3821 Race in rollback, zil close, and zil flush
[unleashed.git] / usr / src / uts / common / fs / zfs / dsl_pool.c
blob879a218a187441a355a880a2449a0d7913f3761c
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
29 #include <sys/dsl_pool.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_prop.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/dsl_deadlist.h>
46 #include <sys/bptree.h>
47 #include <sys/zfeature.h>
48 #include <sys/zil_impl.h>
49 #include <sys/dsl_userhold.h>
52 * ZFS Write Throttle
53 * ------------------
55 * ZFS must limit the rate of incoming writes to the rate at which it is able
56 * to sync data modifications to the backend storage. Throttling by too much
57 * creates an artificial limit; throttling by too little can only be sustained
58 * for short periods and would lead to highly lumpy performance. On a per-pool
59 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
60 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
61 * of dirty data decreases. When the amount of dirty data exceeds a
62 * predetermined threshold further modifications are blocked until the amount
63 * of dirty data decreases (as data is synced out).
65 * The limit on dirty data is tunable, and should be adjusted according to
66 * both the IO capacity and available memory of the system. The larger the
67 * window, the more ZFS is able to aggregate and amortize metadata (and data)
68 * changes. However, memory is a limited resource, and allowing for more dirty
69 * data comes at the cost of keeping other useful data in memory (for example
70 * ZFS data cached by the ARC).
72 * Implementation
74 * As buffers are modified dsl_pool_willuse_space() increments both the per-
75 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
76 * dirty space used; dsl_pool_dirty_space() decrements those values as data
77 * is synced out from dsl_pool_sync(). While only the poolwide value is
78 * relevant, the per-txg value is useful for debugging. The tunable
79 * zfs_dirty_data_max determines the dirty space limit. Once that value is
80 * exceeded, new writes are halted until space frees up.
82 * The zfs_dirty_data_sync tunable dictates the threshold at which we
83 * ensure that there is a txg syncing (see the comment in txg.c for a full
84 * description of transaction group stages).
86 * The IO scheduler uses both the dirty space limit and current amount of
87 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
88 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
90 * The delay is also calculated based on the amount of dirty data. See the
91 * comment above dmu_tx_delay() for details.
95 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
96 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system.
98 uint64_t zfs_dirty_data_max;
99 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
100 int zfs_dirty_data_max_percent = 10;
103 * If there is at least this much dirty data, push out a txg.
105 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
108 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
109 * and delay each transaction.
110 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
112 int zfs_delay_min_dirty_percent = 60;
115 * This controls how quickly the delay approaches infinity.
116 * Larger values cause it to delay more for a given amount of dirty data.
117 * Therefore larger values will cause there to be less dirty data for a
118 * given throughput.
120 * For the smoothest delay, this value should be about 1 billion divided
121 * by the maximum number of operations per second. This will smoothly
122 * handle between 10x and 1/10th this number.
124 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
125 * multiply in dmu_tx_delay().
127 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
130 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
131 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
134 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
136 uint64_t obj;
137 int err;
139 err = zap_lookup(dp->dp_meta_objset,
140 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
141 name, sizeof (obj), 1, &obj);
142 if (err)
143 return (err);
145 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
148 static dsl_pool_t *
149 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
151 dsl_pool_t *dp;
152 blkptr_t *bp = spa_get_rootblkptr(spa);
154 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
155 dp->dp_spa = spa;
156 dp->dp_meta_rootbp = *bp;
157 rrw_init(&dp->dp_config_rwlock, B_TRUE);
158 txg_init(dp, txg);
160 txg_list_create(&dp->dp_dirty_datasets,
161 offsetof(dsl_dataset_t, ds_dirty_link));
162 txg_list_create(&dp->dp_dirty_zilogs,
163 offsetof(zilog_t, zl_dirty_link));
164 txg_list_create(&dp->dp_dirty_dirs,
165 offsetof(dsl_dir_t, dd_dirty_link));
166 txg_list_create(&dp->dp_sync_tasks,
167 offsetof(dsl_sync_task_t, dst_node));
169 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
170 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
172 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
173 1, 4, 0);
175 return (dp);
179 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
181 int err;
182 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
184 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
185 &dp->dp_meta_objset);
186 if (err != 0)
187 dsl_pool_close(dp);
188 else
189 *dpp = dp;
191 return (err);
195 dsl_pool_open(dsl_pool_t *dp)
197 int err;
198 dsl_dir_t *dd;
199 dsl_dataset_t *ds;
200 uint64_t obj;
202 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
203 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
204 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
205 &dp->dp_root_dir_obj);
206 if (err)
207 goto out;
209 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
210 NULL, dp, &dp->dp_root_dir);
211 if (err)
212 goto out;
214 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
215 if (err)
216 goto out;
218 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
219 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
220 if (err)
221 goto out;
222 err = dsl_dataset_hold_obj(dp,
223 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
224 if (err == 0) {
225 err = dsl_dataset_hold_obj(dp,
226 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
227 &dp->dp_origin_snap);
228 dsl_dataset_rele(ds, FTAG);
230 dsl_dir_rele(dd, dp);
231 if (err)
232 goto out;
235 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
236 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
237 &dp->dp_free_dir);
238 if (err)
239 goto out;
241 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
242 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
243 if (err)
244 goto out;
245 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
246 dp->dp_meta_objset, obj));
250 * Note: errors ignored, because the leak dir will not exist if we
251 * have not encountered a leak yet.
