8067 zdb should be able to dump literal embedded block pointer
[unleashed.git] / usr / src / uts / common / fs / zfs / abd.c
blob932ba800ed5f11f0fd319f261c92f0504366b43b
1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
13 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
14 * Copyright (c) 2016 by Delphix. All rights reserved.
18 * ARC buffer data (ABD).
20 * ABDs are an abstract data structure for the ARC which can use two
21 * different ways of storing the underlying data:
23 * (a) Linear buffer. In this case, all the data in the ABD is stored in one
24 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
26 * +-------------------+
27 * | ABD (linear) |
28 * | abd_flags = ... |
29 * | abd_size = ... | +--------------------------------+
30 * | abd_buf ------------->| raw buffer of size abd_size |
31 * +-------------------+ +--------------------------------+
32 * no abd_chunks
34 * (b) Scattered buffer. In this case, the data in the ABD is split into
35 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
36 * to the chunks recorded in an array at the end of the ABD structure.
38 * +-------------------+
39 * | ABD (scattered) |
40 * | abd_flags = ... |
41 * | abd_size = ... |
42 * | abd_offset = 0 | +-----------+
43 * | abd_chunks[0] ----------------------------->| chunk 0 |
44 * | abd_chunks[1] ---------------------+ +-----------+
45 * | ... | | +-----------+
46 * | abd_chunks[N-1] ---------+ +------->| chunk 1 |
47 * +-------------------+ | +-----------+
48 * | ...
49 * | +-----------+
50 * +----------------->| chunk N-1 |
51 * +-----------+
53 * Using a large proportion of scattered ABDs decreases ARC fragmentation since
54 * when we are at the limit of allocatable space, using equal-size chunks will
55 * allow us to quickly reclaim enough space for a new large allocation (assuming
56 * it is also scattered).
58 * In addition to directly allocating a linear or scattered ABD, it is also
59 * possible to create an ABD by requesting the "sub-ABD" starting at an offset
60 * within an existing ABD. In linear buffers this is simple (set abd_buf of
61 * the new ABD to the starting point within the original raw buffer), but
62 * scattered ABDs are a little more complex. The new ABD makes a copy of the
63 * relevant abd_chunks pointers (but not the underlying data). However, to
64 * provide arbitrary rather than only chunk-aligned starting offsets, it also
65 * tracks an abd_offset field which represents the starting point of the data
66 * within the first chunk in abd_chunks. For both linear and scattered ABDs,
67 * creating an offset ABD marks the original ABD as the offset's parent, and the
68 * original ABD's abd_children refcount is incremented. This data allows us to
69 * ensure the root ABD isn't deleted before its children.
71 * Most consumers should never need to know what type of ABD they're using --
72 * the ABD public API ensures that it's possible to transparently switch from
73 * using a linear ABD to a scattered one when doing so would be beneficial.
75 * If you need to use the data within an ABD directly, if you know it's linear
76 * (because you allocated it) you can use abd_to_buf() to access the underlying
77 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
78 * which will allocate a raw buffer if necessary. Use the abd_return_buf*
79 * functions to return any raw buffers that are no longer necessary when you're
80 * done using them.
82 * There are a variety of ABD APIs that implement basic buffer operations:
83 * compare, copy, read, write, and fill with zeroes. If you need a custom
84 * function which progressively accesses the whole ABD, use the abd_iterate_*
85 * functions.
88 #include <sys/abd.h>
89 #include <sys/param.h>
90 #include <sys/zio.h>
91 #include <sys/zfs_context.h>
92 #include <sys/zfs_znode.h>
94 typedef struct abd_stats {
95 kstat_named_t abdstat_struct_size;
96 kstat_named_t abdstat_scatter_cnt;
97 kstat_named_t abdstat_scatter_data_size;
98 kstat_named_t abdstat_scatter_chunk_waste;
99 kstat_named_t abdstat_linear_cnt;
100 kstat_named_t abdstat_linear_data_size;
101 } abd_stats_t;
103 static abd_stats_t abd_stats = {
104 /* Amount of memory occupied by all of the abd_t struct allocations */
105 { "struct_size", KSTAT_DATA_UINT64 },
107 * The number of scatter ABDs which are currently allocated, excluding
108 * ABDs which don't own their data (for instance the ones which were
109 * allocated through abd_get_offset()).
