK_NONBLOCK|SOCK_NDELAY)) {
622 return (set_errno(EINVAL));
625 /* Translate SOCK_ flags to their SS_ variant */
626 ssflags = 0;
627 if (flags & SOCK_NONBLOCK)
628 ssflags |= SS_NONBLOCK;
629 if (flags & SOCK_NDELAY)
630 ssflags |= SS_NDELAY;
632 if ((so = getsonode(sock, &error, &fp)) == NULL)
633 return (set_errno(error));
635 if (name != NULL) {
636 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
637 if (copyin(namelenp, &namelen, sizeof (namelen))) {
638 releasef(sock);
639 return (set_errno(EFAULT));
641 if (namelen != 0) {
642 error = useracc(name, (size_t)namelen, B_WRITE);
643 if (error && do_useracc) {
644 releasef(sock);
645 return (set_errno(EFAULT));
647 } else
648 name = NULL;
649 } else {
650 namelen = 0;
654 * Allocate the user fd before socket_accept() in order to
655 * catch EMFILE errors before calling socket_accept().
657 if ((nfd = ufalloc(0)) == -1) {
658 eprintsoline(so, EMFILE);
659 releasef(sock);
660 return (set_errno(EMFILE));
662 error = socket_accept(so, fp->f_flag, CRED(), &nso);
663 if (error) {
664 setf(nfd, NULL);
665 releasef(sock);
666 return (set_errno(error));
669 nvp = SOTOV(nso);
671 ASSERT(MUTEX_NOT_HELD(&nso->so_lock));
672 if (namelen != 0) {
673 addrlen = so->so_max_addr_len;
674 addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP);
676 if ((error = socket_getpeername(nso, (struct sockaddr *)addrp,
677 &addrlen, B_TRUE, CRED())) == 0) {
678 error = copyout_name(name, namelen, namelenp,
679 addrp, addrlen);
680 } else {
681 ASSERT(error == EINVAL || error == ENOTCONN);
682 error = ECONNABORTED;
684 kmem_free(addrp, so->so_max_addr_len);
687 if (error) {
688 setf(nfd, NULL);
689 (void) socket_close(nso, 0, CRED());
690 socket_destroy(nso);
691 releasef(sock);
692 return (set_errno(error));
694 if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) {
695 setf(nfd, NULL);
696 (void) socket_close(nso, 0, CRED());
697 socket_destroy(nso);
698 eprintsoline(so, error);
699 releasef(sock);
700 return (set_errno(error));
703 * fill in the entries that falloc reserved
705 nfp->f_vnode = nvp;
706 mutex_exit(&nfp->f_tlock);
707 setf(nfd, nfp);
710 * Act on SOCK_CLOEXEC from flags
712 if (flags & SOCK_CLOEXEC) {
713 f_setfd(nfd, FD_CLOEXEC);
717 * Copy FNDELAY and FNONBLOCK from listener to acceptor
718 * and from ssflags
720 if ((ssflags | so->so_state) & (SS_NDELAY|SS_NONBLOCK)) {
721 uint_t oflag = nfp->f_flag;
722 int arg = 0;
724 if ((ssflags | so->so_state) & SS_NONBLOCK)
725 arg |= FNONBLOCK;
726 else if ((ssflags | so->so_state) & SS_NDELAY)
727 arg |= FNDELAY;
730 * This code is a simplification of the F_SETFL code in fcntl()
731 * Ignore any errors from VOP_SETFL.
733 if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL))
734 != 0) {
735 eprintsoline(so, error);
736 error = 0;
737 } else {
738 mutex_enter(&nfp->f_tlock);
739 nfp->f_flag &= ~FMASK | (FREAD|FWRITE);
740 nfp->f_flag |= arg;
741 mutex_exit(&nfp->f_tlock);
744 releasef(sock);
745 return (nfd);
749 connect(int sock, struct sockaddr *name, socklen_t namelen)
751 struct sonode *so;
752 file_t *fp;
753 int error;
755 dprint(1, ("connect(%d, %p, %d)\n",
756 sock, (void *)name, namelen));
758 if ((so = getsonode(sock, &error, &fp)) == NULL)
759 return (set_errno(error));
761 /* Allocate and copyin name */
762 if (namelen != 0) {
763 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
764 name = copyin_name(so, name, &namelen, &error);
765 if (name == NULL) {
766 releasef(sock);
767 return (set_errno(error));
769 } else
770 name = NULL;
772 error = socket_connect(so, name, namelen, fp->f_flag, 0, CRED());
773 releasef(sock);
774 if (name)
775 kmem_free(name, (size_t)namelen);
776 if (error)
777 return (set_errno(error));
778 return (0);
782 shutdown(int sock, int how)
784 struct sonode *so;
785 int error;
787 dprint(1, ("shutdown(%d, %d)\n",
788 sock, how));
790 if ((so = getsonode(sock, &error, NULL)) == NULL)
791 return (set_errno(error));
793 error = socket_shutdown(so, how, CRED());
795 releasef(sock);
796 if (error)
797 return (set_errno(error));
798 return (0);
802 * Common receive routine.
804 static ssize_t
805 recvit(int sock,
806 struct nmsghdr *msg,
807 struct uio *uiop,
808 int flags,
809 socklen_t *namelenp,
810 socklen_t *controllenp,
811 int *flagsp)
813 struct sonode *so;
814 file_t *fp;
815 void *name;
816 socklen_t namelen;
817 void *control;
818 socklen_t controllen;
819 ssize_t len;
820 int error;
822 if ((so = getsonode(sock, &error, &fp)) == NULL)
823 return (set_errno(error));
825 len = uiop->uio_resid;
826 uiop->uio_fmode = fp->f_flag;
827 uiop->uio_extflg = UIO_COPY_CACHED;
829 name = msg->msg_name;
830 namelen = msg->msg_namelen;
831 control = msg->msg_control;
832 controllen = msg->msg_controllen;
834 msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL |
835 MSG_DONTWAIT);
837 error = socket_recvmsg(so, msg, uiop, CRED());
838 if (error) {
839 releasef(sock);
840 return (set_errno(error));
842 lwp_stat_update(LWP_STAT_MSGRCV, 1);
843 releasef(sock);
845 error = copyout_name(name, namelen, namelenp,
846 msg->msg_name, msg->msg_namelen);
847 if (error)
848 goto err;
850 if (flagsp != NULL) {
852 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only
853 * when controllen is zero and there is control data to
854 * copy out.
856 if (controllen != 0 &&
857 (msg->msg_controllen > controllen || control == NULL)) {
858 dprint(1, ("recvit: CTRUNC %d %d %p\n",
859 msg->msg_controllen, controllen, control));
861 msg->msg_flags |= MSG_CTRUNC;
863 if (copyout(&msg->msg_flags, flagsp,
864 sizeof (msg->msg_flags))) {
865 error = EFAULT;
866 goto err;
870 * Note: This MUST be done last. There can be no "goto err" after this
871 * point since it could make so_closefds run twice on some part
872 * of the file descriptor array.
874 if (controllen != 0) {
875 error = copyout_arg(control, controllen, controllenp,
876 msg->msg_control, msg->msg_controllen);
877 if (error)
878 goto err;
880 if (msg->msg_controllen > controllen || control == NULL) {
881 if (control == NULL)
882 controllen = 0;
883 so_closefds(msg->msg_control, msg->msg_controllen,
884 controllen);
887 if (msg->msg_namelen != 0)
888 kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
889 if (msg->msg_controllen != 0)
890 kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
891 return (len - uiop->uio_resid);
893 err:
895 * If we fail and the control part contains file descriptors
896 * we have to close the fd's.