253 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
254 &dp->dp_leak_dir);
256 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
257 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
258 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
259 &dp->dp_bptree_obj);
260 if (err != 0)
261 goto out;
264 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
265 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
266 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
267 &dp->dp_empty_bpobj);
268 if (err != 0)
269 goto out;
272 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
273 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
274 &dp->dp_tmp_userrefs_obj);
275 if (err == ENOENT)
276 err = 0;
277 if (err)
278 goto out;
280 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
282 out:
283 rrw_exit(&dp->dp_config_rwlock, FTAG);
284 return (err);
287 void
288 dsl_pool_close(dsl_pool_t *dp)
291 * Drop our references from dsl_pool_open().
293 * Since we held the origin_snap from "syncing" context (which
294 * includes pool-opening context), it actually only got a "ref"
295 * and not a hold, so just drop that here.
297 if (dp->dp_origin_snap)
298 dsl_dataset_rele(dp->dp_origin_snap, dp);
299 if (dp->dp_mos_dir)
300 dsl_dir_rele(dp->dp_mos_dir, dp);
301 if (dp->dp_free_dir)
302 dsl_dir_rele(dp->dp_free_dir, dp);
303 if (dp->dp_leak_dir)
304 dsl_dir_rele(dp->dp_leak_dir, dp);
305 if (dp->dp_root_dir)
306 dsl_dir_rele(dp->dp_root_dir, dp);
308 bpobj_close(&dp->dp_free_bpobj);
310 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
311 if (dp->dp_meta_objset)
312 dmu_objset_evict(dp->dp_meta_objset);
314 txg_list_destroy(&dp->dp_dirty_datasets);
315 txg_list_destroy(&dp->dp_dirty_zilogs);
316 txg_list_destroy(&dp->dp_sync_tasks);
317 txg_list_destroy(&dp->dp_dirty_dirs);
320 * We can't set retry to TRUE since we're explicitly specifying
321 * a spa to flush. This is good enough; any missed buffers for
322 * this spa won't cause trouble, and they'll eventually fall
323 * out of the ARC just like any other unused buffer.
325 arc_flush(dp->dp_spa, FALSE);
327 txg_fini(dp);
328 dsl_scan_fini(dp);
329 dmu_buf_user_evict_wait();
331 rrw_destroy(&dp->dp_config_rwlock);
332 mutex_destroy(&dp->dp_lock);
333 taskq_destroy(dp->dp_vnrele_taskq);
334 if (dp->dp_blkstats)
335 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
336 kmem_free(dp, sizeof (dsl_pool_t));
339 dsl_pool_t *
340 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
342 int err;
343 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
344 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
345 objset_t *os;
346 dsl_dataset_t *ds;
347 uint64_t obj;
349 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
351 /* create and open the MOS (meta-objset) */
352 dp->dp_meta_objset = dmu_objset_create_impl(spa,
353 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
355 /* create the pool directory */
356 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
357 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
358 ASSERT0(err);
360 /* Initialize scan structures */
361 VERIFY0(dsl_scan_init(dp, txg));
363 /* create and open the root dir */
364 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
365 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
366 NULL, dp, &dp->dp_root_dir));
368 /* create and open the meta-objset dir */
369 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
370 VERIFY0(dsl_pool_open_special_dir(dp,
371 MOS_DIR_NAME, &dp->dp_mos_dir));
373 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
374 /* create and open the free dir */
375 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
376 FREE_DIR_NAME, tx);
377 VERIFY0(dsl_pool_open_special_dir(dp,
378 FREE_DIR_NAME, &dp->dp_free_dir));
380 /* create and open the free_bplist */
381 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
382 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
383 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
384 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
385 dp->dp_meta_objset, obj));
388 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
389 dsl_pool_create_origin(dp, tx);
391 /* create the root dataset */
392 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
394 /* create the root objset */
395 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
396 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
397 os = dmu_objset_create_impl(dp->dp_spa, ds,
398 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
399 rrw_exit(&ds->ds_bp_rwlock, FTAG);
400 #ifdef _KERNEL
401 zfs_create_fs(os, kcred, zplprops, tx);
402 #endif
403 dsl_dataset_rele(ds, FTAG);
405 dmu_tx_commit(tx);
407 rrw_exit(&dp->dp_config_rwlock, FTAG);
409 return (dp);
413 * Account for the meta-objset space in its placeholder dsl_dir.