111 { "scatter_cnt", KSTAT_DATA_UINT64 },
112 /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
113 { "scatter_data_size", KSTAT_DATA_UINT64 },
115 * The amount of space wasted at the end of the last chunk across all
116 * scatter ABDs tracked by scatter_cnt.
118 { "scatter_chunk_waste", KSTAT_DATA_UINT64 },
120 * The number of linear ABDs which are currently allocated, excluding
121 * ABDs which don't own their data (for instance the ones which were
122 * allocated through abd_get_offset() and abd_get_from_buf()). If an
123 * ABD takes ownership of its buf then it will become tracked.
125 { "linear_cnt", KSTAT_DATA_UINT64 },
126 /* Amount of data stored in all linear ABDs tracked by linear_cnt */
127 { "linear_data_size", KSTAT_DATA_UINT64 },
130 #define ABDSTAT(stat) (abd_stats.stat.value.ui64)
131 #define ABDSTAT_INCR(stat, val) \
132 atomic_add_64(&abd_stats.stat.value.ui64, (val))
133 #define ABDSTAT_BUMP(stat) ABDSTAT_INCR(stat, 1)
134 #define ABDSTAT_BUMPDOWN(stat) ABDSTAT_INCR(stat, -1)
137 * It is possible to make all future ABDs be linear by setting this to B_FALSE.
138 * Otherwise, ABDs are allocated scattered by default unless the caller uses
139 * abd_alloc_linear().
141 boolean_t zfs_abd_scatter_enabled = B_TRUE;
144 * The size of the chunks ABD allocates. Because the sizes allocated from the
145 * kmem_cache can't change, this tunable can only be modified at boot. Changing
146 * it at runtime would cause ABD iteration to work incorrectly for ABDs which
147 * were allocated with the old size, so a safeguard has been put in place which
148 * will cause the machine to panic if you change it and try to access the data
149 * within a scattered ABD.
151 size_t zfs_abd_chunk_size = 4096;
153 #ifdef _KERNEL
154 extern vmem_t *zio_alloc_arena;
155 #endif
157 kmem_cache_t *abd_chunk_cache;
158 static kstat_t *abd_ksp;
160 static void *
161 abd_alloc_chunk()
163 void *c = kmem_cache_alloc(abd_chunk_cache, KM_PUSHPAGE);
164 ASSERT3P(c, !=, NULL);
165 return (c);
168 static void
169 abd_free_chunk(void *c)
171 kmem_cache_free(abd_chunk_cache, c);
174 void
175 abd_init(void)
177 vmem_t *data_alloc_arena = NULL;
179 #ifdef _KERNEL
180 data_alloc_arena = zio_alloc_arena;
181 #endif
184 * Since ABD chunks do not appear in crash dumps, we pass KMC_NOTOUCH
185 * so that no allocator metadata is stored with the buffers.