898 if (msg->msg_controllen != 0)
899 so_closefds(msg->msg_control, msg->msg_controllen, 0);
900 if (msg->msg_namelen != 0)
901 kmem_free(msg->msg_name, (size_t)msg->msg_namelen);
902 if (msg->msg_controllen != 0)
903 kmem_free(msg->msg_control, (size_t)msg->msg_controllen);
904 return (set_errno(error));
908 * Native system call
910 ssize_t
911 recv(int sock, void *buffer, size_t len, int flags)
913 struct nmsghdr lmsg;
914 struct uio auio;
915 struct iovec aiov[1];
917 dprint(1, ("recv(%d, %p, %ld, %d)\n",
918 sock, buffer, len, flags));
920 if ((ssize_t)len < 0) {
921 return (set_errno(EINVAL));
924 aiov[0].iov_base = buffer;
925 aiov[0].iov_len = len;
926 auio.uio_loffset = 0;
927 auio.uio_iov = aiov;
928 auio.uio_iovcnt = 1;
929 auio.uio_resid = len;
930 auio.uio_segflg = UIO_USERSPACE;
931 auio.uio_limit = 0;
933 lmsg.msg_namelen = 0;
934 lmsg.msg_controllen = 0;
935 lmsg.msg_flags = 0;
936 return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL));
939 ssize_t
940 recvfrom(int sock, void *buffer, size_t len, int flags,
941 struct sockaddr *name, socklen_t *namelenp)
943 struct nmsghdr lmsg;
944 struct uio auio;
945 struct iovec aiov[1];
947 dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n",
948 sock, buffer, len, flags, (void *)name, (void *)namelenp));
950 if ((ssize_t)len < 0) {
951 return (set_errno(EINVAL));
954 aiov[0].iov_base = buffer;
955 aiov[0].iov_len = len;
956 auio.uio_loffset = 0;
957 auio.uio_iov = aiov;
958 auio.uio_iovcnt = 1;
959 auio.uio_resid = len;
960 auio.uio_segflg = UIO_USERSPACE;
961 auio.uio_limit = 0;
963 lmsg.msg_name = (char *)name;
964 if (namelenp != NULL) {
965 if (copyin(namelenp, &lmsg.msg_namelen,
966 sizeof (lmsg.msg_namelen)))
967 return (set_errno(EFAULT));
968 } else {
969 lmsg.msg_namelen = 0;
971 lmsg.msg_controllen = 0;
972 lmsg.msg_flags = 0;
974 return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL));
977 ssize_t
978 recvmsg(int sock, struct nmsghdr *msg, int flags)
980 STRUCT_DECL(nmsghdr, u_lmsg);
981 STRUCT_HANDLE(nmsghdr, umsgptr);
982 struct nmsghdr lmsg;
983 struct uio auio;
984 struct iovec buf[IOV_MAX_STACK], *aiov = buf;
985 ssize_t iovsize = 0;
986 int iovcnt;
987 ssize_t len, rval;
988 int i;
989 int *flagsp;
990 model_t model;
992 dprint(1, ("recvmsg(%d, %p, %d)\n",
993 sock, (void *)msg, flags));
995 model = get_udatamodel();
996 STRUCT_INIT(u_lmsg, model);
997 STRUCT_SET_HANDLE(umsgptr, model, msg);
999 if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg)))
1000 return (set_errno(EFAULT));
1001 flagsp = STRUCT_FADDR(umsgptr, msg_flags);
1004 * Code below us will kmem_alloc memory and hang it
1005 * off msg_control and msg_name fields. This forces
1006 * us to copy the structure to its native form.
1008 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1009 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1010 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1011 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1012 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1013 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1014 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1016 iovcnt = lmsg.msg_iovlen;
1018 if (iovcnt < 0 || iovcnt > IOV_MAX)
1019 return (set_errno(EMSGSIZE));
1021 if (iovcnt > IOV_MAX_STACK) {
1022 iovsize = iovcnt * sizeof (struct iovec);
1023 aiov = kmem_alloc(iovsize, KM_SLEEP);
1026 #ifdef _SYSCALL32_IMPL
1028 * 32-bit callers need to have their iovec expanded, while ensuring
1029 * that they can't move more than 2Gbytes of data in a single call.
1031 if (model == DATAMODEL_ILP32) {
1032 struct iovec32 buf32[IOV_MAX_STACK], *aiov32 = buf32;
1033 ssize_t iov32size;
1034 ssize32_t count32;
1036 iov32size = iovcnt * sizeof (struct iovec32);
1037 if (iovsize != 0)
1038 aiov32 = kmem_alloc(iov32size, KM_SLEEP);
1040 if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32, iov32size)) {
1041 if (iovsize != 0) {
1042 kmem_free(aiov32, iov32size);
1043 kmem_free(aiov, iovsize);
1046 return (set_errno(EFAULT));
1049 count32 = 0;
1050 for (i = 0; i < iovcnt; i++) {
1051 ssize32_t iovlen32;
1053 iovlen32 = aiov32[i].iov_len;
1054 count32 += iovlen32;
1055 if (iovlen32 < 0 || count32 < 0) {
1056 if (iovsize != 0) {
1057 kmem_free(aiov32, iov32size);
1058 kmem_free(aiov, iovsize);
1061 return (set_errno(EINVAL));
1064 aiov[i].iov_len = iovlen32;
1065 aiov[i].iov_base =
1066 (caddr_t)(uintptr_t)aiov32[i].iov_base;
1069 if (iovsize != 0)
1070 kmem_free(aiov32, iov32size);
1071 } else
1072 #endif /* _SYSCALL32_IMPL */
1073 if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) {
1074 if (iovsize != 0)
1075 kmem_free(aiov, iovsize);
1077 return (set_errno(EFAULT));
1079 len = 0;
1080 for (i = 0; i < iovcnt; i++) {
1081 ssize_t iovlen = aiov[i].iov_len;
1082 len += iovlen;
1083 if (iovlen < 0 || len < 0) {
1084 if (iovsize != 0)
1085 kmem_free(aiov, iovsize);
1087 return (set_errno(EINVAL));
1090 auio.uio_loffset = 0;
1091 auio.uio_iov = aiov;
1092 auio.uio_iovcnt = iovcnt;
1093 auio.uio_resid = len;
1094 auio.uio_segflg = UIO_USERSPACE;
1095 auio.uio_limit = 0;
1097 if (lmsg.msg_control != NULL &&
1098 (do_useracc == 0 ||
1099 useracc(lmsg.msg_control, lmsg.msg_controllen,
1100 B_WRITE) != 0)) {
1101 if (iovsize != 0)
1102 kmem_free(aiov, iovsize);
1104 return (set_errno(EFAULT));
1107 rval = recvit(sock, &lmsg, &auio, flags,
1108 STRUCT_FADDR(umsgptr, msg_namelen),
1109 STRUCT_FADDR(umsgptr, msg_controllen), flagsp);
1111 if (iovsize != 0)
1112 kmem_free(aiov, iovsize);
1114 return (rval);
1118 * Common send function.
1120 static ssize_t
1121 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags)
1123 struct sonode *so;
1124 file_t *fp;
1125 void *name;
1126 socklen_t namelen;
1127 void *control;
1128 socklen_t controllen;
1129 ssize_t len;
1130 int error;
1132 if ((so = getsonode(sock, &error, &fp)) == NULL)
1133 return (set_errno(error));
1135 uiop->uio_fmode = fp->f_flag;
1137 if (so->so_family == AF_UNIX)
1138 uiop->uio_extflg = UIO_COPY_CACHED;
1139 else
1140 uiop->uio_extflg = UIO_COPY_DEFAULT;
1142 /* Allocate and copyin name and control */
1143 name = msg->msg_name;
1144 namelen = msg->msg_namelen;
1145 if (name != NULL && namelen != 0) {
1146 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1147 name = copyin_name(so,
1148 (struct sockaddr *)name,
1149 &namelen, &error);
1150 if (name == NULL)
1151 goto done3;
1152 /* copyin_name null terminates addresses for AF_UNIX */
1153 msg->msg_namelen = namelen;
1154 msg->msg_name = name;
1155 } else {
1156 msg->msg_name = name = NULL;
1157 msg->msg_namelen = namelen = 0;
1160 control = msg->msg_control;
1161 controllen = msg->msg_controllen;
1162 if ((control != NULL) && (controllen != 0)) {
1164 * Verify that the length is not excessive to prevent
1165 * an application from consuming all of kernel memory.
1167 if (controllen > SO_MAXARGSIZE) {
1168 error = EINVAL;
1169 goto done2;
1171 control = kmem_alloc(controllen, KM_SLEEP);
1173 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1174 if (copyin(msg->msg_control, control, controllen)) {
1175 error = EFAULT;
1176 goto done1;
1178 msg->msg_control = control;
1179 } else {
1180 msg->msg_control = control = NULL;
1181 msg->msg_controllen = controllen = 0;
1184 len = uiop->uio_resid;
1185 msg->msg_flags = flags;
1187 error = socket_sendmsg(so, msg, uiop, CRED());
1188 done1:
1189 if (control != NULL)
1190 kmem_free(control, controllen);
1191 done2:
1192 if (name != NULL)
1193 kmem_free(name, namelen);
1194 done3:
1195 if (error != 0) {
1196 releasef(sock);
1197 return (set_errno(error));
1199 lwp_stat_update(LWP_STAT_MSGSND, 1);
1200 releasef(sock);
1201 return (len - uiop->uio_resid);
1205 * Native system call
1207 ssize_t
1208 send(int sock, void *buffer, size_t len, int flags)
1210 struct nmsghdr lmsg;
1211 struct uio auio;
1212 struct iovec aiov[1];
1214 dprint(1, ("send(%d, %p, %ld, %d)\n",
1215 sock, buffer, len, flags));
1217 if ((ssize_t)len < 0) {
1218 return (set_errno(EINVAL));
1221 aiov[0].iov_base = buffer;
1222 aiov[0].iov_len = len;
1223 auio.uio_loffset = 0;
1224 auio.uio_iov = aiov;
1225 auio.uio_iovcnt = 1;
1226 auio.uio_resid = len;
1227 auio.uio_segflg = UIO_USERSPACE;
1228 auio.uio_limit = 0;
1230 lmsg.msg_name = NULL;
1231 lmsg.msg_control = NULL;
1232 return (sendit(sock, &lmsg, &auio, flags));
1235 ssize_t
1236 sendmsg(int sock, struct nmsghdr *msg, int flags)
1238 struct nmsghdr lmsg;
1239 STRUCT_DECL(nmsghdr, u_lmsg);
1240 struct uio auio;
1241 struct iovec buf[IOV_MAX_STACK], *aiov = buf;
1242 ssize_t iovsize = 0;
1243 int iovcnt;
1244 ssize_t len, rval;
1245 int i;
1246 model_t model;
1248 dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags));
1250 model = get_udatamodel();
1251 STRUCT_INIT(u_lmsg, model);
1253 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg),
1254 STRUCT_SIZE(u_lmsg)))
1255 return (set_errno(EFAULT));
1257 * Code below us will kmem_alloc memory and hang it
1258 * off msg_control and msg_name fields. This forces
1259 * us to copy the structure to its native form.