415 void
416 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
417 int64_t used, int64_t comp, int64_t uncomp)
419 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
420 mutex_enter(&dp->dp_lock);
421 dp->dp_mos_used_delta += used;
422 dp->dp_mos_compressed_delta += comp;
423 dp->dp_mos_uncompressed_delta += uncomp;
424 mutex_exit(&dp->dp_lock);
427 static int
428 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
430 dsl_deadlist_t *dl = arg;
431 dsl_deadlist_insert(dl, bp, tx);
432 return (0);
435 static void
436 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
438 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
439 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
440 VERIFY0(zio_wait(zio));
441 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
442 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
445 static void
446 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
448 ASSERT(MUTEX_HELD(&dp->dp_lock));
450 if (delta < 0)
451 ASSERT3U(-delta, <=, dp->dp_dirty_total);
453 dp->dp_dirty_total += delta;
456 * Note: we signal even when increasing dp_dirty_total.
457 * This ensures forward progress -- each thread wakes the next waiter.
459 if (dp->dp_dirty_total <= zfs_dirty_data_max)
460 cv_signal(&dp->dp_spaceavail_cv);
463 void
464 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
466 zio_t *zio;
467 dmu_tx_t *tx;
468 dsl_dir_t *dd;
469 dsl_dataset_t *ds;
470 objset_t *mos = dp->dp_meta_objset;
471 list_t synced_datasets;
473 list_create(&synced_datasets, sizeof (dsl_dataset_t),
474 offsetof(dsl_dataset_t, ds_synced_link));
476 tx = dmu_tx_create_assigned(dp, txg);
479 * Write out all dirty blocks of dirty datasets.
481 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
482 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
484 * We must not sync any non-MOS datasets twice, because
485 * we may have taken a snapshot of them. However, we
486 * may sync newly-created datasets on pass 2.
488 ASSERT(!list_link_active(&ds->ds_synced_link));
489 list_insert_tail(&synced_datasets, ds);
490 dsl_dataset_sync(ds, zio, tx);
492 VERIFY0(zio_wait(zio));
495 * We have written all of the accounted dirty data, so our
496 * dp_space_towrite should now be zero. However, some seldom-used
497 * code paths do not adhere to this (e.g. dbuf_undirty(), also
498 * rounding error in dbuf_write_physdone).
499 * Shore up the accounting of any dirtied space now.
501 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
504 * After the data blocks have been written (ensured by the zio_wait()
505 * above), update the user/group space accounting.
507 for (ds = list_head(&synced_datasets); ds != NULL;
508 ds = list_next(&synced_datasets, ds)) {
509 dmu_objset_do_userquota_updates(ds->ds_objset, tx);
513 * Sync the datasets again to push out the changes due to
514 * userspace updates. This must be done before we process the
515 * sync tasks, so that any snapshots will have the correct
516 * user accounting information (and we won't get confused
517 * about which blocks are part of the snapshot).