187 abd_chunk_cache = kmem_cache_create("abd_chunk", zfs_abd_chunk_size, 0,
188 NULL, NULL, NULL, NULL, data_alloc_arena, KMC_NOTOUCH);
190 abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
191 sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
192 if (abd_ksp != NULL) {
193 abd_ksp->ks_data = &abd_stats;
194 kstat_install(abd_ksp);
198 void
199 abd_fini(void)
201 if (abd_ksp != NULL) {
202 kstat_delete(abd_ksp);
203 abd_ksp = NULL;
206 kmem_cache_destroy(abd_chunk_cache);
207 abd_chunk_cache = NULL;
210 static inline size_t
211 abd_chunkcnt_for_bytes(size_t size)
213 return (P2ROUNDUP(size, zfs_abd_chunk_size) / zfs_abd_chunk_size);
216 static inline size_t
217 abd_scatter_chunkcnt(abd_t *abd)
219 ASSERT(!abd_is_linear(abd));
220 return (abd_chunkcnt_for_bytes(
221 abd->abd_u.abd_scatter.abd_offset + abd->abd_size));
224 static inline void
225 abd_verify(abd_t *abd)
227 ASSERT3U(abd->abd_size, >, 0);
228 ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
229 ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
230 ABD_FLAG_OWNER | ABD_FLAG_META));
231 IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
232 IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
233 if (abd_is_linear(abd)) {
234 ASSERT3P(abd->abd_u.abd_linear.abd_buf, !=, NULL);
235 } else {
236 ASSERT3U(abd->abd_u.abd_scatter.abd_offset, <,
237 zfs_abd_chunk_size);
238 size_t n = abd_scatter_chunkcnt(abd);
239 for (int i = 0; i < n; i++) {
240 ASSERT3P(
241 abd->abd_u.abd_scatter.abd_chunks[i], !=, NULL);
246 static inline abd_t *
247 abd_alloc_struct(size_t chunkcnt)
249 size_t size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]);
250 abd_t *abd = kmem_alloc(size, KM_PUSHPAGE);
251 ASSERT3P(abd, !=, NULL);
252 ABDSTAT_INCR(abdstat_struct_size, size);
254 return (abd);
257 static inline void
258 abd_free_struct(abd_t *abd)
260 size_t chunkcnt = abd_is_linear(abd) ? 0 : abd_scatter_chunkcnt(abd);
261 int size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]);
262 kmem_free(abd, size);
263 ABDSTAT_INCR(abdstat_struct_size, -size);
267 * Allocate an ABD, along with its own underlying data buffers. Use this if you
268 * don't care whether the ABD is linear or not.
270 abd_t *
271 abd_alloc(size_t size, boolean_t is_metadata)
273 if (!zfs_abd_scatter_enabled)
274 return (abd_alloc_linear(size, is_metadata));
276 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
278 size_t n = abd_chunkcnt_for_bytes(size);
279 abd_t *abd = abd_alloc_struct(n);
281 abd->abd_flags = ABD_FLAG_OWNER;
282 if (is_metadata) {
283 abd->abd_flags |= ABD_FLAG_META;
285 abd->abd_size = size;
286 abd->abd_parent = NULL;
287 refcount_create(&abd->abd_children);
289 abd->abd_u.abd_scatter.abd_offset = 0;
290 abd->abd_u.abd_scatter.abd_chunk_size = zfs_abd_chunk_size;
292 for (int i = 0; i < n; i++) {
293 void *c = abd_alloc_chunk();
294 ASSERT3P(c, !=, NULL);
295 abd->abd_u.abd_scatter.abd_chunks[i] = c;
298 ABDSTAT_BUMP(abdstat_scatter_cnt);
299 ABDSTAT_INCR(abdstat_scatter_data_size, size);
300 ABDSTAT_INCR(abdstat_scatter_chunk_waste,
301 n * zfs_abd_chunk_size - size);
303 return (abd);
306 static void
307 abd_free_scatter(abd_t *abd)
309 size_t n = abd_scatter_chunkcnt(abd);
310 for (int i = 0; i < n; i++) {
311 abd_free_chunk(abd->abd_u.abd_scatter.abd_chunks[i]);
314 refcount_destroy(&abd->abd_children);
315 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
316 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
317 ABDSTAT_INCR(abdstat_scatter_chunk_waste,
318 abd->abd_size - n * zfs_abd_chunk_size);
320 abd_free_struct(abd);
324 * Allocate an ABD that must be linear, along with its own underlying data
325 * buffer. Only use this when it would be very annoying to write your ABD
326 * consumer with a scattered ABD.
