8648 Fix range locking in ZIL commit codepath
[unleashed.git] / usr / src / uts / common / fs / zfs / zfs_vnops.c
blob7b60c76b8b49221efe28ef9d42c14630177683c8
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2015 Joyent, Inc.
27 * Copyright 2017 Nexenta Systems, Inc.
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/systm.h>
37 #include <sys/sysmacros.h>
38 #include <sys/resource.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/stat.h>
44 #include <sys/kmem.h>
45 #include <sys/taskq.h>
46 #include <sys/uio.h>
47 #include <sys/vmsystm.h>
48 #include <sys/atomic.h>
49 #include <sys/vm.h>
50 #include <vm/seg_vn.h>
51 #include <vm/pvn.h>
52 #include <vm/as.h>
53 #include <vm/kpm.h>
54 #include <vm/seg_kpm.h>
55 #include <sys/mman.h>
56 #include <sys/pathname.h>
57 #include <sys/cmn_err.h>
58 #include <sys/errno.h>
59 #include <sys/unistd.h>
60 #include <sys/zfs_dir.h>
61 #include <sys/zfs_acl.h>
62 #include <sys/zfs_ioctl.h>
63 #include <sys/fs/zfs.h>
64 #include <sys/dmu.h>
65 #include <sys/dmu_objset.h>
66 #include <sys/spa.h>
67 #include <sys/txg.h>
68 #include <sys/dbuf.h>
69 #include <sys/zap.h>
70 #include <sys/sa.h>
71 #include <sys/dirent.h>
72 #include <sys/policy.h>
73 #include <sys/sunddi.h>
74 #include <sys/filio.h>
75 #include <sys/sid.h>
76 #include "fs/fs_subr.h"
77 #include <sys/zfs_ctldir.h>
78 #include <sys/zfs_fuid.h>
79 #include <sys/zfs_sa.h>
80 #include <sys/dnlc.h>
81 #include <sys/zfs_rlock.h>
82 #include <sys/extdirent.h>
83 #include <sys/kidmap.h>
84 #include <sys/cred.h>
85 #include <sys/attr.h>
86 #include <sys/zil.h>
89 * Programming rules.
91 * Each vnode op performs some logical unit of work. To do this, the ZPL must
92 * properly lock its in-core state, create a DMU transaction, do the work,
93 * record this work in the intent log (ZIL), commit the DMU transaction,
94 * and wait for the intent log to commit if it is a synchronous operation.
95 * Moreover, the vnode ops must work in both normal and log replay context.
96 * The ordering of events is important to avoid deadlocks and references
97 * to freed memory. The example below illustrates the following Big Rules:
99 * (1) A check must be made in each zfs thread for a mounted file system.
100 * This is done avoiding races using ZFS_ENTER(zfsvfs).
101 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
102 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
103 * can return EIO from the calling function.
105 * (2) VN_RELE() should always be the last thing except for zil_commit()
106 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
107 * First, if it's the last reference, the vnode/znode
108 * can be freed, so the zp may point to freed memory. Second, the last
109 * reference will call zfs_zinactive(), which may induce a lot of work --
110 * pushing cached pages (which acquires range locks) and syncing out
111 * cached atime changes. Third, zfs_zinactive() may require a new tx,
112 * which could deadlock the system if you were already holding one.
113 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
115 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
116 * as they can span dmu_tx_assign() calls.
118 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
119 * dmu_tx_assign(). This is critical because we don't want to block
120 * while holding locks.
122 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
123 * reduces lock contention and CPU usage when we must wait (note that if
124 * throughput is constrained by the storage, nearly every transaction
125 * must wait).
127 * Note, in particular, that if a lock is sometimes acquired before
128 * the tx assigns, and sometimes after (e.g. z_lock), then failing
129 * to use a non-blocking assign can deadlock the system. The scenario:
131 * Thread A has grabbed a lock before calling dmu_tx_assign().
132 * Thread B is in an already-assigned tx, and blocks for this lock.
133 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
134 * forever, because the previous txg can't quiesce until B's tx commits.
136 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
137 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
138 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
139 * to indicate that this operation has already called dmu_tx_wait().
140 * This will ensure that we don't retry forever, waiting a short bit
141 * each time.
143 * (5) If the operation succeeded, generate the intent log entry for it
144 * before dropping locks. This ensures that the ordering of events
145 * in the intent log matches the order in which they actually occurred.
146 * During ZIL replay the zfs_log_* functions will update the sequence
147 * number to indicate the zil transaction has replayed.
149 * (6) At the end of each vnode op, the DMU tx must always commit,
150 * regardless of whether there were any errors.
152 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
153 * to ensure that synchronous semantics are provided when necessary.
155 * In general, this is how things should be ordered in each vnode op:
157 * ZFS_ENTER(zfsvfs); // exit if unmounted
158 * top:
159 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
160 * rw_enter(...); // grab any other locks you need
161 * tx = dmu_tx_create(...); // get DMU tx
162 * dmu_tx_hold_*(); // hold each object you might modify
163 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
164 * if (error) {
165 * rw_exit(...); // drop locks
166 * zfs_dirent_unlock(dl); // unlock directory entry
167 * VN_RELE(...); // release held vnodes
168 * if (error == ERESTART) {
169 * waited = B_TRUE;
170 * dmu_tx_wait(tx);
171 * dmu_tx_abort(tx);
172 * goto top;
174 * dmu_tx_abort(tx); // abort DMU tx
175 * ZFS_EXIT(zfsvfs); // finished in zfs
176 * return (error); // really out of space
178 * error = do_real_work(); // do whatever this VOP does
179 * if (error == 0)
180 * zfs_log_*(...); // on success, make ZIL entry
181 * dmu_tx_commit(tx); // commit DMU tx -- error or not
182 * rw_exit(...); // drop locks
183 * zfs_dirent_unlock(dl); // unlock directory entry
184 * VN_RELE(...); // release held vnodes
185 * zil_commit(zilog, foid); // synchronous when necessary
186 * ZFS_EXIT(zfsvfs); // finished in zfs
187 * return (error); // done, report error
190 /* ARGSUSED */
191 static int
192 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
194 znode_t *zp = VTOZ(*vpp);
195 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
197 ZFS_ENTER(zfsvfs);
198 ZFS_VERIFY_ZP(zp);
200 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
201 ((flag & FAPPEND) == 0)) {
202 ZFS_EXIT(zfsvfs);
203 return (SET_ERROR(EPERM));
206 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
207 ZTOV(zp)->v_type == VREG &&
208 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
209 if (fs_vscan(*vpp, cr, 0) != 0) {
210 ZFS_EXIT(zfsvfs);
211 return (SET_ERROR(EACCES));
215 /* Keep a count of the synchronous opens in the znode */
216 if (flag & (FSYNC | FDSYNC))
217 atomic_inc_32(&zp->z_sync_cnt);
219 ZFS_EXIT(zfsvfs);
220 return (0);
223 /* ARGSUSED */
224 static int
225 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
226 caller_context_t *ct)
228 znode_t *zp = VTOZ(vp);
229 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
232 * Clean up any locks held by this process on the vp.
234 cleanlocks(vp, ddi_get_pid(), 0);
235 cleanshares(vp, ddi_get_pid());
237 ZFS_ENTER(zfsvfs);
238 ZFS_VERIFY_ZP(zp);
240 /* Decrement the synchronous opens in the znode */
241 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
242 atomic_dec_32(&zp->z_sync_cnt);
244 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
245 ZTOV(zp)->v_type == VREG &&
246 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
247 VERIFY(fs_vscan(vp, cr, 1) == 0);
249 ZFS_EXIT(zfsvfs);
250 return (0);
254 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
255 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
257 static int
258 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
260 znode_t *zp = VTOZ(vp);
261 uint64_t noff = (uint64_t)*off; /* new offset */
262 uint64_t file_sz;
263 int error;
264 boolean_t hole;
266 file_sz = zp->z_size;
267 if (noff >= file_sz) {
268 return (SET_ERROR(ENXIO));
271 if (cmd == _FIO_SEEK_HOLE)
272 hole = B_TRUE;
273 else
274 hole = B_FALSE;
276 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
278 if (error == ESRCH)
279 return (SET_ERROR(ENXIO));
282 * We could find a hole that begins after the logical end-of-file,
283 * because dmu_offset_next() only works on whole blocks. If the
284 * EOF falls mid-block, then indicate that the "virtual hole"
285 * at the end of the file begins at the logical EOF, rather than
286 * at the end of the last block.
288 if (noff > file_sz) {
289 ASSERT(hole);
290 noff = file_sz;
293 if (noff < *off)
294 return (error);
295 *off = noff;
296 return (error);
299 /* ARGSUSED */
300 static int
301 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
302 int *rvalp, caller_context_t *ct)
304 offset_t off;
305 offset_t ndata;
306 dmu_object_info_t doi;
307 int error;
308 zfsvfs_t *zfsvfs;
309 znode_t *zp;
311 switch (com) {
312 case _FIOFFS:
314 return (zfs_sync(vp->v_vfsp, 0, cred));
317 * The following two ioctls are used by bfu. Faking out,
318 * necessary to avoid bfu errors.
321 case _FIOGDIO:
322 case _FIOSDIO:
324 return (0);
327 case _FIO_SEEK_DATA:
328 case _FIO_SEEK_HOLE:
330 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
331 return (SET_ERROR(EFAULT));
333 zp = VTOZ(vp);
334 zfsvfs = zp->z_zfsvfs;
335 ZFS_ENTER(zfsvfs);
336 ZFS_VERIFY_ZP(zp);
338 /* offset parameter is in/out */
339 error = zfs_holey(vp, com, &off);
340 ZFS_EXIT(zfsvfs);
341 if (error)
342 return (error);
343 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
344 return (SET_ERROR(EFAULT));
345 return (0);
347 case _FIO_COUNT_FILLED:
350 * _FIO_COUNT_FILLED adds a new ioctl command which
351 * exposes the number of filled blocks in a
352 * ZFS object.
354 zp = VTOZ(vp);
355 zfsvfs = zp->z_zfsvfs;
356 ZFS_ENTER(zfsvfs);
357 ZFS_VERIFY_ZP(zp);
360 * Wait for all dirty blocks for this object
361 * to get synced out to disk, and the DMU info
362 * updated.
364 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
365 if (error) {
366 ZFS_EXIT(zfsvfs);
367 return (error);
371 * Retrieve fill count from DMU object.
373 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
374 if (error) {
375 ZFS_EXIT(zfsvfs);
376 return (error);
379 ndata = doi.doi_fill_count;
381 ZFS_EXIT(zfsvfs);
382 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
383 return (SET_ERROR(EFAULT));
384 return (0);
387 return (SET_ERROR(ENOTTY));
391 * Utility functions to map and unmap a single physical page. These
392 * are used to manage the mappable copies of ZFS file data, and therefore
393 * do not update ref/mod bits.
395 caddr_t
396 zfs_map_page(page_t *pp, enum seg_rw rw)
398 if (kpm_enable)
399 return (hat_kpm_mapin(pp, 0));
400 ASSERT(rw == S_READ || rw == S_WRITE);
401 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
402 (caddr_t)-1));
405 void
406 zfs_unmap_page(page_t *pp, caddr_t addr)
408 if (kpm_enable) {
409 hat_kpm_mapout(pp, 0, addr);
410 } else {
411 ppmapout(addr);
416 * When a file is memory mapped, we must keep the IO data synchronized
417 * between the DMU cache and the memory mapped pages. What this means:
419 * On Write: If we find a memory mapped page, we write to *both*
420 * the page and the dmu buffer.
422 static void
423 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
425 int64_t off;
427 off = start & PAGEOFFSET;
428 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
429 page_t *pp;
430 uint64_t nbytes = MIN(PAGESIZE - off, len);
432 if (pp = page_lookup(vp, start, SE_SHARED)) {
433 caddr_t va;
435 va = zfs_map_page(pp, S_WRITE);
436 (void) dmu_read(os, oid, start+off, nbytes, va+off,
437 DMU_READ_PREFETCH);
438 zfs_unmap_page(pp, va);
439 page_unlock(pp);
441 len -= nbytes;
442 off = 0;
447 * When a file is memory mapped, we must keep the IO data synchronized
448 * between the DMU cache and the memory mapped pages. What this means:
450 * On Read: We "read" preferentially from memory mapped pages,
451 * else we default from the dmu buffer.
453 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
454 * the file is memory mapped.
456 static int
457 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
459 znode_t *zp = VTOZ(vp);
460 int64_t start, off;
461 int len = nbytes;
462 int error = 0;
464 start = uio->uio_loffset;
465 off = start & PAGEOFFSET;
466 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
467 page_t *pp;
468 uint64_t bytes = MIN(PAGESIZE - off, len);
470 if (pp = page_lookup(vp, start, SE_SHARED)) {
471 caddr_t va;
473 va = zfs_map_page(pp, S_READ);
474 error = uiomove(va + off, bytes, UIO_READ, uio);
475 zfs_unmap_page(pp, va);
476 page_unlock(pp);
477 } else {
478 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
479 uio, bytes);
481 len -= bytes;
482 off = 0;
483 if (error)
484 break;
486 return (error);
489 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
492 * Read bytes from specified file into supplied buffer.
494 * IN: vp - vnode of file to be read from.
495 * uio - structure supplying read location, range info,
496 * and return buffer.
497 * ioflag - SYNC flags; used to provide FRSYNC semantics.
498 * cr - credentials of caller.
499 * ct - caller context
501 * OUT: uio - updated offset and range, buffer filled.
503 * RETURN: 0 on success, error code on failure.
505 * Side Effects:
506 * vp - atime updated if byte count > 0
508 /* ARGSUSED */
509 static int
510 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
512 znode_t *zp = VTOZ(vp);
513 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
514 ssize_t n, nbytes;
515 int error = 0;
516 rl_t *rl;
517 xuio_t *xuio = NULL;
519 ZFS_ENTER(zfsvfs);
520 ZFS_VERIFY_ZP(zp);
522 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
523 ZFS_EXIT(zfsvfs);
524 return (SET_ERROR(EACCES));
528 * Validate file offset
530 if (uio->uio_loffset < (offset_t)0) {
531 ZFS_EXIT(zfsvfs);
532 return (SET_ERROR(EINVAL));
536 * Fasttrack empty reads
538 if (uio->uio_resid == 0) {
539 ZFS_EXIT(zfsvfs);
540 return (0);
544 * Check for mandatory locks
546 if (MANDMODE(zp->z_mode)) {
547 if (error = chklock(vp, FREAD,
548 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
549 ZFS_EXIT(zfsvfs);
550 return (error);
555 * If we're in FRSYNC mode, sync out this znode before reading it.
557 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
558 zil_commit(zfsvfs->z_log, zp->z_id);
561 * Lock the range against changes.
563 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
566 * If we are reading past end-of-file we can skip
567 * to the end; but we might still need to set atime.
569 if (uio->uio_loffset >= zp->z_size) {
570 error = 0;
571 goto out;
574 ASSERT(uio->uio_loffset < zp->z_size);
575 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
577 if ((uio->uio_extflg == UIO_XUIO) &&
578 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
579 int nblk;
580 int blksz = zp->z_blksz;
581 uint64_t offset = uio->uio_loffset;
583 xuio = (xuio_t *)uio;
584 if ((ISP2(blksz))) {
585 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
586 blksz)) / blksz;
587 } else {
588 ASSERT(offset + n <= blksz);
589 nblk = 1;
591 (void) dmu_xuio_init(xuio, nblk);
593 if (vn_has_cached_data(vp)) {
595 * For simplicity, we always allocate a full buffer
596 * even if we only expect to read a portion of a block.
598 while (--nblk >= 0) {
599 (void) dmu_xuio_add(xuio,
600 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
601 blksz), 0, blksz);
606 while (n > 0) {
607 nbytes = MIN(n, zfs_read_chunk_size -
608 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
610 if (vn_has_cached_data(vp)) {
611 error = mappedread(vp, nbytes, uio);
612 } else {
613 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
614 uio, nbytes);
616 if (error) {
617 /* convert checksum errors into IO errors */
618 if (error == ECKSUM)
619 error = SET_ERROR(EIO);
620 break;
623 n -= nbytes;
625 out:
626 zfs_range_unlock(rl);
628 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
629 ZFS_EXIT(zfsvfs);
630 return (error);
634 * Write the bytes to a file.
636 * IN: vp - vnode of file to be written to.
637 * uio - structure supplying write location, range info,
638 * and data buffer.
639 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
640 * set if in append mode.
641 * cr - credentials of caller.
642 * ct - caller context (NFS/CIFS fem monitor only)
644 * OUT: uio - updated offset and range.
646 * RETURN: 0 on success, error code on failure.
648 * Timestamps:
649 * vp - ctime|mtime updated if byte count > 0
652 /* ARGSUSED */
653 static int
654 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
656 znode_t *zp = VTOZ(vp);
657 rlim64_t limit = uio->uio_llimit;
658 ssize_t start_resid = uio->uio_resid;
659 ssize_t tx_bytes;
660 uint64_t end_size;
661 dmu_tx_t *tx;
662 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
663 zilog_t *zilog;
664 offset_t woff;
665 ssize_t n, nbytes;
666 rl_t *rl;
667 int max_blksz = zfsvfs->z_max_blksz;
668 int error = 0;
669 arc_buf_t *abuf;
670 iovec_t *aiov = NULL;
671 xuio_t *xuio = NULL;
672 int i_iov = 0;
673 int iovcnt = uio->uio_iovcnt;
674 iovec_t *iovp = uio->uio_iov;
675 int write_eof;
676 int count = 0;
677 sa_bulk_attr_t bulk[4];
678 uint64_t mtime[2], ctime[2];
681 * Fasttrack empty write
683 n = start_resid;
684 if (n == 0)
685 return (0);
687 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
688 limit = MAXOFFSET_T;
690 ZFS_ENTER(zfsvfs);
691 ZFS_VERIFY_ZP(zp);
693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
694 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
695 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
696 &zp->z_size, 8);
697 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
698 &zp->z_pflags, 8);
701 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
702 * callers might not be able to detect properly that we are read-only,
703 * so check it explicitly here.