519 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
520 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
521 ASSERT(list_link_active(&ds->ds_synced_link));
522 dmu_buf_rele(ds->ds_dbuf, ds);
523 dsl_dataset_sync(ds, zio, tx);
525 VERIFY0(zio_wait(zio));
528 * Now that the datasets have been completely synced, we can
529 * clean up our in-memory structures accumulated while syncing:
531 * - move dead blocks from the pending deadlist to the on-disk deadlist
532 * - release hold from dsl_dataset_dirty()
534 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
535 objset_t *os = ds->ds_objset;
536 bplist_iterate(&ds->ds_pending_deadlist,
537 deadlist_enqueue_cb, &ds->ds_deadlist, tx);
538 ASSERT(!dmu_objset_is_dirty(os, txg));
539 dmu_buf_rele(ds->ds_dbuf, ds);
541 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
542 dsl_dir_sync(dd, tx);
546 * The MOS's space is accounted for in the pool/$MOS
547 * (dp_mos_dir). We can't modify the mos while we're syncing
548 * it, so we remember the deltas and apply them here.
550 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
551 dp->dp_mos_uncompressed_delta != 0) {
552 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
553 dp->dp_mos_used_delta,
554 dp->dp_mos_compressed_delta,
555 dp->dp_mos_uncompressed_delta, tx);
556 dp->dp_mos_used_delta = 0;
557 dp->dp_mos_compressed_delta = 0;
558 dp->dp_mos_uncompressed_delta = 0;
561 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
562 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
563 dsl_pool_sync_mos(dp, tx);
567 * If we modify a dataset in the same txg that we want to destroy it,
568 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
569 * dsl_dir_destroy_check() will fail if there are unexpected holds.
570 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
571 * and clearing the hold on it) before we process the sync_tasks.
572 * The MOS data dirtied by the sync_tasks will be synced on the next
573 * pass.
575 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
576 dsl_sync_task_t *dst;
578 * No more sync tasks should have been added while we
579 * were syncing.
581 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
582 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
583 dsl_sync_task_sync(dst, tx);
586 dmu_tx_commit(tx);
588 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
591 void
592 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
594 zilog_t *zilog;
596 while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) {
597 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
599 * We don't remove the zilog from the dp_dirty_zilogs
600 * list until after we've cleaned it. This ensures that
601 * callers of zilog_is_dirty() receive an accurate
602 * answer when they are racing with the spa sync thread.
604 zil_clean(zilog, txg);
605 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
606 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
607 dmu_buf_rele(ds->ds_dbuf, zilog);
609 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
613 * TRUE if the current thread is the tx_sync_thread or if we
614 * are being called from SPA context during pool initialization.
617 dsl_pool_sync_context(dsl_pool_t *dp)
619 return (curthread == dp->dp_tx.tx_sync_thread ||
620 spa_is_initializing(dp->dp_spa));
623 uint64_t
624 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
626 uint64_t space, resv;
629 * If we're trying to assess whether it's OK to do a free,
630 * cut the reservation in half to allow forward progress
631 * (e.g. make it possible to rm(1) files from a full pool).
633 space = spa_get_dspace(dp->dp_spa);
634 resv = spa_get_slop_space(dp->dp_spa);
635 if (netfree)
636 resv >>= 1;
638 return (space - resv);
641 boolean_t
642 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
644 uint64_t delay_min_bytes =
645 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
646 boolean_t rv;
648 mutex_enter(&dp->dp_lock);
649 if (dp->dp_dirty_total > zfs_dirty_data_sync)
650 txg_kick(dp);
651 rv = (dp->dp_dirty_total > delay_min_bytes);
652 mutex_exit(&dp->dp_lock);
653 return (rv);
656 void
657 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
659 if (space > 0) {
660 mutex_enter(&dp->dp_lock);
661 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
662 dsl_pool_dirty_delta(dp, space);
663 mutex_exit(&dp->dp_lock);
667 void
668 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
670 ASSERT3S(space, >=, 0);
671 if (space == 0)
672 return;
673 mutex_enter(&dp->dp_lock);
674 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
675 /* XXX writing something we didn't dirty? */
676 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
678 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
679 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
680 ASSERT3U(dp->dp_dirty_total, >=, space);
681 dsl_pool_dirty_delta(dp, -space);
682 mutex_exit(&dp->dp_lock);
685 /* ARGSUSED */
686 static int
687 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
689 dmu_tx_t *tx = arg;
690 dsl_dataset_t *ds, *prev = NULL;
691 int err;
693 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
694 if (err)
695 return (err);
697 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
698 err = dsl_dataset_hold_obj(dp,
699 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
700 if (err) {
701 dsl_dataset_rele(ds, FTAG);
702 return (err);
705 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
706 break;
707 dsl_dataset_rele(ds, FTAG);
708 ds = prev;
709 prev = NULL;
712 if (prev == NULL) {
713 prev = dp->dp_origin_snap;
716 * The $ORIGIN can't have any data, or the accounting
717 * will be wrong.
