1948 zpool list should show more detailed pool information
[unleashed.git] / usr / src / uts / common / fs / zfs / vdev.c
blob4ab70b20d7adf6da3b0ebf3557e5c928da479e4d
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
47 * Virtual device management.
50 static vdev_ops_t *vdev_ops_table[] = {
51 &vdev_root_ops,
52 &vdev_raidz_ops,
53 &vdev_mirror_ops,
54 &vdev_replacing_ops,
55 &vdev_spare_ops,
56 &vdev_disk_ops,
57 &vdev_file_ops,
58 &vdev_missing_ops,
59 &vdev_hole_ops,
60 NULL
63 /* maximum scrub/resilver I/O queue per leaf vdev */
64 int zfs_scrub_limit = 10;
67 * Given a vdev type, return the appropriate ops vector.
69 static vdev_ops_t *
70 vdev_getops(const char *type)
72 vdev_ops_t *ops, **opspp;
74 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
75 if (strcmp(ops->vdev_op_type, type) == 0)
76 break;
78 return (ops);
82 * Default asize function: return the MAX of psize with the asize of
83 * all children. This is what's used by anything other than RAID-Z.
85 uint64_t
86 vdev_default_asize(vdev_t *vd, uint64_t psize)
88 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
89 uint64_t csize;
91 for (int c = 0; c < vd->vdev_children; c++) {
92 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
93 asize = MAX(asize, csize);
96 return (asize);
100 * Get the minimum allocatable size. We define the allocatable size as
101 * the vdev's asize rounded to the nearest metaslab. This allows us to
102 * replace or attach devices which don't have the same physical size but
103 * can still satisfy the same number of allocations.
105 uint64_t
106 vdev_get_min_asize(vdev_t *vd)
108 vdev_t *pvd = vd->vdev_parent;
111 * If our parent is NULL (inactive spare or cache) or is the root,
112 * just return our own asize.
114 if (pvd == NULL)
115 return (vd->vdev_asize);
118 * The top-level vdev just returns the allocatable size rounded
119 * to the nearest metaslab.
121 if (vd == vd->vdev_top)
122 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
125 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
126 * so each child must provide at least 1/Nth of its asize.
128 if (pvd->vdev_ops == &vdev_raidz_ops)
129 return (pvd->vdev_min_asize / pvd->vdev_children);
131 return (pvd->vdev_min_asize);
134 void
135 vdev_set_min_asize(vdev_t *vd)
137 vd->vdev_min_asize = vdev_get_min_asize(vd);
139 for (int c = 0; c < vd->vdev_children; c++)
140 vdev_set_min_asize(vd->vdev_child[c]);
143 vdev_t *
144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
146 vdev_t *rvd = spa->spa_root_vdev;
148 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
150 if (vdev < rvd->vdev_children) {
151 ASSERT(rvd->vdev_child[vdev] != NULL);
152 return (rvd->vdev_child[vdev]);
155 return (NULL);
158 vdev_t *
159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
161 vdev_t *mvd;
163 if (vd->vdev_guid == guid)
164 return (vd);
166 for (int c = 0; c < vd->vdev_children; c++)
167 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
168 NULL)
169 return (mvd);
171 return (NULL);
174 void
175 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
177 size_t oldsize, newsize;
178 uint64_t id = cvd->vdev_id;
179 vdev_t **newchild;
181 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
182 ASSERT(cvd->vdev_parent == NULL);
184 cvd->vdev_parent = pvd;
186 if (pvd == NULL)
187 return;
189 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
191 oldsize = pvd->vdev_children * sizeof (vdev_t *);
192 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
193 newsize = pvd->vdev_children * sizeof (vdev_t *);
195 newchild = kmem_zalloc(newsize, KM_SLEEP);
196 if (pvd->vdev_child != NULL) {
197 bcopy(pvd->vdev_child, newchild, oldsize);
198 kmem_free(pvd->vdev_child, oldsize);
201 pvd->vdev_child = newchild;
202 pvd->vdev_child[id] = cvd;
204 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
205 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
208 * Walk up all ancestors to update guid sum.