328 abd_t *
329 abd_alloc_linear(size_t size, boolean_t is_metadata)
331 abd_t *abd = abd_alloc_struct(0);
333 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
335 abd->abd_flags = ABD_FLAG_LINEAR | ABD_FLAG_OWNER;
336 if (is_metadata) {
337 abd->abd_flags |= ABD_FLAG_META;
339 abd->abd_size = size;
340 abd->abd_parent = NULL;
341 refcount_create(&abd->abd_children);
343 if (is_metadata) {
344 abd->abd_u.abd_linear.abd_buf = zio_buf_alloc(size);
345 } else {
346 abd->abd_u.abd_linear.abd_buf = zio_data_buf_alloc(size);
349 ABDSTAT_BUMP(abdstat_linear_cnt);
350 ABDSTAT_INCR(abdstat_linear_data_size, size);
352 return (abd);
355 static void
356 abd_free_linear(abd_t *abd)
358 if (abd->abd_flags & ABD_FLAG_META) {
359 zio_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size);
360 } else {
361 zio_data_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size);
364 refcount_destroy(&abd->abd_children);
365 ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
366 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
368 abd_free_struct(abd);
372 * Free an ABD. Only use this on ABDs allocated with abd_alloc() or
373 * abd_alloc_linear().
375 void
376 abd_free(abd_t *abd)
378 abd_verify(abd);
379 ASSERT3P(abd->abd_parent, ==, NULL);
380 ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
381 if (abd_is_linear(abd))
382 abd_free_linear(abd);
383 else
384 abd_free_scatter(abd);
388 * Allocate an ABD of the same format (same metadata flag, same scatterize
389 * setting) as another ABD.
391 abd_t *
392 abd_alloc_sametype(abd_t *sabd, size_t size)
394 boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0;
395 if (abd_is_linear(sabd)) {
396 return (abd_alloc_linear(size, is_metadata));
397 } else {
398 return (abd_alloc(size, is_metadata));
403 * If we're going to use this ABD for doing I/O using the block layer, the
404 * consumer of the ABD data doesn't care if it's scattered or not, and we don't
405 * plan to store this ABD in memory for a long period of time, we should
406 * allocate the ABD type that requires the least data copying to do the I/O.
408 * Currently this is linear ABDs, however if ldi_strategy() can ever issue I/Os
409 * using a scatter/gather list we should switch to that and replace this call
410 * with vanilla abd_alloc().
412 abd_t *
413 abd_alloc_for_io(size_t size, boolean_t is_metadata)
415 return (abd_alloc_linear(size, is_metadata));
419 * Allocate a new ABD to point to offset off of sabd. It shares the underlying
420 * buffer data with sabd. Use abd_put() to free. sabd must not be freed while
421 * any derived ABDs exist.
423 abd_t *
424 abd_get_offset(abd_t *sabd, size_t off)
426 abd_t *abd;
428 abd_verify(sabd);
429 ASSERT3U(off, <=, sabd->abd_size);
431 if (abd_is_linear(sabd)) {
432 abd = abd_alloc_struct(0);
435 * Even if this buf is filesystem metadata, we only track that
436 * if we own the underlying data buffer, which is not true in
437 * this case. Therefore, we don't ever use ABD_FLAG_META here.
439 abd->abd_flags = ABD_FLAG_LINEAR;
441 abd->abd_u.abd_linear.abd_buf =
442 (char *)sabd->abd_u.abd_linear.abd_buf + off;
443 } else {
444 size_t new_offset = sabd->abd_u.abd_scatter.abd_offset + off;
445 size_t chunkcnt = abd_scatter_chunkcnt(sabd) -
446 (new_offset / zfs_abd_chunk_size);
448 abd = abd_alloc_struct(chunkcnt);
451 * Even if this buf is filesystem metadata, we only track that
452 * if we own the underlying data buffer, which is not true in
453 * this case. Therefore, we don't ever use ABD_FLAG_META here.
455 abd->abd_flags = 0;
457 abd->abd_u.abd_scatter.abd_offset =
458 new_offset % zfs_abd_chunk_size;
459 abd->abd_u.abd_scatter.abd_chunk_size = zfs_abd_chunk_size;
461 /* Copy the scatterlist starting at the correct offset */
462 (void) memcpy(&abd->abd_u.abd_scatter.abd_chunks,
463 &sabd->abd_u.abd_scatter.abd_chunks[new_offset /
464 zfs_abd_chunk_size],
465 chunkcnt * sizeof (void *));
468 abd->abd_size = sabd->abd_size - off;
469 abd->abd_parent = sabd;
470 refcount_create(&abd->abd_children);
471 (void) refcount_add_many(&sabd->abd_children, abd->abd_size, abd);
473 return (abd);
477 * Allocate a linear ABD structure for buf. You must free this with abd_put()
478 * since the resulting ABD doesn't own its own buffer.
