4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2015, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2016 by Delphix. All rights reserved.
27 #include <sys/param.h>
31 #include <sys/sysmacros.h>
32 #include <sys/cmn_err.h>
33 #include <sys/systm.h>
34 #include <sys/tuneable.h>
42 #include <sys/atomic.h>
43 #include <vm/seg_spt.h>
44 #include <sys/debug.h>
45 #include <sys/vtrace.h>
47 #include <sys/shm_impl.h>
49 #include <sys/vmsystm.h>
50 #include <sys/policy.h>
51 #include <sys/project.h>
52 #include <sys/tnf_probe.h>
55 #define SEGSPTADDR (caddr_t)0x0
58 * # pages used for spt
63 * segspt_minfree is the memory left for system after ISM
64 * locked its pages; it is set up to 5% of availrmem in
65 * sptcreate when ISM is created. ISM should not use more
66 * than ~90% of availrmem; if it does, then the performance
67 * of the system may decrease. Machines with large memories may
68 * be able to use up more memory for ISM so we set the default
69 * segspt_minfree to 5% (which gives ISM max 95% of availrmem.
70 * If somebody wants even more memory for ISM (risking hanging
71 * the system) they can patch the segspt_minfree to smaller number.
73 pgcnt_t segspt_minfree
= 0;
75 static int segspt_create(struct seg
*seg
, caddr_t argsp
);
76 static int segspt_unmap(struct seg
*seg
, caddr_t raddr
, size_t ssize
);
77 static void segspt_free(struct seg
*seg
);
78 static void segspt_free_pages(struct seg
*seg
, caddr_t addr
, size_t len
);
79 static lgrp_mem_policy_info_t
*segspt_getpolicy(struct seg
*seg
, caddr_t addr
);
84 panic("segspt_badop called");
88 #define SEGSPT_BADOP(t) (t(*)())segspt_badop
90 static const struct seg_ops segspt_ops
= {
91 .dup
= SEGSPT_BADOP(int),
92 .unmap
= segspt_unmap
,
94 .fault
= SEGSPT_BADOP(int),
95 .faulta
= SEGSPT_BADOP(faultcode_t
),
96 .setprot
= SEGSPT_BADOP(int),
97 .checkprot
= SEGSPT_BADOP(int),
98 .kluster
= SEGSPT_BADOP(int),
99 .sync
= SEGSPT_BADOP(int),
100 .incore
= SEGSPT_BADOP(size_t),
101 .lockop
= SEGSPT_BADOP(int),
102 .getprot
= SEGSPT_BADOP(int),
103 .getoffset
= SEGSPT_BADOP(uoff_t
),
104 .gettype
= SEGSPT_BADOP(int),
105 .getvp
= SEGSPT_BADOP(int),
106 .advise
= SEGSPT_BADOP(int),
107 .dump
= SEGSPT_BADOP(void),
108 .pagelock
= SEGSPT_BADOP(int),
109 .setpagesize
= SEGSPT_BADOP(int),
110 .getmemid
= SEGSPT_BADOP(int),
111 .getpolicy
= segspt_getpolicy
,
112 .capable
= SEGSPT_BADOP(int),
115 static int segspt_shmdup(struct seg
*seg
, struct seg
*newseg
);
116 static int segspt_shmunmap(struct seg
*seg
, caddr_t raddr
, size_t ssize
);
117 static void segspt_shmfree(struct seg
*seg
);
118 static faultcode_t
segspt_shmfault(struct hat
*hat
, struct seg
*seg
,
119 caddr_t addr
, size_t len
, enum fault_type type
, enum seg_rw rw
);
120 static faultcode_t
segspt_shmfaulta(struct seg
*seg
, caddr_t addr
);
121 static int segspt_shmsetprot(register struct seg
*seg
, register caddr_t addr
,
122 register size_t len
, register uint_t prot
);
123 static int segspt_shmcheckprot(struct seg
*seg
, caddr_t addr
, size_t size
,
125 static int segspt_shmkluster(struct seg
*seg
, caddr_t addr
, ssize_t delta
);
126 static size_t segspt_shmincore(struct seg
*seg
, caddr_t addr
, size_t len
,
128 static int segspt_shmsync(struct seg
*seg
, register caddr_t addr
, size_t len
,
129 int attr
, uint_t flags
);
130 static int segspt_shmlockop(struct seg
*seg
, caddr_t addr
, size_t len
,
131 int attr
, int op
, ulong_t
*lockmap
, size_t pos
);
132 static int segspt_shmgetprot(struct seg
*seg
, caddr_t addr
, size_t len
,
134 static uoff_t
segspt_shmgetoffset(struct seg
*seg
, caddr_t addr
);
135 static int segspt_shmgettype(struct seg
*seg
, caddr_t addr
);
136 static int segspt_shmgetvp(struct seg
*seg
, caddr_t addr
, struct vnode
**vpp
);
137 static int segspt_shmadvise(struct seg
*seg
, caddr_t addr
, size_t len
,
139 static int segspt_shmpagelock(struct seg
*, caddr_t
, size_t,
140 struct page
***, enum lock_type
, enum seg_rw
);
141 static int segspt_shmgetmemid(struct seg
*, caddr_t
, memid_t
*);
142 static lgrp_mem_policy_info_t
*segspt_shmgetpolicy(struct seg
*, caddr_t
);
144 const struct seg_ops segspt_shmops
= {
145 .dup
= segspt_shmdup
,
146 .unmap
= segspt_shmunmap
,
147 .free
= segspt_shmfree
,
148 .fault
= segspt_shmfault
,
149 .faulta
= segspt_shmfaulta
,
150 .setprot
= segspt_shmsetprot
,
151 .checkprot
= segspt_shmcheckprot
,
152 .kluster
= segspt_shmkluster
,
153 .sync
= segspt_shmsync
,
154 .incore
= segspt_shmincore
,
155 .lockop
= segspt_shmlockop
,
156 .getprot
= segspt_shmgetprot
,
157 .getoffset
= segspt_shmgetoffset
,
158 .gettype
= segspt_shmgettype
,
159 .getvp
= segspt_shmgetvp
,
160 .advise
= segspt_shmadvise
,
161 .pagelock
= segspt_shmpagelock
,
162 .getmemid
= segspt_shmgetmemid
,
163 .getpolicy
= segspt_shmgetpolicy
,
166 static void segspt_purge(struct seg
*seg
);
167 static int segspt_reclaim(void *, caddr_t
, size_t, struct page
**,
169 static int spt_anon_getpages(struct seg
*seg
, caddr_t addr
, size_t len
,
176 sptcreate(size_t size
, struct seg
**sptseg
, struct anon_map
*amp
,
177 uint_t prot
, uint_t flags
, uint_t share_szc
)
181 struct segspt_crargs sptcargs
;
183 if (segspt_minfree
== 0) /* leave min 5% of availrmem for */
184 segspt_minfree
= availrmem
/20; /* for the system */
186 if (!hat_supported(HAT_SHARED_PT
, NULL
))
190 * get a new as for this shared memory segment
193 newas
->a_proc
= NULL
;
195 sptcargs
.prot
= prot
;
196 sptcargs
.flags
= flags
;
197 sptcargs
.szc
= share_szc
;
199 * create a shared page table (spt) segment
202 if (err
= as_map(newas
, SEGSPTADDR
, size
, segspt_create
, &sptcargs
)) {
206 *sptseg
= sptcargs
.seg_spt
;
211 sptdestroy(struct as
*as
, struct anon_map
*amp
)
213 (void) as_unmap(as
, SEGSPTADDR
, amp
->size
);
218 * called from seg_free().
219 * free (i.e., unlock, unmap, return to free list)
220 * all the pages in the given seg.
223 segspt_free(struct seg
*seg
)
225 struct spt_data
*sptd
= (struct spt_data
*)seg
->s_data
;
227 ASSERT(seg
->s_as
&& AS_WRITE_HELD(seg
->s_as
));
230 if (sptd
->spt_realsize
)
231 segspt_free_pages(seg
, seg
->s_base
, sptd
->spt_realsize
);
233 if (sptd
->spt_ppa_lckcnt
) {
234 kmem_free(sptd
->spt_ppa_lckcnt
,
235 sizeof (*sptd
->spt_ppa_lckcnt
)
236 * btopr(sptd
->spt_amp
->size
));
238 kmem_free(sptd
->spt_vp
, sizeof (*sptd
->spt_vp
));
239 cv_destroy(&sptd
->spt_cv
);
240 mutex_destroy(&sptd
->spt_lock
);
241 kmem_free(sptd
, sizeof (*sptd
));
247 segspt_shmsync(struct seg
*seg
, caddr_t addr
, size_t len
, int attr
,
250 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
257 segspt_shmincore(struct seg
*seg
, caddr_t addr
, size_t len
, char *vec
)
261 struct shm_data
*shmd
= (struct shm_data
*)seg
->s_data
;
263 struct spt_data
*sptd
;
265 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
266 sptseg
= shmd
->shm_sptseg
;
267 sptd
= sptseg
->s_data
;
269 if ((sptd
->spt_flags
& SHM_PAGEABLE
) == 0) {
271 while (addr
< eo_seg
) {
272 /* page exists, and it's locked. */
273 *vec
++ = SEG_PAGE_INCORE
| SEG_PAGE_LOCKED
|
279 struct anon_map
*amp
= shmd
->shm_amp
;
287 anon_sync_obj_t cookie
;
289 addr
= (caddr_t
)((uintptr_t)addr
& (uintptr_t)PAGEMASK
);
290 anon_index
= seg_page(seg
, addr
);
292 if (anon_index
+ npages
> btopr(shmd
->shm_amp
->size
)) {
295 ANON_LOCK_ENTER(&
->a_rwlock
, RW_READER
);
296 for (i
= 0; i
< npages
; i
++, anon_index
++) {
298 anon_array_enter(amp
, anon_index
, &cookie
);
299 ap
= anon_get_ptr(amp
->ahp
, anon_index
);
301 swap_xlate(ap
, &vp
, &off
);
302 anon_array_exit(&cookie
);
303 pp
= page_lookup_nowait(&vp
->v_object
, off
,
306 ret
|= SEG_PAGE_INCORE
| SEG_PAGE_ANON
;
310 anon_array_exit(&cookie
);
312 if (shmd
->shm_vpage
[anon_index
] & DISM_PG_LOCKED
) {
313 ret
|= SEG_PAGE_LOCKED
;
317 ANON_LOCK_EXIT(&
->a_rwlock
);
323 segspt_unmap(struct seg
*seg
, caddr_t raddr
, size_t ssize
)
327 ASSERT(seg
->s_as
&& AS_WRITE_HELD(seg
->s_as
));
330 * seg.s_size may have been rounded up to the largest page size
332 * XXX This should be cleanedup. sptdestroy should take a length
333 * argument which should be the same as sptcreate. Then
334 * this rounding would not be needed (or is done in shm.c)
335 * Only the check for full segment will be needed.
337 * XXX -- shouldn't raddr == 0 always? These tests don't seem
338 * to be useful at all.
340 share_size
= page_get_pagesize(seg
->s_szc
);
341 ssize
= P2ROUNDUP(ssize
, share_size
);
343 if (raddr
== seg
->s_base
&& ssize
== seg
->s_size
) {
351 segspt_create(struct seg
*seg
, caddr_t argsp
)
354 caddr_t addr
= seg
->s_base
;
355 struct spt_data
*sptd
;
356 struct segspt_crargs
*sptcargs
= (struct segspt_crargs
*)argsp
;
357 struct anon_map
*amp
= sptcargs
->amp
;
358 struct kshmid
*sp
= amp
->a_sp
;
359 struct cred
*cred
= CRED();
360 ulong_t i
, j
, anon_index
= 0;
361 pgcnt_t npages
= btopr(amp
->size
);
370 proc_t
*procp
= curproc
;
371 rctl_qty_t lockedbytes
= 0;
375 * We are holding the a_lock on the underlying dummy as,
376 * so we can make calls to the HAT layer.