705 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
706 ZFS_EXIT(zfsvfs);
707 return (SET_ERROR(EROFS));
711 * If immutable or not appending then return EPERM.
712 * Intentionally allow ZFS_READONLY through here.
713 * See zfs_zaccess_common()
715 if ((zp->z_pflags & ZFS_IMMUTABLE) ||
716 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
717 (uio->uio_loffset < zp->z_size))) {
718 ZFS_EXIT(zfsvfs);
719 return (SET_ERROR(EPERM));
722 zilog = zfsvfs->z_log;
725 * Validate file offset
727 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
728 if (woff < 0) {
729 ZFS_EXIT(zfsvfs);
730 return (SET_ERROR(EINVAL));
734 * Check for mandatory locks before calling zfs_range_lock()
735 * in order to prevent a deadlock with locks set via fcntl().
737 if (MANDMODE((mode_t)zp->z_mode) &&
738 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
739 ZFS_EXIT(zfsvfs);
740 return (error);
744 * Pre-fault the pages to ensure slow (eg NFS) pages
745 * don't hold up txg.
746 * Skip this if uio contains loaned arc_buf.
748 if ((uio->uio_extflg == UIO_XUIO) &&
749 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
750 xuio = (xuio_t *)uio;
751 else
752 uio_prefaultpages(MIN(n, max_blksz), uio);
755 * If in append mode, set the io offset pointer to eof.
757 if (ioflag & FAPPEND) {
759 * Obtain an appending range lock to guarantee file append
760 * semantics. We reset the write offset once we have the lock.
762 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
763 woff = rl->r_off;
764 if (rl->r_len == UINT64_MAX) {
766 * We overlocked the file because this write will cause
767 * the file block size to increase.
768 * Note that zp_size cannot change with this lock held.
770 woff = zp->z_size;
772 uio->uio_loffset = woff;
773 } else {
775 * Note that if the file block size will change as a result of
776 * this write, then this range lock will lock the entire file
777 * so that we can re-write the block safely.
779 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
782 if (woff >= limit) {
783 zfs_range_unlock(rl);
784 ZFS_EXIT(zfsvfs);
785 return (SET_ERROR(EFBIG));
788 if ((woff + n) > limit || woff > (limit - n))
789 n = limit - woff;
791 /* Will this write extend the file length? */
792 write_eof = (woff + n > zp->z_size);
794 end_size = MAX(zp->z_size, woff + n);
797 * Write the file in reasonable size chunks. Each chunk is written
798 * in a separate transaction; this keeps the intent log records small
799 * and allows us to do more fine-grained space accounting.
801 while (n > 0) {
802 abuf = NULL;
803 woff = uio->uio_loffset;
804 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
805 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
806 if (abuf != NULL)
807 dmu_return_arcbuf(abuf);
808 error = SET_ERROR(EDQUOT);
809 break;
812 if (xuio && abuf == NULL) {
813 ASSERT(i_iov < iovcnt);
814 aiov = &iovp[i_iov];
815 abuf = dmu_xuio_arcbuf(xuio, i_iov);
816 dmu_xuio_clear(xuio, i_iov);
817 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
818 iovec_t *, aiov, arc_buf_t *, abuf);
819 ASSERT((aiov->iov_base == abuf->b_data) ||
820 ((char *)aiov->iov_base - (char *)abuf->b_data +
821 aiov->iov_len == arc_buf_size(abuf)));
822 i_iov++;
823 } else if (abuf == NULL && n >= max_blksz &&
824 woff >= zp->z_size &&
825 P2PHASE(woff, max_blksz) == 0 &&
826 zp->z_blksz == max_blksz) {
828 * This write covers a full block. "Borrow" a buffer
829 * from the dmu so that we can fill it before we enter
830 * a transaction. This avoids the possibility of
831 * holding up the transaction if the data copy hangs
832 * up on a pagefault (e.g., from an NFS server mapping).
834 size_t cbytes;
836 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
837 max_blksz);
838 ASSERT(abuf != NULL);
839 ASSERT(arc_buf_size(abuf) == max_blksz);
840 if (error = uiocopy(abuf->b_data, max_blksz,
841 UIO_WRITE, uio, &cbytes)) {
842 dmu_return_arcbuf(abuf);
843 break;
845 ASSERT(cbytes == max_blksz);
849 * Start a transaction.
851 tx = dmu_tx_create(zfsvfs->z_os);
852 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
853 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
854 zfs_sa_upgrade_txholds(tx, zp);
855 error = dmu_tx_assign(tx, TXG_WAIT);
856 if (error) {
857 dmu_tx_abort(tx);
858 if (abuf != NULL)
859 dmu_return_arcbuf(abuf);
860 break;
864 * If zfs_range_lock() over-locked we grow the blocksize
865 * and then reduce the lock range. This will only happen
866 * on the first iteration since zfs_range_reduce() will
867 * shrink down r_len to the appropriate size.
869 if (rl->r_len == UINT64_MAX) {
870 uint64_t new_blksz;
872 if (zp->z_blksz > max_blksz) {
874 * File's blocksize is already larger than the
875 * "recordsize" property. Only let it grow to
876 * the next power of 2.
878 ASSERT(!ISP2(zp->z_blksz));
879 new_blksz = MIN(end_size,
880 1 << highbit64(zp->z_blksz));
881 } else {
882 new_blksz = MIN(end_size, max_blksz);
884 zfs_grow_blocksize(zp, new_blksz, tx);
885 zfs_range_reduce(rl, woff, n);
889 * XXX - should we really limit each write to z_max_blksz?
890 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
892 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
894 if (abuf == NULL) {
895 tx_bytes = uio->uio_resid;
896 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
897 uio, nbytes, tx);
898 tx_bytes -= uio->uio_resid;
899 } else {
900 tx_bytes = nbytes;
901 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
903 * If this is not a full block write, but we are
904 * extending the file past EOF and this data starts
905 * block-aligned, use assign_arcbuf(). Otherwise,
906 * write via dmu_write().
908 if (tx_bytes < max_blksz && (!write_eof ||
909 aiov->iov_base != abuf->b_data)) {
910 ASSERT(xuio);
911 dmu_write(zfsvfs->z_os, zp->z_id, woff,
912 aiov->iov_len, aiov->iov_base, tx);
913 dmu_return_arcbuf(abuf);
914 xuio_stat_wbuf_copied();
915 } else {
916 ASSERT(xuio || tx_bytes == max_blksz);
917 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
918 woff, abuf, tx);
920 ASSERT(tx_bytes <= uio->uio_resid);
921 uioskip(uio, tx_bytes);
923 if (tx_bytes && vn_has_cached_data(vp)) {
924 update_pages(vp, woff,
925 tx_bytes, zfsvfs->z_os, zp->z_id);
929 * If we made no progress, we're done. If we made even
930 * partial progress, update the znode and ZIL accordingly.
932 if (tx_bytes == 0) {
933 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
934 (void *)&zp->z_size, sizeof (uint64_t), tx);
935 dmu_tx_commit(tx);
936 ASSERT(error != 0);
937 break;
941 * Clear Set-UID/Set-GID bits on successful write if not
942 * privileged and at least one of the excute bits is set.
944 * It would be nice to to this after all writes have
945 * been done, but that would still expose the ISUID/ISGID
946 * to another app after the partial write is committed.
948 * Note: we don't call zfs_fuid_map_id() here because
949 * user 0 is not an ephemeral uid.
951 mutex_enter(&zp->z_acl_lock);
952 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
953 (S_IXUSR >> 6))) != 0 &&
954 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
955 secpolicy_vnode_setid_retain(cr,
956 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
957 uint64_t newmode;
958 zp->z_mode &= ~(S_ISUID | S_ISGID);
959 newmode = zp->z_mode;
960 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
961 (void *)&newmode, sizeof (uint64_t), tx);
963 mutex_exit(&zp->z_acl_lock);
965 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
966 B_TRUE);
969 * Update the file size (zp_size) if it has changed;
970 * account for possible concurrent updates.
972 while ((end_size = zp->z_size) < uio->uio_loffset) {
973 (void) atomic_cas_64(&zp->z_size, end_size,
974 uio->uio_loffset);
975 ASSERT(error == 0);
978 * If we are replaying and eof is non zero then force
979 * the file size to the specified eof. Note, there's no
980 * concurrency during replay.
982 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
983 zp->z_size = zfsvfs->z_replay_eof;
985 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
987 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
988 dmu_tx_commit(tx);
990 if (error != 0)
991 break;
992 ASSERT(tx_bytes == nbytes);
993 n -= nbytes;
995 if (!xuio && n > 0)
996 uio_prefaultpages(MIN(n, max_blksz), uio);
999 zfs_range_unlock(rl);
1002 * If we're in replay mode, or we made no progress, return error.
1003 * Otherwise, it's at least a partial write, so it's successful.
1005 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1006 ZFS_EXIT(zfsvfs);
1007 return (error);
1010 if (ioflag & (FSYNC | FDSYNC) ||
1011 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1012 zil_commit(zilog, zp->z_id);
1014 ZFS_EXIT(zfsvfs);
1015 return (0);
1018 void
1019 zfs_get_done(zgd_t *zgd, int error)
1021 znode_t *zp = zgd->zgd_private;
1022 objset_t *os = zp->z_zfsvfs->z_os;
1024 if (zgd->zgd_db)
1025 dmu_buf_rele(zgd->zgd_db, zgd);
1027 zfs_range_unlock(zgd->zgd_rl);
1030 * Release the vnode asynchronously as we currently have the
1031 * txg stopped from syncing.
1033 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1035 if (error == 0 && zgd->zgd_bp)
1036 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1038 kmem_free(zgd, sizeof (zgd_t));
1041 #ifdef DEBUG
1042 static int zil_fault_io = 0;
1043 #endif
1046 * Get data to generate a TX_WRITE intent log record.
1049 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1051 zfsvfs_t *zfsvfs = arg;
1052 objset_t *os = zfsvfs->z_os;
1053 znode_t *zp;
1054 uint64_t object = lr->lr_foid;
1055 uint64_t offset = lr->lr_offset;
1056 uint64_t size = lr->lr_length;
1057 dmu_buf_t *db;
1058 zgd_t *zgd;
1059 int error = 0;
1061 ASSERT3P(lwb, !=, NULL);
1062 ASSERT3P(zio, !=, NULL);
1063 ASSERT3U(size, !=, 0);
1066 * Nothing to do if the file has been removed
1068 if (zfs_zget(zfsvfs, object, &zp) != 0)
1069 return (SET_ERROR(ENOENT));
1070 if (zp->z_unlinked) {
1072 * Release the vnode asynchronously as we currently have the
1073 * txg stopped from syncing.
1075 VN_RELE_ASYNC(ZTOV(zp),
1076 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1077 return (SET_ERROR(ENOENT));
1080 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1081 zgd->zgd_lwb = lwb;
1082 zgd->zgd_private = zp;
1085 * Write records come in two flavors: immediate and indirect.
1086 * For small writes it's cheaper to store the data with the
1087 * log record (immediate); for large writes it's cheaper to
1088 * sync the data and get a pointer to it (indirect) so that
1089 * we don't have to write the data twice.
1091 if (buf != NULL) { /* immediate write */
1092 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1093 /* test for truncation needs to be done while range locked */
1094 if (offset >= zp->z_size) {
1095 error = SET_ERROR(ENOENT);
1096 } else {
1097 error = dmu_read(os, object, offset, size, buf,
1098 DMU_READ_NO_PREFETCH);
1100 ASSERT(error == 0 || error == ENOENT);
1101 } else { /* indirect write */
1103 * Have to lock the whole block to ensure when it's
1104 * written out and its checksum is being calculated
1105 * that no one can change the data. We need to re-check
1106 * blocksize after we get the lock in case it's changed!
1108 for (;;) {
1109 uint64_t blkoff;
1110 size = zp->z_blksz;
1111 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1112 offset -= blkoff;
1113 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1114 RL_READER);
1115 if (zp->z_blksz == size)
1116 break;
1117 offset += blkoff;
1118 zfs_range_unlock(zgd->zgd_rl);
1120 /* test for truncation needs to be done while range locked */
1121 if (lr->lr_offset >= zp->z_size)
1122 error = SET_ERROR(ENOENT);
1123 #ifdef DEBUG
1124 if (zil_fault_io) {
1125 error = SET_ERROR(EIO);
1126 zil_fault_io = 0;
1128 #endif
1129 if (error == 0)
1130 error = dmu_buf_hold(os, object, offset, zgd, &db,
1131 DMU_READ_NO_PREFETCH);
1133 if (error == 0) {
1134 blkptr_t *bp = &lr->lr_blkptr;
1136 zgd->zgd_db = db;
1137 zgd->zgd_bp = bp;
1139 ASSERT(db->db_offset == offset);
1140 ASSERT(db->db_size == size);
1142 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1143 zfs_get_done, zgd);
1144 ASSERT(error || lr->lr_length <= size);
1147 * On success, we need to wait for the write I/O
1148 * initiated by dmu_sync() to complete before we can
1149 * release this dbuf. We will finish everything up
1150 * in the zfs_get_done() callback.
1152 if (error == 0)
1153 return (0);
1155 if (error == EALREADY) {
1156 lr->lr_common.lrc_txtype = TX_WRITE2;
1157 error = 0;
1162 zfs_get_done(zgd, error);
1164 return (error);
1167 /*ARGSUSED*/
1168 static int
1169 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1170 caller_context_t *ct)
1172 znode_t *zp = VTOZ(vp);
1173 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1174 int error;
1176 ZFS_ENTER(zfsvfs);
1177 ZFS_VERIFY_ZP(zp);
1179 if (flag & V_ACE_MASK)
1180 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1181 else
1182 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1184 ZFS_EXIT(zfsvfs);
1185 return (error);
1189 * If vnode is for a device return a specfs vnode instead.
1191 static int
1192 specvp_check(vnode_t **vpp, cred_t *cr)
1194 int error = 0;
1196 if (IS_DEVVP(*vpp)) {
1197 struct vnode *svp;
1199 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1200 VN_RELE(*vpp);
1201 if (svp == NULL)
1202 error = SET_ERROR(ENOSYS);
1203 *vpp = svp;
1205 return (error);
1210 * Lookup an entry in a directory, or an extended attribute directory.
1211 * If it exists, return a held vnode reference for it.
1213 * IN: dvp - vnode of directory to search.
1214 * nm - name of entry to lookup.
1215 * pnp - full pathname to lookup [UNUSED].
1216 * flags - LOOKUP_XATTR set if looking for an attribute.
1217 * rdir - root directory vnode [UNUSED].
1218 * cr - credentials of caller.
1219 * ct - caller context
1220 * direntflags - directory lookup flags
1221 * realpnp - returned pathname.
1223 * OUT: vpp - vnode of located entry, NULL if not found.
1225 * RETURN: 0 on success, error code on failure.
1227 * Timestamps:
1228 * NA
1230 /* ARGSUSED */
1231 static int
1232 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1233 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1234 int *direntflags, pathname_t *realpnp)
1236 znode_t *zdp = VTOZ(dvp);
1237 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1238 int error = 0;
1241 * Fast path lookup, however we must skip DNLC lookup
1242 * for case folding or normalizing lookups because the
1243 * DNLC code only stores the passed in name. This means
1244 * creating 'a' and removing 'A' on a case insensitive
1245 * file system would work, but DNLC still thinks 'a'
1246 * exists and won't let you create it again on the next
1247 * pass through fast path.
1249 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1251 if (dvp->v_type != VDIR) {
1252 return (SET_ERROR(ENOTDIR));
1253 } else if (zdp->z_sa_hdl == NULL) {
1254 return (SET_ERROR(EIO));
1257 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1258 error = zfs_fastaccesschk_execute(zdp, cr);
1259 if (!error) {
1260 *vpp = dvp;
1261 VN_HOLD(*vpp);
1262 return (0);
1264 return (error);
1265 } else if (!zdp->z_zfsvfs->z_norm &&
1266 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
1268 vnode_t *tvp = dnlc_lookup(dvp, nm);
1270 if (tvp) {
1271 error = zfs_fastaccesschk_execute(zdp, cr);
1272 if (error) {
1273 VN_RELE(tvp);
1274 return (error);
1276 if (tvp == DNLC_NO_VNODE) {
1277 VN_RELE(tvp);
1278 return (SET_ERROR(ENOENT));
1279 } else {
1280 *vpp = tvp;
1281 return (specvp_check(vpp, cr));
1287 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1289 ZFS_ENTER(zfsvfs);
1290 ZFS_VERIFY_ZP(zdp);
1292 *vpp = NULL;
1294 if (flags & LOOKUP_XATTR) {
1296 * If the xattr property is off, refuse the lookup request.
1298 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1299 ZFS_EXIT(zfsvfs);
1300 return (SET_ERROR(EINVAL));
1304 * We don't allow recursive attributes..
1305 * Maybe someday we will.