210 for (; pvd != NULL; pvd = pvd->vdev_parent)
211 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
214 void
215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 int c;
218 uint_t id = cvd->vdev_id;
220 ASSERT(cvd->vdev_parent == pvd);
222 if (pvd == NULL)
223 return;
225 ASSERT(id < pvd->vdev_children);
226 ASSERT(pvd->vdev_child[id] == cvd);
228 pvd->vdev_child[id] = NULL;
229 cvd->vdev_parent = NULL;
231 for (c = 0; c < pvd->vdev_children; c++)
232 if (pvd->vdev_child[c])
233 break;
235 if (c == pvd->vdev_children) {
236 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
237 pvd->vdev_child = NULL;
238 pvd->vdev_children = 0;
242 * Walk up all ancestors to update guid sum.
244 for (; pvd != NULL; pvd = pvd->vdev_parent)
245 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
249 * Remove any holes in the child array.
251 void
252 vdev_compact_children(vdev_t *pvd)
254 vdev_t **newchild, *cvd;
255 int oldc = pvd->vdev_children;
256 int newc;
258 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
260 for (int c = newc = 0; c < oldc; c++)
261 if (pvd->vdev_child[c])
262 newc++;
264 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
266 for (int c = newc = 0; c < oldc; c++) {
267 if ((cvd = pvd->vdev_child[c]) != NULL) {
268 newchild[newc] = cvd;
269 cvd->vdev_id = newc++;
273 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
274 pvd->vdev_child = newchild;
275 pvd->vdev_children = newc;
279 * Allocate and minimally initialize a vdev_t.
281 vdev_t *
282 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
284 vdev_t *vd;
286 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
288 if (spa->spa_root_vdev == NULL) {
289 ASSERT(ops == &vdev_root_ops);
290 spa->spa_root_vdev = vd;
291 spa->spa_load_guid = spa_generate_guid(NULL);
294 if (guid == 0 && ops != &vdev_hole_ops) {
295 if (spa->spa_root_vdev == vd) {
297 * The root vdev's guid will also be the pool guid,
298 * which must be unique among all pools.
300 guid = spa_generate_guid(NULL);
301 } else {
303 * Any other vdev's guid must be unique within the pool.
305 guid = spa_generate_guid(spa);
307 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
310 vd->vdev_spa = spa;
311 vd->vdev_id = id;
312 vd->vdev_guid = guid;
313 vd->vdev_guid_sum = guid;
314 vd->vdev_ops = ops;
315 vd->vdev_state = VDEV_STATE_CLOSED;
316 vd->vdev_ishole = (ops == &vdev_hole_ops);
318 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
319 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
320 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
321 for (int t = 0; t < DTL_TYPES; t++) {
322 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
323 &vd->vdev_dtl_lock);
325 txg_list_create(&vd->vdev_ms_list,
326 offsetof(struct metaslab, ms_txg_node));
327 txg_list_create(&vd->vdev_dtl_list,
328 offsetof(struct vdev, vdev_dtl_node));
329 vd->vdev_stat.vs_timestamp = gethrtime();
330 vdev_queue_init(vd);
331 vdev_cache_init(vd);
333 return (vd);
337 * Allocate a new vdev. The 'alloctype' is used to control whether we are
338 * creating a new vdev or loading an existing one - the behavior is slightly
339 * different for each case.
342 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
343 int alloctype)
345 vdev_ops_t *ops;
346 char *type;
347 uint64_t guid = 0, islog, nparity;
348 vdev_t *vd;
350 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
352 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
353 return (EINVAL);
355 if ((ops = vdev_getops(type)) == NULL)
356 return (EINVAL);
359 * If this is a load, get the vdev guid from the nvlist.
360 * Otherwise, vdev_alloc_common() will generate one for us.
362 if (alloctype == VDEV_ALLOC_LOAD) {
363 uint64_t label_id;
365 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
366 label_id != id)
367 return (EINVAL);
369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
370 return (EINVAL);
371 } else if (alloctype == VDEV_ALLOC_SPARE) {
372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373 return (EINVAL);
374 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 return (EINVAL);
377 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379 return (EINVAL);
383 * The first allocated vdev must be of type 'root'.
385 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
386 return (EINVAL);
389 * Determine whether we're a log vdev.
