Merge illumos-gate
[unleashed.git] / lib / libssl / s3_cbc.c
bloba1c0ce6b908f51c1d50730d5c757338a0051a64c
1 /* $OpenBSD: s3_cbc.c,v 1.17 2018/09/08 14:39:41 jsing Exp $ */
2 /* ====================================================================
3 * Copyright (c) 2012 The OpenSSL Project. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
56 #include "ssl_locl.h"
58 #include <openssl/md5.h>
59 #include <openssl/sha.h>
61 /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length
62 * field. (SHA-384/512 have 128-bit length.) */
63 #define MAX_HASH_BIT_COUNT_BYTES 16
65 /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
66 * Currently SHA-384/512 has a 128-byte block size and that's the largest
67 * supported by TLS.) */
68 #define MAX_HASH_BLOCK_SIZE 128
70 /* Some utility functions are needed:
72 * These macros return the given value with the MSB copied to all the other
73 * bits. They use the fact that arithmetic shift shifts-in the sign bit.
74 * However, this is not ensured by the C standard so you may need to replace
75 * them with something else on odd CPUs. */
76 #define DUPLICATE_MSB_TO_ALL(x) ((unsigned)((int)(x) >> (sizeof(int) * 8 - 1)))
77 #define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x)))
79 /* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */
80 static unsigned
81 constant_time_lt(unsigned a, unsigned b)
83 a -= b;
84 return DUPLICATE_MSB_TO_ALL(a);
87 /* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */
88 static unsigned
89 constant_time_ge(unsigned a, unsigned b)
91 a -= b;
92 return DUPLICATE_MSB_TO_ALL(~a);
95 /* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */
96 static unsigned char
97 constant_time_eq_8(unsigned a, unsigned b)
99 unsigned c = a ^ b;
100 c--;
101 return DUPLICATE_MSB_TO_ALL_8(c);
104 /* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
105 * record in |rec| in constant time and returns 1 if the padding is valid and
106 * -1 otherwise. It also removes any explicit IV from the start of the record
107 * without leaking any timing about whether there was enough space after the
108 * padding was removed.
110 * block_size: the block size of the cipher used to encrypt the record.
111 * returns:
112 * 0: (in non-constant time) if the record is publicly invalid.
113 * 1: if the padding was valid
114 * -1: otherwise. */
116 tls1_cbc_remove_padding(const SSL* s, SSL3_RECORD *rec, unsigned block_size,
117 unsigned mac_size)
119 unsigned padding_length, good, to_check, i;
120 const unsigned overhead = 1 /* padding length byte */ + mac_size;
122 /* Check if version requires explicit IV */
123 if (SSL_USE_EXPLICIT_IV(s)) {
124 /* These lengths are all public so we can test them in
125 * non-constant time.
127 if (overhead + block_size > rec->length)
128 return 0;
129 /* We can now safely skip explicit IV */
130 rec->data += block_size;
131 rec->input += block_size;
132 rec->length -= block_size;
133 } else if (overhead > rec->length)
134 return 0;
136 padding_length = rec->data[rec->length - 1];
138 good = constant_time_ge(rec->length, overhead + padding_length);
139 /* The padding consists of a length byte at the end of the record and
140 * then that many bytes of padding, all with the same value as the
141 * length byte. Thus, with the length byte included, there are i+1
142 * bytes of padding.
144 * We can't check just |padding_length+1| bytes because that leaks
145 * decrypted information. Therefore we always have to check the maximum
146 * amount of padding possible. (Again, the length of the record is
147 * public information so we can use it.) */
148 to_check = 255; /* maximum amount of padding. */
149 if (to_check > rec->length - 1)
150 to_check = rec->length - 1;
152 for (i = 0; i < to_check; i++) {
153 unsigned char mask = constant_time_ge(padding_length, i);
154 unsigned char b = rec->data[rec->length - 1 - i];
155 /* The final |padding_length+1| bytes should all have the value
156 * |padding_length|. Therefore the XOR should be zero. */
157 good &= ~(mask&(padding_length ^ b));
160 /* If any of the final |padding_length+1| bytes had the wrong value,
161 * one or more of the lower eight bits of |good| will be cleared. We
162 * AND the bottom 8 bits together and duplicate the result to all the
163 * bits. */
164 good &= good >> 4;
165 good &= good >> 2;
166 good &= good >> 1;
167 good <<= sizeof(good)*8 - 1;
168 good = DUPLICATE_MSB_TO_ALL(good);
170 padding_length = good & (padding_length + 1);
171 rec->length -= padding_length;
172 rec->type |= padding_length<<8; /* kludge: pass padding length */
174 return (int)((good & 1) | (~good & -1));
177 /* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
178 * constant time (independent of the concrete value of rec->length, which may
179 * vary within a 256-byte window).