1307 if (zdp->z_pflags & ZFS_XATTR) {
1308 ZFS_EXIT(zfsvfs);
1309 return (SET_ERROR(EINVAL));
1312 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1313 ZFS_EXIT(zfsvfs);
1314 return (error);
1318 * Do we have permission to get into attribute directory?
1321 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1322 B_FALSE, cr)) {
1323 VN_RELE(*vpp);
1324 *vpp = NULL;
1327 ZFS_EXIT(zfsvfs);
1328 return (error);
1331 if (dvp->v_type != VDIR) {
1332 ZFS_EXIT(zfsvfs);
1333 return (SET_ERROR(ENOTDIR));
1337 * Check accessibility of directory.
1340 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1341 ZFS_EXIT(zfsvfs);
1342 return (error);
1345 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1346 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1347 ZFS_EXIT(zfsvfs);
1348 return (SET_ERROR(EILSEQ));
1351 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1352 if (error == 0)
1353 error = specvp_check(vpp, cr);
1355 ZFS_EXIT(zfsvfs);
1356 return (error);
1360 * Attempt to create a new entry in a directory. If the entry
1361 * already exists, truncate the file if permissible, else return
1362 * an error. Return the vp of the created or trunc'd file.
1364 * IN: dvp - vnode of directory to put new file entry in.
1365 * name - name of new file entry.
1366 * vap - attributes of new file.
1367 * excl - flag indicating exclusive or non-exclusive mode.
1368 * mode - mode to open file with.
1369 * cr - credentials of caller.
1370 * flag - large file flag [UNUSED].
1371 * ct - caller context
1372 * vsecp - ACL to be set
1374 * OUT: vpp - vnode of created or trunc'd entry.
1376 * RETURN: 0 on success, error code on failure.
1378 * Timestamps:
1379 * dvp - ctime|mtime updated if new entry created
1380 * vp - ctime|mtime always, atime if new
1383 /* ARGSUSED */
1384 static int
1385 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1386 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1387 vsecattr_t *vsecp)
1389 znode_t *zp, *dzp = VTOZ(dvp);
1390 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1391 zilog_t *zilog;
1392 objset_t *os;
1393 zfs_dirlock_t *dl;
1394 dmu_tx_t *tx;
1395 int error;
1396 ksid_t *ksid;
1397 uid_t uid;
1398 gid_t gid = crgetgid(cr);
1399 zfs_acl_ids_t acl_ids;
1400 boolean_t fuid_dirtied;
1401 boolean_t have_acl = B_FALSE;
1402 boolean_t waited = B_FALSE;
1405 * If we have an ephemeral id, ACL, or XVATTR then
1406 * make sure file system is at proper version
1409 ksid = crgetsid(cr, KSID_OWNER);
1410 if (ksid)
1411 uid = ksid_getid(ksid);
1412 else
1413 uid = crgetuid(cr);
1415 if (zfsvfs->z_use_fuids == B_FALSE &&
1416 (vsecp || (vap->va_mask & AT_XVATTR) ||
1417 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1418 return (SET_ERROR(EINVAL));
1420 ZFS_ENTER(zfsvfs);
1421 ZFS_VERIFY_ZP(dzp);
1422 os = zfsvfs->z_os;
1423 zilog = zfsvfs->z_log;
1425 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1426 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1427 ZFS_EXIT(zfsvfs);
1428 return (SET_ERROR(EILSEQ));
1431 if (vap->va_mask & AT_XVATTR) {
1432 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1433 crgetuid(cr), cr, vap->va_type)) != 0) {
1434 ZFS_EXIT(zfsvfs);
1435 return (error);
1438 top:
1439 *vpp = NULL;
1441 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1442 vap->va_mode &= ~VSVTX;
1444 if (*name == '\0') {
1446 * Null component name refers to the directory itself.
1448 VN_HOLD(dvp);
1449 zp = dzp;
1450 dl = NULL;
1451 error = 0;
1452 } else {
1453 /* possible VN_HOLD(zp) */
1454 int zflg = 0;
1456 if (flag & FIGNORECASE)
1457 zflg |= ZCILOOK;
1459 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1460 NULL, NULL);
1461 if (error) {
1462 if (have_acl)
1463 zfs_acl_ids_free(&acl_ids);
1464 if (strcmp(name, "..") == 0)
1465 error = SET_ERROR(EISDIR);
1466 ZFS_EXIT(zfsvfs);
1467 return (error);
1471 if (zp == NULL) {
1472 uint64_t txtype;
1475 * Create a new file object and update the directory
1476 * to reference it.
1478 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1479 if (have_acl)
1480 zfs_acl_ids_free(&acl_ids);
1481 goto out;
1485 * We only support the creation of regular files in
1486 * extended attribute directories.
1489 if ((dzp->z_pflags & ZFS_XATTR) &&
1490 (vap->va_type != VREG)) {
1491 if (have_acl)
1492 zfs_acl_ids_free(&acl_ids);
1493 error = SET_ERROR(EINVAL);
1494 goto out;
1497 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1498 cr, vsecp, &acl_ids)) != 0)
1499 goto out;
1500 have_acl = B_TRUE;
1502 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1503 zfs_acl_ids_free(&acl_ids);
1504 error = SET_ERROR(EDQUOT);
1505 goto out;
1508 tx = dmu_tx_create(os);
1510 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1511 ZFS_SA_BASE_ATTR_SIZE);
1513 fuid_dirtied = zfsvfs->z_fuid_dirty;
1514 if (fuid_dirtied)
1515 zfs_fuid_txhold(zfsvfs, tx);
1516 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1517 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1518 if (!zfsvfs->z_use_sa &&
1519 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1520 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1521 0, acl_ids.z_aclp->z_acl_bytes);
1523 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1524 if (error) {
1525 zfs_dirent_unlock(dl);
1526 if (error == ERESTART) {
1527 waited = B_TRUE;
1528 dmu_tx_wait(tx);
1529 dmu_tx_abort(tx);
1530 goto top;
1532 zfs_acl_ids_free(&acl_ids);
1533 dmu_tx_abort(tx);
1534 ZFS_EXIT(zfsvfs);
1535 return (error);
1537 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1539 if (fuid_dirtied)
1540 zfs_fuid_sync(zfsvfs, tx);
1542 (void) zfs_link_create(dl, zp, tx, ZNEW);
1543 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1544 if (flag & FIGNORECASE)
1545 txtype |= TX_CI;
1546 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1547 vsecp, acl_ids.z_fuidp, vap);
1548 zfs_acl_ids_free(&acl_ids);
1549 dmu_tx_commit(tx);
1550 } else {
1551 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1553 if (have_acl)
1554 zfs_acl_ids_free(&acl_ids);
1555 have_acl = B_FALSE;
1558 * A directory entry already exists for this name.
1561 * Can't truncate an existing file if in exclusive mode.
1563 if (excl == EXCL) {
1564 error = SET_ERROR(EEXIST);
1565 goto out;
1568 * Can't open a directory for writing.
1570 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1571 error = SET_ERROR(EISDIR);
1572 goto out;
1575 * Verify requested access to file.
1577 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1578 goto out;
1581 mutex_enter(&dzp->z_lock);
1582 dzp->z_seq++;
1583 mutex_exit(&dzp->z_lock);
1586 * Truncate regular files if requested.
1588 if ((ZTOV(zp)->v_type == VREG) &&
1589 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1590 /* we can't hold any locks when calling zfs_freesp() */
1591 zfs_dirent_unlock(dl);
1592 dl = NULL;
1593 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1594 if (error == 0) {
1595 vnevent_create(ZTOV(zp), ct);
1599 out:
1601 if (dl)
1602 zfs_dirent_unlock(dl);
1604 if (error) {
1605 if (zp)
1606 VN_RELE(ZTOV(zp));
1607 } else {
1608 *vpp = ZTOV(zp);
1609 error = specvp_check(vpp, cr);
1612 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1613 zil_commit(zilog, 0);
1615 ZFS_EXIT(zfsvfs);
1616 return (error);
1620 * Remove an entry from a directory.
1622 * IN: dvp - vnode of directory to remove entry from.
1623 * name - name of entry to remove.
1624 * cr - credentials of caller.
1625 * ct - caller context
1626 * flags - case flags
1628 * RETURN: 0 on success, error code on failure.
1630 * Timestamps:
1631 * dvp - ctime|mtime
1632 * vp - ctime (if nlink > 0)
1635 uint64_t null_xattr = 0;
1637 /*ARGSUSED*/
1638 static int
1639 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1640 int flags)
1642 znode_t *zp, *dzp = VTOZ(dvp);
1643 znode_t *xzp;
1644 vnode_t *vp;
1645 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1646 zilog_t *zilog;
1647 uint64_t acl_obj, xattr_obj;
1648 uint64_t xattr_obj_unlinked = 0;
1649 uint64_t obj = 0;
1650 zfs_dirlock_t *dl;
1651 dmu_tx_t *tx;
1652 boolean_t may_delete_now, delete_now = FALSE;
1653 boolean_t unlinked, toobig = FALSE;
1654 uint64_t txtype;
1655 pathname_t *realnmp = NULL;
1656 pathname_t realnm;
1657 int error;
1658 int zflg = ZEXISTS;
1659 boolean_t waited = B_FALSE;
1661 ZFS_ENTER(zfsvfs);
1662 ZFS_VERIFY_ZP(dzp);
1663 zilog = zfsvfs->z_log;
1665 if (flags & FIGNORECASE) {
1666 zflg |= ZCILOOK;
1667 pn_alloc(&realnm);
1668 realnmp = &realnm;
1671 top:
1672 xattr_obj = 0;
1673 xzp = NULL;
1675 * Attempt to lock directory; fail if entry doesn't exist.
1677 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1678 NULL, realnmp)) {
1679 if (realnmp)
1680 pn_free(realnmp);
1681 ZFS_EXIT(zfsvfs);
1682 return (error);
1685 vp = ZTOV(zp);
1687 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1688 goto out;
1692 * Need to use rmdir for removing directories.
1694 if (vp->v_type == VDIR) {
1695 error = SET_ERROR(EPERM);
1696 goto out;
1699 vnevent_remove(vp, dvp, name, ct);
1701 if (realnmp)
1702 dnlc_remove(dvp, realnmp->pn_buf);
1703 else
1704 dnlc_remove(dvp, name);
1706 mutex_enter(&vp->v_lock);
1707 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1708 mutex_exit(&vp->v_lock);
1711 * We may delete the znode now, or we may put it in the unlinked set;
1712 * it depends on whether we're the last link, and on whether there are
1713 * other holds on the vnode. So we dmu_tx_hold() the right things to
1714 * allow for either case.
1716 obj = zp->z_id;
1717 tx = dmu_tx_create(zfsvfs->z_os);
1718 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1719 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1720 zfs_sa_upgrade_txholds(tx, zp);
1721 zfs_sa_upgrade_txholds(tx, dzp);
1722 if (may_delete_now) {
1723 toobig =
1724 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1725 /* if the file is too big, only hold_free a token amount */
1726 dmu_tx_hold_free(tx, zp->z_id, 0,
1727 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1730 /* are there any extended attributes? */
1731 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1732 &xattr_obj, sizeof (xattr_obj));
1733 if (error == 0 && xattr_obj) {
1734 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1735 ASSERT0(error);
1736 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1737 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1740 mutex_enter(&zp->z_lock);
1741 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1742 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1743 mutex_exit(&zp->z_lock);
1745 /* charge as an update -- would be nice not to charge at all */
1746 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1749 * Mark this transaction as typically resulting in a net free of space
1751 dmu_tx_mark_netfree(tx);
1753 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1754 if (error) {
1755 zfs_dirent_unlock(dl);
1756 VN_RELE(vp);
1757 if (xzp)
1758 VN_RELE(ZTOV(xzp));
1759 if (error == ERESTART) {
1760 waited = B_TRUE;
1761 dmu_tx_wait(tx);
1762 dmu_tx_abort(tx);
1763 goto top;
1765 if (realnmp)
1766 pn_free(realnmp);
1767 dmu_tx_abort(tx);
1768 ZFS_EXIT(zfsvfs);
1769 return (error);
1773 * Remove the directory entry.
1775 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1777 if (error) {
1778 dmu_tx_commit(tx);
1779 goto out;
1782 if (unlinked) {
1784 * Hold z_lock so that we can make sure that the ACL obj
1785 * hasn't changed. Could have been deleted due to
1786 * zfs_sa_upgrade().
1788 mutex_enter(&zp->z_lock);
1789 mutex_enter(&vp->v_lock);
1790 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1791 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1792 delete_now = may_delete_now && !toobig &&
1793 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1794 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1795 acl_obj;
1796 mutex_exit(&vp->v_lock);
1799 if (delete_now) {
1800 if (xattr_obj_unlinked) {
1801 ASSERT3U(xzp->z_links, ==, 2);
1802 mutex_enter(&xzp->z_lock);
1803 xzp->z_unlinked = 1;
1804 xzp->z_links = 0;
1805 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1806 &xzp->z_links, sizeof (xzp->z_links), tx);
1807 ASSERT3U(error, ==, 0);
1808 mutex_exit(&xzp->z_lock);
1809 zfs_unlinked_add(xzp, tx);
1811 if (zp->z_is_sa)
1812 error = sa_remove(zp->z_sa_hdl,
1813 SA_ZPL_XATTR(zfsvfs), tx);
1814 else
1815 error = sa_update(zp->z_sa_hdl,
1816 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1817 sizeof (uint64_t), tx);
1818 ASSERT0(error);
1820 mutex_enter(&vp->v_lock);
1821 VN_RELE_LOCKED(vp);
1822 ASSERT0(vp->v_count);
1823 mutex_exit(&vp->v_lock);
1824 mutex_exit(&zp->z_lock);
1825 zfs_znode_delete(zp, tx);
1826 } else if (unlinked) {
1827 mutex_exit(&zp->z_lock);
1828 zfs_unlinked_add(zp, tx);
1831 txtype = TX_REMOVE;
1832 if (flags & FIGNORECASE)
1833 txtype |= TX_CI;
1834 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1836 dmu_tx_commit(tx);
1837 out:
1838 if (realnmp)
1839 pn_free(realnmp);
1841 zfs_dirent_unlock(dl);
1843 if (!delete_now)
1844 VN_RELE(vp);
1845 if (xzp)
1846 VN_RELE(ZTOV(xzp));
1848 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1849 zil_commit(zilog, 0);
1851 ZFS_EXIT(zfsvfs);
1852 return (error);
1856 * Create a new directory and insert it into dvp using the name
1857 * provided. Return a pointer to the inserted directory.
1859 * IN: dvp - vnode of directory to add subdir to.
1860 * dirname - name of new directory.
1861 * vap - attributes of new directory.
1862 * cr - credentials of caller.
1863 * ct - caller context
1864 * flags - case flags
1865 * vsecp - ACL to be set
1867 * OUT: vpp - vnode of created directory.
1869 * RETURN: 0 on success, error code on failure.
1871 * Timestamps:
1872 * dvp - ctime|mtime updated
1873 * vp - ctime|mtime|atime updated
1875 /*ARGSUSED*/
1876 static int
1877 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1878 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1880 znode_t *zp, *dzp = VTOZ(dvp);
1881 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1882 zilog_t *zilog;
1883 zfs_dirlock_t *dl;
1884 uint64_t txtype;
1885 dmu_tx_t *tx;
1886 int error;
1887 int zf = ZNEW;
1888 ksid_t *ksid;
1889 uid_t uid;
1890 gid_t gid = crgetgid(cr);
1891 zfs_acl_ids_t acl_ids;
1892 boolean_t fuid_dirtied;
1893 boolean_t waited = B_FALSE;
1895 ASSERT(vap->va_type == VDIR);
1898 * If we have an ephemeral id, ACL, or XVATTR then
1899 * make sure file system is at proper version
1902 ksid = crgetsid(cr, KSID_OWNER);
1903 if (ksid)
1904 uid = ksid_getid(ksid);
1905 else
1906 uid = crgetuid(cr);
1907 if (zfsvfs->z_use_fuids == B_FALSE &&
1908 (vsecp || (vap->va_mask & AT_XVATTR) ||
1909 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1910 return (SET_ERROR(EINVAL));
1912 ZFS_ENTER(zfsvfs);
1913 ZFS_VERIFY_ZP(dzp);
1914 zilog = zfsvfs->z_log;
1916 if (dzp->z_pflags & ZFS_XATTR) {
1917 ZFS_EXIT(zfsvfs);
1918 return (SET_ERROR(EINVAL));
1921 if (zfsvfs->z_utf8 && u8_validate(dirname,
1922 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1923 ZFS_EXIT(zfsvfs);
1924 return (SET_ERROR(EILSEQ));
1926 if (flags & FIGNORECASE)
1927 zf |= ZCILOOK;
1929 if (vap->va_mask & AT_XVATTR) {
1930 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1931 crgetuid(cr), cr, vap->va_type)) != 0) {
1932 ZFS_EXIT(zfsvfs);
1933 return (error);
1937 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1938 vsecp, &acl_ids)) != 0) {
1939 ZFS_EXIT(zfsvfs);
1940 return (error);
1943 * First make sure the new directory doesn't exist.
1945 * Existence is checked first to make sure we don't return
1946 * EACCES instead of EEXIST which can cause some applications
1947 * to fail.
1949 top:
1950 *vpp = NULL;
1952 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1953 NULL, NULL)) {
1954 zfs_acl_ids_free(&acl_ids);
1955 ZFS_EXIT(zfsvfs);
1956 return (error);
1959 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1960 zfs_acl_ids_free(&acl_ids);
1961 zfs_dirent_unlock(dl);
1962 ZFS_EXIT(zfsvfs);
1963 return (error);
1966 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1967 zfs_acl_ids_free(&acl_ids);
1968 zfs_dirent_unlock(dl);
1969 ZFS_EXIT(zfsvfs);
1970 return (SET_ERROR(EDQUOT));
1974 * Add a new entry to the directory.