378 ASSERT(seg
->s_as
&& AS_WRITE_HELD(seg
->s_as
));
381 if ((sptcargs
->flags
& SHM_PAGEABLE
) == 0) {
382 if (err
= anon_swap_adjust(npages
))
387 if ((sptd
= kmem_zalloc(sizeof (*sptd
), KM_NOSLEEP
)) == NULL
)
390 if ((sptcargs
->flags
& SHM_PAGEABLE
) == 0) {
391 if ((ppa
= kmem_zalloc(((sizeof (page_t
*)) * npages
),
392 KM_NOSLEEP
)) == NULL
)
396 mutex_init(&sptd
->spt_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
398 if ((vp
= kmem_zalloc(sizeof (*vp
), KM_NOSLEEP
)) == NULL
)
401 seg
->s_ops
= &segspt_ops
;
404 sptd
->spt_prot
= sptcargs
->prot
;
405 sptd
->spt_flags
= sptcargs
->flags
;
406 seg
->s_data
= (caddr_t
)sptd
;
407 sptd
->spt_ppa
= NULL
;
408 sptd
->spt_ppa_lckcnt
= NULL
;
409 seg
->s_szc
= sptcargs
->szc
;
410 cv_init(&sptd
->spt_cv
, NULL
, CV_DEFAULT
, NULL
);
413 ANON_LOCK_ENTER(&
->a_rwlock
, RW_WRITER
);
414 if (seg
->s_szc
> amp
->a_szc
) {
415 amp
->a_szc
= seg
->s_szc
;
417 ANON_LOCK_EXIT(&
->a_rwlock
);
420 * Set policy to affect initial allocation of pages in
421 * anon_map_createpages()
423 (void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT
, amp
, anon_index
,
424 NULL
, 0, ptob(npages
));
426 if (sptcargs
->flags
& SHM_PAGEABLE
) {
428 pgcnt_t new_npgs
, more_pgs
;
429 struct anon_hdr
*nahp
;
432 share_sz
= page_get_pagesize(seg
->s_szc
);
433 if (!IS_P2ALIGNED(amp
->size
, share_sz
)) {
435 * We are rounding up the size of the anon array
436 * on 4 M boundary because we always create 4 M
437 * of page(s) when locking, faulting pages and we
438 * don't have to check for all corner cases e.g.
439 * if there is enough space to allocate 4 M
442 new_npgs
= btop(P2ROUNDUP(amp
->size
, share_sz
));
443 more_pgs
= new_npgs
- npages
;
446 * The zone will never be NULL, as a fully created
447 * shm always has an owning zone.
449 zone
= sp
->shm_perm
.ipc_zone_ref
.zref_zone
;
450 ASSERT(zone
!= NULL
);
451 if (anon_resv_zone(ptob(more_pgs
), zone
) == 0) {
456 nahp
= anon_create(new_npgs
, ANON_SLEEP
);
457 ANON_LOCK_ENTER(&
->a_rwlock
, RW_WRITER
);
458 (void) anon_copy_ptr(amp
->ahp
, 0, nahp
, 0, npages
,
460 anon_release(amp
->ahp
, npages
);
462 ASSERT(amp
->swresv
== ptob(npages
));
463 amp
->swresv
= amp
->size
= ptob(new_npgs
);
464 ANON_LOCK_EXIT(&
->a_rwlock
);
468 sptd
->spt_ppa_lckcnt
= kmem_zalloc(npages
*
469 sizeof (*sptd
->spt_ppa_lckcnt
), KM_SLEEP
);
470 sptd
->spt_pcachecnt
= 0;
471 sptd
->spt_realsize
= ptob(npages
);
472 sptcargs
->seg_spt
= seg
;
477 * get array of pages for each anon slot in amp
479 if ((err
= anon_map_createpages(amp
, anon_index
, ptob(npages
), ppa
,
480 seg
, addr
, S_CREATE
, cred
)) != 0)
483 mutex_enter(&sp
->shm_mlock
);
485 /* May be partially locked, so, count bytes to charge for locking */
486 for (i
= 0; i
< npages
; i
++)
487 if (ppa
[i
]->p_lckcnt
== 0)
488 lockedbytes
+= PAGESIZE
;
490 proj
= sp
->shm_perm
.ipc_proj
;
492 if (lockedbytes
> 0) {
493 mutex_enter(&procp
->p_lock
);
494 if (rctl_incr_locked_mem(procp
, proj
, lockedbytes
, 0)) {
495 mutex_exit(&procp
->p_lock
);
496 mutex_exit(&sp
->shm_mlock
);
497 for (i
= 0; i
< npages
; i
++)
502 mutex_exit(&procp
->p_lock
);
506 * addr is initial address corresponding to the first page on ppa list
508 for (i
= 0; i
< npages
; i
++) {
509 /* attempt to lock all pages */
510 if (page_pp_lock(ppa
[i
], 0, 1) == 0) {
512 * if unable to lock any page, unlock all
513 * of them and return error
515 for (j
= 0; j
< i
; j
++)
516 page_pp_unlock(ppa
[j
], 0, 1);
517 for (i
= 0; i
< npages
; i
++)
519 rctl_decr_locked_mem(NULL
, proj
, lockedbytes
, 0);
520 mutex_exit(&sp
->shm_mlock
);
525 mutex_exit(&sp
->shm_mlock
);
528 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK
529 * for the entire life of the segment. For example platforms
530 * that do not support Dynamic Reconfiguration.
532 hat_flags
= HAT_LOAD_SHARE
;
533 if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP
, NULL
))
534 hat_flags
|= HAT_LOAD_LOCK
;
537 * Load translations one lare page at a time
538 * to make sure we don't create mappings bigger than
539 * segment's size code in case underlying pages
540 * are shared with segvn's segment that uses bigger
541 * size code than we do.
543 pgsz
= page_get_pagesize(seg
->s_szc
);
544 pgcnt
= page_get_pagecnt(seg
->s_szc
);
545 for (a
= addr
, pidx
= 0; pidx
< npages
; a
+= pgsz
, pidx
+= pgcnt
) {
546 sz
= MIN(pgsz
, ptob(npages
- pidx
));
547 hat_memload_array(seg
->s_as
->a_hat
, a
, sz
,
548 &ppa
[pidx
], sptd
->spt_prot
, hat_flags
);
552 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP,
553 * we will leave the pages locked SE_SHARED for the life
554 * of the ISM segment. This will prevent any calls to
555 * hat_pageunload() on this ISM segment for those platforms.
557 if (!(hat_flags
& HAT_LOAD_LOCK
)) {
559 * On platforms that support HAT_DYNAMIC_ISM_UNMAP,
560 * we no longer need to hold the SE_SHARED lock on the pages,
561 * since L_PAGELOCK and F_SOFTLOCK calls will grab the
562 * SE_SHARED lock on the pages as necessary.
564 for (i
= 0; i
< npages
; i
++)
567 sptd
->spt_pcachecnt
= 0;
568 kmem_free(ppa
, ((sizeof (page_t
*)) * npages
));
569 sptd
->spt_realsize
= ptob(npages
);
570 atomic_add_long(&spt_used
, npages
);
571 sptcargs
->seg_spt
= seg
;
576 kmem_free(vp
, sizeof (*vp
));
577 cv_destroy(&sptd
->spt_cv
);
579 mutex_destroy(&sptd
->spt_lock
);
580 if ((sptcargs
->flags
& SHM_PAGEABLE
) == 0)
581 kmem_free(ppa
, (sizeof (*ppa
) * npages
));
583 kmem_free(sptd
, sizeof (*sptd
));
585 if ((sptcargs
->flags
& SHM_PAGEABLE
) == 0)
586 anon_swap_restore(npages
);
592 segspt_free_pages(struct seg
*seg
, caddr_t addr
, size_t len
)
595 struct spt_data
*sptd
= (struct spt_data
*)seg
->s_data
;
598 struct anon_map
*amp
;
604 pgcnt_t pgs
, curnpgs
= 0;
606 rctl_qty_t unlocked_bytes
= 0;
610 ASSERT(seg
->s_as
&& AS_WRITE_HELD(seg
->s_as
));
612 len
= P2ROUNDUP(len
, PAGESIZE
);
616 hat_flags
= HAT_UNLOAD_UNLOCK
| HAT_UNLOAD_UNMAP
;
617 if ((hat_supported(HAT_DYNAMIC_ISM_UNMAP
, NULL
)) ||
618 (sptd
->spt_flags
& SHM_PAGEABLE
)) {
619 hat_flags
= HAT_UNLOAD_UNMAP
;
622 hat_unload(seg
->s_as
->a_hat
, addr
, len
, hat_flags
);
625 if (sptd
->spt_flags
& SHM_PAGEABLE
)
626 npages
= btop(amp
->size
);
630 if ((sptd
->spt_flags
& SHM_PAGEABLE
) == 0) {
632 proj
= sp
->shm_perm
.ipc_proj
;
633 mutex_enter(&sp
->shm_mlock
);
635 for (anon_idx
= 0; anon_idx
< npages
; anon_idx
++) {
636 if ((sptd
->spt_flags
& SHM_PAGEABLE
) == 0) {
637 if ((ap
= anon_get_ptr(amp
->ahp
, anon_idx
)) == NULL
) {
638 panic("segspt_free_pages: null app");
642 if ((ap
= anon_get_next_ptr(amp
->ahp
, &anon_idx
))
646 ASSERT(ANON_ISBUSY(anon_get_slot(amp
->ahp
, anon_idx
)) == 0);
647 swap_xlate(ap
, &vp
, &off
);
650 * If this platform supports HAT_DYNAMIC_ISM_UNMAP,
651 * the pages won't be having SE_SHARED lock at this
654 * On platforms that do not support HAT_DYNAMIC_ISM_UNMAP,
655 * the pages are still held SE_SHARED locked from the
656 * original segspt_create()
658 * Our goal is to get SE_EXCL lock on each page, remove
659 * permanent lock on it and invalidate the page.
661 if ((sptd
->spt_flags
& SHM_PAGEABLE
) == 0) {
662 if (hat_flags
== HAT_UNLOAD_UNMAP
)
663 pp
= page_lookup(&vp
->v_object
, off
, SE_EXCL
);
665 if ((pp
= page_find(&vp
->v_object
, off
)) == NULL
) {
666 panic("segspt_free_pages: "
670 if (!page_tryupgrade(pp
)) {
672 pp
= page_lookup(&vp
->v_object
, off
,
677 panic("segspt_free_pages: "
678 "page not in the system");
681 ASSERT(pp
->p_lckcnt
> 0);
682 page_pp_unlock(pp
, 0, 1);
683 if (pp
->p_lckcnt
== 0)
684 unlocked_bytes
+= PAGESIZE
;
686 if ((pp
= page_lookup(&vp
->v_object
, off
, SE_EXCL
)) == NULL
)
690 * It's logical to invalidate the pages here as in most cases
691 * these were created by segspt.
693 if (pp
->p_szc
!= 0) {
695 ASSERT(curnpgs
== 0);
698 pgs
= curnpgs
= page_get_pagecnt(pp
->p_szc
);
700 ASSERT(IS_P2ALIGNED(pgs
, pgs
));
701 ASSERT(!(page_pptonum(pp
) & (pgs
- 1)));
703 } else if ((page_pptonum(pp
) & (pgs
- 1)) == pgs
- 1) {
704 ASSERT(curnpgs
== 1);
705 ASSERT(page_pptonum(pp
) ==
706 page_pptonum(rootpp
) + (pgs
- 1));
707 page_destroy_pages(rootpp
);
712 ASSERT(page_pptonum(pp
) ==
713 page_pptonum(rootpp
) + (pgs
- curnpgs
));
717 if (root
!= 0 || curnpgs
!= 0) {
718 panic("segspt_free_pages: bad large page");
722 * Before destroying the pages, we need to take care
723 * of the rctl locked memory accounting. For that
724 * we need to calculte the unlocked_bytes.
726 if (pp
->p_lckcnt
> 0)
727 unlocked_bytes
+= PAGESIZE
;
729 VN_DISPOSE(pp
, B_INVAL
, 0, kcred
);
732 if ((sptd
->spt_flags
& SHM_PAGEABLE
) == 0) {
733 if (unlocked_bytes
> 0)
734 rctl_decr_locked_mem(NULL
, proj
, unlocked_bytes
, 0);
735 mutex_exit(&sp
->shm_mlock
);
737 if (root
!= 0 || curnpgs
!= 0) {
738 panic("segspt_free_pages: bad large page");
743 * mark that pages have been released
745 sptd
->spt_realsize
= 0;
747 if ((sptd
->spt_flags
& SHM_PAGEABLE
) == 0) {
748 atomic_add_long(&spt_used
, -npages
);
749 anon_swap_restore(npages
);
754 * Get memory allocation policy info for specified address in given segment
756 static lgrp_mem_policy_info_t
*
757 segspt_getpolicy(struct seg
*seg
, caddr_t addr
)
759 struct anon_map
*amp
;
761 lgrp_mem_policy_info_t
*policy_info
;
762 struct spt_data
*spt_data
;
767 * Get anon_map from segspt
769 * Assume that no lock needs to be held on anon_map, since
770 * it should be protected by its reference count which must be
771 * nonzero for an existing segment
772 * Need to grab readers lock on policy tree though
774 spt_data
= (struct spt_data
*)seg
->s_data
;
775 if (spt_data
== NULL
)
777 amp
= spt_data
->spt_amp
;
778 ASSERT(amp
->refcnt
!= 0);
783 * Assume starting anon index of 0
785 anon_index
= seg_page(seg
, addr
);
786 policy_info
= lgrp_shm_policy_get(amp
, anon_index
, NULL
, 0);
788 return (policy_info
);
793 * Return locked pages over a given range.