1261 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name);
1262 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen);
1263 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov);
1264 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen);
1265 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control);
1266 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen);
1267 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags);
1269 iovcnt = lmsg.msg_iovlen;
1271 if (iovcnt < 0 || iovcnt > IOV_MAX)
1272 return (set_errno(EMSGSIZE));
1274 if (iovcnt > IOV_MAX_STACK) {
1275 iovsize = iovcnt * sizeof (struct iovec);
1276 aiov = kmem_alloc(iovsize, KM_SLEEP);
1279 #ifdef _SYSCALL32_IMPL
1281 * 32-bit callers need to have their iovec expanded, while ensuring
1282 * that they can't move more than 2Gbytes of data in a single call.
1284 if (model == DATAMODEL_ILP32) {
1285 struct iovec32 buf32[IOV_MAX_STACK], *aiov32 = buf32;
1286 ssize_t iov32size;
1287 ssize32_t count32;
1289 iov32size = iovcnt * sizeof (struct iovec32);
1290 if (iovsize != 0)
1291 aiov32 = kmem_alloc(iov32size, KM_SLEEP);
1293 if (iovcnt != 0 &&
1294 copyin((struct iovec32 *)lmsg.msg_iov, aiov32, iov32size)) {
1295 if (iovsize != 0) {
1296 kmem_free(aiov32, iov32size);
1297 kmem_free(aiov, iovsize);
1300 return (set_errno(EFAULT));
1303 count32 = 0;
1304 for (i = 0; i < iovcnt; i++) {
1305 ssize32_t iovlen32;
1307 iovlen32 = aiov32[i].iov_len;
1308 count32 += iovlen32;
1309 if (iovlen32 < 0 || count32 < 0) {
1310 if (iovsize != 0) {
1311 kmem_free(aiov32, iov32size);
1312 kmem_free(aiov, iovsize);
1315 return (set_errno(EINVAL));
1318 aiov[i].iov_len = iovlen32;
1319 aiov[i].iov_base =
1320 (caddr_t)(uintptr_t)aiov32[i].iov_base;
1323 if (iovsize != 0)
1324 kmem_free(aiov32, iov32size);
1325 } else
1326 #endif /* _SYSCALL32_IMPL */
1327 if (iovcnt != 0 &&
1328 copyin(lmsg.msg_iov, aiov,
1329 (unsigned)iovcnt * sizeof (struct iovec))) {
1330 if (iovsize != 0)
1331 kmem_free(aiov, iovsize);
1333 return (set_errno(EFAULT));
1335 len = 0;
1336 for (i = 0; i < iovcnt; i++) {
1337 ssize_t iovlen = aiov[i].iov_len;
1338 len += iovlen;
1339 if (iovlen < 0 || len < 0) {
1340 if (iovsize != 0)
1341 kmem_free(aiov, iovsize);
1343 return (set_errno(EINVAL));
1346 auio.uio_loffset = 0;
1347 auio.uio_iov = aiov;
1348 auio.uio_iovcnt = iovcnt;
1349 auio.uio_resid = len;
1350 auio.uio_segflg = UIO_USERSPACE;
1351 auio.uio_limit = 0;
1353 rval = sendit(sock, &lmsg, &auio, flags);
1355 if (iovsize != 0)
1356 kmem_free(aiov, iovsize);
1358 return (rval);
1361 ssize_t
1362 sendto(int sock, void *buffer, size_t len, int flags,
1363 struct sockaddr *name, socklen_t namelen)
1365 struct nmsghdr lmsg;
1366 struct uio auio;
1367 struct iovec aiov[1];
1369 dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n",
1370 sock, buffer, len, flags, (void *)name, namelen));
1372 if ((ssize_t)len < 0) {
1373 return (set_errno(EINVAL));
1376 aiov[0].iov_base = buffer;
1377 aiov[0].iov_len = len;
1378 auio.uio_loffset = 0;
1379 auio.uio_iov = aiov;
1380 auio.uio_iovcnt = 1;
1381 auio.uio_resid = len;
1382 auio.uio_segflg = UIO_USERSPACE;
1383 auio.uio_limit = 0;
1385 lmsg.msg_name = (char *)name;
1386 lmsg.msg_namelen = namelen;
1387 lmsg.msg_control = NULL;
1388 return (sendit(sock, &lmsg, &auio, flags));
1392 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp)
1394 struct sonode *so;
1395 int error;
1396 socklen_t namelen;
1397 socklen_t sock_addrlen;
1398 struct sockaddr *sock_addrp;
1400 dprint(1, ("getpeername(%d, %p, %p)\n",
1401 sock, (void *)name, (void *)namelenp));
1403 if ((so = getsonode(sock, &error, NULL)) == NULL)
1404 goto bad;
1406 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1407 if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1408 (name == NULL && namelen != 0)) {
1409 error = EFAULT;
1410 goto rel_out;
1412 sock_addrlen = so->so_max_addr_len;
1413 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1415 if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen,
1416 B_FALSE, CRED())) == 0) {
1417 ASSERT(sock_addrlen <= so->so_max_addr_len);
1418 error = copyout_name(name, namelen, namelenp,
1419 (void *)sock_addrp, sock_addrlen);
1421 kmem_free(sock_addrp, so->so_max_addr_len);
1422 rel_out:
1423 releasef(sock);
1424 bad: return (error != 0 ? set_errno(error) : 0);
1428 getsockname(int sock, struct sockaddr *name,
1429 socklen_t *namelenp)
1431 struct sonode *so;
1432 int error;
1433 socklen_t namelen, sock_addrlen;
1434 struct sockaddr *sock_addrp;
1436 dprint(1, ("getsockname(%d, %p, %p)\n",
1437 sock, (void *)name, (void *)namelenp));
1439 if ((so = getsonode(sock, &error, NULL)) == NULL)
1440 goto bad;
1442 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1443 if (copyin(namelenp, &namelen, sizeof (namelen)) ||
1444 (name == NULL && namelen != 0)) {
1445 error = EFAULT;
1446 goto rel_out;
1449 sock_addrlen = so->so_max_addr_len;
1450 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP);
1451 if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen,
1452 CRED())) == 0) {
1453 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1454 ASSERT(sock_addrlen <= so->so_max_addr_len);
1455 error = copyout_name(name, namelen, namelenp,
1456 (void *)sock_addrp, sock_addrlen);
1458 kmem_free(sock_addrp, so->so_max_addr_len);
1459 rel_out:
1460 releasef(sock);
1461 bad: return (error != 0 ? set_errno(error) : 0);
1465 getsockopt(int sock,
1466 int level,
1467 int option_name,
1468 void *option_value,
1469 socklen_t *option_lenp)
1471 struct sonode *so;
1472 socklen_t optlen, optlen_res;
1473 void *optval;
1474 int error;
1476 dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n",
1477 sock, level, option_name, option_value, (void *)option_lenp));
1479 if ((so = getsonode(sock, &error, NULL)) == NULL)
1480 return (set_errno(error));
1482 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1483 if (copyin(option_lenp, &optlen, sizeof (optlen))) {
1484 releasef(sock);
1485 return (set_errno(EFAULT));
1488 * Verify that the length is not excessive to prevent
1489 * an application from consuming all of kernel memory.
1491 if (optlen > SO_MAXARGSIZE) {
1492 error = EINVAL;
1493 releasef(sock);
1494 return (set_errno(error));
1496 optval = kmem_alloc(optlen, KM_SLEEP);
1497 optlen_res = optlen;
1498 error = socket_getsockopt(so, level, option_name, optval,
1499 &optlen_res, 0, CRED());
1500 releasef(sock);
1501 if (error) {
1502 kmem_free(optval, optlen);
1503 return (set_errno(error));
1505 error = copyout_arg(option_value, optlen, option_lenp,
1506 optval, optlen_res);
1507 kmem_free(optval, optlen);
1508 if (error)
1509 return (set_errno(error));
1510 return (0);
1514 setsockopt(int sock,
1515 int level,
1516 int option_name,
1517 void *option_value,
1518 socklen_t option_len)
1520 struct sonode *so;
1521 intptr_t buffer[2];
1522 void *optval = NULL;
1523 int error;
1525 dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n",
1526 sock, level, option_name, option_value, option_len));
1528 if ((so = getsonode(sock, &error, NULL)) == NULL)
1529 return (set_errno(error));
1531 if (option_value != NULL) {
1532 if (option_len != 0) {
1534 * Verify that the length is not excessive to prevent
1535 * an application from consuming all of kernel memory.
1537 if (option_len > SO_MAXARGSIZE) {
1538 error = EINVAL;
1539 goto done2;
1541 optval = option_len <= sizeof (buffer) ?