1976 tx = dmu_tx_create(zfsvfs->z_os);
1977 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1978 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1979 fuid_dirtied = zfsvfs->z_fuid_dirty;
1980 if (fuid_dirtied)
1981 zfs_fuid_txhold(zfsvfs, tx);
1982 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1983 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1984 acl_ids.z_aclp->z_acl_bytes);
1987 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1988 ZFS_SA_BASE_ATTR_SIZE);
1990 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1991 if (error) {
1992 zfs_dirent_unlock(dl);
1993 if (error == ERESTART) {
1994 waited = B_TRUE;
1995 dmu_tx_wait(tx);
1996 dmu_tx_abort(tx);
1997 goto top;
1999 zfs_acl_ids_free(&acl_ids);
2000 dmu_tx_abort(tx);
2001 ZFS_EXIT(zfsvfs);
2002 return (error);
2006 * Create new node.
2008 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2010 if (fuid_dirtied)
2011 zfs_fuid_sync(zfsvfs, tx);
2014 * Now put new name in parent dir.
2016 (void) zfs_link_create(dl, zp, tx, ZNEW);
2018 *vpp = ZTOV(zp);
2020 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2021 if (flags & FIGNORECASE)
2022 txtype |= TX_CI;
2023 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2024 acl_ids.z_fuidp, vap);
2026 zfs_acl_ids_free(&acl_ids);
2028 dmu_tx_commit(tx);
2030 zfs_dirent_unlock(dl);
2032 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2033 zil_commit(zilog, 0);
2035 ZFS_EXIT(zfsvfs);
2036 return (0);
2040 * Remove a directory subdir entry. If the current working
2041 * directory is the same as the subdir to be removed, the
2042 * remove will fail.
2044 * IN: dvp - vnode of directory to remove from.
2045 * name - name of directory to be removed.
2046 * cwd - vnode of current working directory.
2047 * cr - credentials of caller.
2048 * ct - caller context
2049 * flags - case flags
2051 * RETURN: 0 on success, error code on failure.
2053 * Timestamps:
2054 * dvp - ctime|mtime updated
2056 /*ARGSUSED*/
2057 static int
2058 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2059 caller_context_t *ct, int flags)
2061 znode_t *dzp = VTOZ(dvp);
2062 znode_t *zp;
2063 vnode_t *vp;
2064 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
2065 zilog_t *zilog;
2066 zfs_dirlock_t *dl;
2067 dmu_tx_t *tx;
2068 int error;
2069 int zflg = ZEXISTS;
2070 boolean_t waited = B_FALSE;
2072 ZFS_ENTER(zfsvfs);
2073 ZFS_VERIFY_ZP(dzp);
2074 zilog = zfsvfs->z_log;
2076 if (flags & FIGNORECASE)
2077 zflg |= ZCILOOK;
2078 top:
2079 zp = NULL;
2082 * Attempt to lock directory; fail if entry doesn't exist.
2084 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2085 NULL, NULL)) {
2086 ZFS_EXIT(zfsvfs);
2087 return (error);
2090 vp = ZTOV(zp);
2092 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2093 goto out;
2096 if (vp->v_type != VDIR) {
2097 error = SET_ERROR(ENOTDIR);
2098 goto out;
2101 if (vp == cwd) {
2102 error = SET_ERROR(EINVAL);
2103 goto out;
2106 vnevent_rmdir(vp, dvp, name, ct);
2109 * Grab a lock on the directory to make sure that noone is
2110 * trying to add (or lookup) entries while we are removing it.
2112 rw_enter(&zp->z_name_lock, RW_WRITER);
2115 * Grab a lock on the parent pointer to make sure we play well
2116 * with the treewalk and directory rename code.
2118 rw_enter(&zp->z_parent_lock, RW_WRITER);
2120 tx = dmu_tx_create(zfsvfs->z_os);
2121 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2122 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2123 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2124 zfs_sa_upgrade_txholds(tx, zp);
2125 zfs_sa_upgrade_txholds(tx, dzp);
2126 dmu_tx_mark_netfree(tx);
2127 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2128 if (error) {
2129 rw_exit(&zp->z_parent_lock);
2130 rw_exit(&zp->z_name_lock);
2131 zfs_dirent_unlock(dl);
2132 VN_RELE(vp);
2133 if (error == ERESTART) {
2134 waited = B_TRUE;
2135 dmu_tx_wait(tx);
2136 dmu_tx_abort(tx);
2137 goto top;
2139 dmu_tx_abort(tx);
2140 ZFS_EXIT(zfsvfs);
2141 return (error);
2144 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2146 if (error == 0) {
2147 uint64_t txtype = TX_RMDIR;
2148 if (flags & FIGNORECASE)
2149 txtype |= TX_CI;
2150 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2153 dmu_tx_commit(tx);
2155 rw_exit(&zp->z_parent_lock);
2156 rw_exit(&zp->z_name_lock);
2157 out:
2158 zfs_dirent_unlock(dl);
2160 VN_RELE(vp);
2162 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2163 zil_commit(zilog, 0);
2165 ZFS_EXIT(zfsvfs);
2166 return (error);
2170 * Read as many directory entries as will fit into the provided
2171 * buffer from the given directory cursor position (specified in
2172 * the uio structure).
2174 * IN: vp - vnode of directory to read.
2175 * uio - structure supplying read location, range info,
2176 * and return buffer.
2177 * cr - credentials of caller.
2178 * ct - caller context
2179 * flags - case flags
2181 * OUT: uio - updated offset and range, buffer filled.
2182 * eofp - set to true if end-of-file detected.
2184 * RETURN: 0 on success, error code on failure.
2186 * Timestamps:
2187 * vp - atime updated
2189 * Note that the low 4 bits of the cookie returned by zap is always zero.
2190 * This allows us to use the low range for "special" directory entries:
2191 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2192 * we use the offset 2 for the '.zfs' directory.
2194 /* ARGSUSED */
2195 static int
2196 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2197 caller_context_t *ct, int flags)
2199 znode_t *zp = VTOZ(vp);
2200 iovec_t *iovp;
2201 edirent_t *eodp;
2202 dirent64_t *odp;
2203 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2204 objset_t *os;
2205 caddr_t outbuf;
2206 size_t bufsize;
2207 zap_cursor_t zc;
2208 zap_attribute_t zap;
2209 uint_t bytes_wanted;
2210 uint64_t offset; /* must be unsigned; checks for < 1 */
2211 uint64_t parent;
2212 int local_eof;
2213 int outcount;
2214 int error;
2215 uint8_t prefetch;
2216 boolean_t check_sysattrs;
2218 ZFS_ENTER(zfsvfs);
2219 ZFS_VERIFY_ZP(zp);
2221 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2222 &parent, sizeof (parent))) != 0) {
2223 ZFS_EXIT(zfsvfs);
2224 return (error);
2228 * If we are not given an eof variable,
2229 * use a local one.
2231 if (eofp == NULL)
2232 eofp = &local_eof;
2235 * Check for valid iov_len.
2237 if (uio->uio_iov->iov_len <= 0) {
2238 ZFS_EXIT(zfsvfs);
2239 return (SET_ERROR(EINVAL));
2243 * Quit if directory has been removed (posix)
2245 if ((*eofp = zp->z_unlinked) != 0) {
2246 ZFS_EXIT(zfsvfs);
2247 return (0);
2250 error = 0;
2251 os = zfsvfs->z_os;
2252 offset = uio->uio_loffset;
2253 prefetch = zp->z_zn_prefetch;
2256 * Initialize the iterator cursor.
2258 if (offset <= 3) {
2260 * Start iteration from the beginning of the directory.
2262 zap_cursor_init(&zc, os, zp->z_id);
2263 } else {
2265 * The offset is a serialized cursor.
2267 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2271 * Get space to change directory entries into fs independent format.
2273 iovp = uio->uio_iov;
2274 bytes_wanted = iovp->iov_len;
2275 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2276 bufsize = bytes_wanted;
2277 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2278 odp = (struct dirent64 *)outbuf;
2279 } else {
2280 bufsize = bytes_wanted;
2281 outbuf = NULL;
2282 odp = (struct dirent64 *)iovp->iov_base;
2284 eodp = (struct edirent *)odp;
2287 * If this VFS supports the system attribute view interface; and
2288 * we're looking at an extended attribute directory; and we care
2289 * about normalization conflicts on this vfs; then we must check
2290 * for normalization conflicts with the sysattr name space.
2292 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2293 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2294 (flags & V_RDDIR_ENTFLAGS);
2297 * Transform to file-system independent format
2299 outcount = 0;
2300 while (outcount < bytes_wanted) {
2301 ino64_t objnum;
2302 ushort_t reclen;
2303 off64_t *next = NULL;
2306 * Special case `.', `..', and `.zfs'.
2308 if (offset == 0) {
2309 (void) strcpy(zap.za_name, ".");
2310 zap.za_normalization_conflict = 0;
2311 objnum = zp->z_id;
2312 } else if (offset == 1) {
2313 (void) strcpy(zap.za_name, "..");
2314 zap.za_normalization_conflict = 0;
2315 objnum = parent;
2316 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2317 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2318 zap.za_normalization_conflict = 0;
2319 objnum = ZFSCTL_INO_ROOT;
2320 } else {
2322 * Grab next entry.
2324 if (error = zap_cursor_retrieve(&zc, &zap)) {
2325 if ((*eofp = (error == ENOENT)) != 0)
2326 break;
2327 else
2328 goto update;
2331 if (zap.za_integer_length != 8 ||
2332 zap.za_num_integers != 1) {
2333 cmn_err(CE_WARN, "zap_readdir: bad directory "
2334 "entry, obj = %lld, offset = %lld\n",
2335 (u_longlong_t)zp->z_id,
2336 (u_longlong_t)offset);
2337 error = SET_ERROR(ENXIO);
2338 goto update;
2341 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2343 * MacOS X can extract the object type here such as:
2344 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2347 if (check_sysattrs && !zap.za_normalization_conflict) {
2348 zap.za_normalization_conflict =
2349 xattr_sysattr_casechk(zap.za_name);
2353 if (flags & V_RDDIR_ACCFILTER) {
2355 * If we have no access at all, don't include
2356 * this entry in the returned information
2358 znode_t *ezp;
2359 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2360 goto skip_entry;
2361 if (!zfs_has_access(ezp, cr)) {
2362 VN_RELE(ZTOV(ezp));
2363 goto skip_entry;
2365 VN_RELE(ZTOV(ezp));
2368 if (flags & V_RDDIR_ENTFLAGS)
2369 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2370 else
2371 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2374 * Will this entry fit in the buffer?
2376 if (outcount + reclen > bufsize) {
2378 * Did we manage to fit anything in the buffer?
2380 if (!outcount) {
2381 error = SET_ERROR(EINVAL);
2382 goto update;
2384 break;
2386 if (flags & V_RDDIR_ENTFLAGS) {
2388 * Add extended flag entry:
2390 eodp->ed_ino = objnum;
2391 eodp->ed_reclen = reclen;
2392 /* NOTE: ed_off is the offset for the *next* entry */
2393 next = &(eodp->ed_off);
2394 eodp->ed_eflags = zap.za_normalization_conflict ?
2395 ED_CASE_CONFLICT : 0;
2396 (void) strncpy(eodp->ed_name, zap.za_name,
2397 EDIRENT_NAMELEN(reclen));
2398 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2399 } else {
2401 * Add normal entry:
2403 odp->d_ino = objnum;
2404 odp->d_reclen = reclen;
2405 /* NOTE: d_off is the offset for the *next* entry */
2406 next = &(odp->d_off);
2407 (void) strncpy(odp->d_name, zap.za_name,
2408 DIRENT64_NAMELEN(reclen));
2409 odp = (dirent64_t *)((intptr_t)odp + reclen);
2411 outcount += reclen;
2413 ASSERT(outcount <= bufsize);
2415 /* Prefetch znode */
2416 if (prefetch)
2417 dmu_prefetch(os, objnum, 0, 0, 0,
2418 ZIO_PRIORITY_SYNC_READ);
2420 skip_entry:
2422 * Move to the next entry, fill in the previous offset.
2424 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2425 zap_cursor_advance(&zc);
2426 offset = zap_cursor_serialize(&zc);
2427 } else {
2428 offset += 1;
2430 if (next)
2431 *next = offset;
2433 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2435 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2436 iovp->iov_base += outcount;
2437 iovp->iov_len -= outcount;
2438 uio->uio_resid -= outcount;
2439 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2441 * Reset the pointer.
2443 offset = uio->uio_loffset;
2446 update:
2447 zap_cursor_fini(&zc);
2448 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2449 kmem_free(outbuf, bufsize);
2451 if (error == ENOENT)
2452 error = 0;
2454 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2456 uio->uio_loffset = offset;
2457 ZFS_EXIT(zfsvfs);
2458 return (error);
2461 ulong_t zfs_fsync_sync_cnt = 4;
2463 static int
2464 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2466 znode_t *zp = VTOZ(vp);
2467 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2470 * Regardless of whether this is required for standards conformance,
2471 * this is the logical behavior when fsync() is called on a file with
2472 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2473 * going to be pushed out as part of the zil_commit().
2475 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2476 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2477 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2479 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2481 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2482 ZFS_ENTER(zfsvfs);
2483 ZFS_VERIFY_ZP(zp);
2484 zil_commit(zfsvfs->z_log, zp->z_id);
2485 ZFS_EXIT(zfsvfs);
2487 return (0);
2492 * Get the requested file attributes and place them in the provided
2493 * vattr structure.
2495 * IN: vp - vnode of file.
2496 * vap - va_mask identifies requested attributes.
2497 * If AT_XVATTR set, then optional attrs are requested
2498 * flags - ATTR_NOACLCHECK (CIFS server context)
2499 * cr - credentials of caller.
2500 * ct - caller context
2502 * OUT: vap - attribute values.
2504 * RETURN: 0 (always succeeds).
2506 /* ARGSUSED */
2507 static int
2508 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2509 caller_context_t *ct)
2511 znode_t *zp = VTOZ(vp);
2512 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2513 int error = 0;
2514 uint64_t links;
2515 uint64_t mtime[2], ctime[2];
2516 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2517 xoptattr_t *xoap = NULL;
2518 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2519 sa_bulk_attr_t bulk[2];
2520 int count = 0;
2522 ZFS_ENTER(zfsvfs);
2523 ZFS_VERIFY_ZP(zp);
2525 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2527 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2528 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2530 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2531 ZFS_EXIT(zfsvfs);
2532 return (error);
2536 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2537 * Also, if we are the owner don't bother, since owner should
2538 * always be allowed to read basic attributes of file.
2540 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2541 (vap->va_uid != crgetuid(cr))) {
2542 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2543 skipaclchk, cr)) {
2544 ZFS_EXIT(zfsvfs);
2545 return (error);
2550 * Return all attributes. It's cheaper to provide the answer
2551 * than to determine whether we were asked the question.
2554 mutex_enter(&zp->z_lock);
2555 vap->va_type = vp->v_type;
2556 vap->va_mode = zp->z_mode & MODEMASK;
2557 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2558 vap->va_nodeid = zp->z_id;
2559 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2560 links = zp->z_links + 1;
2561 else
2562 links = zp->z_links;
2563 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2564 vap->va_size = zp->z_size;
2565 vap->va_rdev = vp->v_rdev;
2566 vap->va_seq = zp->z_seq;
2569 * Add in any requested optional attributes and the create time.
2570 * Also set the corresponding bits in the returned attribute bitmap.
2572 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2573 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2574 xoap->xoa_archive =
2575 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2576 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2579 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2580 xoap->xoa_readonly =
2581 ((zp->z_pflags & ZFS_READONLY) != 0);
2582 XVA_SET_RTN(xvap, XAT_READONLY);
2585 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2586 xoap->xoa_system =
2587 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2588 XVA_SET_RTN(xvap, XAT_SYSTEM);
2591 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2592 xoap->xoa_hidden =
2593 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2594 XVA_SET_RTN(xvap, XAT_HIDDEN);
2597 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2598 xoap->xoa_nounlink =
2599 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2600 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2603 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2604 xoap->xoa_immutable =
2605 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2606 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2609 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2610 xoap->xoa_appendonly =
2611 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2612 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2615 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2616 xoap->xoa_nodump =
2617 ((zp->z_pflags & ZFS_NODUMP) != 0);
2618 XVA_SET_RTN(xvap, XAT_NODUMP);
2621 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2622 xoap->xoa_opaque =
2623 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2624 XVA_SET_RTN(xvap, XAT_OPAQUE);
2627 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2628 xoap->xoa_av_quarantined =
2629 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2630 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2633 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2634 xoap->xoa_av_modified =
2635 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2636 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2639 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2640 vp->v_type == VREG) {
2641 zfs_sa_get_scanstamp(zp, xvap);
2644 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2645 uint64_t times[2];
2647 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2648 times, sizeof (times));
2649 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2650 XVA_SET_RTN(xvap, XAT_CREATETIME);
2653 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2654 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2655 XVA_SET_RTN(xvap, XAT_REPARSE);
2657 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2658 xoap->xoa_generation = zp->z_gen;
2659 XVA_SET_RTN(xvap, XAT_GEN);
2662 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2663 xoap->xoa_offline =
2664 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2665 XVA_SET_RTN(xvap, XAT_OFFLINE);
2668 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2669 xoap->xoa_sparse =
2670 ((zp->z_pflags & ZFS_SPARSE) != 0);
2671 XVA_SET_RTN(xvap, XAT_SPARSE);
2675 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2676 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2677 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2679 mutex_exit(&zp->z_lock);
2681 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2683 if (zp->z_blksz == 0) {
2685 * Block size hasn't been set; suggest maximal I/O transfers.