795 * We will cache all DISM locked pages and save the pplist for the
796 * entire segment in the ppa field of the underlying DISM segment structure.
797 * Later, during a call to segspt_reclaim() we will use this ppa array
798 * to page_unlock() all of the pages and then we will free this ppa list.
802 segspt_dismpagelock(struct seg
*seg
, caddr_t addr
, size_t len
,
803 struct page
***ppp
, enum lock_type type
, enum seg_rw rw
)
805 struct shm_data
*shmd
= (struct shm_data
*)seg
->s_data
;
806 struct seg
*sptseg
= shmd
->shm_sptseg
;
807 struct spt_data
*sptd
= sptseg
->s_data
;
808 pgcnt_t pg_idx
, npages
, tot_npages
, npgs
;
809 struct page
**pplist
, **pl
, **ppa
, *pp
;
810 struct anon_map
*amp
;
817 pgcnt_t claim_availrmem
= 0;
820 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
821 ASSERT(type
== L_PAGELOCK
|| type
== L_PAGEUNLOCK
);
824 * We want to lock/unlock the entire ISM segment. Therefore,
825 * we will be using the underlying sptseg and it's base address
826 * and length for the caching arguments.
831 pg_idx
= seg_page(seg
, addr
);
835 * check if the request is larger than number of pages covered
838 if (pg_idx
+ npages
> btopr(sptd
->spt_amp
->size
)) {
843 if (type
== L_PAGEUNLOCK
) {
844 ASSERT(sptd
->spt_ppa
!= NULL
);
846 seg_pinactive(seg
, NULL
, seg
->s_base
, sptd
->spt_amp
->size
,
847 sptd
->spt_ppa
, S_WRITE
, SEGP_FORCE_WIRED
, segspt_reclaim
);
850 * If someone is blocked while unmapping, we purge
851 * segment page cache and thus reclaim pplist synchronously
852 * without waiting for seg_pasync_thread. This speeds up
853 * unmapping in cases where munmap(2) is called, while
854 * raw async i/o is still in progress or where a thread
855 * exits on data fault in a multithreaded application.
857 if ((sptd
->spt_flags
& DISM_PPA_CHANGED
) ||
858 (AS_ISUNMAPWAIT(seg
->s_as
) &&
859 shmd
->shm_softlockcnt
> 0)) {
865 /* The L_PAGELOCK case ... */
867 if (sptd
->spt_flags
& DISM_PPA_CHANGED
) {
870 * for DISM ppa needs to be rebuild since
871 * number of locked pages could be changed
878 * First try to find pages in segment page cache, without
879 * holding the segment lock.
881 pplist
= seg_plookup(seg
, NULL
, seg
->s_base
, sptd
->spt_amp
->size
,
882 S_WRITE
, SEGP_FORCE_WIRED
);
883 if (pplist
!= NULL
) {
884 ASSERT(sptd
->spt_ppa
!= NULL
);
885 ASSERT(sptd
->spt_ppa
== pplist
);
887 for (an_idx
= pg_idx
; an_idx
< pg_idx
+ npages
; ) {
888 if (ppa
[an_idx
] == NULL
) {
889 seg_pinactive(seg
, NULL
, seg
->s_base
,
890 sptd
->spt_amp
->size
, ppa
,
891 S_WRITE
, SEGP_FORCE_WIRED
, segspt_reclaim
);
895 if ((szc
= ppa
[an_idx
]->p_szc
) != 0) {
896 npgs
= page_get_pagecnt(szc
);
897 an_idx
= P2ROUNDUP(an_idx
+ 1, npgs
);
903 * Since we cache the entire DISM segment, we want to
904 * set ppp to point to the first slot that corresponds
905 * to the requested addr, i.e. pg_idx.
907 *ppp
= &(sptd
->spt_ppa
[pg_idx
]);
911 mutex_enter(&sptd
->spt_lock
);
913 * try to find pages in segment page cache with mutex
915 pplist
= seg_plookup(seg
, NULL
, seg
->s_base
, sptd
->spt_amp
->size
,
916 S_WRITE
, SEGP_FORCE_WIRED
);
917 if (pplist
!= NULL
) {
918 ASSERT(sptd
->spt_ppa
!= NULL
);
919 ASSERT(sptd
->spt_ppa
== pplist
);
921 for (an_idx
= pg_idx
; an_idx
< pg_idx
+ npages
; ) {
922 if (ppa
[an_idx
] == NULL
) {
923 mutex_exit(&sptd
->spt_lock
);
924 seg_pinactive(seg
, NULL
, seg
->s_base
,
925 sptd
->spt_amp
->size
, ppa
,
926 S_WRITE
, SEGP_FORCE_WIRED
, segspt_reclaim
);
930 if ((szc
= ppa
[an_idx
]->p_szc
) != 0) {
931 npgs
= page_get_pagecnt(szc
);
932 an_idx
= P2ROUNDUP(an_idx
+ 1, npgs
);
938 * Since we cache the entire DISM segment, we want to
939 * set ppp to point to the first slot that corresponds
940 * to the requested addr, i.e. pg_idx.
942 mutex_exit(&sptd
->spt_lock
);
943 *ppp
= &(sptd
->spt_ppa
[pg_idx
]);
946 if (seg_pinsert_check(seg
, NULL
, seg
->s_base
, sptd
->spt_amp
->size
,
947 SEGP_FORCE_WIRED
) == SEGP_FAIL
) {
948 mutex_exit(&sptd
->spt_lock
);
954 * No need to worry about protections because DISM pages are always rw.
960 * Do we need to build the ppa array?
962 if (sptd
->spt_ppa
== NULL
) {
966 tot_npages
= btopr(sptd
->spt_amp
->size
);
968 ASSERT(sptd
->spt_pcachecnt
== 0);
969 pplist
= kmem_zalloc(sizeof (page_t
*) * tot_npages
, KM_SLEEP
);
972 ANON_LOCK_ENTER(&
->a_rwlock
, RW_WRITER
);
973 for (an_idx
= 0; an_idx
< tot_npages
; ) {
974 ap
= anon_get_ptr(amp
->ahp
, an_idx
);
976 * Cache only mlocked pages. For large pages
977 * if one (constituent) page is mlocked
978 * all pages for that large page
979 * are cached also. This is for quick
980 * lookups of ppa array;
982 if ((ap
!= NULL
) && (lpg_cnt
!= 0 ||
983 (sptd
->spt_ppa_lckcnt
[an_idx
] != 0))) {
985 swap_xlate(ap
, &vp
, &off
);
986 pp
= page_lookup(&vp
->v_object
, off
,
992 * For a small page, we are done --
993 * lpg_count is reset to 0 below.
995 * For a large page, we are guaranteed
996 * to find the anon structures of all
997 * constituent pages and a non-zero
998 * lpg_cnt ensures that we don't test
999 * for mlock for these. We are done
1000 * when lpg_count reaches (npgs + 1).
1001 * If we are not the first constituent
1002 * page, restart at the first one.
1004 npgs
= page_get_pagecnt(pp
->p_szc
);
1005 if (!IS_P2ALIGNED(an_idx
, npgs
)) {
1006 an_idx
= P2ALIGN(an_idx
, npgs
);
1011 if (++lpg_cnt
> npgs
)
1015 * availrmem is decremented only
1016 * for unlocked pages
1018 if (sptd
->spt_ppa_lckcnt
[an_idx
] == 0)
1020 pplist
[an_idx
] = pp
;
1024 ANON_LOCK_EXIT(&
->a_rwlock
);
1026 if (claim_availrmem
) {
1027 mutex_enter(&freemem_lock
);
1028 if (availrmem
< tune
.t_minarmem
+ claim_availrmem
) {
1029 mutex_exit(&freemem_lock
);
1031 claim_availrmem
= 0;
1034 availrmem
-= claim_availrmem
;
1036 mutex_exit(&freemem_lock
);
1042 * We already have a valid ppa[].
1049 ret
= seg_pinsert(seg
, NULL
, seg
->s_base
, sptd
->spt_amp
->size
,
1050 sptd
->spt_amp
->size
, pl
, S_WRITE
, SEGP_FORCE_WIRED
,
1052 if (ret
== SEGP_FAIL
) {
1054 * seg_pinsert failed. We return
1055 * ENOTSUP, so that the as_pagelock() code will
1056 * then try the slower F_SOFTLOCK path.
1060 * No one else has referenced the ppa[].
1061 * We created it and we need to destroy it.
1063 sptd
->spt_ppa
= NULL
;
1070 * In either case, we increment softlockcnt on the 'real' segment.
1072 sptd
->spt_pcachecnt
++;
1073 atomic_inc_ulong((ulong_t
*)(&(shmd
->shm_softlockcnt
)));
1075 ppa
= sptd
->spt_ppa
;
1076 for (an_idx
= pg_idx
; an_idx
< pg_idx
+ npages
; ) {
1077 if (ppa
[an_idx
] == NULL
) {
1078 mutex_exit(&sptd
->spt_lock
);
1079 seg_pinactive(seg
, NULL
, seg
->s_base
,
1080 sptd
->spt_amp
->size
,
1081 pl
, S_WRITE
, SEGP_FORCE_WIRED
, segspt_reclaim
);
1085 if ((szc
= ppa
[an_idx
]->p_szc
) != 0) {
1086 npgs
= page_get_pagecnt(szc
);
1087 an_idx
= P2ROUNDUP(an_idx
+ 1, npgs
);
1093 * We can now drop the sptd->spt_lock since the ppa[]
1094 * exists and we have incremented pacachecnt.
1096 mutex_exit(&sptd
->spt_lock
);
1099 * Since we cache the entire segment, we want to
1100 * set ppp to point to the first slot that corresponds
1101 * to the requested addr, i.e. pg_idx.
1103 *ppp
= &(sptd
->spt_ppa
[pg_idx
]);
1108 * We will only reach this code if we tried and failed.
1110 * And we can drop the lock on the dummy seg, once we've failed
1111 * to set up a new ppa[].
1113 mutex_exit(&sptd
->spt_lock
);
1116 if (claim_availrmem
) {
1117 mutex_enter(&freemem_lock
);
1118 availrmem
+= claim_availrmem
;
1119 mutex_exit(&freemem_lock
);
1123 * We created pl and we need to destroy it.
1126 for (an_idx
= 0; an_idx
< tot_npages
; an_idx
++) {
1127 if (pplist
[an_idx
] != NULL
)
1128 page_unlock(pplist
[an_idx
]);
1130 kmem_free(pl
, sizeof (page_t
*) * tot_npages
);
1133 if (shmd
->shm_softlockcnt
<= 0) {
1134 if (AS_ISUNMAPWAIT(seg
->s_as
)) {
1135 mutex_enter(&seg
->s_as
->a_contents
);
1136 if (AS_ISUNMAPWAIT(seg
->s_as
)) {
1137 AS_CLRUNMAPWAIT(seg
->s_as
);
1138 cv_broadcast(&seg
->s_as
->a_cv
);
1140 mutex_exit(&seg
->s_as
->a_contents
);
1150 * return locked pages over a given range.
1152 * We will cache the entire ISM segment and save the pplist for the
1153 * entire segment in the ppa field of the underlying ISM segment structure.
1154 * Later, during a call to segspt_reclaim() we will use this ppa array
1155 * to page_unlock() all of the pages and then we will free this ppa list.
1159 segspt_shmpagelock(struct seg
*seg
, caddr_t addr
, size_t len
,
1160 struct page
***ppp
, enum lock_type type
, enum seg_rw rw
)
1162 struct shm_data
*shmd
= (struct shm_data
*)seg
->s_data
;
1163 struct seg
*sptseg
= shmd
->shm_sptseg
;
1164 struct spt_data
*sptd
= sptseg
->s_data
;
1165 pgcnt_t np
, page_index
, npages
;
1166 caddr_t a
, spt_base
;
1167 struct page
**pplist
, **pl
, *pp
;
1168 struct anon_map
*amp
;
1171 uint_t pl_built
= 0;
1176 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
1177 ASSERT(type
== L_PAGELOCK
|| type
== L_PAGEUNLOCK
);
1181 * We want to lock/unlock the entire ISM segment. Therefore,
1182 * we will be using the underlying sptseg and it's base address
1183 * and length for the caching arguments.