1542 &buffer : kmem_alloc((size_t)option_len, KM_SLEEP);
1543 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1544 if (copyin(option_value, optval, (size_t)option_len)) {
1545 error = EFAULT;
1546 goto done1;
1549 } else
1550 option_len = 0;
1552 error = socket_setsockopt(so, level, option_name, optval,
1553 (t_uscalar_t)option_len, CRED());
1554 done1:
1555 if (optval != buffer)
1556 kmem_free(optval, (size_t)option_len);
1557 done2:
1558 releasef(sock);
1559 if (error)
1560 return (set_errno(error));
1561 return (0);
1564 static int
1565 sockconf_add_sock(int family, int type, int protocol, char *name)
1567 int error = 0;
1568 char *kdevpath = NULL;
1569 char *kmodule = NULL;
1570 char *buf = NULL;
1571 size_t pathlen = 0;
1572 struct sockparams *sp;
1574 if (name == NULL)
1575 return (EINVAL);
1577 * Copyin the name.
1578 * This also makes it possible to check for too long pathnames.
1579 * Compress the space needed for the name before passing it
1580 * to soconfig - soconfig will store the string until
1581 * the configuration is removed.
1583 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1584 if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) {
1585 kmem_free(buf, MAXPATHLEN);
1586 return (error);
1588 if (strncmp(buf, "/dev", strlen("/dev")) == 0) {
1589 /* For device */
1590 kdevpath = kmem_alloc(pathlen, KM_SLEEP);
1591 bcopy(buf, kdevpath, pathlen);
1592 kdevpath[pathlen - 1] = '\0';
1593 } else {
1594 /* For socket module */
1595 kmodule = kmem_alloc(pathlen, KM_SLEEP);
1596 bcopy(buf, kmodule, pathlen);
1597 kmodule[pathlen - 1] = '\0';
1598 pathlen = 0;
1600 kmem_free(buf, MAXPATHLEN);
1602 /* sockparams_create frees mod name and devpath upon failure */
1603 sp = sockparams_create(family, type, protocol, kmodule,
1604 kdevpath, pathlen, 0, KM_SLEEP, &error);
1605 if (sp != NULL) {
1606 error = sockparams_add(sp);
1607 if (error != 0)
1608 sockparams_destroy(sp);
1611 return (error);
1614 static int
1615 sockconf_remove_sock(int family, int type, int protocol)
1617 return (sockparams_delete(family, type, protocol));
1620 static int
1621 sockconfig_remove_filter(const char *uname)
1623 char kname[SOF_MAXNAMELEN];
1624 size_t len;
1625 int error;
1626 sof_entry_t *ent;
1628 if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0)
1629 return (error);
1631 ent = sof_entry_remove_by_name(kname);
1632 if (ent == NULL)
1633 return (ENXIO);
1635 mutex_enter(&ent->sofe_lock);
1636 ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED));
1637 if (ent->sofe_refcnt == 0) {
1638 mutex_exit(&ent->sofe_lock);
1639 sof_entry_free(ent);
1640 } else {
1641 /* let the last socket free the filter */
1642 ent->sofe_flags |= SOFEF_CONDEMED;
1643 mutex_exit(&ent->sofe_lock);
1646 return (0);
1649 static int
1650 sockconfig_add_filter(const char *uname, void *ufilpropp)
1652 struct sockconfig_filter_props filprop;
1653 sof_entry_t *ent;
1654 int error;
1655 size_t tuplesz, len;
1656 char hintbuf[SOF_MAXNAMELEN];
1658 ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP);
1659 mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL);
1661 if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN,
1662 &len)) != 0) {
1663 sof_entry_free(ent);
1664 return (error);
1667 if (get_udatamodel() == DATAMODEL_NATIVE) {
1668 if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) {
1669 sof_entry_free(ent);
1670 return (EFAULT);
1673 #ifdef _SYSCALL32_IMPL
1674 else {
1675 struct sockconfig_filter_props32 filprop32;
1677 if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) {
1678 sof_entry_free(ent);
1679 return (EFAULT);
1681 filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname;
1682 filprop.sfp_autoattach = filprop32.sfp_autoattach;
1683 filprop.sfp_hint = filprop32.sfp_hint;
1684 filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg;
1685 filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt;
1686 filprop.sfp_socktuple =
1687 (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple;
1689 #endif /* _SYSCALL32_IMPL */
1691 if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname,
1692 sizeof (ent->sofe_modname), &len)) != 0) {
1693 sof_entry_free(ent);
1694 return (error);
1698 * A filter must specify at least one socket tuple.
1700 if (filprop.sfp_socktuple_cnt == 0 ||
1701 filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) {
1702 sof_entry_free(ent);
1703 return (EINVAL);
1705 ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG;
1706 ent->sofe_hint = filprop.sfp_hint;
1709 * Verify the hint, and copy in the hint argument, if necessary.
1711 switch (ent->sofe_hint) {
1712 case SOF_HINT_BEFORE:
1713 case SOF_HINT_AFTER:
1714 if ((error = copyinstr(filprop.sfp_hintarg, hintbuf,
1715 sizeof (hintbuf), &len)) != 0) {
1716 sof_entry_free(ent);
1717 return (error);
1719 ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP);
1720 bcopy(hintbuf, ent->sofe_hintarg, len);
1721 /* FALLTHRU */
1722 case SOF_HINT_TOP:
1723 case SOF_HINT_BOTTOM:
1724 /* hints cannot be used with programmatic filters */
1725 if (ent->sofe_flags & SOFEF_PROG) {
1726 sof_entry_free(ent);
1727 return (EINVAL);
1729 break;
1730 case SOF_HINT_NONE:
1731 break;
1732 default:
1733 /* bad hint value */
1734 sof_entry_free(ent);
1735 return (EINVAL);
1738 ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt;
1739 tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt;
1740 ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP);
1742 if (get_udatamodel() == DATAMODEL_NATIVE) {
1743 if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple,
1744 tuplesz)) {
1745 sof_entry_free(ent);
1746 return (EFAULT);
1749 #ifdef _SYSCALL32_IMPL
1750 else {
1751 int i;
1752 caddr_t data = (caddr_t)filprop.sfp_socktuple;
1753 sof_socktuple_t *tup = ent->sofe_socktuple;
1754 sof_socktuple32_t tup32;
1756 tup = ent->sofe_socktuple;
1757 for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) {
1758 ASSERT(tup < ent->sofe_socktuple + tuplesz);
1760 if (copyin(data, &tup32, sizeof (tup32)) != 0) {
1761 sof_entry_free(ent);
1762 return (EFAULT);
1764 tup->sofst_family = tup32.sofst_family;
1765 tup->sofst_type = tup32.sofst_type;
1766 tup->sofst_protocol = tup32.sofst_protocol;
1768 data += sizeof (tup32);
1771 #endif /* _SYSCALL32_IMPL */
1773 /* Sockets can start using the filter as soon as the filter is added */
1774 if ((error = sof_entry_add(ent)) != 0)
1775 sof_entry_free(ent);
1777 return (error);
1781 * Socket configuration system call. It is used to add and remove
1782 * socket types.
1785 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
1787 int error = 0;
1789 if (secpolicy_net_config(CRED(), B_FALSE) != 0)
1790 return (set_errno(EPERM));
1792 switch (cmd) {
1793 case SOCKCONFIG_ADD_SOCK:
1794 error = sockconf_add_sock((int)(uintptr_t)arg1,
1795 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4);
1796 break;
1797 case SOCKCONFIG_REMOVE_SOCK:
1798 error = sockconf_remove_sock((int)(uintptr_t)arg1,
1799 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3);
1800 break;
1801 case SOCKCONFIG_ADD_FILTER:
1802 error = sockconfig_add_filter((const char *)arg1, arg2);
1803 break;
1804 case SOCKCONFIG_REMOVE_FILTER:
1805 error = sockconfig_remove_filter((const char *)arg1);
1806 break;
1807 case SOCKCONFIG_GET_SOCKTABLE:
1808 error = sockparams_copyout_socktable((int)(uintptr_t)arg1);
1809 break;
1810 default:
1811 #ifdef DEBUG
1812 cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd);
1813 #endif
1814 error = EINVAL;
1815 break;
1818 if (error != 0) {
1819 eprintline(error);
1820 return (set_errno(error));
1822 return (0);
1827 * Sendfile is implemented through two schemes, direct I/O or by
1828 * caching in the filesystem page cache. We cache the input file by
1829 * default and use direct I/O only if sendfile_max_size is set
1830 * appropriately as explained below. Note that this logic is consistent
1831 * with other filesystems where caching is turned on by default
1832 * unless explicitly turned off by using the DIRECTIO ioctl.
1834 * We choose a slightly different scheme here. One can turn off
1835 * caching by setting sendfile_max_size to 0. One can also enable
1836 * caching of files <= sendfile_max_size by setting sendfile_max_size
1837 * to an appropriate value. By default sendfile_max_size is set to the
1838 * maximum value so that all files are cached. In future, we may provide
1839 * better interfaces for caching the file.
1841 * Sendfile through Direct I/O (Zero copy)
1842 * --------------------------------------
1844 * As disks are normally slower than the network, we can't have a
1845 * single thread that reads the disk and writes to the network. We
1846 * need to have parallelism. This is done by having the sendfile
1847 * thread create another thread that reads from the filesystem
1848 * and queues it for network processing. In this scheme, the data
1849 * is never copied anywhere i.e it is zero copy unlike the other
1850 * scheme.