181 * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
182 * this function.
184 * On entry:
185 * rec->orig_len >= md_size
186 * md_size <= EVP_MAX_MD_SIZE
188 * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
189 * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
190 * a single or pair of cache-lines, then the variable memory accesses don't
191 * actually affect the timing. CPUs with smaller cache-lines [if any] are
192 * not multi-core and are not considered vulnerable to cache-timing attacks.
194 #define CBC_MAC_ROTATE_IN_PLACE
196 void
197 ssl3_cbc_copy_mac(unsigned char* out, const SSL3_RECORD *rec,
198 unsigned md_size, unsigned orig_len)
200 #if defined(CBC_MAC_ROTATE_IN_PLACE)
201 unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
202 unsigned char *rotated_mac;
203 #else
204 unsigned char rotated_mac[EVP_MAX_MD_SIZE];
205 #endif
207 /* mac_end is the index of |rec->data| just after the end of the MAC. */
208 unsigned mac_end = rec->length;
209 unsigned mac_start = mac_end - md_size;
210 /* scan_start contains the number of bytes that we can ignore because
211 * the MAC's position can only vary by 255 bytes. */
212 unsigned scan_start = 0;
213 unsigned i, j;
214 unsigned div_spoiler;
215 unsigned rotate_offset;
217 OPENSSL_assert(orig_len >= md_size);
218 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
220 #if defined(CBC_MAC_ROTATE_IN_PLACE)
221 rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf)&63);
222 #endif
224 /* This information is public so it's safe to branch based on it. */
225 if (orig_len > md_size + 255 + 1)
226 scan_start = orig_len - (md_size + 255 + 1);
227 /* div_spoiler contains a multiple of md_size that is used to cause the
228 * modulo operation to be constant time. Without this, the time varies
229 * based on the amount of padding when running on Intel chips at least.
231 * The aim of right-shifting md_size is so that the compiler doesn't
232 * figure out that it can remove div_spoiler as that would require it
233 * to prove that md_size is always even, which I hope is beyond it. */
234 div_spoiler = md_size >> 1;
235 div_spoiler <<= (sizeof(div_spoiler) - 1) * 8;
236 rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
238 memset(rotated_mac, 0, md_size);
239 for (i = scan_start, j = 0; i < orig_len; i++) {
240 unsigned char mac_started = constant_time_ge(i, mac_start);
241 unsigned char mac_ended = constant_time_ge(i, mac_end);
242 unsigned char b = rec->data[i];
243 rotated_mac[j++] |= b & mac_started & ~mac_ended;
244 j &= constant_time_lt(j, md_size);
247 /* Now rotate the MAC */
248 #if defined(CBC_MAC_ROTATE_IN_PLACE)
249 j = 0;
250 for (i = 0; i < md_size; i++) {
251 /* in case cache-line is 32 bytes, touch second line */
252 ((volatile unsigned char *)rotated_mac)[rotate_offset^32];
253 out[j++] = rotated_mac[rotate_offset++];
254 rotate_offset &= constant_time_lt(rotate_offset, md_size);
256 #else
257 memset(out, 0, md_size);
258 rotate_offset = md_size - rotate_offset;
259 rotate_offset &= constant_time_lt(rotate_offset, md_size);
260 for (i = 0; i < md_size; i++) {
261 for (j = 0; j < md_size; j++)
262 out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
263 rotate_offset++;
264 rotate_offset &= constant_time_lt(rotate_offset, md_size);
266 #endif