1188 if (sptd
->spt_flags
& SHM_PAGEABLE
) {
1189 return (segspt_dismpagelock(seg
, addr
, len
, ppp
, type
, rw
));
1192 page_index
= seg_page(seg
, addr
);
1193 npages
= btopr(len
);
1196 * check if the request is larger than number of pages covered
1199 if (page_index
+ npages
> btopr(sptd
->spt_amp
->size
)) {
1204 if (type
== L_PAGEUNLOCK
) {
1206 ASSERT(sptd
->spt_ppa
!= NULL
);
1208 seg_pinactive(seg
, NULL
, seg
->s_base
, sptd
->spt_amp
->size
,
1209 sptd
->spt_ppa
, S_WRITE
, SEGP_FORCE_WIRED
, segspt_reclaim
);
1212 * If someone is blocked while unmapping, we purge
1213 * segment page cache and thus reclaim pplist synchronously
1214 * without waiting for seg_pasync_thread. This speeds up
1215 * unmapping in cases where munmap(2) is called, while
1216 * raw async i/o is still in progress or where a thread
1217 * exits on data fault in a multithreaded application.
1219 if (AS_ISUNMAPWAIT(seg
->s_as
) && (shmd
->shm_softlockcnt
> 0)) {
1225 /* The L_PAGELOCK case... */
1228 * First try to find pages in segment page cache, without
1229 * holding the segment lock.
1231 pplist
= seg_plookup(seg
, NULL
, seg
->s_base
, sptd
->spt_amp
->size
,
1232 S_WRITE
, SEGP_FORCE_WIRED
);
1233 if (pplist
!= NULL
) {
1234 ASSERT(sptd
->spt_ppa
== pplist
);
1235 ASSERT(sptd
->spt_ppa
[page_index
]);
1237 * Since we cache the entire ISM segment, we want to
1238 * set ppp to point to the first slot that corresponds
1239 * to the requested addr, i.e. page_index.
1241 *ppp
= &(sptd
->spt_ppa
[page_index
]);
1245 mutex_enter(&sptd
->spt_lock
);
1248 * try to find pages in segment page cache
1250 pplist
= seg_plookup(seg
, NULL
, seg
->s_base
, sptd
->spt_amp
->size
,
1251 S_WRITE
, SEGP_FORCE_WIRED
);
1252 if (pplist
!= NULL
) {
1253 ASSERT(sptd
->spt_ppa
== pplist
);
1255 * Since we cache the entire segment, we want to
1256 * set ppp to point to the first slot that corresponds
1257 * to the requested addr, i.e. page_index.
1259 mutex_exit(&sptd
->spt_lock
);
1260 *ppp
= &(sptd
->spt_ppa
[page_index
]);
1264 if (seg_pinsert_check(seg
, NULL
, seg
->s_base
, sptd
->spt_amp
->size
,
1265 SEGP_FORCE_WIRED
) == SEGP_FAIL
) {
1266 mutex_exit(&sptd
->spt_lock
);
1272 * No need to worry about protections because ISM pages
1278 * Do we need to build the ppa array?
1280 if (sptd
->spt_ppa
== NULL
) {
1281 ASSERT(sptd
->spt_ppa
== pplist
);
1283 spt_base
= sptseg
->s_base
;
1287 * availrmem is decremented once during anon_swap_adjust()
1288 * and is incremented during the anon_unresv(), which is
1289 * called from shm_rm_amp() when the segment is destroyed.
1291 amp
= sptd
->spt_amp
;
1292 ASSERT(amp
!= NULL
);
1294 /* pcachecnt is protected by sptd->spt_lock */
1295 ASSERT(sptd
->spt_pcachecnt
== 0);
1296 pplist
= kmem_zalloc(sizeof (page_t
*)
1297 * btopr(sptd
->spt_amp
->size
), KM_SLEEP
);
1300 anon_index
= seg_page(sptseg
, spt_base
);
1302 ANON_LOCK_ENTER(&
->a_rwlock
, RW_WRITER
);
1303 for (a
= spt_base
; a
< (spt_base
+ sptd
->spt_amp
->size
);
1304 a
+= PAGESIZE
, anon_index
++, pplist
++) {
1305 ap
= anon_get_ptr(amp
->ahp
, anon_index
);
1307 swap_xlate(ap
, &vp
, &off
);
1308 pp
= page_lookup(&vp
->v_object
, off
, SE_SHARED
);
1312 ANON_LOCK_EXIT(&
->a_rwlock
);
1314 if (a
< (spt_base
+ sptd
->spt_amp
->size
)) {
1321 * We already have a valid ppa[].
1328 ret
= seg_pinsert(seg
, NULL
, seg
->s_base
, sptd
->spt_amp
->size
,
1329 sptd
->spt_amp
->size
, pl
, S_WRITE
, SEGP_FORCE_WIRED
,
1331 if (ret
== SEGP_FAIL
) {
1333 * seg_pinsert failed. We return
1334 * ENOTSUP, so that the as_pagelock() code will
1335 * then try the slower F_SOFTLOCK path.
1339 * No one else has referenced the ppa[].
1340 * We created it and we need to destroy it.
1342 sptd
->spt_ppa
= NULL
;
1349 * In either case, we increment softlockcnt on the 'real' segment.
1351 sptd
->spt_pcachecnt
++;
1352 atomic_inc_ulong((ulong_t
*)(&(shmd
->shm_softlockcnt
)));
1355 * We can now drop the sptd->spt_lock since the ppa[]
1356 * exists and we have incremented pacachecnt.
1358 mutex_exit(&sptd
->spt_lock
);
1361 * Since we cache the entire segment, we want to
1362 * set ppp to point to the first slot that corresponds
1363 * to the requested addr, i.e. page_index.
1365 *ppp
= &(sptd
->spt_ppa
[page_index
]);
1370 * We will only reach this code if we tried and failed.
1372 * And we can drop the lock on the dummy seg, once we've failed
1373 * to set up a new ppa[].
1375 mutex_exit(&sptd
->spt_lock
);
1379 * We created pl and we need to destroy it.
1382 np
= (((uintptr_t)(a
- spt_base
)) >> PAGESHIFT
);
1384 page_unlock(*pplist
);
1388 kmem_free(pl
, sizeof (page_t
*) * btopr(sptd
->spt_amp
->size
));
1390 if (shmd
->shm_softlockcnt
<= 0) {
1391 if (AS_ISUNMAPWAIT(seg
->s_as
)) {
1392 mutex_enter(&seg
->s_as
->a_contents
);
1393 if (AS_ISUNMAPWAIT(seg
->s_as
)) {
1394 AS_CLRUNMAPWAIT(seg
->s_as
);
1395 cv_broadcast(&seg
->s_as
->a_cv
);
1397 mutex_exit(&seg
->s_as
->a_contents
);
1405 * purge any cached pages in the I/O page cache
1408 segspt_purge(struct seg
*seg
)
1410 seg_ppurge(seg
, NULL
, SEGP_FORCE_WIRED
);
1414 segspt_reclaim(void *ptag
, caddr_t addr
, size_t len
, struct page
**pplist
,
1415 enum seg_rw rw
, int async
)
1417 struct seg
*seg
= (struct seg
*)ptag
;
1418 struct shm_data
*shmd
= (struct shm_data
*)seg
->s_data
;
1420 struct spt_data
*sptd
;
1421 pgcnt_t npages
, i
, free_availrmem
= 0;
1424 sptseg
= shmd
->shm_sptseg
;
1425 sptd
= sptseg
->s_data
;
1426 npages
= (len
>> PAGESHIFT
);
1428 ASSERT(sptd
->spt_pcachecnt
!= 0);
1429 ASSERT(sptd
->spt_ppa
== pplist
);
1430 ASSERT(npages
== btopr(sptd
->spt_amp
->size
));
1431 ASSERT(async
|| AS_LOCK_HELD(seg
->s_as
));
1434 * Acquire the lock on the dummy seg and destroy the
1435 * ppa array IF this is the last pcachecnt.
1437 mutex_enter(&sptd
->spt_lock
);
1438 if (--sptd
->spt_pcachecnt
== 0) {
1439 for (i
= 0; i
< npages
; i
++) {
1440 if (pplist
[i
] == NULL
) {
1443 if (rw
== S_WRITE
) {
1444 hat_setrefmod(pplist
[i
]);
1446 hat_setref(pplist
[i
]);
1448 if ((sptd
->spt_flags
& SHM_PAGEABLE
) &&
1449 (sptd
->spt_ppa_lckcnt
[i
] == 0))
1451 page_unlock(pplist
[i
]);
1453 if ((sptd
->spt_flags
& SHM_PAGEABLE
) && free_availrmem
) {
1454 mutex_enter(&freemem_lock
);
1455 availrmem
+= free_availrmem
;
1456 mutex_exit(&freemem_lock
);
1459 * Since we want to cach/uncache the entire ISM segment,
1460 * we will track the pplist in a segspt specific field
1461 * ppa, that is initialized at the time we add an entry to
1464 ASSERT(sptd
->spt_pcachecnt
== 0);
1465 kmem_free(pplist
, sizeof (page_t
*) * npages
);
1466 sptd
->spt_ppa
= NULL
;
1467 sptd
->spt_flags
&= ~DISM_PPA_CHANGED
;
1469 cv_broadcast(&sptd
->spt_cv
);
1472 mutex_exit(&sptd
->spt_lock
);
1475 * If we are pcache async thread or called via seg_ppurge_wiredpp() we
1476 * may not hold AS lock (in this case async argument is not 0). This
1477 * means if softlockcnt drops to 0 after the decrement below address
1478 * space may get freed. We can't allow it since after softlock
1479 * derement to 0 we still need to access as structure for possible
1480 * wakeup of unmap waiters. To prevent the disappearance of as we take
1481 * this segment's shm_segfree_syncmtx. segspt_shmfree() also takes
1482 * this mutex as a barrier to make sure this routine completes before
1485 * The second complication we have to deal with in async case is a
1486 * possibility of missed wake up of unmap wait thread. When we don't
1487 * hold as lock here we may take a_contents lock before unmap wait
1488 * thread that was first to see softlockcnt was still not 0. As a
1489 * result we'll fail to wake up an unmap wait thread. To avoid this
1490 * race we set nounmapwait flag in as structure if we drop softlockcnt
1491 * to 0 if async is not 0. unmapwait thread
1492 * will not block if this flag is set.
1495 mutex_enter(&shmd
->shm_segfree_syncmtx
);
1498 * Now decrement softlockcnt.
1500 ASSERT(shmd
->shm_softlockcnt
> 0);
1501 atomic_dec_ulong((ulong_t
*)(&(shmd
->shm_softlockcnt
)));
1503 if (shmd
->shm_softlockcnt
<= 0) {
1504 if (async
|| AS_ISUNMAPWAIT(seg
->s_as
)) {
1505 mutex_enter(&seg
->s_as
->a_contents
);
1507 AS_SETNOUNMAPWAIT(seg
->s_as
);
1508 if (AS_ISUNMAPWAIT(seg
->s_as
)) {
1509 AS_CLRUNMAPWAIT(seg
->s_as
);
1510 cv_broadcast(&seg
->s_as
->a_cv
);
1512 mutex_exit(&seg
->s_as
->a_contents
);
1517 mutex_exit(&shmd
->shm_segfree_syncmtx
);
1523 * Do a F_SOFTUNLOCK call over the range requested.
1524 * The range must have already been F_SOFTLOCK'ed.
1526 * The calls to acquire and release the anon map lock mutex were
1527 * removed in order to avoid a deadly embrace during a DR
1528 * memory delete operation. (Eg. DR blocks while waiting for a
1529 * exclusive lock on a page that is being used for kaio; the
1530 * thread that will complete the kaio and call segspt_softunlock
1531 * blocks on the anon map lock; another thread holding the anon
1532 * map lock blocks on another page lock via the segspt_shmfault
1533 * -> page_lookup -> page_lookup_create -> page_lock_es code flow.)
1535 * The appropriateness of the removal is based upon the following:
1536 * 1. If we are holding a segment's reader lock and the page is held
1537 * shared, then the corresponding element in anonmap which points to
1538 * anon struct cannot change and there is no need to acquire the
1539 * anonymous map lock.
1540 * 2. Threads in segspt_softunlock have a reader lock on the segment
1541 * and already have the shared page lock, so we are guaranteed that
1542 * the anon map slot cannot change and therefore can call anon_get_ptr()
1543 * without grabbing the anonymous map lock.