1852 * We have a sendfile queue (snfq) where each sendfile
1853 * request (snf_req_t) is queued for processing by a thread. Number
1854 * of threads is dynamically allocated and they exit if they are idling
1855 * beyond a specified amount of time. When each request (snf_req_t) is
1856 * processed by a thread, it produces a number of mblk_t structures to
1857 * be consumed by the sendfile thread. snf_deque and snf_enque are
1858 * used for consuming and producing mblks. Size of the filesystem
1859 * read is determined by the tunable (sendfile_read_size). A single
1860 * mblk holds sendfile_read_size worth of data (except the last
1861 * read of the file) which is sent down as a whole to the network.
1862 * sendfile_read_size is set to 1 MB as this seems to be the optimal
1863 * value for the UFS filesystem backed by a striped storage array.
1865 * Synchronisation between read (producer) and write (consumer) threads.
1866 * --------------------------------------------------------------------
1868 * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while
1869 * adding and deleting items in this list. Error can happen anytime
1870 * during read or write. There could be unprocessed mblks in the
1871 * sr_ib_XXX list when a read or write error occurs. Whenever error
1872 * is encountered, we need two things to happen :
1874 * a) One of the threads need to clean the mblks.
1875 * b) When one thread encounters an error, the other should stop.
1877 * For (a), we don't want to penalize the reader thread as it could do
1878 * some useful work processing other requests. For (b), the error can
1879 * be detected by examining sr_read_error or sr_write_error.
1880 * sr_lock protects sr_read_error and sr_write_error. If both reader and
1881 * writer encounters error, we need to report the write error back to
1882 * the application as that's what would have happened if the operations
1883 * were done sequentially. With this in mind, following should work :
1885 * - Check for errors before read or write.
1886 * - If the reader encounters error, set the error in sr_read_error.
1887 * Check sr_write_error, if it is set, send cv_signal as it is
1888 * waiting for reader to complete. If it is not set, the writer
1889 * is either running sinking data to the network or blocked
1890 * because of flow control. For handling the latter case, we
1891 * always send a signal. In any case, it will examine sr_read_error
1892 * and return. sr_read_error is marked with SR_READ_DONE to tell
1893 * the writer that the reader is done in all the cases.
1894 * - If the writer encounters error, set the error in sr_write_error.
1895 * The reader thread is either blocked because of flow control or
1896 * running reading data from the disk. For the former, we need to
1897 * wakeup the thread. Again to keep it simple, we always wake up
1898 * the reader thread. Then, wait for the read thread to complete
1899 * if it is not done yet. Cleanup and return.
1901 * High and low water marks for the read thread.
1902 * --------------------------------------------
1904 * If sendfile() is used to send data over a slow network, we need to
1905 * make sure that the read thread does not produce data at a faster
1906 * rate than the network. This can happen if the disk is faster than
1907 * the network. In such a case, we don't want to build a very large queue.
1908 * But we would still like to get all of the network throughput possible.
1909 * This implies that network should never block waiting for data.
1910 * As there are lot of disk throughput/network throughput combinations
1911 * possible, it is difficult to come up with an accurate number.
1912 * A typical 10K RPM disk has a max seek latency 17ms and rotational
1913 * latency of 3ms for reading a disk block. Thus, the total latency to
1914 * initiate a new read, transfer data from the disk and queue for
1915 * transmission would take about a max of 25ms. Todays max transfer rate
1916 * for network is 100MB/sec. If the thread is blocked because of flow
1917 * control, it would take 25ms to get new data ready for transmission.
1918 * We have to make sure that network is not idling, while we are initiating
1919 * new transfers. So, at 100MB/sec, to keep network busy we would need
1920 * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data.
1921 * We need to pick a high water mark so that the woken up thread would
1922 * do considerable work before blocking again to prevent thrashing. Currently,
1923 * we pick this to be 10 times that of the low water mark.
1925 * Sendfile with segmap caching (One copy from page cache to mblks).
1926 * ----------------------------------------------------------------
1928 * We use the segmap cache for caching the file, if the size of file
1929 * is <= sendfile_max_size. In this case we don't use threads as VM
1930 * is reasonably fast enough to keep up with the network. If the underlying
1931 * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth
1932 * of data into segmap space, and use the virtual address from segmap
1933 * directly through desballoc() to avoid copy. Once the transport is done
1934 * with the data, the mapping will be released through segmap_release()
1935 * called by the call-back routine.
1937 * If zero-copy is not allowed by the transport, we simply call VOP_READ()
1938 * to copy the data from the filesystem into our temporary network buffer.
1940 * To disable caching, set sendfile_max_size to 0.
1943 uint_t sendfile_read_size = 1024 * 1024;
1944 #define SENDFILE_REQ_LOWAT 3 * 1024 * 1024
1945 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT;
1946 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT;
1947 struct sendfile_stats sf_stats;
1948 struct sendfile_queue *snfq;
1949 clock_t snfq_timeout;
1950 off64_t sendfile_max_size;
1952 static void snf_enque(snf_req_t *, mblk_t *);
1953 static mblk_t *snf_deque(snf_req_t *);
1955 void
1956 sendfile_init(void)
1958 snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP);
1960 mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL);
1961 cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL);
1962 snfq->snfq_max_threads = max_ncpus;
1963 snfq_timeout = SNFQ_TIMEOUT;
1964 /* Cache all files by default. */
1965 sendfile_max_size = MAXOFFSET_T;
1969 * Queues a mblk_t for network processing.
1971 static void
1972 snf_enque(snf_req_t *sr, mblk_t *mp)
1974 mp->b_next = NULL;
1975 mutex_enter(&sr->sr_lock);
1976 if (sr->sr_mp_head == NULL) {
1977 sr->sr_mp_head = sr->sr_mp_tail = mp;
1978 cv_signal(&sr->sr_cv);
1979 } else {
1980 sr->sr_mp_tail->b_next = mp;
1981 sr->sr_mp_tail = mp;
1983 sr->sr_qlen += MBLKL(mp);
1984 while ((sr->sr_qlen > sr->sr_hiwat) &&
1985 (sr->sr_write_error == 0)) {
1986 sf_stats.ss_full_waits++;
1987 cv_wait(&sr->sr_cv, &sr->sr_lock);
1989 mutex_exit(&sr->sr_lock);
1993 * De-queues a mblk_t for network processing.
1995 static mblk_t *
1996 snf_deque(snf_req_t *sr)
1998 mblk_t *mp;
2000 mutex_enter(&sr->sr_lock);
2002 * If we have encountered an error on read or read is
2003 * completed and no more mblks, return NULL.
2004 * We need to check for NULL sr_mp_head also as
2005 * the reads could have completed and there is
2006 * nothing more to come.
2008 if (((sr->sr_read_error & ~SR_READ_DONE) != 0) ||
2009 ((sr->sr_read_error & SR_READ_DONE) &&
2010 sr->sr_mp_head == NULL)) {
2011 mutex_exit(&sr->sr_lock);
2012 return (NULL);
2015 * To start with neither SR_READ_DONE is marked nor
2016 * the error is set. When we wake up from cv_wait,
2017 * following are the possibilities :
2019 * a) sr_read_error is zero and mblks are queued.
2020 * b) sr_read_error is set to SR_READ_DONE
2021 * and mblks are queued.
2022 * c) sr_read_error is set to SR_READ_DONE
2023 * and no mblks.
2024 * d) sr_read_error is set to some error other
2025 * than SR_READ_DONE.
2028 while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) {
2029 sf_stats.ss_empty_waits++;
2030 cv_wait(&sr->sr_cv, &sr->sr_lock);
2032 /* Handle (a) and (b) first - the normal case. */
2033 if (((sr->sr_read_error & ~SR_READ_DONE) == 0) &&
2034 (sr->sr_mp_head != NULL)) {
2035 mp = sr->sr_mp_head;
2036 sr->sr_mp_head = mp->b_next;
2037 sr->sr_qlen -= MBLKL(mp);
2038 if (sr->sr_qlen < sr->sr_lowat)
2039 cv_signal(&sr->sr_cv);
2040 mutex_exit(&sr->sr_lock);
2041 mp->b_next = NULL;
2042 return (mp);
2044 /* Handle (c) and (d). */
2045 mutex_exit(&sr->sr_lock);
2046 return (NULL);
2050 * Reads data from the filesystem and queues it for network processing.
2052 void
2053 snf_async_read(snf_req_t *sr)
2055 size_t iosize;
2056 u_offset_t fileoff;
2057 u_offset_t size;
2058 int ret_size;
2059 int error;
2060 file_t *fp;
2061 mblk_t *mp;
2062 struct vnode *vp;
2063 int extra = 0;
2064 int maxblk = 0;
2065 int wroff = 0;
2066 struct sonode *so;
2068 fp = sr->sr_fp;
2069 size = sr->sr_file_size;
2070 fileoff = sr->sr_file_off;
2073 * Ignore the error for filesystems that doesn't support DIRECTIO.
2075 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0,
2076 kcred, NULL, NULL);
2078 vp = sr->sr_vp;
2079 if (vp->v_type == VSOCK) {
2080 stdata_t *stp;
2083 * Get the extra space to insert a header and a trailer.
2085 so = VTOSO(vp);
2086 stp = vp->v_stream;
2087 if (stp == NULL) {
2088 wroff = so->so_proto_props.sopp_wroff;
2089 maxblk = so->so_proto_props.sopp_maxblk;
2090 extra = wroff + so->so_proto_props.sopp_tail;
2091 } else {
2092 wroff = (int)(stp->sd_wroff);
2093 maxblk = (int)(stp->sd_maxblk);
2094 extra = wroff + (int)(stp->sd_tail);
2098 while ((size != 0) && (sr->sr_write_error == 0)) {
2100 iosize = (int)MIN(sr->sr_maxpsz, size);
2103 * Socket filters can limit the mblk size,
2104 * so limit reads to maxblk if there are
2105 * filters present.