391 islog = 0;
392 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
393 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
394 return (ENOTSUP);
396 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
397 return (ENOTSUP);
400 * Set the nparity property for RAID-Z vdevs.
402 nparity = -1ULL;
403 if (ops == &vdev_raidz_ops) {
404 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
405 &nparity) == 0) {
406 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
407 return (EINVAL);
409 * Previous versions could only support 1 or 2 parity
410 * device.
412 if (nparity > 1 &&
413 spa_version(spa) < SPA_VERSION_RAIDZ2)
414 return (ENOTSUP);
415 if (nparity > 2 &&
416 spa_version(spa) < SPA_VERSION_RAIDZ3)
417 return (ENOTSUP);
418 } else {
420 * We require the parity to be specified for SPAs that
421 * support multiple parity levels.
423 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
424 return (EINVAL);
426 * Otherwise, we default to 1 parity device for RAID-Z.
428 nparity = 1;
430 } else {
431 nparity = 0;
433 ASSERT(nparity != -1ULL);
435 vd = vdev_alloc_common(spa, id, guid, ops);
437 vd->vdev_islog = islog;
438 vd->vdev_nparity = nparity;
440 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
441 vd->vdev_path = spa_strdup(vd->vdev_path);
442 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
443 vd->vdev_devid = spa_strdup(vd->vdev_devid);
444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
445 &vd->vdev_physpath) == 0)
446 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
448 vd->vdev_fru = spa_strdup(vd->vdev_fru);
451 * Set the whole_disk property. If it's not specified, leave the value
452 * as -1.
454 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
455 &vd->vdev_wholedisk) != 0)
456 vd->vdev_wholedisk = -1ULL;
459 * Look for the 'not present' flag. This will only be set if the device
460 * was not present at the time of import.
462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
463 &vd->vdev_not_present);
466 * Get the alignment requirement.
468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
471 * Retrieve the vdev creation time.
473 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
474 &vd->vdev_crtxg);
477 * If we're a top-level vdev, try to load the allocation parameters.
479 if (parent && !parent->vdev_parent &&
480 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
481 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
482 &vd->vdev_ms_array);
483 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
484 &vd->vdev_ms_shift);
485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
486 &vd->vdev_asize);
487 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
488 &vd->vdev_removing);
491 if (parent && !parent->vdev_parent) {
492 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
493 alloctype == VDEV_ALLOC_ADD ||
494 alloctype == VDEV_ALLOC_SPLIT ||
495 alloctype == VDEV_ALLOC_ROOTPOOL);
496 vd->vdev_mg = metaslab_group_create(islog ?
497 spa_log_class(spa) : spa_normal_class(spa), vd);
501 * If we're a leaf vdev, try to load the DTL object and other state.
503 if (vd->vdev_ops->vdev_op_leaf &&
504 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
505 alloctype == VDEV_ALLOC_ROOTPOOL)) {
506 if (alloctype == VDEV_ALLOC_LOAD) {
507 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
508 &vd->vdev_dtl_smo.smo_object);
509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
510 &vd->vdev_unspare);
513 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
514 uint64_t spare = 0;
516 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
517 &spare) == 0 && spare)
518 spa_spare_add(vd);
521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
522 &vd->vdev_offline);
524 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
525 &vd->vdev_resilvering);
528 * When importing a pool, we want to ignore the persistent fault
529 * state, as the diagnosis made on another system may not be
530 * valid in the current context. Local vdevs will
531 * remain in the faulted state.
533 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
535 &vd->vdev_faulted);
536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
537 &vd->vdev_degraded);
538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
539 &vd->vdev_removed);
541 if (vd->vdev_faulted || vd->vdev_degraded) {
542 char *aux;
544 vd->vdev_label_aux =
545 VDEV_AUX_ERR_EXCEEDED;
546 if (nvlist_lookup_string(nv,
547 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
548 strcmp(aux, "external") == 0)
549 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
555 * Add ourselves to the parent's list of children.
557 vdev_add_child(parent, vd);
559 *vdp = vd;
561 return (0);
564 void
565 vdev_free(vdev_t *vd)
567 spa_t *spa = vd->vdev_spa;
570 * vdev_free() implies closing the vdev first. This is simpler than
571 * trying to ensure complicated semantics for all callers.