2687 vap->va_blksize = zfsvfs->z_max_blksz;
2690 ZFS_EXIT(zfsvfs);
2691 return (0);
2695 * Set the file attributes to the values contained in the
2696 * vattr structure.
2698 * IN: vp - vnode of file to be modified.
2699 * vap - new attribute values.
2700 * If AT_XVATTR set, then optional attrs are being set
2701 * flags - ATTR_UTIME set if non-default time values provided.
2702 * - ATTR_NOACLCHECK (CIFS context only).
2703 * cr - credentials of caller.
2704 * ct - caller context
2706 * RETURN: 0 on success, error code on failure.
2708 * Timestamps:
2709 * vp - ctime updated, mtime updated if size changed.
2711 /* ARGSUSED */
2712 static int
2713 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2714 caller_context_t *ct)
2716 znode_t *zp = VTOZ(vp);
2717 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2718 zilog_t *zilog;
2719 dmu_tx_t *tx;
2720 vattr_t oldva;
2721 xvattr_t tmpxvattr;
2722 uint_t mask = vap->va_mask;
2723 uint_t saved_mask = 0;
2724 int trim_mask = 0;
2725 uint64_t new_mode;
2726 uint64_t new_uid, new_gid;
2727 uint64_t xattr_obj;
2728 uint64_t mtime[2], ctime[2];
2729 znode_t *attrzp;
2730 int need_policy = FALSE;
2731 int err, err2;
2732 zfs_fuid_info_t *fuidp = NULL;
2733 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2734 xoptattr_t *xoap;
2735 zfs_acl_t *aclp;
2736 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2737 boolean_t fuid_dirtied = B_FALSE;
2738 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2739 int count = 0, xattr_count = 0;
2741 if (mask == 0)
2742 return (0);
2744 if (mask & AT_NOSET)
2745 return (SET_ERROR(EINVAL));
2747 ZFS_ENTER(zfsvfs);
2748 ZFS_VERIFY_ZP(zp);
2750 zilog = zfsvfs->z_log;
2753 * Make sure that if we have ephemeral uid/gid or xvattr specified
2754 * that file system is at proper version level
2757 if (zfsvfs->z_use_fuids == B_FALSE &&
2758 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2759 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2760 (mask & AT_XVATTR))) {
2761 ZFS_EXIT(zfsvfs);
2762 return (SET_ERROR(EINVAL));
2765 if (mask & AT_SIZE && vp->v_type == VDIR) {
2766 ZFS_EXIT(zfsvfs);
2767 return (SET_ERROR(EISDIR));
2770 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2771 ZFS_EXIT(zfsvfs);
2772 return (SET_ERROR(EINVAL));
2776 * If this is an xvattr_t, then get a pointer to the structure of
2777 * optional attributes. If this is NULL, then we have a vattr_t.
2779 xoap = xva_getxoptattr(xvap);
2781 xva_init(&tmpxvattr);
2784 * Immutable files can only alter immutable bit and atime
2786 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2787 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2788 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2789 ZFS_EXIT(zfsvfs);
2790 return (SET_ERROR(EPERM));
2794 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
2798 * Verify timestamps doesn't overflow 32 bits.
2799 * ZFS can handle large timestamps, but 32bit syscalls can't
2800 * handle times greater than 2039. This check should be removed
2801 * once large timestamps are fully supported.
2803 if (mask & (AT_ATIME | AT_MTIME)) {
2804 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2805 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2806 ZFS_EXIT(zfsvfs);
2807 return (SET_ERROR(EOVERFLOW));
2811 top:
2812 attrzp = NULL;
2813 aclp = NULL;
2815 /* Can this be moved to before the top label? */
2816 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2817 ZFS_EXIT(zfsvfs);
2818 return (SET_ERROR(EROFS));
2822 * First validate permissions
2825 if (mask & AT_SIZE) {
2826 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2827 if (err) {
2828 ZFS_EXIT(zfsvfs);
2829 return (err);
2832 * XXX - Note, we are not providing any open
2833 * mode flags here (like FNDELAY), so we may
2834 * block if there are locks present... this
2835 * should be addressed in openat().
2837 /* XXX - would it be OK to generate a log record here? */
2838 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2839 if (err) {
2840 ZFS_EXIT(zfsvfs);
2841 return (err);
2844 if (vap->va_size == 0)
2845 vnevent_truncate(ZTOV(zp), ct);
2848 if (mask & (AT_ATIME|AT_MTIME) ||
2849 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2850 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2851 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2852 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2853 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2854 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2855 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2856 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2857 skipaclchk, cr);
2860 if (mask & (AT_UID|AT_GID)) {
2861 int idmask = (mask & (AT_UID|AT_GID));
2862 int take_owner;
2863 int take_group;
2866 * NOTE: even if a new mode is being set,
2867 * we may clear S_ISUID/S_ISGID bits.
2870 if (!(mask & AT_MODE))
2871 vap->va_mode = zp->z_mode;
2874 * Take ownership or chgrp to group we are a member of
2877 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2878 take_group = (mask & AT_GID) &&
2879 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2882 * If both AT_UID and AT_GID are set then take_owner and
2883 * take_group must both be set in order to allow taking
2884 * ownership.
2886 * Otherwise, send the check through secpolicy_vnode_setattr()
2890 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2891 ((idmask == AT_UID) && take_owner) ||
2892 ((idmask == AT_GID) && take_group)) {
2893 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2894 skipaclchk, cr) == 0) {
2896 * Remove setuid/setgid for non-privileged users
2898 secpolicy_setid_clear(vap, cr);
2899 trim_mask = (mask & (AT_UID|AT_GID));
2900 } else {
2901 need_policy = TRUE;
2903 } else {
2904 need_policy = TRUE;
2908 mutex_enter(&zp->z_lock);
2909 oldva.va_mode = zp->z_mode;
2910 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2911 if (mask & AT_XVATTR) {
2913 * Update xvattr mask to include only those attributes
2914 * that are actually changing.
2916 * the bits will be restored prior to actually setting
2917 * the attributes so the caller thinks they were set.
2919 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2920 if (xoap->xoa_appendonly !=
2921 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2922 need_policy = TRUE;
2923 } else {
2924 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2925 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2929 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2930 if (xoap->xoa_nounlink !=
2931 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2932 need_policy = TRUE;
2933 } else {
2934 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2935 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2939 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2940 if (xoap->xoa_immutable !=
2941 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2942 need_policy = TRUE;
2943 } else {
2944 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2945 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2949 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2950 if (xoap->xoa_nodump !=
2951 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2952 need_policy = TRUE;
2953 } else {
2954 XVA_CLR_REQ(xvap, XAT_NODUMP);
2955 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2959 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2960 if (xoap->xoa_av_modified !=
2961 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2962 need_policy = TRUE;
2963 } else {
2964 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2965 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2969 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2970 if ((vp->v_type != VREG &&
2971 xoap->xoa_av_quarantined) ||
2972 xoap->xoa_av_quarantined !=
2973 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2974 need_policy = TRUE;
2975 } else {
2976 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2977 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2981 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2982 mutex_exit(&zp->z_lock);
2983 ZFS_EXIT(zfsvfs);
2984 return (SET_ERROR(EPERM));
2987 if (need_policy == FALSE &&
2988 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2989 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2990 need_policy = TRUE;
2994 mutex_exit(&zp->z_lock);
2996 if (mask & AT_MODE) {
2997 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2998 err = secpolicy_setid_setsticky_clear(vp, vap,
2999 &oldva, cr);
3000 if (err) {
3001 ZFS_EXIT(zfsvfs);
3002 return (err);
3004 trim_mask |= AT_MODE;
3005 } else {
3006 need_policy = TRUE;
3010 if (need_policy) {
3012 * If trim_mask is set then take ownership
3013 * has been granted or write_acl is present and user
3014 * has the ability to modify mode. In that case remove
3015 * UID|GID and or MODE from mask so that
3016 * secpolicy_vnode_setattr() doesn't revoke it.
3019 if (trim_mask) {
3020 saved_mask = vap->va_mask;
3021 vap->va_mask &= ~trim_mask;
3023 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3024 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3025 if (err) {
3026 ZFS_EXIT(zfsvfs);
3027 return (err);
3030 if (trim_mask)
3031 vap->va_mask |= saved_mask;
3035 * secpolicy_vnode_setattr, or take ownership may have
3036 * changed va_mask
3038 mask = vap->va_mask;
3040 if ((mask & (AT_UID | AT_GID))) {
3041 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3042 &xattr_obj, sizeof (xattr_obj));
3044 if (err == 0 && xattr_obj) {
3045 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3046 if (err)
3047 goto out2;
3049 if (mask & AT_UID) {
3050 new_uid = zfs_fuid_create(zfsvfs,
3051 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3052 if (new_uid != zp->z_uid &&
3053 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3054 if (attrzp)
3055 VN_RELE(ZTOV(attrzp));
3056 err = SET_ERROR(EDQUOT);
3057 goto out2;
3061 if (mask & AT_GID) {
3062 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3063 cr, ZFS_GROUP, &fuidp);
3064 if (new_gid != zp->z_gid &&
3065 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3066 if (attrzp)
3067 VN_RELE(ZTOV(attrzp));
3068 err = SET_ERROR(EDQUOT);
3069 goto out2;
3073 tx = dmu_tx_create(zfsvfs->z_os);
3075 if (mask & AT_MODE) {
3076 uint64_t pmode = zp->z_mode;
3077 uint64_t acl_obj;
3078 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3080 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3081 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3082 err = SET_ERROR(EPERM);
3083 goto out;
3086 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3087 goto out;
3089 mutex_enter(&zp->z_lock);
3090 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3092 * Are we upgrading ACL from old V0 format
3093 * to V1 format?
3095 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3096 zfs_znode_acl_version(zp) ==
3097 ZFS_ACL_VERSION_INITIAL) {
3098 dmu_tx_hold_free(tx, acl_obj, 0,
3099 DMU_OBJECT_END);
3100 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3101 0, aclp->z_acl_bytes);
3102 } else {
3103 dmu_tx_hold_write(tx, acl_obj, 0,
3104 aclp->z_acl_bytes);
3106 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3107 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3108 0, aclp->z_acl_bytes);
3110 mutex_exit(&zp->z_lock);
3111 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3112 } else {
3113 if ((mask & AT_XVATTR) &&
3114 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3115 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3116 else
3117 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3120 if (attrzp) {
3121 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3124 fuid_dirtied = zfsvfs->z_fuid_dirty;
3125 if (fuid_dirtied)
3126 zfs_fuid_txhold(zfsvfs, tx);
3128 zfs_sa_upgrade_txholds(tx, zp);
3130 err = dmu_tx_assign(tx, TXG_WAIT);
3131 if (err)
3132 goto out;
3134 count = 0;
3136 * Set each attribute requested.
3137 * We group settings according to the locks they need to acquire.
3139 * Note: you cannot set ctime directly, although it will be
3140 * updated as a side-effect of calling this function.
3144 if (mask & (AT_UID|AT_GID|AT_MODE))
3145 mutex_enter(&zp->z_acl_lock);
3146 mutex_enter(&zp->z_lock);
3148 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3149 &zp->z_pflags, sizeof (zp->z_pflags));
3151 if (attrzp) {
3152 if (mask & (AT_UID|AT_GID|AT_MODE))
3153 mutex_enter(&attrzp->z_acl_lock);
3154 mutex_enter(&attrzp->z_lock);
3155 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3156 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3157 sizeof (attrzp->z_pflags));
3160 if (mask & (AT_UID|AT_GID)) {
3162 if (mask & AT_UID) {
3163 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3164 &new_uid, sizeof (new_uid));
3165 zp->z_uid = new_uid;
3166 if (attrzp) {
3167 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3168 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3169 sizeof (new_uid));
3170 attrzp->z_uid = new_uid;
3174 if (mask & AT_GID) {
3175 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3176 NULL, &new_gid, sizeof (new_gid));
3177 zp->z_gid = new_gid;
3178 if (attrzp) {
3179 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3180 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3181 sizeof (new_gid));
3182 attrzp->z_gid = new_gid;
3185 if (!(mask & AT_MODE)) {
3186 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3187 NULL, &new_mode, sizeof (new_mode));
3188 new_mode = zp->z_mode;
3190 err = zfs_acl_chown_setattr(zp);
3191 ASSERT(err == 0);
3192 if (attrzp) {
3193 err = zfs_acl_chown_setattr(attrzp);
3194 ASSERT(err == 0);
3198 if (mask & AT_MODE) {
3199 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3200 &new_mode, sizeof (new_mode));
3201 zp->z_mode = new_mode;
3202 ASSERT3U((uintptr_t)aclp, !=, NULL);
3203 err = zfs_aclset_common(zp, aclp, cr, tx);
3204 ASSERT0(err);
3205 if (zp->z_acl_cached)
3206 zfs_acl_free(zp->z_acl_cached);
3207 zp->z_acl_cached = aclp;
3208 aclp = NULL;
3212 if (mask & AT_ATIME) {
3213 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3214 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3215 &zp->z_atime, sizeof (zp->z_atime));
3218 if (mask & AT_MTIME) {
3219 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3220 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3221 mtime, sizeof (mtime));
3224 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3225 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3227 NULL, mtime, sizeof (mtime));
3228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3229 &ctime, sizeof (ctime));
3230 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3231 B_TRUE);
3232 } else if (mask != 0) {
3233 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3234 &ctime, sizeof (ctime));
3235 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3236 B_TRUE);
3237 if (attrzp) {
3238 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3239 SA_ZPL_CTIME(zfsvfs), NULL,
3240 &ctime, sizeof (ctime));
3241 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3242 mtime, ctime, B_TRUE);
3246 * Do this after setting timestamps to prevent timestamp
3247 * update from toggling bit
3250 if (xoap && (mask & AT_XVATTR)) {
3253 * restore trimmed off masks
3254 * so that return masks can be set for caller.
3257 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3258 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3260 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3261 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3263 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3264 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3266 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3267 XVA_SET_REQ(xvap, XAT_NODUMP);
3269 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3270 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3272 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3273 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3276 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3277 ASSERT(vp->v_type == VREG);
3279 zfs_xvattr_set(zp, xvap, tx);
3282 if (fuid_dirtied)
3283 zfs_fuid_sync(zfsvfs, tx);
3285 if (mask != 0)
3286 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3288 mutex_exit(&zp->z_lock);
3289 if (mask & (AT_UID|AT_GID|AT_MODE))
3290 mutex_exit(&zp->z_acl_lock);
3292 if (attrzp) {
3293 if (mask & (AT_UID|AT_GID|AT_MODE))
3294 mutex_exit(&attrzp->z_acl_lock);
3295 mutex_exit(&attrzp->z_lock);
3297 out:
3298 if (err == 0 && attrzp) {
3299 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3300 xattr_count, tx);
3301 ASSERT(err2 == 0);
3304 if (attrzp)
3305 VN_RELE(ZTOV(attrzp));
3307 if (aclp)
3308 zfs_acl_free(aclp);
3310 if (fuidp) {
3311 zfs_fuid_info_free(fuidp);
3312 fuidp = NULL;
3315 if (err) {
3316 dmu_tx_abort(tx);
3317 if (err == ERESTART)
3318 goto top;
3319 } else {
3320 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3321 dmu_tx_commit(tx);
3324 out2:
3325 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3326 zil_commit(zilog, 0);
3328 ZFS_EXIT(zfsvfs);
3329 return (err);
3332 typedef struct zfs_zlock {
3333 krwlock_t *zl_rwlock; /* lock we acquired */
3334 znode_t *zl_znode; /* znode we held */
3335 struct zfs_zlock *zl_next; /* next in list */
3336 } zfs_zlock_t;
3339 * Drop locks and release vnodes that were held by zfs_rename_lock().
3341 static void
3342 zfs_rename_unlock(zfs_zlock_t **zlpp)
3344 zfs_zlock_t *zl;
3346 while ((zl = *zlpp) != NULL) {
3347 if (zl->zl_znode != NULL)
3348 VN_RELE(ZTOV(zl->zl_znode));
3349 rw_exit(zl->zl_rwlock);
3350 *zlpp = zl->zl_next;
3351 kmem_free(zl, sizeof (*zl));
3356 * Search back through the directory tree, using the ".." entries.
3357 * Lock each directory in the chain to prevent concurrent renames.
3358 * Fail any attempt to move a directory into one of its own descendants.
3359 * XXX - z_parent_lock can overlap with map or grow locks
3361 static int
3362 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3364 zfs_zlock_t *zl;
3365 znode_t *zp = tdzp;
3366 uint64_t rootid = zp->z_zfsvfs->z_root;
3367 uint64_t oidp = zp->z_id;
3368 krwlock_t *rwlp = &szp->z_parent_lock;
3369 krw_t rw = RW_WRITER;
3372 * First pass write-locks szp and compares to zp->z_id.
3373 * Later passes read-lock zp and compare to zp->z_parent.
3375 do {
3376 if (!rw_tryenter(rwlp, rw)) {
3378 * Another thread is renaming in this path.
3379 * Note that if we are a WRITER, we don't have any
3380 * parent_locks held yet.