2107 if (vp->v_type == VSOCK &&
2108 so->so_filter_active > 0 && maxblk != INFPSZ)
2109 iosize = (int)MIN(iosize, maxblk);
2111 if (is_system_labeled()) {
2112 mp = allocb_cred(iosize + extra, CRED(),
2113 curproc->p_pid);
2114 } else {
2115 mp = allocb(iosize + extra, BPRI_MED);
2117 if (mp == NULL) {
2118 error = EAGAIN;
2119 break;
2122 mp->b_rptr += wroff;
2124 ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize);
2126 /* Error or Reached EOF ? */
2127 if ((error != 0) || (ret_size == 0)) {
2128 freeb(mp);
2129 break;
2131 mp->b_wptr = mp->b_rptr + ret_size;
2133 snf_enque(sr, mp);
2134 size -= ret_size;
2135 fileoff += ret_size;
2137 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0,
2138 kcred, NULL, NULL);
2139 mutex_enter(&sr->sr_lock);
2140 sr->sr_read_error = error;
2141 sr->sr_read_error |= SR_READ_DONE;
2142 cv_signal(&sr->sr_cv);
2143 mutex_exit(&sr->sr_lock);
2146 void
2147 snf_async_thread(void)
2149 snf_req_t *sr;
2150 callb_cpr_t cprinfo;
2151 clock_t time_left = 1;
2153 CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq");
2155 mutex_enter(&snfq->snfq_lock);
2156 for (;;) {
2158 * If we didn't find a entry, then block until woken up
2159 * again and then look through the queues again.
2161 while ((sr = snfq->snfq_req_head) == NULL) {
2162 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2163 if (time_left <= 0) {
2164 snfq->snfq_svc_threads--;
2165 CALLB_CPR_EXIT(&cprinfo);
2166 thread_exit();
2167 /* NOTREACHED */
2169 snfq->snfq_idle_cnt++;
2171 time_left = cv_reltimedwait(&snfq->snfq_cv,
2172 &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK);
2173 snfq->snfq_idle_cnt--;
2175 CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock);
2177 snfq->snfq_req_head = sr->sr_next;
2178 snfq->snfq_req_cnt--;
2179 mutex_exit(&snfq->snfq_lock);
2180 snf_async_read(sr);
2181 mutex_enter(&snfq->snfq_lock);
2186 snf_req_t *
2187 create_thread(int operation, struct vnode *vp, file_t *fp,
2188 u_offset_t fileoff, u_offset_t size)
2190 snf_req_t *sr;
2191 stdata_t *stp;
2193 sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP);
2195 sr->sr_vp = vp;
2196 sr->sr_fp = fp;
2197 stp = vp->v_stream;
2200 * store sd_qn_maxpsz into sr_maxpsz while we have stream head.
2201 * stream might be closed before thread returns from snf_async_read.
2203 if (stp != NULL && stp->sd_qn_maxpsz > 0) {
2204 sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz);
2205 } else {
2206 sr->sr_maxpsz = MAXBSIZE;
2209 sr->sr_operation = operation;
2210 sr->sr_file_off = fileoff;
2211 sr->sr_file_size = size;
2212 sr->sr_hiwat = sendfile_req_hiwat;
2213 sr->sr_lowat = sendfile_req_lowat;
2214 mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL);
2215 cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL);
2217 * See whether we need another thread for servicing this
2218 * request. If there are already enough requests queued
2219 * for the threads, create one if not exceeding
2220 * snfq_max_threads.
2222 mutex_enter(&snfq->snfq_lock);
2223 if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt &&
2224 snfq->snfq_svc_threads < snfq->snfq_max_threads) {
2225 (void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0,
2226 TS_RUN, minclsyspri);
2227 snfq->snfq_svc_threads++;
2229 if (snfq->snfq_req_head == NULL) {
2230 snfq->snfq_req_head = snfq->snfq_req_tail = sr;
2231 cv_signal(&snfq->snfq_cv);
2232 } else {
2233 snfq->snfq_req_tail->sr_next = sr;
2234 snfq->snfq_req_tail = sr;
2236 snfq->snfq_req_cnt++;
2237 mutex_exit(&snfq->snfq_lock);
2238 return (sr);
2242 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size,
2243 ssize_t *count)
2245 snf_req_t *sr;
2246 mblk_t *mp;
2247 int iosize;
2248 int error = 0;
2249 short fflag;
2250 struct vnode *vp;
2251 int ksize;
2252 struct nmsghdr msg;
2254 ksize = 0;
2255 *count = 0;
2256 bzero(&msg, sizeof (msg));
2258 vp = fp->f_vnode;
2259 fflag = fp->f_flag;
2260 if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL)
2261 return (EAGAIN);
2264 * We check for read error in snf_deque. It has to check
2265 * for successful READ_DONE and return NULL, and we might
2266 * as well make an additional check there.
2268 while ((mp = snf_deque(sr)) != NULL) {
2270 if (ISSIG(curthread, JUSTLOOKING)) {
2271 freeb(mp);
2272 error = EINTR;
2273 break;
2275 iosize = MBLKL(mp);
2277 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2279 if (error != 0) {
2280 if (mp != NULL)
2281 freeb(mp);
2282 break;
2284 ksize += iosize;
2286 *count = ksize;
2288 mutex_enter(&sr->sr_lock);
2289 sr->sr_write_error = error;
2290 /* Look at the big comments on why we cv_signal here. */
2291 cv_signal(&sr->sr_cv);
2293 /* Wait for the reader to complete always. */
2294 while (!(sr->sr_read_error & SR_READ_DONE)) {
2295 cv_wait(&sr->sr_cv, &sr->sr_lock);
2297 /* If there is no write error, check for read error. */
2298 if (error == 0)
2299 error = (sr->sr_read_error & ~SR_READ_DONE);
2301 if (error != 0) {
2302 mblk_t *next_mp;
2304 mp = sr->sr_mp_head;
2305 while (mp != NULL) {
2306 next_mp = mp->b_next;
2307 mp->b_next = NULL;
2308 freeb(mp);
2309 mp = next_mp;
2312 mutex_exit(&sr->sr_lock);
2313 kmem_free(sr, sizeof (snf_req_t));
2314 return (error);
2317 /* Maximum no.of pages allocated by vpm for sendfile at a time */
2318 #define SNF_VPMMAXPGS (VPMMAXPGS/2)
2321 * Maximum no.of elements in the list returned by vpm, including
2322 * NULL for the last entry
2324 #define SNF_MAXVMAPS (SNF_VPMMAXPGS + 1)
2326 typedef struct {
2327 unsigned int snfv_ref;
2328 frtn_t snfv_frtn;
2329 vnode_t *snfv_vp;
2330 struct vmap snfv_vml[SNF_MAXVMAPS];
2331 } snf_vmap_desbinfo;
2333 typedef struct {
2334 frtn_t snfi_frtn;
2335 caddr_t snfi_base;
2336 uint_t snfi_mapoff;
2337 size_t snfi_len;
2338 vnode_t *snfi_vp;
2339 } snf_smap_desbinfo;
2342 * The callback function used for vpm mapped mblks called when the last ref of
2343 * the mblk is dropped which normally occurs when TCP receives the ack. But it
2344 * can be the driver too due to lazy reclaim.
2346 void
2347 snf_vmap_desbfree(snf_vmap_desbinfo *snfv)
2349 ASSERT(snfv->snfv_ref != 0);
2350 if (atomic_dec_32_nv(&snfv->snfv_ref) == 0) {
2351 vpm_unmap_pages(snfv->snfv_vml, S_READ);
2352 VN_RELE(snfv->snfv_vp);
2353 kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2358 * The callback function used for segmap'ped mblks called when the last ref of
2359 * the mblk is dropped which normally occurs when TCP receives the ack. But it
2360 * can be the driver too due to lazy reclaim.
2362 void
2363 snf_smap_desbfree(snf_smap_desbinfo *snfi)
2365 if (! IS_KPM_ADDR(snfi->snfi_base)) {
2367 * We don't need to call segmap_fault(F_SOFTUNLOCK) for
2368 * segmap_kpm as long as the latter never falls back to
2369 * "use_segmap_range". (See segmap_getmapflt().)
2371 * Using S_OTHER saves an redundant hat_setref() in
2372 * segmap_unlock()
2374 (void) segmap_fault(kas.a_hat, segkmap,
2375 (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base +
2376 snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len,
2377 F_SOFTUNLOCK, S_OTHER);
2379 (void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED);
2380 VN_RELE(snfi->snfi_vp);
2381 kmem_free(snfi, sizeof (*snfi));
2385 * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk.
2386 * When segmap is used, the mblk contains a segmap slot of no more
2387 * than MAXBSIZE.
2389 * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained
2390 * in each iteration and sent by socket_sendmblk until an error occurs or
2391 * the requested size has been transferred. An mblk is esballoca'ed from
2392 * each mapped page and a chain of these mblk is sent to the transport layer.