573 vdev_close(vd);
575 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
576 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
579 * Free all children.
581 for (int c = 0; c < vd->vdev_children; c++)
582 vdev_free(vd->vdev_child[c]);
584 ASSERT(vd->vdev_child == NULL);
585 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
588 * Discard allocation state.
590 if (vd->vdev_mg != NULL) {
591 vdev_metaslab_fini(vd);
592 metaslab_group_destroy(vd->vdev_mg);
595 ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
596 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
597 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
600 * Remove this vdev from its parent's child list.
602 vdev_remove_child(vd->vdev_parent, vd);
604 ASSERT(vd->vdev_parent == NULL);
607 * Clean up vdev structure.
609 vdev_queue_fini(vd);
610 vdev_cache_fini(vd);
612 if (vd->vdev_path)
613 spa_strfree(vd->vdev_path);
614 if (vd->vdev_devid)
615 spa_strfree(vd->vdev_devid);
616 if (vd->vdev_physpath)
617 spa_strfree(vd->vdev_physpath);
618 if (vd->vdev_fru)
619 spa_strfree(vd->vdev_fru);
621 if (vd->vdev_isspare)
622 spa_spare_remove(vd);
623 if (vd->vdev_isl2cache)
624 spa_l2cache_remove(vd);
626 txg_list_destroy(&vd->vdev_ms_list);
627 txg_list_destroy(&vd->vdev_dtl_list);
629 mutex_enter(&vd->vdev_dtl_lock);
630 for (int t = 0; t < DTL_TYPES; t++) {
631 space_map_unload(&vd->vdev_dtl[t]);
632 space_map_destroy(&vd->vdev_dtl[t]);
634 mutex_exit(&vd->vdev_dtl_lock);
636 mutex_destroy(&vd->vdev_dtl_lock);
637 mutex_destroy(&vd->vdev_stat_lock);
638 mutex_destroy(&vd->vdev_probe_lock);
640 if (vd == spa->spa_root_vdev)
641 spa->spa_root_vdev = NULL;
643 kmem_free(vd, sizeof (vdev_t));
647 * Transfer top-level vdev state from svd to tvd.
649 static void
650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
652 spa_t *spa = svd->vdev_spa;
653 metaslab_t *msp;
654 vdev_t *vd;
655 int t;
657 ASSERT(tvd == tvd->vdev_top);
659 tvd->vdev_ms_array = svd->vdev_ms_array;
660 tvd->vdev_ms_shift = svd->vdev_ms_shift;
661 tvd->vdev_ms_count = svd->vdev_ms_count;
663 svd->vdev_ms_array = 0;
664 svd->vdev_ms_shift = 0;
665 svd->vdev_ms_count = 0;
667 tvd->vdev_mg = svd->vdev_mg;
668 tvd->vdev_ms = svd->vdev_ms;
670 svd->vdev_mg = NULL;
671 svd->vdev_ms = NULL;
673 if (tvd->vdev_mg != NULL)
674 tvd->vdev_mg->mg_vd = tvd;
676 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
677 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
678 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
680 svd->vdev_stat.vs_alloc = 0;
681 svd->vdev_stat.vs_space = 0;
682 svd->vdev_stat.vs_dspace = 0;
684 for (t = 0; t < TXG_SIZE; t++) {
685 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
686 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
687 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
688 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
689 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
690 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
693 if (list_link_active(&svd->vdev_config_dirty_node)) {
694 vdev_config_clean(svd);
695 vdev_config_dirty(tvd);
698 if (list_link_active(&svd->vdev_state_dirty_node)) {
699 vdev_state_clean(svd);
700 vdev_state_dirty(tvd);
703 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
704 svd->vdev_deflate_ratio = 0;
706 tvd->vdev_islog = svd->vdev_islog;
707 svd->vdev_islog = 0;
710 static void
711 vdev_top_update(vdev_t *tvd, vdev_t *vd)
713 if (vd == NULL)
714 return;
716 vd->vdev_top = tvd;
718 for (int c = 0; c < vd->vdev_children; c++)
719 vdev_top_update(tvd, vd->vdev_child[c]);
723 * Add a mirror/replacing vdev above an existing vdev.