269 /* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
270 * little-endian order. The value of p is advanced by four. */
271 #define u32toLE(n, p) \
272 (*((p)++)=(unsigned char)(n), \
273 *((p)++)=(unsigned char)(n>>8), \
274 *((p)++)=(unsigned char)(n>>16), \
275 *((p)++)=(unsigned char)(n>>24))
277 /* These functions serialize the state of a hash and thus perform the standard
278 * "final" operation without adding the padding and length that such a function
279 * typically does. */
280 static void
281 tls1_md5_final_raw(void* ctx, unsigned char *md_out)
283 MD5_CTX *md5 = ctx;
284 u32toLE(md5->A, md_out);
285 u32toLE(md5->B, md_out);
286 u32toLE(md5->C, md_out);
287 u32toLE(md5->D, md_out);
290 static void
291 tls1_sha1_final_raw(void* ctx, unsigned char *md_out)
293 SHA_CTX *sha1 = ctx;
294 l2n(sha1->h0, md_out);
295 l2n(sha1->h1, md_out);
296 l2n(sha1->h2, md_out);
297 l2n(sha1->h3, md_out);
298 l2n(sha1->h4, md_out);
301 static void
302 tls1_sha256_final_raw(void* ctx, unsigned char *md_out)
304 SHA256_CTX *sha256 = ctx;
305 unsigned i;
307 for (i = 0; i < 8; i++) {
308 l2n(sha256->h[i], md_out);
312 static void
313 tls1_sha512_final_raw(void* ctx, unsigned char *md_out)
315 SHA512_CTX *sha512 = ctx;
316 unsigned i;
318 for (i = 0; i < 8; i++) {
319 l2n8(sha512->h[i], md_out);
323 /* Largest hash context ever used by the functions above. */
324 #define LARGEST_DIGEST_CTX SHA512_CTX
326 /* Type giving the alignment needed by the above */
327 #define LARGEST_DIGEST_CTX_ALIGNMENT SHA_LONG64
329 /* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
330 * which ssl3_cbc_digest_record supports. */
331 char
332 ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
334 switch (EVP_MD_CTX_type(ctx)) {
335 case NID_md5:
336 case NID_sha1:
337 case NID_sha224:
338 case NID_sha256:
339 case NID_sha384:
340 case NID_sha512:
341 return 1;
342 default:
343 return 0;
347 /* ssl3_cbc_digest_record computes the MAC of a decrypted, padded TLS
348 * record.
350 * ctx: the EVP_MD_CTX from which we take the hash function.
351 * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
352 * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
353 * md_out_size: if non-NULL, the number of output bytes is written here.
354 * header: the 13-byte, TLS record header.
355 * data: the record data itself, less any preceeding explicit IV.
356 * data_plus_mac_size: the secret, reported length of the data and MAC
357 * once the padding has been removed.
358 * data_plus_mac_plus_padding_size: the public length of the whole
359 * record, including padding.
361 * On entry: by virtue of having been through one of the remove_padding
362 * functions, above, we know that data_plus_mac_size is large enough to contain
363 * a padding byte and MAC. (If the padding was invalid, it might contain the
364 * padding too. )
367 ssl3_cbc_digest_record(const EVP_MD_CTX *ctx, unsigned char* md_out,
368 size_t* md_out_size, const unsigned char header[13],
369 const unsigned char *data, size_t data_plus_mac_size,
370 size_t data_plus_mac_plus_padding_size, const unsigned char *mac_secret,
371 unsigned mac_secret_length)
373 union {
375 * Alignment here is to allow this to be cast as SHA512_CTX
376 * without losing alignment required by the 64-bit SHA_LONG64
377 * integer it contains.