2393 * vpm will be called to unmap the pages when all mblks have been freed by
2394 * free_func.
2396 * At the end of the whole sendfile() operation, we wait till the data from
2397 * the last mblk is ack'ed by the transport before returning so that the
2398 * caller of sendfile() can safely modify the file content.
2401 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size,
2402 ssize_t *count, boolean_t nowait)
2404 caddr_t base;
2405 int mapoff;
2406 vnode_t *vp;
2407 mblk_t *mp = NULL;
2408 int chain_size;
2409 int error;
2410 clock_t deadlk_wait;
2411 short fflag;
2412 int ksize;
2413 struct vattr va;
2414 boolean_t dowait = B_FALSE;
2415 struct nmsghdr msg;
2417 vp = fp->f_vnode;
2418 fflag = fp->f_flag;
2419 ksize = 0;
2420 bzero(&msg, sizeof (msg));
2422 for (;;) {
2423 if (ISSIG(curthread, JUSTLOOKING)) {
2424 error = EINTR;
2425 break;
2428 if (vpm_enable) {
2429 snf_vmap_desbinfo *snfv;
2430 mblk_t *nmp;
2431 int mblk_size;
2432 int maxsize;
2433 int i;
2435 mapoff = fileoff & PAGEOFFSET;
2436 maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size);
2438 snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo),
2439 KM_SLEEP);
2442 * Get vpm mappings for maxsize with read access.
2443 * If the pages aren't available yet, we get
2444 * DEADLK, so wait and try again a little later using
2445 * an increasing wait. We might be here a long time.
2447 * If delay_sig returns EINTR, be sure to exit and
2448 * pass it up to the caller.
2450 deadlk_wait = 0;
2451 while ((error = vpm_map_pages(fvp, fileoff,
2452 (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml,
2453 SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) {
2454 deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2455 if ((error = delay_sig(deadlk_wait)) != 0) {
2456 break;
2459 if (error != 0) {
2460 kmem_free(snfv, sizeof (snf_vmap_desbinfo));
2461 error = (error == EINTR) ? EINTR : EIO;
2462 goto out;
2464 snfv->snfv_frtn.free_func = snf_vmap_desbfree;
2465 snfv->snfv_frtn.free_arg = (caddr_t)snfv;
2467 /* Construct the mblk chain from the page mappings */
2468 chain_size = 0;
2469 for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) &&
2470 total_size > 0; i++) {
2471 ASSERT(chain_size < maxsize);
2472 mblk_size = MIN(snfv->snfv_vml[i].vs_len -
2473 mapoff, total_size);
2474 nmp = esballoca(
2475 (uchar_t *)snfv->snfv_vml[i].vs_addr +
2476 mapoff, mblk_size, BPRI_HI,
2477 &snfv->snfv_frtn);
2480 * We return EAGAIN after unmapping the pages
2481 * if we cannot allocate the the head of the
2482 * chain. Otherwise, we continue sending the
2483 * mblks constructed so far.
2485 if (nmp == NULL) {
2486 if (i == 0) {
2487 vpm_unmap_pages(snfv->snfv_vml,
2488 S_READ);
2489 kmem_free(snfv,
2490 sizeof (snf_vmap_desbinfo));
2491 error = EAGAIN;
2492 goto out;
2494 break;
2496 /* Mark this dblk with the zero-copy flag */
2497 nmp->b_datap->db_struioflag |= STRUIO_ZC;
2498 nmp->b_wptr += mblk_size;
2499 chain_size += mblk_size;
2500 fileoff += mblk_size;
2501 total_size -= mblk_size;
2502 snfv->snfv_ref++;
2503 mapoff = 0;
2504 if (i > 0)
2505 linkb(mp, nmp);
2506 else
2507 mp = nmp;
2509 VN_HOLD(fvp);
2510 snfv->snfv_vp = fvp;
2511 } else {
2512 /* vpm not supported. fallback to segmap */
2513 snf_smap_desbinfo *snfi;
2515 mapoff = fileoff & MAXBOFFSET;
2516 chain_size = MAXBSIZE - mapoff;
2517 if (chain_size > total_size)
2518 chain_size = total_size;
2520 * we don't forcefault because we'll call
2521 * segmap_fault(F_SOFTLOCK) next.
2523 * S_READ will get the ref bit set (by either
2524 * segmap_getmapflt() or segmap_fault()) and page
2525 * shared locked.
2527 base = segmap_getmapflt(segkmap, fvp, fileoff,
2528 chain_size, segmap_kpm ? SM_FAULT : 0, S_READ);
2530 snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP);
2531 snfi->snfi_len = (size_t)roundup(mapoff+chain_size,
2532 PAGESIZE)- (mapoff & PAGEMASK);
2534 * We must call segmap_fault() even for segmap_kpm
2535 * because that's how error gets returned.
2536 * (segmap_getmapflt() never fails but segmap_fault()
2537 * does.)
2539 * If the pages aren't available yet, we get
2540 * DEADLK, so wait and try again a little later using
2541 * an increasing wait. We might be here a long time.
2543 * If delay_sig returns EINTR, be sure to exit and
2544 * pass it up to the caller.
2546 deadlk_wait = 0;
2547 while ((error = FC_ERRNO(segmap_fault(kas.a_hat,
2548 segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base +
2549 mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK,
2550 S_READ))) == EDEADLK) {
2551 deadlk_wait += (deadlk_wait < 5) ? 1 : 4;
2552 if ((error = delay_sig(deadlk_wait)) != 0) {
2553 break;
2556 if (error != 0) {
2557 (void) segmap_release(segkmap, base, 0);
2558 kmem_free(snfi, sizeof (*snfi));
2559 error = (error == EINTR) ? EINTR : EIO;
2560 goto out;
2562 snfi->snfi_frtn.free_func = snf_smap_desbfree;
2563 snfi->snfi_frtn.free_arg = (caddr_t)snfi;
2564 snfi->snfi_base = base;
2565 snfi->snfi_mapoff = mapoff;
2566 mp = esballoca((uchar_t *)base + mapoff, chain_size,
2567 BPRI_HI, &snfi->snfi_frtn);
2569 if (mp == NULL) {
2570 (void) segmap_fault(kas.a_hat, segkmap,
2571 (caddr_t)(uintptr_t)(((uintptr_t)base +
2572 mapoff) & PAGEMASK), snfi->snfi_len,
2573 F_SOFTUNLOCK, S_OTHER);
2574 (void) segmap_release(segkmap, base, 0);
2575 kmem_free(snfi, sizeof (*snfi));
2576 freemsg(mp);
2577 error = EAGAIN;
2578 goto out;
2580 VN_HOLD(fvp);
2581 snfi->snfi_vp = fvp;
2582 mp->b_wptr += chain_size;
2584 /* Mark this dblk with the zero-copy flag */
2585 mp->b_datap->db_struioflag |= STRUIO_ZC;
2586 fileoff += chain_size;
2587 total_size -= chain_size;
2590 if (total_size == 0 && !nowait) {
2591 ASSERT(!dowait);
2592 dowait = B_TRUE;
2593 mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
2595 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2596 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2597 if (error != 0) {
2599 * mp contains the mblks that were not sent by
2600 * socket_sendmblk. Use its size to update *count
2602 *count = ksize + (chain_size - msgdsize(mp));
2603 if (mp != NULL)
2604 freemsg(mp);
2605 return (error);
2607 ksize += chain_size;
2608 if (total_size == 0)
2609 goto done;
2611 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2612 va.va_mask = AT_SIZE;
2613 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2614 if (error)
2615 break;
2616 /* Read as much as possible. */
2617 if (fileoff >= va.va_size)
2618 break;
2619 if (total_size + fileoff > va.va_size)
2620 total_size = va.va_size - fileoff;
2622 out:
2623 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2624 done:
2625 *count = ksize;
2626 if (dowait) {
2627 stdata_t *stp;
2629 stp = vp->v_stream;
2630 if (stp == NULL) {
2631 struct sonode *so;
2632 so = VTOSO(vp);
2633 error = so_zcopy_wait(so);
2634 } else {
2635 mutex_enter(&stp->sd_lock);
2636 while (!(stp->sd_flag & STZCNOTIFY)) {
2637 if (cv_wait_sig(&stp->sd_zcopy_wait,
2638 &stp->sd_lock) == 0) {
2639 error = EINTR;
2640 break;
2643 stp->sd_flag &= ~STZCNOTIFY;
2644 mutex_exit(&stp->sd_lock);
2647 return (error);
2651 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size,
2652 uint_t maxpsz, ssize_t *count)
2654 struct vnode *vp;
2655 mblk_t *mp;
2656 int iosize;
2657 int extra = 0;
2658 int error;
2659 short fflag;
2660 int ksize;
2661 int ioflag;
2662 struct uio auio;
2663 struct iovec aiov;
2664 struct vattr va;
2665 int maxblk = 0;
2666 int wroff = 0;
2667 struct sonode *so;
2668 struct nmsghdr msg;
2670 vp = fp->f_vnode;
2671 if (vp->v_type == VSOCK) {
2672 stdata_t *stp;
2675 * Get the extra space to insert a header and a trailer.