725 vdev_t *
726 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
728 spa_t *spa = cvd->vdev_spa;
729 vdev_t *pvd = cvd->vdev_parent;
730 vdev_t *mvd;
732 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
734 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
736 mvd->vdev_asize = cvd->vdev_asize;
737 mvd->vdev_min_asize = cvd->vdev_min_asize;
738 mvd->vdev_max_asize = cvd->vdev_max_asize;
739 mvd->vdev_ashift = cvd->vdev_ashift;
740 mvd->vdev_state = cvd->vdev_state;
741 mvd->vdev_crtxg = cvd->vdev_crtxg;
743 vdev_remove_child(pvd, cvd);
744 vdev_add_child(pvd, mvd);
745 cvd->vdev_id = mvd->vdev_children;
746 vdev_add_child(mvd, cvd);
747 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
749 if (mvd == mvd->vdev_top)
750 vdev_top_transfer(cvd, mvd);
752 return (mvd);
756 * Remove a 1-way mirror/replacing vdev from the tree.
758 void
759 vdev_remove_parent(vdev_t *cvd)
761 vdev_t *mvd = cvd->vdev_parent;
762 vdev_t *pvd = mvd->vdev_parent;
764 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
766 ASSERT(mvd->vdev_children == 1);
767 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
768 mvd->vdev_ops == &vdev_replacing_ops ||
769 mvd->vdev_ops == &vdev_spare_ops);
770 cvd->vdev_ashift = mvd->vdev_ashift;
772 vdev_remove_child(mvd, cvd);
773 vdev_remove_child(pvd, mvd);
776 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
777 * Otherwise, we could have detached an offline device, and when we
778 * go to import the pool we'll think we have two top-level vdevs,
779 * instead of a different version of the same top-level vdev.
781 if (mvd->vdev_top == mvd) {
782 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
783 cvd->vdev_orig_guid = cvd->vdev_guid;
784 cvd->vdev_guid += guid_delta;
785 cvd->vdev_guid_sum += guid_delta;
787 cvd->vdev_id = mvd->vdev_id;
788 vdev_add_child(pvd, cvd);
789 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
791 if (cvd == cvd->vdev_top)
792 vdev_top_transfer(mvd, cvd);
794 ASSERT(mvd->vdev_children == 0);
795 vdev_free(mvd);
799 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
801 spa_t *spa = vd->vdev_spa;
802 objset_t *mos = spa->spa_meta_objset;
803 uint64_t m;
804 uint64_t oldc = vd->vdev_ms_count;
805 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
806 metaslab_t **mspp;
807 int error;
809 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
812 * This vdev is not being allocated from yet or is a hole.
814 if (vd->vdev_ms_shift == 0)
815 return (0);
817 ASSERT(!vd->vdev_ishole);
820 * Compute the raidz-deflation ratio. Note, we hard-code
821 * in 128k (1 << 17) because it is the current "typical" blocksize.
822 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
823 * or we will inconsistently account for existing bp's.
825 vd->vdev_deflate_ratio = (1 << 17) /
826 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
828 ASSERT(oldc <= newc);
830 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
832 if (oldc != 0) {
833 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
834 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
837 vd->vdev_ms = mspp;
838 vd->vdev_ms_count = newc;
840 for (m = oldc; m < newc; m++) {
841 space_map_obj_t smo = { 0, 0, 0 };
842 if (txg == 0) {
843 uint64_t object = 0;
844 error = dmu_read(mos, vd->vdev_ms_array,
845 m * sizeof (uint64_t), sizeof (uint64_t), &object,
846 DMU_READ_PREFETCH);
847 if (error)
848 return (error);
849 if (object != 0) {
850 dmu_buf_t *db;
851 error = dmu_bonus_hold(mos, object, FTAG, &db);
852 if (error)
853 return (error);
854 ASSERT3U(db->db_size, >=, sizeof (smo));
855 bcopy(db->db_data, &smo, sizeof (smo));
856 ASSERT3U(smo.smo_object, ==, object);
857 dmu_buf_rele(db, FTAG);
860 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
861 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
864 if (txg == 0)
865 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
868 * If the vdev is being removed we don't activate
869 * the metaslabs since we want to ensure that no new
870 * allocations are performed on this device.