379 LARGEST_DIGEST_CTX_ALIGNMENT align;
380 unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
381 } md_state;
382 void (*md_final_raw)(void *ctx, unsigned char *md_out);
383 void (*md_transform)(void *ctx, const unsigned char *block);
384 unsigned md_size, md_block_size = 64;
385 unsigned header_length, variance_blocks,
386 len, max_mac_bytes, num_blocks,
387 num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
388 unsigned int bits; /* at most 18 bits */
389 unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
390 /* hmac_pad is the masked HMAC key. */
391 unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
392 unsigned char first_block[MAX_HASH_BLOCK_SIZE];
393 unsigned char mac_out[EVP_MAX_MD_SIZE];
394 unsigned i, j, md_out_size_u;
395 EVP_MD_CTX md_ctx;
396 /* mdLengthSize is the number of bytes in the length field that terminates
397 * the hash. */
398 unsigned md_length_size = 8;
399 char length_is_big_endian = 1;
401 /* This is a, hopefully redundant, check that allows us to forget about
402 * many possible overflows later in this function. */
403 OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024);
405 switch (EVP_MD_CTX_type(ctx)) {
406 case NID_md5:
407 MD5_Init((MD5_CTX*)md_state.c);
408 md_final_raw = tls1_md5_final_raw;
409 md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform;
410 md_size = 16;
411 length_is_big_endian = 0;
412 break;
413 case NID_sha1:
414 SHA1_Init((SHA_CTX*)md_state.c);
415 md_final_raw = tls1_sha1_final_raw;
416 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform;
417 md_size = 20;
418 break;
419 case NID_sha224:
420 SHA224_Init((SHA256_CTX*)md_state.c);
421 md_final_raw = tls1_sha256_final_raw;
422 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
423 md_size = 224/8;
424 break;
425 case NID_sha256:
426 SHA256_Init((SHA256_CTX*)md_state.c);
427 md_final_raw = tls1_sha256_final_raw;
428 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform;
429 md_size = 32;
430 break;
431 case NID_sha384:
432 SHA384_Init((SHA512_CTX*)md_state.c);
433 md_final_raw = tls1_sha512_final_raw;
434 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
435 md_size = 384/8;
436 md_block_size = 128;
437 md_length_size = 16;
438 break;
439 case NID_sha512:
440 SHA512_Init((SHA512_CTX*)md_state.c);
441 md_final_raw = tls1_sha512_final_raw;
442 md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform;
443 md_size = 64;
444 md_block_size = 128;
445 md_length_size = 16;
446 break;
447 default:
448 /* ssl3_cbc_record_digest_supported should have been
449 * called first to check that the hash function is
450 * supported. */
451 OPENSSL_assert(0);
452 if (md_out_size)
453 *md_out_size = 0;
454 return 0;
457 OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
458 OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
459 OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
461 header_length = 13;
463 /* variance_blocks is the number of blocks of the hash that we have to
464 * calculate in constant time because they could be altered by the
465 * padding value.
467 * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
468 * required to be minimal. Therefore we say that the final six blocks
469 * can vary based on the padding.
471 * Later in the function, if the message is short and there obviously
472 * cannot be this many blocks then variance_blocks can be reduced. */
473 variance_blocks = 6;
474 /* From now on we're dealing with the MAC, which conceptually has 13
475 * bytes of `header' before the start of the data (TLS) */
476 len = data_plus_mac_plus_padding_size + header_length;
477 /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including
478 * |header|, assuming that there's no padding. */
479 max_mac_bytes = len - md_size - 1;
480 /* num_blocks is the maximum number of hash blocks. */
481 num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size;
482 /* In order to calculate the MAC in constant time we have to handle
483 * the final blocks specially because the padding value could cause the
484 * end to appear somewhere in the final |variance_blocks| blocks and we
485 * can't leak where. However, |num_starting_blocks| worth of data can
486 * be hashed right away because no padding value can affect whether
487 * they are plaintext. */
488 num_starting_blocks = 0;
489 /* k is the starting byte offset into the conceptual header||data where
490 * we start processing. */
491 k = 0;
492 /* mac_end_offset is the index just past the end of the data to be
493 * MACed. */
494 mac_end_offset = data_plus_mac_size + header_length - md_size;