1544 * 3. Threads that softlock a shared page break copy-on-write, even if
1545 * its a read. Thus cow faults can be ignored with respect to soft
1546 * unlocking, since the breaking of cow means that the anon slot(s) will
1550 segspt_softunlock(struct seg
*seg
, caddr_t sptseg_addr
,
1551 size_t len
, enum seg_rw rw
)
1553 struct shm_data
*shmd
= (struct shm_data
*)seg
->s_data
;
1555 struct spt_data
*sptd
;
1561 struct anon_map
*amp
; /* XXX - for locknest */
1562 struct anon
*ap
= NULL
;
1565 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
1567 sptseg
= shmd
->shm_sptseg
;
1568 sptd
= sptseg
->s_data
;
1571 * Some platforms assume that ISM mappings are HAT_LOAD_LOCK
1572 * and therefore their pages are SE_SHARED locked
1573 * for the entire life of the segment.
1575 if ((!hat_supported(HAT_DYNAMIC_ISM_UNMAP
, NULL
)) &&
1576 ((sptd
->spt_flags
& SHM_PAGEABLE
) == 0)) {
1577 goto softlock_decrement
;
1581 * Any thread is free to do a page_find and
1582 * page_unlock() on the pages within this seg.
1584 * We are already holding the as->a_lock on the user's
1585 * real segment, but we need to hold the a_lock on the
1586 * underlying dummy as. This is mostly to satisfy the
1587 * underlying HAT layer.
1589 AS_LOCK_ENTER(sptseg
->s_as
, RW_READER
);
1590 hat_unlock(sptseg
->s_as
->a_hat
, sptseg_addr
, len
);
1591 AS_LOCK_EXIT(sptseg
->s_as
);
1593 amp
= sptd
->spt_amp
;
1594 ASSERT(amp
!= NULL
);
1595 anon_index
= seg_page(sptseg
, sptseg_addr
);
1597 for (adr
= sptseg_addr
; adr
< sptseg_addr
+ len
; adr
+= PAGESIZE
) {
1598 ap
= anon_get_ptr(amp
->ahp
, anon_index
++);
1600 swap_xlate(ap
, &vp
, &offset
);
1603 * Use page_find() instead of page_lookup() to
1604 * find the page since we know that it has a
1607 pp
= page_find(&vp
->v_object
, offset
);
1608 ASSERT(ap
== anon_get_ptr(amp
->ahp
, anon_index
- 1));
1610 panic("segspt_softunlock: "
1611 "addr %p, ap %p, vp %p, off %llx",
1612 (void *)adr
, (void *)ap
, (void *)vp
, offset
);
1616 if (rw
== S_WRITE
) {
1618 } else if (rw
!= S_OTHER
) {
1625 npages
= btopr(len
);
1626 ASSERT(shmd
->shm_softlockcnt
>= npages
);
1627 atomic_add_long((ulong_t
*)(&(shmd
->shm_softlockcnt
)), -npages
);
1628 if (shmd
->shm_softlockcnt
== 0) {
1630 * All SOFTLOCKS are gone. Wakeup any waiting
1631 * unmappers so they can try again to unmap.
1632 * Check for waiters first without the mutex
1633 * held so we don't always grab the mutex on
1636 if (AS_ISUNMAPWAIT(seg
->s_as
)) {
1637 mutex_enter(&seg
->s_as
->a_contents
);
1638 if (AS_ISUNMAPWAIT(seg
->s_as
)) {
1639 AS_CLRUNMAPWAIT(seg
->s_as
);
1640 cv_broadcast(&seg
->s_as
->a_cv
);
1642 mutex_exit(&seg
->s_as
->a_contents
);
1648 segspt_shmattach(struct seg
*seg
, caddr_t
*argsp
)
1650 struct shm_data
*shmd_arg
= (struct shm_data
*)argsp
;
1651 struct shm_data
*shmd
;
1652 struct anon_map
*shm_amp
= shmd_arg
->shm_amp
;
1653 struct spt_data
*sptd
;
1656 ASSERT(seg
->s_as
&& AS_WRITE_HELD(seg
->s_as
));
1658 shmd
= kmem_zalloc((sizeof (*shmd
)), KM_NOSLEEP
);
1662 shmd
->shm_sptas
= shmd_arg
->shm_sptas
;
1663 shmd
->shm_amp
= shm_amp
;
1664 shmd
->shm_sptseg
= shmd_arg
->shm_sptseg
;
1666 (void) lgrp_shm_policy_set(LGRP_MEM_POLICY_DEFAULT
, shm_amp
, 0,
1667 NULL
, 0, seg
->s_size
);
1669 mutex_init(&shmd
->shm_segfree_syncmtx
, NULL
, MUTEX_DEFAULT
, NULL
);
1671 seg
->s_data
= (void *)shmd
;
1672 seg
->s_ops
= &segspt_shmops
;
1673 seg
->s_szc
= shmd
->shm_sptseg
->s_szc
;
1674 sptd
= shmd
->shm_sptseg
->s_data
;
1676 if (sptd
->spt_flags
& SHM_PAGEABLE
) {
1677 if ((shmd
->shm_vpage
= kmem_zalloc(btopr(shm_amp
->size
),
1678 KM_NOSLEEP
)) == NULL
) {
1680 kmem_free(shmd
, (sizeof (*shmd
)));
1683 shmd
->shm_lckpgs
= 0;
1684 if (hat_supported(HAT_DYNAMIC_ISM_UNMAP
, NULL
)) {
1685 if ((error
= hat_share(seg
->s_as
->a_hat
, seg
->s_base
,
1686 shmd_arg
->shm_sptas
->a_hat
, SEGSPTADDR
,
1687 seg
->s_size
, seg
->s_szc
)) != 0) {
1688 kmem_free(shmd
->shm_vpage
,
1689 btopr(shm_amp
->size
));
1693 error
= hat_share(seg
->s_as
->a_hat
, seg
->s_base
,
1694 shmd_arg
->shm_sptas
->a_hat
, SEGSPTADDR
,
1695 seg
->s_size
, seg
->s_szc
);
1700 kmem_free(shmd
, (sizeof (*shmd
)));
1702 ANON_LOCK_ENTER(&shm_amp
->a_rwlock
, RW_WRITER
);
1704 ANON_LOCK_EXIT(&shm_amp
->a_rwlock
);
1710 segspt_shmunmap(struct seg
*seg
, caddr_t raddr
, size_t ssize
)
1712 struct shm_data
*shmd
= (struct shm_data
*)seg
->s_data
;
1715 ASSERT(seg
->s_as
&& AS_WRITE_HELD(seg
->s_as
));
1717 if (shmd
->shm_softlockcnt
> 0) {
1726 if (ssize
!= seg
->s_size
) {
1728 cmn_err(CE_WARN
, "Incompatible ssize %lx s_size %lx\n",
1729 ssize
, seg
->s_size
);
1734 (void) segspt_shmlockop(seg
, raddr
, shmd
->shm_amp
->size
, 0, MC_UNLOCK
,
1736 hat_unshare(seg
->s_as
->a_hat
, raddr
, ssize
, seg
->s_szc
);
1744 segspt_shmfree(struct seg
*seg
)
1746 struct shm_data
*shmd
= (struct shm_data
*)seg
->s_data
;
1747 struct anon_map
*shm_amp
= shmd
->shm_amp
;
1749 ASSERT(seg
->s_as
&& AS_WRITE_HELD(seg
->s_as
));
1751 (void) segspt_shmlockop(seg
, seg
->s_base
, shm_amp
->size
, 0,
1752 MC_UNLOCK
, NULL
, 0);
1755 * Need to increment refcnt when attaching
1756 * and decrement when detaching because of dup().
1758 ANON_LOCK_ENTER(&shm_amp
->a_rwlock
, RW_WRITER
);
1760 ANON_LOCK_EXIT(&shm_amp
->a_rwlock
);
1762 if (shmd
->shm_vpage
) { /* only for DISM */
1763 kmem_free(shmd
->shm_vpage
, btopr(shm_amp
->size
));
1764 shmd
->shm_vpage
= NULL
;
1768 * Take shm_segfree_syncmtx lock to let segspt_reclaim() finish if it's
1769 * still working with this segment without holding as lock.
1771 ASSERT(shmd
->shm_softlockcnt
== 0);
1772 mutex_enter(&shmd
->shm_segfree_syncmtx
);
1773 mutex_destroy(&shmd
->shm_segfree_syncmtx
);
1775 kmem_free(shmd
, sizeof (*shmd
));
1780 segspt_shmsetprot(struct seg
*seg
, caddr_t addr
, size_t len
, uint_t prot
)
1782 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
1785 * Shared page table is more than shared mapping.
1786 * Individual process sharing page tables can't change prot
1787 * because there is only one set of page tables.
1788 * This will be allowed after private page table is
1791 /* need to return correct status error? */
1797 segspt_dismfault(struct hat
*hat
, struct seg
*seg
, caddr_t addr
,
1798 size_t len
, enum fault_type type
, enum seg_rw rw
)
1800 struct shm_data
*shmd
= (struct shm_data
*)seg
->s_data
;
1801 struct seg
*sptseg
= shmd
->shm_sptseg
;
1802 struct as
*curspt
= shmd
->shm_sptas
;
1803 struct spt_data
*sptd
= sptseg
->s_data
;
1806 caddr_t segspt_addr
, shm_addr
;
1811 int dyn_ism_unmap
= hat_supported(HAT_DYNAMIC_ISM_UNMAP
, NULL
);
1817 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
1820 * Because of the way spt is implemented
1821 * the realsize of the segment does not have to be
1822 * equal to the segment size itself. The segment size is
1823 * often in multiples of a page size larger than PAGESIZE.
1824 * The realsize is rounded up to the nearest PAGESIZE
1825 * based on what the user requested. This is a bit of
1826 * ungliness that is historical but not easily fixed
1827 * without re-designing the higher levels of ISM.
1829 ASSERT(addr
>= seg
->s_base
);
1830 if (((addr
+ len
) - seg
->s_base
) > sptd
->spt_realsize
)
1833 * For all of the following cases except F_PROT, we need to
1834 * make any necessary adjustments to addr and len
1835 * and get all of the necessary page_t's into an array called ppa[].
1837 * The code in shmat() forces base addr and len of ISM segment
1838 * to be aligned to largest page size supported. Therefore,
1839 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large
1840 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK
1841 * in large pagesize chunks, or else we will screw up the HAT
1842 * layer by calling hat_memload_array() with differing page sizes
1843 * over a given virtual range.
1845 pgsz
= page_get_pagesize(sptseg
->s_szc
);
1846 pgcnt
= page_get_pagecnt(sptseg
->s_szc
);
1847 shm_addr
= (caddr_t
)P2ALIGN((uintptr_t)(addr
), pgsz
);
1848 size
= P2ROUNDUP((uintptr_t)(((addr
+ len
) - shm_addr
)), pgsz
);
1849 npages
= btopr(size
);
1852 * Now we need to convert from addr in segshm to addr in segspt.
1854 an_idx
= seg_page(seg
, shm_addr
);
1855 segspt_addr
= sptseg
->s_base
+ ptob(an_idx
);
1857 ASSERT((segspt_addr
+ ptob(npages
)) <=
1858 (sptseg
->s_base
+ sptd
->spt_realsize
));
1859 ASSERT(segspt_addr
< (sptseg
->s_base
+ sptseg
->s_size
));
1865 atomic_add_long((ulong_t
*)(&(shmd
->shm_softlockcnt
)), npages
);
1867 * Fall through to the F_INVAL case to load up the hat layer
1868 * entries with the HAT_LOAD_LOCK flag.
1873 if ((rw
== S_EXEC
) && !(sptd
->spt_prot
& PROT_EXEC
))
1876 ppa
= kmem_zalloc(npages
* sizeof (page_t
*), KM_SLEEP
);
1878 err
= spt_anon_getpages(sptseg
, segspt_addr
, size
, ppa
);
1880 if (type
== F_SOFTLOCK
) {
1881 atomic_add_long((ulong_t
*)(
1882 &(shmd
->shm_softlockcnt
)), -npages
);
1886 AS_LOCK_ENTER(sptseg
->s_as
, RW_READER
);
1889 if (type
== F_SOFTLOCK
) {
1892 * Load up the translation keeping it
1893 * locked and don't unlock the page.
1895 for (; pidx
< npages
; a
+= pgsz
, pidx
+= pgcnt
) {
1896 hat_memload_array(sptseg
->s_as
->a_hat
,
1897 a
, pgsz
, &ppa
[pidx
], sptd
->spt_prot
,
1898 HAT_LOAD_LOCK
| HAT_LOAD_SHARE
);
1902 * Migrate pages marked for migration
1904 if (lgrp_optimizations())
1905 page_migrate(seg
, shm_addr
, ppa
, npages
);
1907 for (; pidx
< npages
; a
+= pgsz
, pidx
+= pgcnt
) {
1908 hat_memload_array(sptseg
->s_as
->a_hat
,
1909 a
, pgsz
, &ppa
[pidx
],
1915 * And now drop the SE_SHARED lock(s).