719 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
720 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
721 rrw_exit(&ds->ds_bp_rwlock, FTAG);
723 /* The origin doesn't get attached to itself */
724 if (ds->ds_object == prev->ds_object) {
725 dsl_dataset_rele(ds, FTAG);
726 return (0);
729 dmu_buf_will_dirty(ds->ds_dbuf, tx);
730 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
731 dsl_dataset_phys(ds)->ds_prev_snap_txg =
732 dsl_dataset_phys(prev)->ds_creation_txg;
734 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
735 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
737 dmu_buf_will_dirty(prev->ds_dbuf, tx);
738 dsl_dataset_phys(prev)->ds_num_children++;
740 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
741 ASSERT(ds->ds_prev == NULL);
742 VERIFY0(dsl_dataset_hold_obj(dp,
743 dsl_dataset_phys(ds)->ds_prev_snap_obj,
744 ds, &ds->ds_prev));
748 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
749 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
751 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
752 dmu_buf_will_dirty(prev->ds_dbuf, tx);
753 dsl_dataset_phys(prev)->ds_next_clones_obj =
754 zap_create(dp->dp_meta_objset,
755 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
757 VERIFY0(zap_add_int(dp->dp_meta_objset,
758 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
760 dsl_dataset_rele(ds, FTAG);
761 if (prev != dp->dp_origin_snap)
762 dsl_dataset_rele(prev, FTAG);
763 return (0);
766 void
767 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
769 ASSERT(dmu_tx_is_syncing(tx));
770 ASSERT(dp->dp_origin_snap != NULL);
772 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
773 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
776 /* ARGSUSED */
777 static int
778 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
780 dmu_tx_t *tx = arg;
781 objset_t *mos = dp->dp_meta_objset;
783 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
784 dsl_dataset_t *origin;
786 VERIFY0(dsl_dataset_hold_obj(dp,
787 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
789 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
790 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
791 dsl_dir_phys(origin->ds_dir)->dd_clones =
792 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
793 0, tx);
796 VERIFY0(zap_add_int(dp->dp_meta_objset,
797 dsl_dir_phys(origin->ds_dir)->dd_clones,
798 ds->ds_object, tx));
800 dsl_dataset_rele(origin, FTAG);
802 return (0);
805 void
806 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
808 ASSERT(dmu_tx_is_syncing(tx));
809 uint64_t obj;
811 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
812 VERIFY0(dsl_pool_open_special_dir(dp,
813 FREE_DIR_NAME, &dp->dp_free_dir));
816 * We can't use bpobj_alloc(), because spa_version() still
817 * returns the old version, and we need a new-version bpobj with
818 * subobj support. So call dmu_object_alloc() directly.
820 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
821 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
822 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
823 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
824 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
826 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
827 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
830 void
831 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
833 uint64_t dsobj;
834 dsl_dataset_t *ds;
836 ASSERT(dmu_tx_is_syncing(tx));
837 ASSERT(dp->dp_origin_snap == NULL);
838 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
840 /* create the origin dir, ds, & snap-ds */
841 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
842 NULL, 0, kcred, tx);
843 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
844 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
845 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
846 dp, &dp->dp_origin_snap));
847 dsl_dataset_rele(ds, FTAG);
850 taskq_t *
851 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
853 return (dp->dp_vnrele_taskq);
857 * Walk through the pool-wide zap object of temporary snapshot user holds
858 * and release them.
860 void
861 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
863 zap_attribute_t za;
864 zap_cursor_t zc;
865 objset_t *mos = dp->dp_meta_objset;
866 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
867 nvlist_t *holds;
869 if (zapobj == 0)
870 return;
871 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
873 holds = fnvlist_alloc();
875 for (zap_cursor_init(&zc, mos, zapobj);
876 zap_cursor_retrieve(&zc, &za) == 0;
877 zap_cursor_advance(&zc)) {
878 char *htag;
879 nvlist_t *tags;
881 htag = strchr(za.za_name, '-');
882 *htag = '\0';
883 ++htag;
884 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
885 tags = fnvlist_alloc();
886 fnvlist_add_boolean(tags, htag);
887 fnvlist_add_nvlist(holds, za.za_name, tags);
888 fnvlist_free(tags);
889 } else {
890 fnvlist_add_boolean(tags, htag);
893 dsl_dataset_user_release_tmp(dp, holds);
894 fnvlist_free(holds);
895 zap_cursor_fini(&zc);
899 * Create the pool-wide zap object for storing temporary snapshot holds.