2677 so = VTOSO(vp);
2678 stp = vp->v_stream;
2679 if (stp == NULL) {
2680 wroff = so->so_proto_props.sopp_wroff;
2681 maxblk = so->so_proto_props.sopp_maxblk;
2682 extra = wroff + so->so_proto_props.sopp_tail;
2683 } else {
2684 wroff = (int)(stp->sd_wroff);
2685 maxblk = (int)(stp->sd_maxblk);
2686 extra = wroff + (int)(stp->sd_tail);
2689 bzero(&msg, sizeof (msg));
2690 fflag = fp->f_flag;
2691 ksize = 0;
2692 auio.uio_iov = &aiov;
2693 auio.uio_iovcnt = 1;
2694 auio.uio_segflg = UIO_SYSSPACE;
2695 auio.uio_llimit = MAXOFFSET_T;
2696 auio.uio_fmode = fflag;
2697 auio.uio_extflg = UIO_COPY_CACHED;
2698 ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC);
2699 /* If read sync is not asked for, filter sync flags */
2700 if ((ioflag & FRSYNC) == 0)
2701 ioflag &= ~(FSYNC|FDSYNC);
2702 for (;;) {
2703 if (ISSIG(curthread, JUSTLOOKING)) {
2704 error = EINTR;
2705 break;
2707 iosize = (int)MIN(maxpsz, size);
2710 * Socket filters can limit the mblk size,
2711 * so limit reads to maxblk if there are
2712 * filters present.
2714 if (vp->v_type == VSOCK &&
2715 so->so_filter_active > 0 && maxblk != INFPSZ)
2716 iosize = (int)MIN(iosize, maxblk);
2718 if (is_system_labeled()) {
2719 mp = allocb_cred(iosize + extra, CRED(),
2720 curproc->p_pid);
2721 } else {
2722 mp = allocb(iosize + extra, BPRI_MED);
2724 if (mp == NULL) {
2725 error = EAGAIN;
2726 break;
2729 mp->b_rptr += wroff;
2731 aiov.iov_base = (caddr_t)mp->b_rptr;
2732 aiov.iov_len = iosize;
2733 auio.uio_loffset = fileoff;
2734 auio.uio_resid = iosize;
2736 error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL);
2737 iosize -= auio.uio_resid;
2739 if (error == EINTR && iosize != 0)
2740 error = 0;
2742 if (error != 0 || iosize == 0) {
2743 freeb(mp);
2744 break;
2746 mp->b_wptr = mp->b_rptr + iosize;
2748 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2750 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp);
2752 if (error != 0) {
2753 *count = ksize;
2754 if (mp != NULL)
2755 freeb(mp);
2756 return (error);
2758 ksize += iosize;
2759 size -= iosize;
2760 if (size == 0)
2761 goto done;
2763 fileoff += iosize;
2764 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2765 va.va_mask = AT_SIZE;
2766 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2767 if (error)
2768 break;
2769 /* Read as much as possible. */
2770 if (fileoff >= va.va_size)
2771 size = 0;
2772 else if (size + fileoff > va.va_size)
2773 size = va.va_size - fileoff;
2775 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2776 done:
2777 *count = ksize;
2778 return (error);
2781 #if defined(_SYSCALL32_IMPL) || defined(_ILP32)
2783 * Largefile support for 32 bit applications only.
2786 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv,
2787 ssize32_t *count32)
2789 ssize32_t sfv_len;
2790 u_offset_t sfv_off, va_size;
2791 struct vnode *vp, *fvp, *realvp;
2792 struct vattr va;
2793 stdata_t *stp;
2794 ssize_t count = 0;
2795 int error = 0;
2796 boolean_t dozcopy = B_FALSE;
2797 uint_t maxpsz;
2799 sfv_len = (ssize32_t)sfv->sfv_len;
2800 if (sfv_len < 0) {
2801 error = EINVAL;
2802 goto out;
2805 if (sfv_len == 0) goto out;
2807 sfv_off = (u_offset_t)sfv->sfv_off;
2809 /* Same checks as in pread */
2810 if (sfv_off > MAXOFFSET_T) {
2811 error = EINVAL;
2812 goto out;
2814 if (sfv_off + sfv_len > MAXOFFSET_T)
2815 sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off);
2818 * There are no more checks on sfv_len. So, we cast it to
2819 * u_offset_t and share the snf_direct_io/snf_cache code between
2820 * 32 bit and 64 bit.
2822 * TODO: should do nbl_need_check() like read()?
2824 if (sfv_len > sendfile_max_size) {
2825 sf_stats.ss_file_not_cached++;
2826 error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len,
2827 &count);
2828 goto out;
2830 fvp = rfp->f_vnode;
2831 if (VOP_REALVP(fvp, &realvp, NULL) == 0)
2832 fvp = realvp;
2834 * Grab the lock as a reader to prevent the file size
2835 * from changing underneath.
2837 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2838 va.va_mask = AT_SIZE;
2839 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL);
2840 va_size = va.va_size;
2841 if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) {
2842 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL);
2843 goto out;
2845 /* Read as much as possible. */
2846 if (sfv_off + sfv_len > va_size)
2847 sfv_len = va_size - sfv_off;
2849 vp = fp->f_vnode;
2850 stp = vp->v_stream;
2852 * When the NOWAIT flag is not set, we enable zero-copy only if the
2853 * transfer size is large enough. This prevents performance loss
2854 * when the caller sends the file piece by piece.
2856 if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) ||
2857 (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) &&
2858 !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) {
2859 uint_t copyflag;
2860 copyflag = stp != NULL ? stp->sd_copyflag :
2861 VTOSO(vp)->so_proto_props.sopp_zcopyflag;
2862 if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) {
2863 int on = 1;
2865 if (socket_setsockopt(VTOSO(vp), SOL_SOCKET,
2866 SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0)
2867 dozcopy = B_TRUE;
2868 } else {
2869 dozcopy = copyflag & STZCVMSAFE;
2872 if (dozcopy) {
2873 sf_stats.ss_file_segmap++;
2874 error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2875 &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0));
2876 } else {
2877 if (vp->v_type == VSOCK && stp == NULL) {
2878 sonode_t *so = VTOSO(vp);
2879 maxpsz = so->so_proto_props.sopp_maxpsz;
2880 } else if (stp != NULL) {
2881 maxpsz = stp->sd_qn_maxpsz;
2882 } else {
2883 maxpsz = maxphys;
2886 if (maxpsz == INFPSZ)
2887 maxpsz = maxphys;
2888 else
2889 maxpsz = roundup(maxpsz, MAXBSIZE);
2890 sf_stats.ss_file_cached++;
2891 error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len,
2892 maxpsz, &count);
2894 out:
2895 releasef(sfv->sfv_fd);
2896 *count32 = (ssize32_t)count;
2897 return (error);
2899 #endif
2901 #ifdef _SYSCALL32_IMPL
2903 * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a
2904 * ssize_t rather than ssize32_t; see the comments above read32 for details.
2907 ssize_t
2908 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2910 return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2913 ssize_t
2914 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2915 caddr32_t name, caddr32_t namelenp)
2917 return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2918 (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp));
2921 ssize_t
2922 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags)
2924 return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags));
2927 ssize_t
2928 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags,
2929 caddr32_t name, socklen_t namelen)
2931 return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags,
2932 (void *)(uintptr_t)name, namelen));
2934 #endif /* _SYSCALL32_IMPL */
2937 * Function wrappers (mostly around the sonode switch) for
2938 * backward compatibility.
2942 soaccept(struct sonode *so, int fflag, struct sonode **nsop)
2944 return (socket_accept(so, fflag, CRED(), nsop));
2948 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen,
2949 int backlog, int flags)
2951 int error;
2953 error = socket_bind(so, name, namelen, flags, CRED());
2954 if (error == 0 && backlog != 0)
2955 return (socket_listen(so, backlog, CRED()));
2957 return (error);
2961 solisten(struct sonode *so, int backlog)
2963 return (socket_listen(so, backlog, CRED()));
2967 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen,
2968 int fflag, int flags)
2970 return (socket_connect(so, name, namelen, fflag, flags, CRED()));
2974 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
2976 return (socket_recvmsg(so, msg, uiop, CRED()));
2980 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop)
2982 return (socket_sendmsg(so, msg, uiop, CRED()));
2986 soshutdown(struct sonode *so, int how)
2988 return (socket_shutdown(so, how, CRED()));
2992 sogetsockopt(struct sonode *so, int level, int option_name, void *optval,
2993 socklen_t *optlenp, int flags)
2995 return (socket_getsockopt(so, level, option_name, optval, optlenp,
2996 flags, CRED()));
3000 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval,
3001 t_uscalar_t optlen)
3003 return (socket_setsockopt(so, level, option_name, optval, optlen,
3004 CRED()));
3008 * Because this is backward compatibility interface it only needs to be
3009 * able to handle the creation of TPI sockfs sockets.
3011 struct sonode *
3012 socreate(struct sockparams *sp, int family, int type, int protocol,
3013 int *errorp)
3015 struct sonode *so;
3017 ASSERT(sp != NULL);
3019 so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol,
3020 SOCKET_SLEEP, errorp, CRED());
3021 if (so == NULL) {
3022 SOCKPARAMS_DEC_REF(sp);
3023 } else {
3024 if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) {
3025 /* Cannot fail, only bumps so_count */
3026 (void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL);
3027 } else {
3028 socket_destroy(so);
3029 so = NULL;
3032 return (so);