872 if (oldc == 0 && !vd->vdev_removing)
873 metaslab_group_activate(vd->vdev_mg);
875 if (txg == 0)
876 spa_config_exit(spa, SCL_ALLOC, FTAG);
878 return (0);
881 void
882 vdev_metaslab_fini(vdev_t *vd)
884 uint64_t m;
885 uint64_t count = vd->vdev_ms_count;
887 if (vd->vdev_ms != NULL) {
888 metaslab_group_passivate(vd->vdev_mg);
889 for (m = 0; m < count; m++)
890 if (vd->vdev_ms[m] != NULL)
891 metaslab_fini(vd->vdev_ms[m]);
892 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
893 vd->vdev_ms = NULL;
897 typedef struct vdev_probe_stats {
898 boolean_t vps_readable;
899 boolean_t vps_writeable;
900 int vps_flags;
901 } vdev_probe_stats_t;
903 static void
904 vdev_probe_done(zio_t *zio)
906 spa_t *spa = zio->io_spa;
907 vdev_t *vd = zio->io_vd;
908 vdev_probe_stats_t *vps = zio->io_private;
910 ASSERT(vd->vdev_probe_zio != NULL);
912 if (zio->io_type == ZIO_TYPE_READ) {
913 if (zio->io_error == 0)
914 vps->vps_readable = 1;
915 if (zio->io_error == 0 && spa_writeable(spa)) {
916 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
917 zio->io_offset, zio->io_size, zio->io_data,
918 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
919 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
920 } else {
921 zio_buf_free(zio->io_data, zio->io_size);
923 } else if (zio->io_type == ZIO_TYPE_WRITE) {
924 if (zio->io_error == 0)
925 vps->vps_writeable = 1;
926 zio_buf_free(zio->io_data, zio->io_size);
927 } else if (zio->io_type == ZIO_TYPE_NULL) {
928 zio_t *pio;
930 vd->vdev_cant_read |= !vps->vps_readable;
931 vd->vdev_cant_write |= !vps->vps_writeable;
933 if (vdev_readable(vd) &&
934 (vdev_writeable(vd) || !spa_writeable(spa))) {
935 zio->io_error = 0;
936 } else {
937 ASSERT(zio->io_error != 0);
938 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
939 spa, vd, NULL, 0, 0);
940 zio->io_error = ENXIO;
943 mutex_enter(&vd->vdev_probe_lock);
944 ASSERT(vd->vdev_probe_zio == zio);
945 vd->vdev_probe_zio = NULL;
946 mutex_exit(&vd->vdev_probe_lock);
948 while ((pio = zio_walk_parents(zio)) != NULL)
949 if (!vdev_accessible(vd, pio))
950 pio->io_error = ENXIO;
952 kmem_free(vps, sizeof (*vps));
957 * Determine whether this device is accessible by reading and writing
958 * to several known locations: the pad regions of each vdev label
959 * but the first (which we leave alone in case it contains a VTOC).
961 zio_t *
962 vdev_probe(vdev_t *vd, zio_t *zio)
964 spa_t *spa = vd->vdev_spa;
965 vdev_probe_stats_t *vps = NULL;
966 zio_t *pio;
968 ASSERT(vd->vdev_ops->vdev_op_leaf);
971 * Don't probe the probe.
973 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
974 return (NULL);
977 * To prevent 'probe storms' when a device fails, we create
978 * just one probe i/o at a time. All zios that want to probe
979 * this vdev will become parents of the probe io.
981 mutex_enter(&vd->vdev_probe_lock);
983 if ((pio = vd->vdev_probe_zio) == NULL) {
984 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
986 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
987 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
988 ZIO_FLAG_TRYHARD;
990 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
992 * vdev_cant_read and vdev_cant_write can only
993 * transition from TRUE to FALSE when we have the
994 * SCL_ZIO lock as writer; otherwise they can only
995 * transition from FALSE to TRUE. This ensures that
996 * any zio looking at these values can assume that
997 * failures persist for the life of the I/O. That's
998 * important because when a device has intermittent
999 * connectivity problems, we want to ensure that
1000 * they're ascribed to the device (ENXIO) and not
1001 * the zio (EIO).