495 /* c is the index of the 0x80 byte in the final hash block that
496 * contains application data. */
497 c = mac_end_offset % md_block_size;
498 /* index_a is the hash block number that contains the 0x80 terminating
499 * value. */
500 index_a = mac_end_offset / md_block_size;
501 /* index_b is the hash block number that contains the 64-bit hash
502 * length, in bits. */
503 index_b = (mac_end_offset + md_length_size) / md_block_size;
504 /* bits is the hash-length in bits. It includes the additional hash
505 * block for the masked HMAC key. */
507 if (num_blocks > variance_blocks) {
508 num_starting_blocks = num_blocks - variance_blocks;
509 k = md_block_size*num_starting_blocks;
512 bits = 8*mac_end_offset;
513 /* Compute the initial HMAC block. */
514 bits += 8*md_block_size;
515 memset(hmac_pad, 0, md_block_size);
516 OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
517 memcpy(hmac_pad, mac_secret, mac_secret_length);
518 for (i = 0; i < md_block_size; i++)
519 hmac_pad[i] ^= 0x36;
521 md_transform(md_state.c, hmac_pad);
523 if (length_is_big_endian) {
524 memset(length_bytes, 0, md_length_size - 4);
525 length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
526 length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
527 length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
528 length_bytes[md_length_size - 1] = (unsigned char)bits;
529 } else {
530 memset(length_bytes, 0, md_length_size);
531 length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
532 length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
533 length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
534 length_bytes[md_length_size - 8] = (unsigned char)bits;
537 if (k > 0) {
538 /* k is a multiple of md_block_size. */
539 memcpy(first_block, header, 13);
540 memcpy(first_block + 13, data, md_block_size - 13);
541 md_transform(md_state.c, first_block);
542 for (i = 1; i < k/md_block_size; i++)
543 md_transform(md_state.c, data + md_block_size*i - 13);
546 memset(mac_out, 0, sizeof(mac_out));
548 /* We now process the final hash blocks. For each block, we construct
549 * it in constant time. If the |i==index_a| then we'll include the 0x80
550 * bytes and zero pad etc. For each block we selectively copy it, in
551 * constant time, to |mac_out|. */
552 for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks; i++) {
553 unsigned char block[MAX_HASH_BLOCK_SIZE];
554 unsigned char is_block_a = constant_time_eq_8(i, index_a);
555 unsigned char is_block_b = constant_time_eq_8(i, index_b);
556 for (j = 0; j < md_block_size; j++) {
557 unsigned char b = 0, is_past_c, is_past_cp1;
558 if (k < header_length)
559 b = header[k];
560 else if (k < data_plus_mac_plus_padding_size + header_length)
561 b = data[k - header_length];
562 k++;
564 is_past_c = is_block_a & constant_time_ge(j, c);
565 is_past_cp1 = is_block_a & constant_time_ge(j, c + 1);
566 /* If this is the block containing the end of the
567 * application data, and we are at the offset for the
568 * 0x80 value, then overwrite b with 0x80. */
569 b = (b&~is_past_c) | (0x80&is_past_c);
570 /* If this is the block containing the end of the
571 * application data and we're past the 0x80 value then
572 * just write zero. */
573 b = b&~is_past_cp1;
574 /* If this is index_b (the final block), but not
575 * index_a (the end of the data), then the 64-bit
576 * length didn't fit into index_a and we're having to
577 * add an extra block of zeros. */
578 b &= ~is_block_b | is_block_a;
580 /* The final bytes of one of the blocks contains the
581 * length. */
582 if (j >= md_block_size - md_length_size) {
583 /* If this is index_b, write a length byte. */
584 b = (b&~is_block_b) | (is_block_b&length_bytes[j - (md_block_size - md_length_size)]);
586 block[j] = b;
589 md_transform(md_state.c, block);
590 md_final_raw(md_state.c, block);
591 /* If this is index_b, copy the hash value to |mac_out|. */
592 for (j = 0; j < md_size; j++)
593 mac_out[j] |= block[j]&is_block_b;
596 EVP_MD_CTX_init(&md_ctx);
597 if (!EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */)) {
598 EVP_MD_CTX_cleanup(&md_ctx);
599 return 0;
602 /* Complete the HMAC in the standard manner. */
603 for (i = 0; i < md_block_size; i++)
604 hmac_pad[i] ^= 0x6a;
606 EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
607 EVP_DigestUpdate(&md_ctx, mac_out, md_size);
609 EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
610 if (md_out_size)
611 *md_out_size = md_out_size_u;
612 EVP_MD_CTX_cleanup(&md_ctx);
614 return 1;