3382 if (rw == RW_READER && zp->z_id > szp->z_id) {
3384 * Drop our locks and restart
3386 zfs_rename_unlock(&zl);
3387 *zlpp = NULL;
3388 zp = tdzp;
3389 oidp = zp->z_id;
3390 rwlp = &szp->z_parent_lock;
3391 rw = RW_WRITER;
3392 continue;
3393 } else {
3395 * Wait for other thread to drop its locks
3397 rw_enter(rwlp, rw);
3401 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3402 zl->zl_rwlock = rwlp;
3403 zl->zl_znode = NULL;
3404 zl->zl_next = *zlpp;
3405 *zlpp = zl;
3407 if (oidp == szp->z_id) /* We're a descendant of szp */
3408 return (SET_ERROR(EINVAL));
3410 if (oidp == rootid) /* We've hit the top */
3411 return (0);
3413 if (rw == RW_READER) { /* i.e. not the first pass */
3414 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3415 if (error)
3416 return (error);
3417 zl->zl_znode = zp;
3419 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3420 &oidp, sizeof (oidp));
3421 rwlp = &zp->z_parent_lock;
3422 rw = RW_READER;
3424 } while (zp->z_id != sdzp->z_id);
3426 return (0);
3430 * Move an entry from the provided source directory to the target
3431 * directory. Change the entry name as indicated.
3433 * IN: sdvp - Source directory containing the "old entry".
3434 * snm - Old entry name.
3435 * tdvp - Target directory to contain the "new entry".
3436 * tnm - New entry name.
3437 * cr - credentials of caller.
3438 * ct - caller context
3439 * flags - case flags
3441 * RETURN: 0 on success, error code on failure.
3443 * Timestamps:
3444 * sdvp,tdvp - ctime|mtime updated
3446 /*ARGSUSED*/
3447 static int
3448 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3449 caller_context_t *ct, int flags)
3451 znode_t *tdzp, *szp, *tzp;
3452 znode_t *sdzp = VTOZ(sdvp);
3453 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3454 zilog_t *zilog;
3455 vnode_t *realvp;
3456 zfs_dirlock_t *sdl, *tdl;
3457 dmu_tx_t *tx;
3458 zfs_zlock_t *zl;
3459 int cmp, serr, terr;
3460 int error = 0, rm_err = 0;
3461 int zflg = 0;
3462 boolean_t waited = B_FALSE;
3464 ZFS_ENTER(zfsvfs);
3465 ZFS_VERIFY_ZP(sdzp);
3466 zilog = zfsvfs->z_log;
3469 * Make sure we have the real vp for the target directory.
3471 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3472 tdvp = realvp;
3474 tdzp = VTOZ(tdvp);
3475 ZFS_VERIFY_ZP(tdzp);
3478 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3479 * ctldir appear to have the same v_vfsp.
3481 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3482 ZFS_EXIT(zfsvfs);
3483 return (SET_ERROR(EXDEV));
3486 if (zfsvfs->z_utf8 && u8_validate(tnm,
3487 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3488 ZFS_EXIT(zfsvfs);
3489 return (SET_ERROR(EILSEQ));
3492 if (flags & FIGNORECASE)
3493 zflg |= ZCILOOK;
3495 top:
3496 szp = NULL;
3497 tzp = NULL;
3498 zl = NULL;
3501 * This is to prevent the creation of links into attribute space
3502 * by renaming a linked file into/outof an attribute directory.
3503 * See the comment in zfs_link() for why this is considered bad.
3505 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3506 ZFS_EXIT(zfsvfs);
3507 return (SET_ERROR(EINVAL));
3511 * Lock source and target directory entries. To prevent deadlock,
3512 * a lock ordering must be defined. We lock the directory with
3513 * the smallest object id first, or if it's a tie, the one with
3514 * the lexically first name.
3516 if (sdzp->z_id < tdzp->z_id) {
3517 cmp = -1;
3518 } else if (sdzp->z_id > tdzp->z_id) {
3519 cmp = 1;
3520 } else {
3522 * First compare the two name arguments without
3523 * considering any case folding.
3525 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3527 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3528 ASSERT(error == 0 || !zfsvfs->z_utf8);
3529 if (cmp == 0) {
3531 * POSIX: "If the old argument and the new argument
3532 * both refer to links to the same existing file,
3533 * the rename() function shall return successfully
3534 * and perform no other action."
3536 ZFS_EXIT(zfsvfs);
3537 return (0);
3540 * If the file system is case-folding, then we may
3541 * have some more checking to do. A case-folding file
3542 * system is either supporting mixed case sensitivity
3543 * access or is completely case-insensitive. Note
3544 * that the file system is always case preserving.
3546 * In mixed sensitivity mode case sensitive behavior
3547 * is the default. FIGNORECASE must be used to
3548 * explicitly request case insensitive behavior.
3550 * If the source and target names provided differ only
3551 * by case (e.g., a request to rename 'tim' to 'Tim'),
3552 * we will treat this as a special case in the
3553 * case-insensitive mode: as long as the source name
3554 * is an exact match, we will allow this to proceed as
3555 * a name-change request.
3557 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3558 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3559 flags & FIGNORECASE)) &&
3560 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3561 &error) == 0) {
3563 * case preserving rename request, require exact
3564 * name matches
3566 zflg |= ZCIEXACT;
3567 zflg &= ~ZCILOOK;
3572 * If the source and destination directories are the same, we should
3573 * grab the z_name_lock of that directory only once.
3575 if (sdzp == tdzp) {
3576 zflg |= ZHAVELOCK;
3577 rw_enter(&sdzp->z_name_lock, RW_READER);
3580 if (cmp < 0) {
3581 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3582 ZEXISTS | zflg, NULL, NULL);
3583 terr = zfs_dirent_lock(&tdl,
3584 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3585 } else {
3586 terr = zfs_dirent_lock(&tdl,
3587 tdzp, tnm, &tzp, zflg, NULL, NULL);
3588 serr = zfs_dirent_lock(&sdl,
3589 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3590 NULL, NULL);
3593 if (serr) {
3595 * Source entry invalid or not there.
3597 if (!terr) {
3598 zfs_dirent_unlock(tdl);
3599 if (tzp)
3600 VN_RELE(ZTOV(tzp));
3603 if (sdzp == tdzp)
3604 rw_exit(&sdzp->z_name_lock);
3606 if (strcmp(snm, "..") == 0)
3607 serr = SET_ERROR(EINVAL);
3608 ZFS_EXIT(zfsvfs);
3609 return (serr);
3611 if (terr) {
3612 zfs_dirent_unlock(sdl);
3613 VN_RELE(ZTOV(szp));
3615 if (sdzp == tdzp)
3616 rw_exit(&sdzp->z_name_lock);
3618 if (strcmp(tnm, "..") == 0)
3619 terr = SET_ERROR(EINVAL);
3620 ZFS_EXIT(zfsvfs);
3621 return (terr);
3625 * Must have write access at the source to remove the old entry
3626 * and write access at the target to create the new entry.
3627 * Note that if target and source are the same, this can be
3628 * done in a single check.
3631 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3632 goto out;
3634 if (ZTOV(szp)->v_type == VDIR) {
3636 * Check to make sure rename is valid.
3637 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3639 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3640 goto out;
3644 * Does target exist?
3646 if (tzp) {
3648 * Source and target must be the same type.
3650 if (ZTOV(szp)->v_type == VDIR) {
3651 if (ZTOV(tzp)->v_type != VDIR) {
3652 error = SET_ERROR(ENOTDIR);
3653 goto out;
3655 } else {
3656 if (ZTOV(tzp)->v_type == VDIR) {
3657 error = SET_ERROR(EISDIR);
3658 goto out;
3662 * POSIX dictates that when the source and target
3663 * entries refer to the same file object, rename
3664 * must do nothing and exit without error.
3666 if (szp->z_id == tzp->z_id) {
3667 error = 0;
3668 goto out;
3672 vnevent_pre_rename_src(ZTOV(szp), sdvp, snm, ct);
3673 if (tzp)
3674 vnevent_pre_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3677 * notify the target directory if it is not the same
3678 * as source directory.
3680 if (tdvp != sdvp) {
3681 vnevent_pre_rename_dest_dir(tdvp, ZTOV(szp), tnm, ct);
3684 tx = dmu_tx_create(zfsvfs->z_os);
3685 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3686 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3687 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3688 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3689 if (sdzp != tdzp) {
3690 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3691 zfs_sa_upgrade_txholds(tx, tdzp);
3693 if (tzp) {
3694 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3695 zfs_sa_upgrade_txholds(tx, tzp);
3698 zfs_sa_upgrade_txholds(tx, szp);
3699 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3700 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3701 if (error) {
3702 if (zl != NULL)
3703 zfs_rename_unlock(&zl);
3704 zfs_dirent_unlock(sdl);
3705 zfs_dirent_unlock(tdl);
3707 if (sdzp == tdzp)
3708 rw_exit(&sdzp->z_name_lock);
3710 VN_RELE(ZTOV(szp));
3711 if (tzp)
3712 VN_RELE(ZTOV(tzp));
3713 if (error == ERESTART) {
3714 waited = B_TRUE;
3715 dmu_tx_wait(tx);
3716 dmu_tx_abort(tx);
3717 goto top;
3719 dmu_tx_abort(tx);
3720 ZFS_EXIT(zfsvfs);
3721 return (error);
3724 if (tzp) /* Attempt to remove the existing target */
3725 error = rm_err = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3727 if (error == 0) {
3728 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3729 if (error == 0) {
3730 szp->z_pflags |= ZFS_AV_MODIFIED;
3732 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3733 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3734 ASSERT0(error);
3736 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3737 if (error == 0) {
3738 zfs_log_rename(zilog, tx, TX_RENAME |
3739 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3740 sdl->dl_name, tdzp, tdl->dl_name, szp);
3743 * Update path information for the target vnode
3745 vn_renamepath(tdvp, ZTOV(szp), tnm,
3746 strlen(tnm));
3747 } else {
3749 * At this point, we have successfully created
3750 * the target name, but have failed to remove
3751 * the source name. Since the create was done
3752 * with the ZRENAMING flag, there are
3753 * complications; for one, the link count is
3754 * wrong. The easiest way to deal with this
3755 * is to remove the newly created target, and
3756 * return the original error. This must
3757 * succeed; fortunately, it is very unlikely to
3758 * fail, since we just created it.
3760 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3761 ZRENAMING, NULL), ==, 0);
3766 dmu_tx_commit(tx);
3768 if (tzp && rm_err == 0)
3769 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3771 if (error == 0) {
3772 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3773 /* notify the target dir if it is not the same as source dir */
3774 if (tdvp != sdvp)
3775 vnevent_rename_dest_dir(tdvp, ct);
3777 out:
3778 if (zl != NULL)
3779 zfs_rename_unlock(&zl);
3781 zfs_dirent_unlock(sdl);
3782 zfs_dirent_unlock(tdl);
3784 if (sdzp == tdzp)
3785 rw_exit(&sdzp->z_name_lock);
3788 VN_RELE(ZTOV(szp));
3789 if (tzp)
3790 VN_RELE(ZTOV(tzp));
3792 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3793 zil_commit(zilog, 0);
3795 ZFS_EXIT(zfsvfs);
3796 return (error);
3800 * Insert the indicated symbolic reference entry into the directory.
3802 * IN: dvp - Directory to contain new symbolic link.
3803 * link - Name for new symlink entry.
3804 * vap - Attributes of new entry.
3805 * cr - credentials of caller.
3806 * ct - caller context
3807 * flags - case flags
3809 * RETURN: 0 on success, error code on failure.
3811 * Timestamps:
3812 * dvp - ctime|mtime updated
3814 /*ARGSUSED*/
3815 static int
3816 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3817 caller_context_t *ct, int flags)
3819 znode_t *zp, *dzp = VTOZ(dvp);
3820 zfs_dirlock_t *dl;
3821 dmu_tx_t *tx;
3822 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3823 zilog_t *zilog;
3824 uint64_t len = strlen(link);
3825 int error;
3826 int zflg = ZNEW;
3827 zfs_acl_ids_t acl_ids;
3828 boolean_t fuid_dirtied;
3829 uint64_t txtype = TX_SYMLINK;
3830 boolean_t waited = B_FALSE;
3832 ASSERT(vap->va_type == VLNK);
3834 ZFS_ENTER(zfsvfs);
3835 ZFS_VERIFY_ZP(dzp);
3836 zilog = zfsvfs->z_log;
3838 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3839 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3840 ZFS_EXIT(zfsvfs);
3841 return (SET_ERROR(EILSEQ));
3843 if (flags & FIGNORECASE)
3844 zflg |= ZCILOOK;
3846 if (len > MAXPATHLEN) {
3847 ZFS_EXIT(zfsvfs);
3848 return (SET_ERROR(ENAMETOOLONG));
3851 if ((error = zfs_acl_ids_create(dzp, 0,
3852 vap, cr, NULL, &acl_ids)) != 0) {
3853 ZFS_EXIT(zfsvfs);
3854 return (error);
3856 top:
3858 * Attempt to lock directory; fail if entry already exists.
3860 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3861 if (error) {
3862 zfs_acl_ids_free(&acl_ids);
3863 ZFS_EXIT(zfsvfs);
3864 return (error);
3867 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3868 zfs_acl_ids_free(&acl_ids);
3869 zfs_dirent_unlock(dl);
3870 ZFS_EXIT(zfsvfs);
3871 return (error);
3874 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3875 zfs_acl_ids_free(&acl_ids);
3876 zfs_dirent_unlock(dl);
3877 ZFS_EXIT(zfsvfs);
3878 return (SET_ERROR(EDQUOT));
3880 tx = dmu_tx_create(zfsvfs->z_os);
3881 fuid_dirtied = zfsvfs->z_fuid_dirty;
3882 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3883 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3884 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3885 ZFS_SA_BASE_ATTR_SIZE + len);
3886 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3887 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3888 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3889 acl_ids.z_aclp->z_acl_bytes);
3891 if (fuid_dirtied)
3892 zfs_fuid_txhold(zfsvfs, tx);
3893 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3894 if (error) {
3895 zfs_dirent_unlock(dl);
3896 if (error == ERESTART) {
3897 waited = B_TRUE;
3898 dmu_tx_wait(tx);
3899 dmu_tx_abort(tx);
3900 goto top;
3902 zfs_acl_ids_free(&acl_ids);
3903 dmu_tx_abort(tx);
3904 ZFS_EXIT(zfsvfs);
3905 return (error);
3909 * Create a new object for the symlink.
3910 * for version 4 ZPL datsets the symlink will be an SA attribute
3912 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3914 if (fuid_dirtied)
3915 zfs_fuid_sync(zfsvfs, tx);
3917 mutex_enter(&zp->z_lock);
3918 if (zp->z_is_sa)
3919 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3920 link, len, tx);
3921 else
3922 zfs_sa_symlink(zp, link, len, tx);
3923 mutex_exit(&zp->z_lock);
3925 zp->z_size = len;
3926 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3927 &zp->z_size, sizeof (zp->z_size), tx);
3929 * Insert the new object into the directory.
3931 (void) zfs_link_create(dl, zp, tx, ZNEW);
3933 if (flags & FIGNORECASE)
3934 txtype |= TX_CI;
3935 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3937 zfs_acl_ids_free(&acl_ids);
3939 dmu_tx_commit(tx);
3941 zfs_dirent_unlock(dl);
3943 VN_RELE(ZTOV(zp));
3945 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3946 zil_commit(zilog, 0);
3948 ZFS_EXIT(zfsvfs);
3949 return (error);
3953 * Return, in the buffer contained in the provided uio structure,
3954 * the symbolic path referred to by vp.
3956 * IN: vp - vnode of symbolic link.
3957 * uio - structure to contain the link path.
3958 * cr - credentials of caller.
3959 * ct - caller context
3961 * OUT: uio - structure containing the link path.
3963 * RETURN: 0 on success, error code on failure.
3965 * Timestamps:
3966 * vp - atime updated
3968 /* ARGSUSED */
3969 static int
3970 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3972 znode_t *zp = VTOZ(vp);
3973 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3974 int error;
3976 ZFS_ENTER(zfsvfs);
3977 ZFS_VERIFY_ZP(zp);
3979 mutex_enter(&zp->z_lock);
3980 if (zp->z_is_sa)
3981 error = sa_lookup_uio(zp->z_sa_hdl,
3982 SA_ZPL_SYMLINK(zfsvfs), uio);
3983 else
3984 error = zfs_sa_readlink(zp, uio);
3985 mutex_exit(&zp->z_lock);
3987 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3989 ZFS_EXIT(zfsvfs);
3990 return (error);
3994 * Insert a new entry into directory tdvp referencing svp.
3996 * IN: tdvp - Directory to contain new entry.
3997 * svp - vnode of new entry.
3998 * name - name of new entry.
3999 * cr - credentials of caller.
4000 * ct - caller context
4002 * RETURN: 0 on success, error code on failure.
4004 * Timestamps:
4005 * tdvp - ctime|mtime updated
4006 * svp - ctime updated
4008 /* ARGSUSED */
4009 static int
4010 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4011 caller_context_t *ct, int flags)
4013 znode_t *dzp = VTOZ(tdvp);
4014 znode_t *tzp, *szp;
4015 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
4016 zilog_t *zilog;
4017 zfs_dirlock_t *dl;
4018 dmu_tx_t *tx;
4019 vnode_t *realvp;
4020 int error;
4021 int zf = ZNEW;
4022 uint64_t parent;
4023 uid_t owner;
4024 boolean_t waited = B_FALSE;
4026 ASSERT(tdvp->v_type == VDIR);
4028 ZFS_ENTER(zfsvfs);
4029 ZFS_VERIFY_ZP(dzp);
4030 zilog = zfsvfs->z_log;
4032 if (VOP_REALVP(svp, &realvp, ct) == 0)
4033 svp = realvp;
4036 * POSIX dictates that we return EPERM here.