1917 if (dyn_ism_unmap
) {
1918 for (i
= 0; i
< npages
; i
++) {
1919 page_unlock(ppa
[i
]);
1924 if (!dyn_ism_unmap
) {
1925 if (hat_share(seg
->s_as
->a_hat
, shm_addr
,
1926 curspt
->a_hat
, segspt_addr
, ptob(npages
),
1928 panic("hat_share err in DISM fault");
1931 if (type
== F_INVAL
) {
1932 for (i
= 0; i
< npages
; i
++) {
1933 page_unlock(ppa
[i
]);
1937 AS_LOCK_EXIT(sptseg
->s_as
);
1939 kmem_free(ppa
, npages
* sizeof (page_t
*));
1945 * This is a bit ugly, we pass in the real seg pointer,
1946 * but the segspt_addr is the virtual address within the
1949 segspt_softunlock(seg
, segspt_addr
, size
, rw
);
1955 * This takes care of the unusual case where a user
1956 * allocates a stack in shared memory and a register
1957 * window overflow is written to that stack page before
1958 * it is otherwise modified.
1960 * We can get away with this because ISM segments are
1961 * always rw. Other than this unusual case, there
1962 * should be no instances of protection violations.
1968 panic("segspt_dismfault default type?");
1977 segspt_shmfault(struct hat
*hat
, struct seg
*seg
, caddr_t addr
,
1978 size_t len
, enum fault_type type
, enum seg_rw rw
)
1980 struct shm_data
*shmd
= (struct shm_data
*)seg
->s_data
;
1981 struct seg
*sptseg
= shmd
->shm_sptseg
;
1982 struct as
*curspt
= shmd
->shm_sptas
;
1983 struct spt_data
*sptd
= sptseg
->s_data
;
1986 caddr_t sptseg_addr
, shm_addr
;
1990 ulong_t anon_index
= 0;
1992 struct anon_map
*amp
; /* XXX - for locknest */
1993 struct anon
*ap
= NULL
;
2001 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
2003 if (sptd
->spt_flags
& SHM_PAGEABLE
) {
2004 return (segspt_dismfault(hat
, seg
, addr
, len
, type
, rw
));
2008 * Because of the way spt is implemented
2009 * the realsize of the segment does not have to be
2010 * equal to the segment size itself. The segment size is
2011 * often in multiples of a page size larger than PAGESIZE.
2012 * The realsize is rounded up to the nearest PAGESIZE
2013 * based on what the user requested. This is a bit of
2014 * ungliness that is historical but not easily fixed
2015 * without re-designing the higher levels of ISM.
2017 ASSERT(addr
>= seg
->s_base
);
2018 if (((addr
+ len
) - seg
->s_base
) > sptd
->spt_realsize
)
2021 * For all of the following cases except F_PROT, we need to
2022 * make any necessary adjustments to addr and len
2023 * and get all of the necessary page_t's into an array called ppa[].
2025 * The code in shmat() forces base addr and len of ISM segment
2026 * to be aligned to largest page size supported. Therefore,
2027 * we are able to handle F_SOFTLOCK and F_INVAL calls in "large
2028 * pagesize" chunks. We want to make sure that we HAT_LOAD_LOCK
2029 * in large pagesize chunks, or else we will screw up the HAT
2030 * layer by calling hat_memload_array() with differing page sizes
2031 * over a given virtual range.
2033 pgsz
= page_get_pagesize(sptseg
->s_szc
);
2034 pgcnt
= page_get_pagecnt(sptseg
->s_szc
);
2035 shm_addr
= (caddr_t
)P2ALIGN((uintptr_t)(addr
), pgsz
);
2036 size
= P2ROUNDUP((uintptr_t)(((addr
+ len
) - shm_addr
)), pgsz
);
2037 npages
= btopr(size
);
2040 * Now we need to convert from addr in segshm to addr in segspt.
2042 anon_index
= seg_page(seg
, shm_addr
);
2043 sptseg_addr
= sptseg
->s_base
+ ptob(anon_index
);
2046 * And now we may have to adjust npages downward if we have
2047 * exceeded the realsize of the segment or initial anon
2050 if ((sptseg_addr
+ ptob(npages
)) >
2051 (sptseg
->s_base
+ sptd
->spt_realsize
))
2052 size
= (sptseg
->s_base
+ sptd
->spt_realsize
) - sptseg_addr
;
2054 npages
= btopr(size
);
2056 ASSERT(sptseg_addr
< (sptseg
->s_base
+ sptseg
->s_size
));
2057 ASSERT((sptd
->spt_flags
& SHM_PAGEABLE
) == 0);
2064 * availrmem is decremented once during anon_swap_adjust()
2065 * and is incremented during the anon_unresv(), which is
2066 * called from shm_rm_amp() when the segment is destroyed.
2068 atomic_add_long((ulong_t
*)(&(shmd
->shm_softlockcnt
)), npages
);
2070 * Some platforms assume that ISM pages are SE_SHARED
2071 * locked for the entire life of the segment.
2073 if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP
, NULL
))
2076 * Fall through to the F_INVAL case to load up the hat layer
2077 * entries with the HAT_LOAD_LOCK flag.
2083 if ((rw
== S_EXEC
) && !(sptd
->spt_prot
& PROT_EXEC
))
2087 * Some platforms that do NOT support DYNAMIC_ISM_UNMAP
2088 * may still rely on this call to hat_share(). That
2089 * would imply that those hat's can fault on a
2090 * HAT_LOAD_LOCK translation, which would seem
2093 if (!hat_supported(HAT_DYNAMIC_ISM_UNMAP
, NULL
)) {
2094 if (hat_share(seg
->s_as
->a_hat
, seg
->s_base
,
2095 curspt
->a_hat
, sptseg
->s_base
,
2096 sptseg
->s_size
, sptseg
->s_szc
) != 0) {
2097 panic("hat_share error in ISM fault");
2102 ppa
= kmem_zalloc(sizeof (page_t
*) * npages
, KM_SLEEP
);
2105 * I see no need to lock the real seg,
2106 * here, because all of our work will be on the underlying
2109 * sptseg_addr and npages now account for large pages.
2111 amp
= sptd
->spt_amp
;
2112 ASSERT(amp
!= NULL
);
2113 anon_index
= seg_page(sptseg
, sptseg_addr
);
2115 ANON_LOCK_ENTER(&
->a_rwlock
, RW_READER
);
2116 for (i
= 0; i
< npages
; i
++) {
2117 ap
= anon_get_ptr(amp
->ahp
, anon_index
++);
2119 swap_xlate(ap
, &vp
, &offset
);
2120 pp
= page_lookup(&vp
->v_object
, offset
, SE_SHARED
);
2124 ANON_LOCK_EXIT(&
->a_rwlock
);
2125 ASSERT(i
== npages
);
2128 * We are already holding the as->a_lock on the user's
2129 * real segment, but we need to hold the a_lock on the
2130 * underlying dummy as. This is mostly to satisfy the
2131 * underlying HAT layer.
2133 AS_LOCK_ENTER(sptseg
->s_as
, RW_READER
);
2136 if (type
== F_SOFTLOCK
) {
2138 * Load up the translation keeping it
2139 * locked and don't unlock the page.
2141 for (; pidx
< npages
; a
+= pgsz
, pidx
+= pgcnt
) {
2142 sz
= MIN(pgsz
, ptob(npages
- pidx
));
2143 hat_memload_array(sptseg
->s_as
->a_hat
, a
,
2144 sz
, &ppa
[pidx
], sptd
->spt_prot
,
2145 HAT_LOAD_LOCK
| HAT_LOAD_SHARE
);
2149 * Migrate pages marked for migration.
2151 if (lgrp_optimizations())
2152 page_migrate(seg
, shm_addr
, ppa
, npages
);
2154 for (; pidx
< npages
; a
+= pgsz
, pidx
+= pgcnt
) {
2155 sz
= MIN(pgsz
, ptob(npages
- pidx
));
2156 hat_memload_array(sptseg
->s_as
->a_hat
,
2158 sptd
->spt_prot
, HAT_LOAD_SHARE
);
2162 * And now drop the SE_SHARED lock(s).
2164 for (i
= 0; i
< npages
; i
++)
2165 page_unlock(ppa
[i
]);
2167 AS_LOCK_EXIT(sptseg
->s_as
);
2169 kmem_free(ppa
, sizeof (page_t
*) * npages
);
2174 * This is a bit ugly, we pass in the real seg pointer,
2175 * but the sptseg_addr is the virtual address within the
2178 segspt_softunlock(seg
, sptseg_addr
, ptob(npages
), rw
);
2184 * This takes care of the unusual case where a user
2185 * allocates a stack in shared memory and a register
2186 * window overflow is written to that stack page before
2187 * it is otherwise modified.
2189 * We can get away with this because ISM segments are
2190 * always rw. Other than this unusual case, there
2191 * should be no instances of protection violations.
2197 cmn_err(CE_WARN
, "segspt_shmfault default type?");
2205 segspt_shmfaulta(struct seg
*seg
, caddr_t addr
)
2212 segspt_shmkluster(struct seg
*seg
, caddr_t addr
, ssize_t delta
)
2218 * duplicate the shared page tables
2221 segspt_shmdup(struct seg
*seg
, struct seg
*newseg
)
2223 struct shm_data
*shmd
= (struct shm_data
*)seg
->s_data
;
2224 struct anon_map
*amp
= shmd
->shm_amp
;
2225 struct shm_data
*shmd_new
;
2226 struct seg
*spt_seg
= shmd
->shm_sptseg
;
2227 struct spt_data
*sptd
= spt_seg
->s_data
;
2230 ASSERT(seg
->s_as
&& AS_WRITE_HELD(seg
->s_as
));
2232 shmd_new
= kmem_zalloc((sizeof (*shmd_new
)), KM_SLEEP
);
2233 newseg
->s_data
= (void *)shmd_new
;
2234 shmd_new
->shm_sptas
= shmd
->shm_sptas
;
2235 shmd_new
->shm_amp
= amp
;
2236 shmd_new
->shm_sptseg
= shmd
->shm_sptseg
;
2237 newseg
->s_ops
= &segspt_shmops
;
2238 newseg
->s_szc
= seg
->s_szc
;
2239 ASSERT(seg
->s_szc
== shmd
->shm_sptseg
->s_szc
);
2241 ANON_LOCK_ENTER(&
->a_rwlock
, RW_WRITER
);
2243 ANON_LOCK_EXIT(&
->a_rwlock
);
2245 if (sptd
->spt_flags
& SHM_PAGEABLE
) {
2246 shmd_new
->shm_vpage
= kmem_zalloc(btopr(amp
->size
), KM_SLEEP
);
2247 shmd_new
->shm_lckpgs
= 0;
2248 if (hat_supported(HAT_DYNAMIC_ISM_UNMAP
, NULL
)) {
2249 if ((error
= hat_share(newseg
->s_as
->a_hat
,
2250 newseg
->s_base
, shmd
->shm_sptas
->a_hat
, SEGSPTADDR
,
2251 seg
->s_size
, seg
->s_szc
)) != 0) {
2252 kmem_free(shmd_new
->shm_vpage
,
2258 return (hat_share(newseg
->s_as
->a_hat
, newseg
->s_base
,
2259 shmd
->shm_sptas
->a_hat
, SEGSPTADDR
, seg
->s_size
,
2267 segspt_shmcheckprot(struct seg
*seg
, caddr_t addr
, size_t size
, uint_t prot
)
2269 struct shm_data
*shmd
= (struct shm_data
*)seg
->s_data
;
2270 struct spt_data
*sptd
= (struct spt_data
*)shmd
->shm_sptseg
->s_data
;
2272 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
2275 * ISM segment is always rw.
2277 return (((sptd
->spt_prot
& prot
) != prot
) ? EACCES
: 0);
2281 * Return an array of locked large pages, for empty slots allocate
2282 * private zero-filled anon pages.
2291 struct spt_data
*sptd
= sptseg
->s_data
;
2292 struct anon_map
*amp
= sptd
->spt_amp
;
2293 enum seg_rw rw
= sptd
->spt_prot
;
2294 uint_t szc
= sptseg
->s_szc
;
2295 size_t pg_sz
, share_sz
= page_get_pagesize(szc
);
2297 caddr_t lp_addr
, e_sptaddr
;
2298 uint_t vpprot
, ppa_szc
= 0;
2299 struct vpage
*vpage
= NULL
;
2303 anon_sync_obj_t cookie
;
2304 int anon_locked
= 0;
2308 ASSERT(IS_P2ALIGNED(sptaddr
, share_sz
) && IS_P2ALIGNED(len
, share_sz
));
2312 lp_npgs
= btop(pg_sz
);
2314 e_sptaddr
= sptaddr
+ len
;
2315 an_idx
= seg_page(sptseg
, sptaddr
);
2318 ANON_LOCK_ENTER(&
->a_rwlock
, RW_READER
);
2320 amp_pgs
= page_get_pagecnt(amp
->a_szc
);
2324 for (; lp_addr
< e_sptaddr
;
2325 an_idx
+= lp_npgs
, lp_addr
+= pg_sz
, ppa_idx
+= lp_npgs
) {
2328 * If we're currently locked, and we get to a new
2329 * page, unlock our current anon chunk.