480 abd_t *
481 abd_get_from_buf(void *buf, size_t size)
483 abd_t *abd = abd_alloc_struct(0);
485 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
488 * Even if this buf is filesystem metadata, we only track that if we
489 * own the underlying data buffer, which is not true in this case.
490 * Therefore, we don't ever use ABD_FLAG_META here.
492 abd->abd_flags = ABD_FLAG_LINEAR;
493 abd->abd_size = size;
494 abd->abd_parent = NULL;
495 refcount_create(&abd->abd_children);
497 abd->abd_u.abd_linear.abd_buf = buf;
499 return (abd);
503 * Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not
504 * free the underlying scatterlist or buffer.
506 void
507 abd_put(abd_t *abd)
509 abd_verify(abd);
510 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
512 if (abd->abd_parent != NULL) {
513 (void) refcount_remove_many(&abd->abd_parent->abd_children,
514 abd->abd_size, abd);
517 refcount_destroy(&abd->abd_children);
518 abd_free_struct(abd);
522 * Get the raw buffer associated with a linear ABD.
524 void *
525 abd_to_buf(abd_t *abd)
527 ASSERT(abd_is_linear(abd));
528 abd_verify(abd);
529 return (abd->abd_u.abd_linear.abd_buf);
533 * Borrow a raw buffer from an ABD without copying the contents of the ABD
534 * into the buffer. If the ABD is scattered, this will allocate a raw buffer
535 * whose contents are undefined. To copy over the existing data in the ABD, use
536 * abd_borrow_buf_copy() instead.
538 void *
539 abd_borrow_buf(abd_t *abd, size_t n)
541 void *buf;
542 abd_verify(abd);
543 ASSERT3U(abd->abd_size, >=, n);
544 if (abd_is_linear(abd)) {
545 buf = abd_to_buf(abd);
546 } else {
547 buf = zio_buf_alloc(n);
549 (void) refcount_add_many(&abd->abd_children, n, buf);
551 return (buf);
554 void *
555 abd_borrow_buf_copy(abd_t *abd, size_t n)
557 void *buf = abd_borrow_buf(abd, n);
558 if (!abd_is_linear(abd)) {
559 abd_copy_to_buf(buf, abd, n);
561 return (buf);
565 * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
566 * not change the contents of the ABD and will ASSERT that you didn't modify
567 * the buffer since it was borrowed. If you want any changes you made to buf to
568 * be copied back to abd, use abd_return_buf_copy() instead.
570 void
571 abd_return_buf(abd_t *abd, void *buf, size_t n)
573 abd_verify(abd);
574 ASSERT3U(abd->abd_size, >=, n);
575 if (abd_is_linear(abd)) {
576 ASSERT3P(buf, ==, abd_to_buf(abd));
577 } else {
578 ASSERT0(abd_cmp_buf(abd, buf, n));
579 zio_buf_free(buf, n);
581 (void) refcount_remove_many(&abd->abd_children, n, buf);
584 void
585 abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
587 if (!abd_is_linear(abd)) {
588 abd_copy_from_buf(abd, buf, n);
590 abd_return_buf(abd, buf, n);
594 * Give this ABD ownership of the buffer that it's storing. Can only be used on
595 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
596 * with abd_alloc_linear() which subsequently released ownership of their buf
597 * with abd_release_ownership_of_buf().