4037 * Better choices include ENOTSUP or EISDIR.
4039 if (svp->v_type == VDIR) {
4040 ZFS_EXIT(zfsvfs);
4041 return (SET_ERROR(EPERM));
4044 szp = VTOZ(svp);
4045 ZFS_VERIFY_ZP(szp);
4048 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4049 * ctldir appear to have the same v_vfsp.
4051 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4052 ZFS_EXIT(zfsvfs);
4053 return (SET_ERROR(EXDEV));
4056 /* Prevent links to .zfs/shares files */
4058 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4059 &parent, sizeof (uint64_t))) != 0) {
4060 ZFS_EXIT(zfsvfs);
4061 return (error);
4063 if (parent == zfsvfs->z_shares_dir) {
4064 ZFS_EXIT(zfsvfs);
4065 return (SET_ERROR(EPERM));
4068 if (zfsvfs->z_utf8 && u8_validate(name,
4069 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4070 ZFS_EXIT(zfsvfs);
4071 return (SET_ERROR(EILSEQ));
4073 if (flags & FIGNORECASE)
4074 zf |= ZCILOOK;
4077 * We do not support links between attributes and non-attributes
4078 * because of the potential security risk of creating links
4079 * into "normal" file space in order to circumvent restrictions
4080 * imposed in attribute space.
4082 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4083 ZFS_EXIT(zfsvfs);
4084 return (SET_ERROR(EINVAL));
4088 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4089 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4090 ZFS_EXIT(zfsvfs);
4091 return (SET_ERROR(EPERM));
4094 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4095 ZFS_EXIT(zfsvfs);
4096 return (error);
4099 top:
4101 * Attempt to lock directory; fail if entry already exists.
4103 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4104 if (error) {
4105 ZFS_EXIT(zfsvfs);
4106 return (error);
4109 tx = dmu_tx_create(zfsvfs->z_os);
4110 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4111 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4112 zfs_sa_upgrade_txholds(tx, szp);
4113 zfs_sa_upgrade_txholds(tx, dzp);
4114 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4115 if (error) {
4116 zfs_dirent_unlock(dl);
4117 if (error == ERESTART) {
4118 waited = B_TRUE;
4119 dmu_tx_wait(tx);
4120 dmu_tx_abort(tx);
4121 goto top;
4123 dmu_tx_abort(tx);
4124 ZFS_EXIT(zfsvfs);
4125 return (error);
4128 error = zfs_link_create(dl, szp, tx, 0);
4130 if (error == 0) {
4131 uint64_t txtype = TX_LINK;
4132 if (flags & FIGNORECASE)
4133 txtype |= TX_CI;
4134 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4137 dmu_tx_commit(tx);
4139 zfs_dirent_unlock(dl);
4141 if (error == 0) {
4142 vnevent_link(svp, ct);
4145 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4146 zil_commit(zilog, 0);
4148 ZFS_EXIT(zfsvfs);
4149 return (error);
4153 * zfs_null_putapage() is used when the file system has been force
4154 * unmounted. It just drops the pages.
4156 /* ARGSUSED */
4157 static int
4158 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4159 size_t *lenp, int flags, cred_t *cr)
4161 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4162 return (0);
4166 * Push a page out to disk, klustering if possible.
4168 * IN: vp - file to push page to.
4169 * pp - page to push.
4170 * flags - additional flags.
4171 * cr - credentials of caller.
4173 * OUT: offp - start of range pushed.
4174 * lenp - len of range pushed.
4176 * RETURN: 0 on success, error code on failure.
4178 * NOTE: callers must have locked the page to be pushed. On
4179 * exit, the page (and all other pages in the kluster) must be
4180 * unlocked.
4182 /* ARGSUSED */
4183 static int
4184 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4185 size_t *lenp, int flags, cred_t *cr)
4187 znode_t *zp = VTOZ(vp);
4188 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4189 dmu_tx_t *tx;
4190 u_offset_t off, koff;
4191 size_t len, klen;
4192 int err;
4194 off = pp->p_offset;
4195 len = PAGESIZE;
4197 * If our blocksize is bigger than the page size, try to kluster
4198 * multiple pages so that we write a full block (thus avoiding
4199 * a read-modify-write).
4201 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4202 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4203 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4204 ASSERT(koff <= zp->z_size);
4205 if (koff + klen > zp->z_size)
4206 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4207 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4209 ASSERT3U(btop(len), ==, btopr(len));
4212 * Can't push pages past end-of-file.
4214 if (off >= zp->z_size) {
4215 /* ignore all pages */
4216 err = 0;
4217 goto out;
4218 } else if (off + len > zp->z_size) {
4219 int npages = btopr(zp->z_size - off);
4220 page_t *trunc;
4222 page_list_break(&pp, &trunc, npages);
4223 /* ignore pages past end of file */
4224 if (trunc)
4225 pvn_write_done(trunc, flags);
4226 len = zp->z_size - off;
4229 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4230 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4231 err = SET_ERROR(EDQUOT);
4232 goto out;
4234 tx = dmu_tx_create(zfsvfs->z_os);
4235 dmu_tx_hold_write(tx, zp->z_id, off, len);
4237 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4238 zfs_sa_upgrade_txholds(tx, zp);
4239 err = dmu_tx_assign(tx, TXG_WAIT);
4240 if (err != 0) {
4241 dmu_tx_abort(tx);
4242 goto out;
4245 if (zp->z_blksz <= PAGESIZE) {
4246 caddr_t va = zfs_map_page(pp, S_READ);
4247 ASSERT3U(len, <=, PAGESIZE);
4248 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4249 zfs_unmap_page(pp, va);
4250 } else {
4251 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4254 if (err == 0) {
4255 uint64_t mtime[2], ctime[2];
4256 sa_bulk_attr_t bulk[3];
4257 int count = 0;
4259 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4260 &mtime, 16);
4261 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4262 &ctime, 16);
4263 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4264 &zp->z_pflags, 8);
4265 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4266 B_TRUE);
4267 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
4268 ASSERT0(err);
4269 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4271 dmu_tx_commit(tx);
4273 out:
4274 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4275 if (offp)
4276 *offp = off;
4277 if (lenp)
4278 *lenp = len;
4280 return (err);
4284 * Copy the portion of the file indicated from pages into the file.
4285 * The pages are stored in a page list attached to the files vnode.
4287 * IN: vp - vnode of file to push page data to.
4288 * off - position in file to put data.
4289 * len - amount of data to write.
4290 * flags - flags to control the operation.
4291 * cr - credentials of caller.
4292 * ct - caller context.
4294 * RETURN: 0 on success, error code on failure.
4296 * Timestamps:
4297 * vp - ctime|mtime updated
4299 /*ARGSUSED*/
4300 static int
4301 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4302 caller_context_t *ct)
4304 znode_t *zp = VTOZ(vp);
4305 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4306 page_t *pp;
4307 size_t io_len;
4308 u_offset_t io_off;
4309 uint_t blksz;
4310 rl_t *rl;
4311 int error = 0;
4313 ZFS_ENTER(zfsvfs);
4314 ZFS_VERIFY_ZP(zp);
4317 * There's nothing to do if no data is cached.
4319 if (!vn_has_cached_data(vp)) {
4320 ZFS_EXIT(zfsvfs);
4321 return (0);
4325 * Align this request to the file block size in case we kluster.
4326 * XXX - this can result in pretty aggresive locking, which can
4327 * impact simultanious read/write access. One option might be
4328 * to break up long requests (len == 0) into block-by-block
4329 * operations to get narrower locking.
4331 blksz = zp->z_blksz;
4332 if (ISP2(blksz))
4333 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4334 else
4335 io_off = 0;
4336 if (len > 0 && ISP2(blksz))
4337 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4338 else
4339 io_len = 0;
4341 if (io_len == 0) {
4343 * Search the entire vp list for pages >= io_off.
4345 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4346 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4347 goto out;
4349 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4351 if (off > zp->z_size) {
4352 /* past end of file */
4353 zfs_range_unlock(rl);
4354 ZFS_EXIT(zfsvfs);
4355 return (0);
4358 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4360 for (off = io_off; io_off < off + len; io_off += io_len) {
4361 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4362 pp = page_lookup(vp, io_off,
4363 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4364 } else {
4365 pp = page_lookup_nowait(vp, io_off,
4366 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4369 if (pp != NULL && pvn_getdirty(pp, flags)) {
4370 int err;
4373 * Found a dirty page to push
4375 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4376 if (err)
4377 error = err;
4378 } else {
4379 io_len = PAGESIZE;
4382 out:
4383 zfs_range_unlock(rl);
4384 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4385 zil_commit(zfsvfs->z_log, zp->z_id);
4386 ZFS_EXIT(zfsvfs);
4387 return (error);
4390 /*ARGSUSED*/
4391 void
4392 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4394 znode_t *zp = VTOZ(vp);
4395 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4396 int error;
4398 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4399 if (zp->z_sa_hdl == NULL) {
4401 * The fs has been unmounted, or we did a
4402 * suspend/resume and this file no longer exists.
4404 if (vn_has_cached_data(vp)) {
4405 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4406 B_INVAL, cr);
4409 mutex_enter(&zp->z_lock);
4410 mutex_enter(&vp->v_lock);
4411 ASSERT(vp->v_count == 1);
4412 VN_RELE_LOCKED(vp);
4413 mutex_exit(&vp->v_lock);
4414 mutex_exit(&zp->z_lock);
4415 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4416 zfs_znode_free(zp);
4417 return;
4421 * Attempt to push any data in the page cache. If this fails
4422 * we will get kicked out later in zfs_zinactive().
4424 if (vn_has_cached_data(vp)) {
4425 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4426 cr);
4429 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4430 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4432 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4433 zfs_sa_upgrade_txholds(tx, zp);
4434 error = dmu_tx_assign(tx, TXG_WAIT);
4435 if (error) {
4436 dmu_tx_abort(tx);
4437 } else {
4438 mutex_enter(&zp->z_lock);
4439 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4440 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4441 zp->z_atime_dirty = 0;
4442 mutex_exit(&zp->z_lock);
4443 dmu_tx_commit(tx);
4447 zfs_zinactive(zp);
4448 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4452 * Bounds-check the seek operation.
4454 * IN: vp - vnode seeking within
4455 * ooff - old file offset
4456 * noffp - pointer to new file offset
4457 * ct - caller context
4459 * RETURN: 0 on success, EINVAL if new offset invalid.
4461 /* ARGSUSED */
4462 static int
4463 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4464 caller_context_t *ct)
4466 if (vp->v_type == VDIR)
4467 return (0);
4468 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4472 * Pre-filter the generic locking function to trap attempts to place
4473 * a mandatory lock on a memory mapped file.
4475 static int
4476 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4477 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4479 znode_t *zp = VTOZ(vp);
4480 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4482 ZFS_ENTER(zfsvfs);
4483 ZFS_VERIFY_ZP(zp);
4486 * We are following the UFS semantics with respect to mapcnt
4487 * here: If we see that the file is mapped already, then we will
4488 * return an error, but we don't worry about races between this
4489 * function and zfs_map().
4491 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4492 ZFS_EXIT(zfsvfs);
4493 return (SET_ERROR(EAGAIN));
4495 ZFS_EXIT(zfsvfs);
4496 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4500 * If we can't find a page in the cache, we will create a new page
4501 * and fill it with file data. For efficiency, we may try to fill
4502 * multiple pages at once (klustering) to fill up the supplied page
4503 * list. Note that the pages to be filled are held with an exclusive
4504 * lock to prevent access by other threads while they are being filled.
4506 static int
4507 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4508 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4510 znode_t *zp = VTOZ(vp);
4511 page_t *pp, *cur_pp;
4512 objset_t *os = zp->z_zfsvfs->z_os;
4513 u_offset_t io_off, total;
4514 size_t io_len;
4515 int err;
4517 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4519 * We only have a single page, don't bother klustering
4521 io_off = off;
4522 io_len = PAGESIZE;
4523 pp = page_create_va(vp, io_off, io_len,
4524 PG_EXCL | PG_WAIT, seg, addr);
4525 } else {
4527 * Try to find enough pages to fill the page list
4529 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4530 &io_len, off, plsz, 0);
4532 if (pp == NULL) {
4534 * The page already exists, nothing to do here.
4536 *pl = NULL;
4537 return (0);
4541 * Fill the pages in the kluster.
4543 cur_pp = pp;
4544 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4545 caddr_t va;
4547 ASSERT3U(io_off, ==, cur_pp->p_offset);
4548 va = zfs_map_page(cur_pp, S_WRITE);
4549 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4550 DMU_READ_PREFETCH);
4551 zfs_unmap_page(cur_pp, va);
4552 if (err) {
4553 /* On error, toss the entire kluster */
4554 pvn_read_done(pp, B_ERROR);
4555 /* convert checksum errors into IO errors */
4556 if (err == ECKSUM)
4557 err = SET_ERROR(EIO);
4558 return (err);
4560 cur_pp = cur_pp->p_next;
4564 * Fill in the page list array from the kluster starting
4565 * from the desired offset `off'.
4566 * NOTE: the page list will always be null terminated.
4568 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4569 ASSERT(pl == NULL || (*pl)->p_offset == off);
4571 return (0);
4575 * Return pointers to the pages for the file region [off, off + len]
4576 * in the pl array. If plsz is greater than len, this function may
4577 * also return page pointers from after the specified region
4578 * (i.e. the region [off, off + plsz]). These additional pages are
4579 * only returned if they are already in the cache, or were created as
4580 * part of a klustered read.
4582 * IN: vp - vnode of file to get data from.
4583 * off - position in file to get data from.
4584 * len - amount of data to retrieve.
4585 * plsz - length of provided page list.
4586 * seg - segment to obtain pages for.
4587 * addr - virtual address of fault.
4588 * rw - mode of created pages.
4589 * cr - credentials of caller.
4590 * ct - caller context.
4592 * OUT: protp - protection mode of created pages.
4593 * pl - list of pages created.
4595 * RETURN: 0 on success, error code on failure.
4597 * Timestamps:
4598 * vp - atime updated
4600 /* ARGSUSED */
4601 static int
4602 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4603 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4604 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4606 znode_t *zp = VTOZ(vp);
4607 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4608 page_t **pl0 = pl;
4609 int err = 0;
4611 /* we do our own caching, faultahead is unnecessary */
4612 if (pl == NULL)
4613 return (0);
4614 else if (len > plsz)
4615 len = plsz;
4616 else
4617 len = P2ROUNDUP(len, PAGESIZE);
4618 ASSERT(plsz >= len);
4620 ZFS_ENTER(zfsvfs);
4621 ZFS_VERIFY_ZP(zp);
4623 if (protp)
4624 *protp = PROT_ALL;
4627 * Loop through the requested range [off, off + len) looking
4628 * for pages. If we don't find a page, we will need to create
4629 * a new page and fill it with data from the file.
4631 while (len > 0) {
4632 if (*pl = page_lookup(vp, off, SE_SHARED))
4633 *(pl+1) = NULL;
4634 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4635 goto out;
4636 while (*pl) {
4637 ASSERT3U((*pl)->p_offset, ==, off);
4638 off += PAGESIZE;
4639 addr += PAGESIZE;
4640 if (len > 0) {
4641 ASSERT3U(len, >=, PAGESIZE);
4642 len -= PAGESIZE;
4644 ASSERT3U(plsz, >=, PAGESIZE);
4645 plsz -= PAGESIZE;
4646 pl++;
4651 * Fill out the page array with any pages already in the cache.
4653 while (plsz > 0 &&
4654 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4655 off += PAGESIZE;
4656 plsz -= PAGESIZE;
4658 out:
4659 if (err) {
4661 * Release any pages we have previously locked.
4663 while (pl > pl0)
4664 page_unlock(*--pl);
4665 } else {
4666 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4669 *pl = NULL;
4671 ZFS_EXIT(zfsvfs);
4672 return (err);
4676 * Request a memory map for a section of a file. This code interacts
4677 * with common code and the VM system as follows:
4679 * - common code calls mmap(), which ends up in smmap_common()
4680 * - this calls VOP_MAP(), which takes you into (say) zfs
4681 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4682 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4683 * - zfs_addmap() updates z_mapcnt
4685 /*ARGSUSED*/
4686 static int
4687 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4688 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4689 caller_context_t *ct)
4691 znode_t *zp = VTOZ(vp);
4692 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4693 segvn_crargs_t vn_a;
4694 int error;
4696 ZFS_ENTER(zfsvfs);
4697 ZFS_VERIFY_ZP(zp);
4700 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
4703 if ((prot & PROT_WRITE) && (zp->z_pflags &
4704 (ZFS_IMMUTABLE | ZFS_APPENDONLY))) {
4705 ZFS_EXIT(zfsvfs);
4706 return (SET_ERROR(EPERM));
4709 if ((prot & (PROT_READ | PROT_EXEC)) &&
4710 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4711 ZFS_EXIT(zfsvfs);
4712 return (SET_ERROR(EACCES));
4715 if (vp->v_flag & VNOMAP) {
4716 ZFS_EXIT(zfsvfs);
4717 return (SET_ERROR(ENOSYS));
4720 if (off < 0 || len > MAXOFFSET_T - off) {
4721 ZFS_EXIT(zfsvfs);
4722 return (SET_ERROR(ENXIO));
4725 if (vp->v_type != VREG) {
4726 ZFS_EXIT(zfsvfs);
4727 return (SET_ERROR(ENODEV));
4731 * If file is locked, disallow mapping.