2331 if (anon_locked
&& P2PHASE(an_idx
, amp_pgs
) == 0) {
2332 anon_array_exit(&cookie
);
2336 anon_array_enter(amp
, an_idx
, &cookie
);
2339 ppa_szc
= (uint_t
)-1;
2340 ierr
= anon_map_getpages(amp
, an_idx
, szc
, sptseg
,
2341 lp_addr
, sptd
->spt_prot
, &vpprot
, &ppa
[ppa_idx
],
2342 &ppa_szc
, vpage
, rw
, 0, segvn_anypgsz
, 0, kcred
);
2346 err
= FC_MAKE_ERR(ierr
);
2352 if (lp_addr
== e_sptaddr
) {
2355 ASSERT(lp_addr
< e_sptaddr
);
2358 * ierr == -1 means we failed to allocate a large page.
2359 * so do a size down operation.
2361 * ierr == -2 means some other process that privately shares
2362 * pages with this process has allocated a larger page and we
2363 * need to retry with larger pages. So do a size up
2364 * operation. This relies on the fact that large pages are
2365 * never partially shared i.e. if we share any constituent
2366 * page of a large page with another process we must share the
2367 * entire large page. Note this cannot happen for SOFTLOCK
2368 * case, unless current address (lpaddr) is at the beginning
2369 * of the next page size boundary because the other process
2370 * couldn't have relocated locked pages.
2372 ASSERT(ierr
== -1 || ierr
== -2);
2373 if (segvn_anypgsz
) {
2374 ASSERT(ierr
== -2 || szc
!= 0);
2375 ASSERT(ierr
== -1 || szc
< sptseg
->s_szc
);
2376 szc
= (ierr
== -1) ? szc
- 1 : szc
+ 1;
2379 * For faults and segvn_anypgsz == 0
2380 * we need to be careful not to loop forever
2381 * if existing page is found with szc other
2382 * than 0 or seg->s_szc. This could be due
2383 * to page relocations on behalf of DR or
2384 * more likely large page creation. For this
2385 * case simply re-size to existing page's szc
2386 * if returned by anon_map_getpages().
2388 if (ppa_szc
== (uint_t
)-1) {
2389 szc
= (ierr
== -1) ? 0 : sptseg
->s_szc
;
2391 ASSERT(ppa_szc
<= sptseg
->s_szc
);
2392 ASSERT(ierr
== -2 || ppa_szc
< szc
);
2393 ASSERT(ierr
== -1 || ppa_szc
> szc
);
2397 pg_sz
= page_get_pagesize(szc
);
2398 lp_npgs
= btop(pg_sz
);
2399 ASSERT(IS_P2ALIGNED(lp_addr
, pg_sz
));
2402 anon_array_exit(&cookie
);
2404 ANON_LOCK_EXIT(&
->a_rwlock
);
2409 anon_array_exit(&cookie
);
2411 ANON_LOCK_EXIT(&
->a_rwlock
);
2412 for (j
= 0; j
< ppa_idx
; j
++)
2413 page_unlock(ppa
[j
]);
2418 * count the number of bytes in a set of spt pages that are currently not
2422 spt_unlockedbytes(pgcnt_t npages
, page_t
**ppa
)
2425 rctl_qty_t unlocked
= 0;
2427 for (i
= 0; i
< npages
; i
++) {
2428 if (ppa
[i
]->p_lckcnt
== 0)
2429 unlocked
+= PAGESIZE
;
2434 extern u_longlong_t
randtick(void);
2435 /* number of locks to reserve/skip by spt_lockpages() and spt_unlockpages() */
2436 #define NLCK (NCPU_P2)
2437 /* Random number with a range [0, n-1], n must be power of two */
2438 #define RAND_P2(n) \
2439 ((((long)curthread >> PTR24_LSB) ^ (long)randtick()) & ((n) - 1))
2442 spt_lockpages(struct seg
*seg
, pgcnt_t anon_index
, pgcnt_t npages
,
2443 page_t
**ppa
, ulong_t
*lockmap
, size_t pos
,
2446 struct shm_data
*shmd
= seg
->s_data
;
2447 struct spt_data
*sptd
= shmd
->shm_sptseg
->s_data
;
2452 int use_reserved
= 1;
2454 /* return the number of bytes actually locked */
2458 * To avoid contention on freemem_lock, availrmem and pages_locked
2459 * global counters are updated only every nlck locked pages instead of
2460 * every time. Reserve nlck locks up front and deduct from this
2461 * reservation for each page that requires a lock. When the reservation
2462 * is consumed, reserve again. nlck is randomized, so the competing
2463 * threads do not fall into a cyclic lock contention pattern. When
2464 * memory is low, the lock ahead is disabled, and instead page_pp_lock()
2465 * is used to lock pages.
2467 for (i
= 0; i
< npages
; anon_index
++, pos
++, i
++) {
2468 if (nlck
== 0 && use_reserved
== 1) {
2469 nlck
= NLCK
+ RAND_P2(NLCK
);
2470 /* if fewer loops left, decrease nlck */
2471 nlck
= MIN(nlck
, npages
- i
);
2473 * Reserve nlck locks up front and deduct from this
2474 * reservation for each page that requires a lock. When
2475 * the reservation is consumed, reserve again.
2477 mutex_enter(&freemem_lock
);
2478 if ((availrmem
- nlck
) < pages_pp_maximum
) {
2479 /* Do not do advance memory reserves */
2483 pages_locked
+= nlck
;
2485 mutex_exit(&freemem_lock
);
2487 if (!(shmd
->shm_vpage
[anon_index
] & DISM_PG_LOCKED
)) {
2488 if (sptd
->spt_ppa_lckcnt
[anon_index
] <
2489 (ushort_t
)DISM_LOCK_MAX
) {
2490 if (++sptd
->spt_ppa_lckcnt
[anon_index
] ==
2491 (ushort_t
)DISM_LOCK_MAX
) {
2493 "DISM page lock limit "
2494 "reached on DISM offset 0x%lx\n",
2495 anon_index
<< PAGESHIFT
);
2497 kernel
= (sptd
->spt_ppa
&&
2498 sptd
->spt_ppa
[anon_index
]);
2499 if (!page_pp_lock(ppa
[i
], 0, kernel
||
2501 sptd
->spt_ppa_lckcnt
[anon_index
]--;
2505 /* if this is a newly locked page, count it */
2506 if (ppa
[i
]->p_lckcnt
== 1) {
2507 if (kernel
== 0 && use_reserved
== 1)
2509 *locked
+= PAGESIZE
;
2512 shmd
->shm_vpage
[anon_index
] |= DISM_PG_LOCKED
;
2513 if (lockmap
!= NULL
)
2514 BT_SET(lockmap
, pos
);
2518 /* Return unused lock reservation */
2519 if (nlck
!= 0 && use_reserved
== 1) {
2520 mutex_enter(&freemem_lock
);
2522 pages_locked
-= nlck
;
2523 mutex_exit(&freemem_lock
);
2530 spt_unlockpages(struct seg
*seg
, pgcnt_t anon_index
, pgcnt_t npages
,
2531 rctl_qty_t
*unlocked
)
2533 struct shm_data
*shmd
= seg
->s_data
;
2534 struct spt_data
*sptd
= shmd
->shm_sptseg
->s_data
;
2535 struct anon_map
*amp
= sptd
->spt_amp
;
2541 anon_sync_obj_t cookie
;
2544 pgcnt_t nlck_limit
= NLCK
;
2546 ANON_LOCK_ENTER(&
->a_rwlock
, RW_READER
);
2547 for (i
= 0; i
< npages
; i
++, anon_index
++) {
2548 if (shmd
->shm_vpage
[anon_index
] & DISM_PG_LOCKED
) {
2549 anon_array_enter(amp
, anon_index
, &cookie
);
2550 ap
= anon_get_ptr(amp
->ahp
, anon_index
);
2553 swap_xlate(ap
, &vp
, &off
);
2554 anon_array_exit(&cookie
);
2555 pp
= page_lookup(&vp
->v_object
, off
, SE_SHARED
);
2558 * availrmem is decremented only for pages which are not
2559 * in seg pcache, for pages in seg pcache availrmem was
2560 * decremented in _dismpagelock()
2562 kernel
= (sptd
->spt_ppa
&& sptd
->spt_ppa
[anon_index
]);
2563 ASSERT(pp
->p_lckcnt
> 0);
2566 * lock page but do not change availrmem, we do it
2567 * ourselves every nlck loops.
2569 page_pp_unlock(pp
, 0, 1);
2570 if (pp
->p_lckcnt
== 0) {
2573 *unlocked
+= PAGESIZE
;
2576 shmd
->shm_vpage
[anon_index
] &= ~DISM_PG_LOCKED
;
2577 sptd
->spt_ppa_lckcnt
[anon_index
]--;
2582 * To reduce freemem_lock contention, do not update availrmem
2583 * until at least NLCK pages have been unlocked.
2584 * 1. No need to update if nlck is zero
2585 * 2. Always update if the last iteration
2587 if (nlck
> 0 && (nlck
== nlck_limit
|| i
== npages
- 1)) {
2588 mutex_enter(&freemem_lock
);
2590 pages_locked
-= nlck
;
2591 mutex_exit(&freemem_lock
);
2593 nlck_limit
= NLCK
+ RAND_P2(NLCK
);
2596 ANON_LOCK_EXIT(&
->a_rwlock
);
2603 segspt_shmlockop(struct seg
*seg
, caddr_t addr
, size_t len
,
2604 int attr
, int op
, ulong_t
*lockmap
, size_t pos
)
2606 struct shm_data
*shmd
= seg
->s_data
;
2607 struct seg
*sptseg
= shmd
->shm_sptseg
;
2608 struct spt_data
*sptd
= sptseg
->s_data
;
2609 struct kshmid
*sp
= sptd
->spt_amp
->a_sp
;
2610 pgcnt_t npages
, a_npages
;
2612 pgcnt_t an_idx
, a_an_idx
, ppa_idx
;
2613 caddr_t spt_addr
, a_addr
; /* spt and aligned address */
2614 size_t a_len
; /* aligned len */
2618 rctl_qty_t unlocked
= 0;
2619 rctl_qty_t locked
= 0;
2620 struct proc
*p
= curproc
;
2623 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
2626 if ((sptd
->spt_flags
& SHM_PAGEABLE
) == 0) {
2630 addr
= (caddr_t
)((uintptr_t)addr
& (uintptr_t)PAGEMASK
);
2631 an_idx
= seg_page(seg
, addr
);
2632 npages
= btopr(len
);
2634 if (an_idx
+ npages
> btopr(shmd
->shm_amp
->size
)) {
2639 * A shm's project never changes, so no lock needed.
2640 * The shm has a hold on the project, so it will not go away.
2641 * Since we have a mapping to shm within this zone, we know
2642 * that the zone will not go away.
2644 proj
= sp
->shm_perm
.ipc_proj
;
2646 if (op
== MC_LOCK
) {
2649 * Need to align addr and size request if they are not
2650 * aligned so we can always allocate large page(s) however
2651 * we only lock what was requested in initial request.
2653 share_sz
= page_get_pagesize(sptseg
->s_szc
);
2654 a_addr
= (caddr_t
)P2ALIGN((uintptr_t)(addr
), share_sz
);
2655 a_len
= P2ROUNDUP((uintptr_t)(((addr
+ len
) - a_addr
)),
2657 a_npages
= btop(a_len
);
2658 a_an_idx
= seg_page(seg
, a_addr
);
2659 spt_addr
= sptseg
->s_base
+ ptob(a_an_idx
);
2660 ppa_idx
= an_idx
- a_an_idx
;
2662 if ((ppa
= kmem_zalloc(((sizeof (page_t
*)) * a_npages
),
2663 KM_NOSLEEP
)) == NULL
) {
2668 * Don't cache any new pages for IO and
2669 * flush any cached pages.