599 void
600 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
602 ASSERT(abd_is_linear(abd));
603 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
604 abd_verify(abd);
606 abd->abd_flags |= ABD_FLAG_OWNER;
607 if (is_metadata) {
608 abd->abd_flags |= ABD_FLAG_META;
611 ABDSTAT_BUMP(abdstat_linear_cnt);
612 ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
615 void
616 abd_release_ownership_of_buf(abd_t *abd)
618 ASSERT(abd_is_linear(abd));
619 ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
620 abd_verify(abd);
622 abd->abd_flags &= ~ABD_FLAG_OWNER;
623 /* Disable this flag since we no longer own the data buffer */
624 abd->abd_flags &= ~ABD_FLAG_META;
626 ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
627 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
630 struct abd_iter {
631 abd_t *iter_abd; /* ABD being iterated through */
632 size_t iter_pos; /* position (relative to abd_offset) */
633 void *iter_mapaddr; /* addr corresponding to iter_pos */
634 size_t iter_mapsize; /* length of data valid at mapaddr */
637 static inline size_t
638 abd_iter_scatter_chunk_offset(struct abd_iter *aiter)
640 ASSERT(!abd_is_linear(aiter->iter_abd));
641 return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset +
642 aiter->iter_pos) % zfs_abd_chunk_size);
645 static inline size_t
646 abd_iter_scatter_chunk_index(struct abd_iter *aiter)
648 ASSERT(!abd_is_linear(aiter->iter_abd));
649 return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset +
650 aiter->iter_pos) / zfs_abd_chunk_size);
654 * Initialize the abd_iter.
656 static void
657 abd_iter_init(struct abd_iter *aiter, abd_t *abd)
659 abd_verify(abd);
660 aiter->iter_abd = abd;
661 aiter->iter_pos = 0;
662 aiter->iter_mapaddr = NULL;
663 aiter->iter_mapsize = 0;
667 * Advance the iterator by a certain amount. Cannot be called when a chunk is
668 * in use. This can be safely called when the aiter has already exhausted, in
669 * which case this does nothing.
671 static void
672 abd_iter_advance(struct abd_iter *aiter, size_t amount)
674 ASSERT3P(aiter->iter_mapaddr, ==, NULL);
675 ASSERT0(aiter->iter_mapsize);
677 /* There's nothing left to advance to, so do nothing */
678 if (aiter->iter_pos == aiter->iter_abd->abd_size)
679 return;
681 aiter->iter_pos += amount;
685 * Map the current chunk into aiter. This can be safely called when the aiter
686 * has already exhausted, in which case this does nothing.
688 static void
689 abd_iter_map(struct abd_iter *aiter)
691 void *paddr;
692 size_t offset = 0;
694 ASSERT3P(aiter->iter_mapaddr, ==, NULL);
695 ASSERT0(aiter->iter_mapsize);
697 /* Panic if someone has changed zfs_abd_chunk_size */
698 IMPLY(!abd_is_linear(aiter->iter_abd), zfs_abd_chunk_size ==
699 aiter->iter_abd->abd_u.abd_scatter.abd_chunk_size);
701 /* There's nothing left to iterate over, so do nothing */
702 if (aiter->iter_pos == aiter->iter_abd->abd_size)
703 return;
705 if (abd_is_linear(aiter->iter_abd)) {
706 offset = aiter->iter_pos;
707 aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
708 paddr = aiter->iter_abd->abd_u.abd_linear.abd_buf;
709 } else {
710 size_t index = abd_iter_scatter_chunk_index(aiter);
711 offset = abd_iter_scatter_chunk_offset(aiter);
712 aiter->iter_mapsize = zfs_abd_chunk_size - offset;
713 paddr = aiter->iter_abd->abd_u.abd_scatter.abd_chunks[index];
715 aiter->iter_mapaddr = (char *)paddr + offset;
719 * Unmap the current chunk from aiter. This can be safely called when the aiter
720 * has already exhausted, in which case this does nothing.