4733 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4734 ZFS_EXIT(zfsvfs);
4735 return (SET_ERROR(EAGAIN));
4738 as_rangelock(as);
4739 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4740 if (error != 0) {
4741 as_rangeunlock(as);
4742 ZFS_EXIT(zfsvfs);
4743 return (error);
4746 vn_a.vp = vp;
4747 vn_a.offset = (u_offset_t)off;
4748 vn_a.type = flags & MAP_TYPE;
4749 vn_a.prot = prot;
4750 vn_a.maxprot = maxprot;
4751 vn_a.cred = cr;
4752 vn_a.amp = NULL;
4753 vn_a.flags = flags & ~MAP_TYPE;
4754 vn_a.szc = 0;
4755 vn_a.lgrp_mem_policy_flags = 0;
4757 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4759 as_rangeunlock(as);
4760 ZFS_EXIT(zfsvfs);
4761 return (error);
4764 /* ARGSUSED */
4765 static int
4766 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4767 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4768 caller_context_t *ct)
4770 uint64_t pages = btopr(len);
4772 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4773 return (0);
4777 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4778 * more accurate mtime for the associated file. Since we don't have a way of
4779 * detecting when the data was actually modified, we have to resort to
4780 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4781 * last page is pushed. The problem occurs when the msync() call is omitted,
4782 * which by far the most common case:
4784 * open()
4785 * mmap()
4786 * <modify memory>
4787 * munmap()
4788 * close()
4789 * <time lapse>
4790 * putpage() via fsflush
4792 * If we wait until fsflush to come along, we can have a modification time that
4793 * is some arbitrary point in the future. In order to prevent this in the
4794 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4795 * torn down.
4797 /* ARGSUSED */
4798 static int
4799 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4800 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4801 caller_context_t *ct)
4803 uint64_t pages = btopr(len);
4805 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4806 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4808 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4809 vn_has_cached_data(vp))
4810 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4812 return (0);
4816 * Free or allocate space in a file. Currently, this function only
4817 * supports the `F_FREESP' command. However, this command is somewhat
4818 * misnamed, as its functionality includes the ability to allocate as
4819 * well as free space.
4821 * IN: vp - vnode of file to free data in.
4822 * cmd - action to take (only F_FREESP supported).
4823 * bfp - section of file to free/alloc.
4824 * flag - current file open mode flags.
4825 * offset - current file offset.
4826 * cr - credentials of caller [UNUSED].
4827 * ct - caller context.
4829 * RETURN: 0 on success, error code on failure.
4831 * Timestamps:
4832 * vp - ctime|mtime updated
4834 /* ARGSUSED */
4835 static int
4836 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4837 offset_t offset, cred_t *cr, caller_context_t *ct)
4839 znode_t *zp = VTOZ(vp);
4840 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4841 uint64_t off, len;
4842 int error;
4844 ZFS_ENTER(zfsvfs);
4845 ZFS_VERIFY_ZP(zp);
4847 if (cmd != F_FREESP) {
4848 ZFS_EXIT(zfsvfs);
4849 return (SET_ERROR(EINVAL));
4853 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4854 * callers might not be able to detect properly that we are read-only,
4855 * so check it explicitly here.
4857 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4858 ZFS_EXIT(zfsvfs);
4859 return (SET_ERROR(EROFS));
4862 if (error = convoff(vp, bfp, 0, offset)) {
4863 ZFS_EXIT(zfsvfs);
4864 return (error);
4867 if (bfp->l_len < 0) {
4868 ZFS_EXIT(zfsvfs);
4869 return (SET_ERROR(EINVAL));
4872 off = bfp->l_start;
4873 len = bfp->l_len; /* 0 means from off to end of file */
4875 error = zfs_freesp(zp, off, len, flag, TRUE);
4877 if (error == 0 && off == 0 && len == 0)
4878 vnevent_truncate(ZTOV(zp), ct);
4880 ZFS_EXIT(zfsvfs);
4881 return (error);
4884 /*ARGSUSED*/
4885 static int
4886 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4888 znode_t *zp = VTOZ(vp);
4889 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4890 uint32_t gen;
4891 uint64_t gen64;
4892 uint64_t object = zp->z_id;
4893 zfid_short_t *zfid;
4894 int size, i, error;
4896 ZFS_ENTER(zfsvfs);
4897 ZFS_VERIFY_ZP(zp);
4899 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4900 &gen64, sizeof (uint64_t))) != 0) {
4901 ZFS_EXIT(zfsvfs);
4902 return (error);
4905 gen = (uint32_t)gen64;
4907 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4908 if (fidp->fid_len < size) {
4909 fidp->fid_len = size;
4910 ZFS_EXIT(zfsvfs);
4911 return (SET_ERROR(ENOSPC));
4914 zfid = (zfid_short_t *)fidp;
4916 zfid->zf_len = size;
4918 for (i = 0; i < sizeof (zfid->zf_object); i++)
4919 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4921 /* Must have a non-zero generation number to distinguish from .zfs */
4922 if (gen == 0)
4923 gen = 1;
4924 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4925 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4927 if (size == LONG_FID_LEN) {
4928 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4929 zfid_long_t *zlfid;
4931 zlfid = (zfid_long_t *)fidp;
4933 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4934 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4936 /* XXX - this should be the generation number for the objset */
4937 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4938 zlfid->zf_setgen[i] = 0;
4941 ZFS_EXIT(zfsvfs);
4942 return (0);
4945 static int
4946 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4947 caller_context_t *ct)
4949 znode_t *zp, *xzp;
4950 zfsvfs_t *zfsvfs;
4951 zfs_dirlock_t *dl;
4952 int error;
4954 switch (cmd) {
4955 case _PC_LINK_MAX:
4956 *valp = ULONG_MAX;
4957 return (0);
4959 case _PC_FILESIZEBITS:
4960 *valp = 64;
4961 return (0);
4963 case _PC_XATTR_EXISTS:
4964 zp = VTOZ(vp);
4965 zfsvfs = zp->z_zfsvfs;
4966 ZFS_ENTER(zfsvfs);
4967 ZFS_VERIFY_ZP(zp);
4968 *valp = 0;
4969 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4970 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4971 if (error == 0) {
4972 zfs_dirent_unlock(dl);
4973 if (!zfs_dirempty(xzp))
4974 *valp = 1;
4975 VN_RELE(ZTOV(xzp));
4976 } else if (error == ENOENT) {
4978 * If there aren't extended attributes, it's the
4979 * same as having zero of them.
4981 error = 0;
4983 ZFS_EXIT(zfsvfs);
4984 return (error);
4986 case _PC_SATTR_ENABLED:
4987 case _PC_SATTR_EXISTS:
4988 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4989 (vp->v_type == VREG || vp->v_type == VDIR);
4990 return (0);
4992 case _PC_ACCESS_FILTERING:
4993 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4994 vp->v_type == VDIR;
4995 return (0);
4997 case _PC_ACL_ENABLED:
4998 *valp = _ACL_ACE_ENABLED;
4999 return (0);
5001 case _PC_MIN_HOLE_SIZE:
5002 *valp = (ulong_t)SPA_MINBLOCKSIZE;
5003 return (0);
5005 case _PC_TIMESTAMP_RESOLUTION:
5006 /* nanosecond timestamp resolution */
5007 *valp = 1L;
5008 return (0);
5010 default:
5011 return (fs_pathconf(vp, cmd, valp, cr, ct));
5015 /*ARGSUSED*/
5016 static int
5017 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5018 caller_context_t *ct)
5020 znode_t *zp = VTOZ(vp);
5021 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5022 int error;
5023 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5025 ZFS_ENTER(zfsvfs);
5026 ZFS_VERIFY_ZP(zp);
5027 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5028 ZFS_EXIT(zfsvfs);
5030 return (error);
5033 /*ARGSUSED*/
5034 static int
5035 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5036 caller_context_t *ct)
5038 znode_t *zp = VTOZ(vp);
5039 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5040 int error;
5041 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5042 zilog_t *zilog = zfsvfs->z_log;
5044 ZFS_ENTER(zfsvfs);
5045 ZFS_VERIFY_ZP(zp);
5047 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5049 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5050 zil_commit(zilog, 0);
5052 ZFS_EXIT(zfsvfs);
5053 return (error);
5057 * The smallest read we may consider to loan out an arcbuf.
5058 * This must be a power of 2.
5060 int zcr_blksz_min = (1 << 10); /* 1K */
5062 * If set to less than the file block size, allow loaning out of an
5063 * arcbuf for a partial block read. This must be a power of 2.
5065 int zcr_blksz_max = (1 << 17); /* 128K */
5067 /*ARGSUSED*/
5068 static int
5069 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5070 caller_context_t *ct)
5072 znode_t *zp = VTOZ(vp);
5073 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5074 int max_blksz = zfsvfs->z_max_blksz;
5075 uio_t *uio = &xuio->xu_uio;
5076 ssize_t size = uio->uio_resid;
5077 offset_t offset = uio->uio_loffset;
5078 int blksz;
5079 int fullblk, i;
5080 arc_buf_t *abuf;
5081 ssize_t maxsize;
5082 int preamble, postamble;
5084 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5085 return (SET_ERROR(EINVAL));
5087 ZFS_ENTER(zfsvfs);
5088 ZFS_VERIFY_ZP(zp);
5089 switch (ioflag) {
5090 case UIO_WRITE:
5092 * Loan out an arc_buf for write if write size is bigger than
5093 * max_blksz, and the file's block size is also max_blksz.
5095 blksz = max_blksz;
5096 if (size < blksz || zp->z_blksz != blksz) {
5097 ZFS_EXIT(zfsvfs);
5098 return (SET_ERROR(EINVAL));
5101 * Caller requests buffers for write before knowing where the
5102 * write offset might be (e.g. NFS TCP write).
5104 if (offset == -1) {
5105 preamble = 0;
5106 } else {
5107 preamble = P2PHASE(offset, blksz);
5108 if (preamble) {
5109 preamble = blksz - preamble;
5110 size -= preamble;
5114 postamble = P2PHASE(size, blksz);
5115 size -= postamble;
5117 fullblk = size / blksz;
5118 (void) dmu_xuio_init(xuio,
5119 (preamble != 0) + fullblk + (postamble != 0));
5120 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5121 int, postamble, int,
5122 (preamble != 0) + fullblk + (postamble != 0));
5125 * Have to fix iov base/len for partial buffers. They
5126 * currently represent full arc_buf's.
5128 if (preamble) {
5129 /* data begins in the middle of the arc_buf */
5130 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5131 blksz);
5132 ASSERT(abuf);
5133 (void) dmu_xuio_add(xuio, abuf,
5134 blksz - preamble, preamble);
5137 for (i = 0; i < fullblk; i++) {
5138 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5139 blksz);
5140 ASSERT(abuf);
5141 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5144 if (postamble) {
5145 /* data ends in the middle of the arc_buf */
5146 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5147 blksz);
5148 ASSERT(abuf);
5149 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5151 break;
5152 case UIO_READ:
5154 * Loan out an arc_buf for read if the read size is larger than
5155 * the current file block size. Block alignment is not
5156 * considered. Partial arc_buf will be loaned out for read.
5158 blksz = zp->z_blksz;
5159 if (blksz < zcr_blksz_min)
5160 blksz = zcr_blksz_min;
5161 if (blksz > zcr_blksz_max)
5162 blksz = zcr_blksz_max;
5163 /* avoid potential complexity of dealing with it */
5164 if (blksz > max_blksz) {
5165 ZFS_EXIT(zfsvfs);
5166 return (SET_ERROR(EINVAL));
5169 maxsize = zp->z_size - uio->uio_loffset;
5170 if (size > maxsize)
5171 size = maxsize;
5173 if (size < blksz || vn_has_cached_data(vp)) {
5174 ZFS_EXIT(zfsvfs);
5175 return (SET_ERROR(EINVAL));
5177 break;
5178 default:
5179 ZFS_EXIT(zfsvfs);
5180 return (SET_ERROR(EINVAL));
5183 uio->uio_extflg = UIO_XUIO;
5184 XUIO_XUZC_RW(xuio) = ioflag;
5185 ZFS_EXIT(zfsvfs);
5186 return (0);
5189 /*ARGSUSED*/
5190 static int
5191 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5193 int i;
5194 arc_buf_t *abuf;
5195 int ioflag = XUIO_XUZC_RW(xuio);
5197 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5199 i = dmu_xuio_cnt(xuio);
5200 while (i-- > 0) {
5201 abuf = dmu_xuio_arcbuf(xuio, i);
5203 * if abuf == NULL, it must be a write buffer
5204 * that has been returned in zfs_write().
5206 if (abuf)
5207 dmu_return_arcbuf(abuf);
5208 ASSERT(abuf || ioflag == UIO_WRITE);
5211 dmu_xuio_fini(xuio);
5212 return (0);
5216 * Predeclare these here so that the compiler assumes that
5217 * this is an "old style" function declaration that does
5218 * not include arguments => we won't get type mismatch errors
5219 * in the initializations that follow.
5221 static int zfs_inval();
5222 static int zfs_isdir();
5224 static int
5225 zfs_inval()
5227 return (SET_ERROR(EINVAL));
5230 static int
5231 zfs_isdir()
5233 return (SET_ERROR(EISDIR));
5236 * Directory vnode operations template
5238 vnodeops_t *zfs_dvnodeops;
5239 const fs_operation_def_t zfs_dvnodeops_template[] = {
5240 VOPNAME_OPEN, { .vop_open = zfs_open },
5241 VOPNAME_CLOSE, { .vop_close = zfs_close },
5242 VOPNAME_READ, { .error = zfs_isdir },
5243 VOPNAME_WRITE, { .error = zfs_isdir },
5244 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5245 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5246 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5247 VOPNAME_ACCESS, { .vop_access = zfs_access },
5248 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5249 VOPNAME_CREATE, { .vop_create = zfs_create },
5250 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5251 VOPNAME_LINK, { .vop_link = zfs_link },
5252 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5253 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5254 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5255 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5256 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5257 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5258 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5259 VOPNAME_FID, { .vop_fid = zfs_fid },
5260 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5261 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5262 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5263 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5264 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5265 NULL, NULL
5269 * Regular file vnode operations template
5271 vnodeops_t *zfs_fvnodeops;
5272 const fs_operation_def_t zfs_fvnodeops_template[] = {
5273 VOPNAME_OPEN, { .vop_open = zfs_open },
5274 VOPNAME_CLOSE, { .vop_close = zfs_close },
5275 VOPNAME_READ, { .vop_read = zfs_read },
5276 VOPNAME_WRITE, { .vop_write = zfs_write },
5277 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5278 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5279 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5280 VOPNAME_ACCESS, { .vop_access = zfs_access },
5281 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5282 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5283 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5284 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5285 VOPNAME_FID, { .vop_fid = zfs_fid },
5286 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5287 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5288 VOPNAME_SPACE, { .vop_space = zfs_space },
5289 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5290 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5291 VOPNAME_MAP, { .vop_map = zfs_map },
5292 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5293 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5294 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5295 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5296 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5297 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5298 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5299 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5300 NULL, NULL
5304 * Symbolic link vnode operations template
5306 vnodeops_t *zfs_symvnodeops;
5307 const fs_operation_def_t zfs_symvnodeops_template[] = {
5308 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5309 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5310 VOPNAME_ACCESS, { .vop_access = zfs_access },
5311 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5312 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5313 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5314 VOPNAME_FID, { .vop_fid = zfs_fid },
5315 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5316 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5317 NULL, NULL
5321 * special share hidden files vnode operations template
5323 vnodeops_t *zfs_sharevnodeops;
5324 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5325 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5326 VOPNAME_ACCESS, { .vop_access = zfs_access },
5327 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5328 VOPNAME_FID, { .vop_fid = zfs_fid },
5329 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5330 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5331 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5332 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5333 NULL, NULL
5337 * Extended attribute directory vnode operations template
5339 * This template is identical to the directory vnodes
5340 * operation template except for restricted operations:
5341 * VOP_MKDIR()
5342 * VOP_SYMLINK()
5344 * Note that there are other restrictions embedded in:
5345 * zfs_create() - restrict type to VREG
5346 * zfs_link() - no links into/out of attribute space
5347 * zfs_rename() - no moves into/out of attribute space
5349 vnodeops_t *zfs_xdvnodeops;
5350 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5351 VOPNAME_OPEN, { .vop_open = zfs_open },
5352 VOPNAME_CLOSE, { .vop_close = zfs_close },
5353 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5354 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5355 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5356 VOPNAME_ACCESS, { .vop_access = zfs_access },
5357 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5358 VOPNAME_CREATE, { .vop_create = zfs_create },
5359 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5360 VOPNAME_LINK, { .vop_link = zfs_link },
5361 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5362 VOPNAME_MKDIR, { .error = zfs_inval },
5363 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5364 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5365 VOPNAME_SYMLINK, { .error = zfs_inval },
5366 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5367 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5368 VOPNAME_FID, { .vop_fid = zfs_fid },
5369 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5370 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5371 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5372 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5373 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5374 NULL, NULL
5378 * Error vnode operations template
5380 vnodeops_t *zfs_evnodeops;
5381 const fs_operation_def_t zfs_evnodeops_template[] = {
5382 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5383 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5384 NULL, NULL