2671 mutex_enter(&sptd
->spt_lock
);
2672 if (sptd
->spt_ppa
!= NULL
)
2673 sptd
->spt_flags
|= DISM_PPA_CHANGED
;
2675 sts
= spt_anon_getpages(sptseg
, spt_addr
, a_len
, ppa
);
2677 mutex_exit(&sptd
->spt_lock
);
2678 kmem_free(ppa
, ((sizeof (page_t
*)) * a_npages
));
2682 mutex_enter(&sp
->shm_mlock
);
2683 /* enforce locked memory rctl */
2684 unlocked
= spt_unlockedbytes(npages
, &ppa
[ppa_idx
]);
2686 mutex_enter(&p
->p_lock
);
2687 if (rctl_incr_locked_mem(p
, proj
, unlocked
, 0)) {
2688 mutex_exit(&p
->p_lock
);
2691 mutex_exit(&p
->p_lock
);
2692 sts
= spt_lockpages(seg
, an_idx
, npages
,
2693 &ppa
[ppa_idx
], lockmap
, pos
, &locked
);
2696 * correct locked count if not all pages could be
2699 if ((unlocked
- locked
) > 0) {
2700 rctl_decr_locked_mem(NULL
, proj
,
2701 (unlocked
- locked
), 0);
2707 for (i
= 0; i
< a_npages
; i
++)
2708 page_unlock(ppa
[i
]);
2709 if (sptd
->spt_ppa
!= NULL
)
2710 sptd
->spt_flags
|= DISM_PPA_CHANGED
;
2711 mutex_exit(&sp
->shm_mlock
);
2712 mutex_exit(&sptd
->spt_lock
);
2714 kmem_free(ppa
, ((sizeof (page_t
*)) * a_npages
));
2716 } else if (op
== MC_UNLOCK
) { /* unlock */
2719 mutex_enter(&sptd
->spt_lock
);
2720 if (shmd
->shm_lckpgs
== 0) {
2721 mutex_exit(&sptd
->spt_lock
);
2725 * Don't cache new IO pages.
2727 if (sptd
->spt_ppa
!= NULL
)
2728 sptd
->spt_flags
|= DISM_PPA_CHANGED
;
2730 mutex_enter(&sp
->shm_mlock
);
2731 sts
= spt_unlockpages(seg
, an_idx
, npages
, &unlocked
);
2732 if ((ppa
= sptd
->spt_ppa
) != NULL
)
2733 sptd
->spt_flags
|= DISM_PPA_CHANGED
;
2734 mutex_exit(&sptd
->spt_lock
);
2736 rctl_decr_locked_mem(NULL
, proj
, unlocked
, 0);
2737 mutex_exit(&sp
->shm_mlock
);
2740 seg_ppurge_wiredpp(ppa
);
2747 segspt_shmgetprot(struct seg
*seg
, caddr_t addr
, size_t len
, uint_t
*protv
)
2749 struct shm_data
*shmd
= (struct shm_data
*)seg
->s_data
;
2750 struct spt_data
*sptd
= (struct spt_data
*)shmd
->shm_sptseg
->s_data
;
2751 spgcnt_t pgno
= seg_page(seg
, addr
+len
) - seg_page(seg
, addr
) + 1;
2753 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
2756 * ISM segment is always rw.
2759 *protv
++ = sptd
->spt_prot
;
2765 segspt_shmgetoffset(struct seg
*seg
, caddr_t addr
)
2767 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
2769 /* Offset does not matter in ISM memory */
2776 segspt_shmgettype(struct seg
*seg
, caddr_t addr
)
2778 struct shm_data
*shmd
= (struct shm_data
*)seg
->s_data
;
2779 struct spt_data
*sptd
= (struct spt_data
*)shmd
->shm_sptseg
->s_data
;
2781 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
2784 * The shared memory mapping is always MAP_SHARED, SWAP is only
2787 return (MAP_SHARED
|
2788 ((sptd
->spt_flags
& SHM_PAGEABLE
) ? 0 : MAP_NORESERVE
));
2793 segspt_shmgetvp(struct seg
*seg
, caddr_t addr
, struct vnode
**vpp
)
2795 struct shm_data
*shmd
= (struct shm_data
*)seg
->s_data
;
2796 struct spt_data
*sptd
= (struct spt_data
*)shmd
->shm_sptseg
->s_data
;
2798 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
2800 *vpp
= sptd
->spt_vp
;
2805 * We need to wait for pending IO to complete to a DISM segment in order for
2806 * pages to get kicked out of the seg_pcache. 120 seconds should be more
2807 * than enough time to wait.
2809 static clock_t spt_pcache_wait
= 120;
2813 segspt_shmadvise(struct seg
*seg
, caddr_t addr
, size_t len
, uint_t behav
)
2815 struct shm_data
*shmd
= (struct shm_data
*)seg
->s_data
;
2816 struct spt_data
*sptd
= (struct spt_data
*)shmd
->shm_sptseg
->s_data
;
2817 struct anon_map
*amp
;
2824 ASSERT(seg
->s_as
&& AS_LOCK_HELD(seg
->s_as
));
2826 if (behav
== MADV_FREE
|| behav
== MADV_PURGE
) {
2827 if ((sptd
->spt_flags
& SHM_PAGEABLE
) == 0)
2830 amp
= sptd
->spt_amp
;
2831 pg_idx
= seg_page(seg
, addr
);
2833 mutex_enter(&sptd
->spt_lock
);
2834 if ((ppa
= sptd
->spt_ppa
) == NULL
) {
2835 mutex_exit(&sptd
->spt_lock
);
2836 ANON_LOCK_ENTER(&
->a_rwlock
, RW_READER
);
2837 (void) anon_disclaim(amp
, pg_idx
, len
, behav
, NULL
);
2838 ANON_LOCK_EXIT(&
->a_rwlock
);
2842 sptd
->spt_flags
|= DISM_PPA_CHANGED
;
2843 gen
= sptd
->spt_gen
;
2845 mutex_exit(&sptd
->spt_lock
);
2848 * Purge all DISM cached pages
2850 seg_ppurge_wiredpp(ppa
);
2853 * Drop the AS_LOCK so that other threads can grab it
2854 * in the as_pageunlock path and hopefully get the segment
2855 * kicked out of the seg_pcache. We bump the shm_softlockcnt
2856 * to keep this segment resident.
2858 writer
= AS_WRITE_HELD(seg
->s_as
);
2859 atomic_inc_ulong((ulong_t
*)(&(shmd
->shm_softlockcnt
)));
2860 AS_LOCK_EXIT(seg
->s_as
);
2862 mutex_enter(&sptd
->spt_lock
);
2864 end_lbolt
= ddi_get_lbolt() + (hz
* spt_pcache_wait
);
2867 * Try to wait for pages to get kicked out of the seg_pcache.
2869 while (sptd
->spt_gen
== gen
&&
2870 (sptd
->spt_flags
& DISM_PPA_CHANGED
) &&
2871 ddi_get_lbolt() < end_lbolt
) {
2872 if (!cv_timedwait_sig(&sptd
->spt_cv
,
2873 &sptd
->spt_lock
, end_lbolt
)) {
2878 mutex_exit(&sptd
->spt_lock
);
2880 /* Regrab the AS_LOCK and release our hold on the segment */
2881 AS_LOCK_ENTER(seg
->s_as
, writer
? RW_WRITER
: RW_READER
);
2882 atomic_dec_ulong((ulong_t
*)(&(shmd
->shm_softlockcnt
)));
2883 if (shmd
->shm_softlockcnt
<= 0) {
2884 if (AS_ISUNMAPWAIT(seg
->s_as
)) {
2885 mutex_enter(&seg
->s_as
->a_contents
);
2886 if (AS_ISUNMAPWAIT(seg
->s_as
)) {
2887 AS_CLRUNMAPWAIT(seg
->s_as
);
2888 cv_broadcast(&seg
->s_as
->a_cv
);
2890 mutex_exit(&seg
->s_as
->a_contents
);
2894 ANON_LOCK_ENTER(&
->a_rwlock
, RW_READER
);
2895 (void) anon_disclaim(amp
, pg_idx
, len
, behav
, NULL
);
2896 ANON_LOCK_EXIT(&
->a_rwlock
);
2897 } else if (lgrp_optimizations() && (behav
== MADV_ACCESS_LWP
||
2898 behav
== MADV_ACCESS_MANY
|| behav
== MADV_ACCESS_DEFAULT
)) {
2901 lgrp_mem_policy_t policy
;
2905 struct seg
*sptseg
= shmd
->shm_sptseg
;
2906 caddr_t sptseg_addr
;
2909 * Align address and length to page size of underlying segment
2911 share_size
= page_get_pagesize(shmd
->shm_sptseg
->s_szc
);
2912 shm_addr
= (caddr_t
)P2ALIGN((uintptr_t)(addr
), share_size
);
2913 size
= P2ROUNDUP((uintptr_t)(((addr
+ len
) - shm_addr
)),
2916 amp
= shmd
->shm_amp
;
2917 anon_index
= seg_page(seg
, shm_addr
);
2920 * And now we may have to adjust size downward if we have
2921 * exceeded the realsize of the segment or initial anon
2924 sptseg_addr
= sptseg
->s_base
+ ptob(anon_index
);
2925 if ((sptseg_addr
+ size
) >
2926 (sptseg
->s_base
+ sptd
->spt_realsize
))
2927 size
= (sptseg
->s_base
+ sptd
->spt_realsize
) -
2931 * Set memory allocation policy for this segment
2933 policy
= lgrp_madv_to_policy(behav
, len
, MAP_SHARED
);
2934 already_set
= lgrp_shm_policy_set(policy
, amp
, anon_index
,
2938 * If random memory allocation policy set already,
2939 * don't bother reapplying it.
2941 if (already_set
&& !LGRP_MEM_POLICY_REAPPLICABLE(policy
))
2945 * Mark any existing pages in the given range for
2946 * migration, flushing the I/O page cache, and using
2947 * underlying segment to calculate anon index and get
2948 * anonmap and vnode pointer from
2950 if (shmd
->shm_softlockcnt
> 0)
2953 page_mark_migrate(seg
, shm_addr
, size
, amp
, 0, NULL
, 0, 0);
2960 * get a memory ID for an addr in a given segment
2963 segspt_shmgetmemid(struct seg
*seg
, caddr_t addr
, memid_t
*memidp
)
2965 struct shm_data
*shmd
= (struct shm_data
*)seg
->s_data
;
2968 struct anon_map
*amp
= shmd
->shm_amp
;
2969 struct spt_data
*sptd
= shmd
->shm_sptseg
->s_data
;
2970 struct seg
*sptseg
= shmd
->shm_sptseg
;
2971 anon_sync_obj_t cookie
;
2973 anon_index
= seg_page(seg
, addr
);
2975 if (addr
> (seg
->s_base
+ sptd
->spt_realsize
)) {
2979 ANON_LOCK_ENTER(&
->a_rwlock
, RW_READER
);
2980 anon_array_enter(amp
, anon_index
, &cookie
);
2981 ap
= anon_get_ptr(amp
->ahp
, anon_index
);
2984 caddr_t spt_addr
= sptseg
->s_base
+ ptob(anon_index
);
2986 pp
= anon_zero(sptseg
, spt_addr
, &ap
, kcred
);
2988 anon_array_exit(&cookie
);
2989 ANON_LOCK_EXIT(&
->a_rwlock
);
2992 (void) anon_set_ptr(amp
->ahp
, anon_index
, ap
, ANON_SLEEP
);
2995 anon_array_exit(&cookie
);
2996 ANON_LOCK_EXIT(&
->a_rwlock
);
2997 memidp
->val
[0] = (uintptr_t)ap
;
2998 memidp
->val
[1] = (uintptr_t)addr
& PAGEOFFSET
;
3003 * Get memory allocation policy info for specified address in given segment
3005 static lgrp_mem_policy_info_t
*
3006 segspt_shmgetpolicy(struct seg
*seg
, caddr_t addr
)
3008 struct anon_map
*amp
;
3010 lgrp_mem_policy_info_t
*policy_info
;
3011 struct shm_data
*shm_data
;
3013 ASSERT(seg
!= NULL
);
3016 * Get anon_map from segshm
3018 * Assume that no lock needs to be held on anon_map, since
3019 * it should be protected by its reference count which must be
3020 * nonzero for an existing segment
3021 * Need to grab readers lock on policy tree though
3023 shm_data
= (struct shm_data
*)seg
->s_data
;
3024 if (shm_data
== NULL
)
3026 amp
= shm_data
->shm_amp
;
3027 ASSERT(amp
->refcnt
!= 0);
3032 * Assume starting anon index of 0
3034 anon_index
= seg_page(seg
, addr
);
3035 policy_info
= lgrp_shm_policy_get(amp
, anon_index
, NULL
, 0);
3037 return (policy_info
);