901 void
902 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
904 objset_t *mos = dp->dp_meta_objset;
906 ASSERT(dp->dp_tmp_userrefs_obj == 0);
907 ASSERT(dmu_tx_is_syncing(tx));
909 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
910 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
913 static int
914 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
915 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
917 objset_t *mos = dp->dp_meta_objset;
918 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
919 char *name;
920 int error;
922 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
923 ASSERT(dmu_tx_is_syncing(tx));
926 * If the pool was created prior to SPA_VERSION_USERREFS, the
927 * zap object for temporary holds might not exist yet.
929 if (zapobj == 0) {
930 if (holding) {
931 dsl_pool_user_hold_create_obj(dp, tx);
932 zapobj = dp->dp_tmp_userrefs_obj;
933 } else {
934 return (SET_ERROR(ENOENT));
938 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
939 if (holding)
940 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
941 else
942 error = zap_remove(mos, zapobj, name, tx);
943 strfree(name);
945 return (error);
949 * Add a temporary hold for the given dataset object and tag.
952 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
953 uint64_t now, dmu_tx_t *tx)
955 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
959 * Release a temporary hold for the given dataset object and tag.
962 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
963 dmu_tx_t *tx)
965 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
966 tx, B_FALSE));
970 * DSL Pool Configuration Lock
972 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
973 * creation / destruction / rename / property setting). It must be held for
974 * read to hold a dataset or dsl_dir. I.e. you must call
975 * dsl_pool_config_enter() or dsl_pool_hold() before calling
976 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
977 * must be held continuously until all datasets and dsl_dirs are released.
979 * The only exception to this rule is that if a "long hold" is placed on
980 * a dataset, then the dp_config_rwlock may be dropped while the dataset
981 * is still held. The long hold will prevent the dataset from being
982 * destroyed -- the destroy will fail with EBUSY. A long hold can be
983 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
984 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
986 * Legitimate long-holders (including owners) should be long-running, cancelable
987 * tasks that should cause "zfs destroy" to fail. This includes DMU
988 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
989 * "zfs send", and "zfs diff". There are several other long-holders whose
990 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
992 * The usual formula for long-holding would be:
993 * dsl_pool_hold()
994 * dsl_dataset_hold()
995 * ... perform checks ...
996 * dsl_dataset_long_hold()
997 * dsl_pool_rele()
998 * ... perform long-running task ...
999 * dsl_dataset_long_rele()
1000 * dsl_dataset_rele()
1002 * Note that when the long hold is released, the dataset is still held but
1003 * the pool is not held. The dataset may change arbitrarily during this time
1004 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
1005 * dataset except release it.
1007 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1008 * or modifying operations.
1010 * Modifying operations should generally use dsl_sync_task(). The synctask
1011 * infrastructure enforces proper locking strategy with respect to the
1012 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1014 * Read-only operations will manually hold the pool, then the dataset, obtain
1015 * information from the dataset, then release the pool and dataset.
1016 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1017 * hold/rele.
1021 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1023 spa_t *spa;
1024 int error;
1026 error = spa_open(name, &spa, tag);
1027 if (error == 0) {
1028 *dp = spa_get_dsl(spa);
1029 dsl_pool_config_enter(*dp, tag);
1031 return (error);
1034 void
1035 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1037 dsl_pool_config_exit(dp, tag);
1038 spa_close(dp->dp_spa, tag);
1041 void
1042 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1045 * We use a "reentrant" reader-writer lock, but not reentrantly.
1047 * The rrwlock can (with the track_all flag) track all reading threads,
1048 * which is very useful for debugging which code path failed to release
1049 * the lock, and for verifying that the *current* thread does hold
1050 * the lock.
1052 * (Unlike a rwlock, which knows that N threads hold it for
1053 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1054 * if any thread holds it for read, even if this thread doesn't).
1056 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1057 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1060 void
1061 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1063 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1064 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1067 void
1068 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1070 rrw_exit(&dp->dp_config_rwlock, tag);
1073 boolean_t
1074 dsl_pool_config_held(dsl_pool_t *dp)
1076 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1079 boolean_t
1080 dsl_pool_config_held_writer(dsl_pool_t *dp)
1082 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));