1003 * Since we hold SCL_ZIO as writer here, clear both
1004 * values so the probe can reevaluate from first
1005 * principles.
1007 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1008 vd->vdev_cant_read = B_FALSE;
1009 vd->vdev_cant_write = B_FALSE;
1012 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1013 vdev_probe_done, vps,
1014 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1017 * We can't change the vdev state in this context, so we
1018 * kick off an async task to do it on our behalf.
1020 if (zio != NULL) {
1021 vd->vdev_probe_wanted = B_TRUE;
1022 spa_async_request(spa, SPA_ASYNC_PROBE);
1026 if (zio != NULL)
1027 zio_add_child(zio, pio);
1029 mutex_exit(&vd->vdev_probe_lock);
1031 if (vps == NULL) {
1032 ASSERT(zio != NULL);
1033 return (NULL);
1036 for (int l = 1; l < VDEV_LABELS; l++) {
1037 zio_nowait(zio_read_phys(pio, vd,
1038 vdev_label_offset(vd->vdev_psize, l,
1039 offsetof(vdev_label_t, vl_pad2)),
1040 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1041 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1042 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1045 if (zio == NULL)
1046 return (pio);
1048 zio_nowait(pio);
1049 return (NULL);
1052 static void
1053 vdev_open_child(void *arg)
1055 vdev_t *vd = arg;
1057 vd->vdev_open_thread = curthread;
1058 vd->vdev_open_error = vdev_open(vd);
1059 vd->vdev_open_thread = NULL;
1062 boolean_t
1063 vdev_uses_zvols(vdev_t *vd)
1065 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1066 strlen(ZVOL_DIR)) == 0)
1067 return (B_TRUE);
1068 for (int c = 0; c < vd->vdev_children; c++)
1069 if (vdev_uses_zvols(vd->vdev_child[c]))
1070 return (B_TRUE);
1071 return (B_FALSE);
1074 void
1075 vdev_open_children(vdev_t *vd)
1077 taskq_t *tq;
1078 int children = vd->vdev_children;
1081 * in order to handle pools on top of zvols, do the opens
1082 * in a single thread so that the same thread holds the
1083 * spa_namespace_lock
1085 if (vdev_uses_zvols(vd)) {
1086 for (int c = 0; c < children; c++)
1087 vd->vdev_child[c]->vdev_open_error =
1088 vdev_open(vd->vdev_child[c]);
1089 return;
1091 tq = taskq_create("vdev_open", children, minclsyspri,
1092 children, children, TASKQ_PREPOPULATE);
1094 for (int c = 0; c < children; c++)
1095 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1096 TQ_SLEEP) != NULL);
1098 taskq_destroy(tq);
1102 * Prepare a virtual device for access.
1105 vdev_open(vdev_t *vd)
1107 spa_t *spa = vd->vdev_spa;
1108 int error;
1109 uint64_t osize = 0;
1110 uint64_t max_osize = 0;
1111 uint64_t asize, max_asize, psize;
1112 uint64_t ashift = 0;
1114 ASSERT(vd->vdev_open_thread == curthread ||
1115 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1116 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1117 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1118 vd->vdev_state == VDEV_STATE_OFFLINE);
1120 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1121 vd->vdev_cant_read = B_FALSE;
1122 vd->vdev_cant_write = B_FALSE;
1123 vd->vdev_min_asize = vdev_get_min_asize(vd);
1126 * If this vdev is not removed, check its fault status. If it's
1127 * faulted, bail out of the open.
1129 if (!vd->vdev_removed && vd->vdev_faulted) {
1130 ASSERT(vd->vdev_children == 0);
1131 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1132 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1133 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1134 vd->vdev_label_aux);
1135 return (ENXIO);
1136 } else if (vd->vdev_offline) {
1137 ASSERT(vd->vdev_children == 0);
1138 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1139 return (ENXIO);
1142 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1145 * Reset the vdev_reopening flag so that we actually close
1146 * the vdev on error.