722 static void
723 abd_iter_unmap(struct abd_iter *aiter)
725 /* There's nothing left to unmap, so do nothing */
726 if (aiter->iter_pos == aiter->iter_abd->abd_size)
727 return;
729 ASSERT3P(aiter->iter_mapaddr, !=, NULL);
730 ASSERT3U(aiter->iter_mapsize, >, 0);
732 aiter->iter_mapaddr = NULL;
733 aiter->iter_mapsize = 0;
737 abd_iterate_func(abd_t *abd, size_t off, size_t size,
738 abd_iter_func_t *func, void *private)
740 int ret = 0;
741 struct abd_iter aiter;
743 abd_verify(abd);
744 ASSERT3U(off + size, <=, abd->abd_size);
746 abd_iter_init(&aiter, abd);
747 abd_iter_advance(&aiter, off);
749 while (size > 0) {
750 abd_iter_map(&aiter);
752 size_t len = MIN(aiter.iter_mapsize, size);
753 ASSERT3U(len, >, 0);
755 ret = func(aiter.iter_mapaddr, len, private);
757 abd_iter_unmap(&aiter);
759 if (ret != 0)
760 break;
762 size -= len;
763 abd_iter_advance(&aiter, len);
766 return (ret);
769 struct buf_arg {
770 void *arg_buf;
773 static int
774 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private)
776 struct buf_arg *ba_ptr = private;
778 (void) memcpy(ba_ptr->arg_buf, buf, size);
779 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
781 return (0);
785 * Copy abd to buf. (off is the offset in abd.)
787 void
788 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size)
790 struct buf_arg ba_ptr = { buf };
792 (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb,
793 &ba_ptr);
796 static int
797 abd_cmp_buf_off_cb(void *buf, size_t size, void *private)
799 int ret;
800 struct buf_arg *ba_ptr = private;
802 ret = memcmp(buf, ba_ptr->arg_buf, size);
803 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
805 return (ret);
809 * Compare the contents of abd to buf. (off is the offset in abd.)
812 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
814 struct buf_arg ba_ptr = { (void *) buf };
816 return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr));
819 static int
820 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private)
822 struct buf_arg *ba_ptr = private;
824 (void) memcpy(buf, ba_ptr->arg_buf, size);
825 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
827 return (0);
831 * Copy from buf to abd. (off is the offset in abd.)
833 void
834 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
836 struct buf_arg ba_ptr = { (void *) buf };
838 (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb,
839 &ba_ptr);
842 /*ARGSUSED*/
843 static int
844 abd_zero_off_cb(void *buf, size_t size, void *private)
846 (void) memset(buf, 0, size);
847 return (0);
851 * Zero out the abd from a particular offset to the end.
853 void
854 abd_zero_off(abd_t *abd, size_t off, size_t size)
856 (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL);
860 * Iterate over two ABDs and call func incrementally on the two ABDs' data in
861 * equal-sized chunks (passed to func as raw buffers). func could be called many
862 * times during this iteration.
865 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
866 size_t size, abd_iter_func2_t *func, void *private)
868 int ret = 0;
869 struct abd_iter daiter, saiter;
871 abd_verify(dabd);
872 abd_verify(sabd);
874 ASSERT3U(doff + size, <=, dabd->abd_size);
875 ASSERT3U(soff + size, <=, sabd->abd_size);
877 abd_iter_init(&daiter, dabd);
878 abd_iter_init(&saiter, sabd);
879 abd_iter_advance(&daiter, doff);
880 abd_iter_advance(&saiter, soff);
882 while (size > 0) {
883 abd_iter_map(&daiter);
884 abd_iter_map(&saiter);
886 size_t dlen = MIN(daiter.iter_mapsize, size);
887 size_t slen = MIN(saiter.iter_mapsize, size);
888 size_t len = MIN(dlen, slen);
889 ASSERT(dlen > 0 || slen > 0);
891 ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len,
892 private);
894 abd_iter_unmap(&saiter);
895 abd_iter_unmap(&daiter);
897 if (ret != 0)
898 break;
900 size -= len;
901 abd_iter_advance(&daiter, len);
902 abd_iter_advance(&saiter, len);
905 return (ret);
908 /*ARGSUSED*/
909 static int
910 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private)
912 (void) memcpy(dbuf, sbuf, size);
913 return (0);
917 * Copy from sabd to dabd starting from soff and doff.
919 void
920 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size)
922 (void) abd_iterate_func2(dabd, sabd, doff, soff, size,
923 abd_copy_off_cb, NULL);
926 /*ARGSUSED*/
927 static int
928 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private)
930 return (memcmp(bufa, bufb, size));
934 * Compares the first size bytes of two ABDs.
937 abd_cmp(abd_t *dabd, abd_t *sabd, size_t size)
939 return (abd_iterate_func2(dabd, sabd, 0, 0, size, abd_cmp_cb, NULL));