1148 vd->vdev_reopening = B_FALSE;
1149 if (zio_injection_enabled && error == 0)
1150 error = zio_handle_device_injection(vd, NULL, ENXIO);
1152 if (error) {
1153 if (vd->vdev_removed &&
1154 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1155 vd->vdev_removed = B_FALSE;
1157 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1158 vd->vdev_stat.vs_aux);
1159 return (error);
1162 vd->vdev_removed = B_FALSE;
1165 * Recheck the faulted flag now that we have confirmed that
1166 * the vdev is accessible. If we're faulted, bail.
1168 if (vd->vdev_faulted) {
1169 ASSERT(vd->vdev_children == 0);
1170 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1171 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1172 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1173 vd->vdev_label_aux);
1174 return (ENXIO);
1177 if (vd->vdev_degraded) {
1178 ASSERT(vd->vdev_children == 0);
1179 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1180 VDEV_AUX_ERR_EXCEEDED);
1181 } else {
1182 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1186 * For hole or missing vdevs we just return success.
1188 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1189 return (0);
1191 for (int c = 0; c < vd->vdev_children; c++) {
1192 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1193 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1194 VDEV_AUX_NONE);
1195 break;
1199 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1200 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1202 if (vd->vdev_children == 0) {
1203 if (osize < SPA_MINDEVSIZE) {
1204 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1205 VDEV_AUX_TOO_SMALL);
1206 return (EOVERFLOW);
1208 psize = osize;
1209 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1210 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1211 VDEV_LABEL_END_SIZE);
1212 } else {
1213 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1214 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1215 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1216 VDEV_AUX_TOO_SMALL);
1217 return (EOVERFLOW);
1219 psize = 0;
1220 asize = osize;
1221 max_asize = max_osize;
1224 vd->vdev_psize = psize;
1227 * Make sure the allocatable size hasn't shrunk.
1229 if (asize < vd->vdev_min_asize) {
1230 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1231 VDEV_AUX_BAD_LABEL);
1232 return (EINVAL);
1235 if (vd->vdev_asize == 0) {
1237 * This is the first-ever open, so use the computed values.
1238 * For testing purposes, a higher ashift can be requested.
1240 vd->vdev_asize = asize;
1241 vd->vdev_max_asize = max_asize;
1242 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1243 } else {
1245 * Make sure the alignment requirement hasn't increased.
1247 if (ashift > vd->vdev_top->vdev_ashift) {
1248 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1249 VDEV_AUX_BAD_LABEL);
1250 return (EINVAL);
1252 vd->vdev_max_asize = max_asize;
1256 * If all children are healthy and the asize has increased,
1257 * then we've experienced dynamic LUN growth. If automatic
1258 * expansion is enabled then use the additional space.
1260 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1261 (vd->vdev_expanding || spa->spa_autoexpand))
1262 vd->vdev_asize = asize;
1264 vdev_set_min_asize(vd);
1267 * Ensure we can issue some IO before declaring the
1268 * vdev open for business.
1270 if (vd->vdev_ops->vdev_op_leaf &&
1271 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1272 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1273 VDEV_AUX_ERR_EXCEEDED);
1274 return (error);
1278 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1279 * resilver. But don't do this if we are doing a reopen for a scrub,
1280 * since this would just restart the scrub we are already doing.
1282 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1283 vdev_resilver_needed(vd, NULL, NULL))
1284 spa_async_request(spa, SPA_ASYNC_RESILVER);
1286 return (0);
1290 * Called once the vdevs are all opened, this routine validates the label
1291 * contents. This needs to be done before vdev_load() so that we don't
1292 * inadvertently do repair I/Os to the wrong device.
1294 * This function will only return failure if one of the vdevs indicates that it
1295 * has since been destroyed or exported. This is only possible if
1296 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1297 * will be updated but the function will return 0.
1300 vdev_validate(vdev_t *vd)
1302 spa_t *spa = vd->vdev_spa;
1303 nvlist_t *label;
1304 uint64_t guid = 0, top_guid;
1305 uint64_t state;
1307 for (int c = 0; c < vd->vdev_children; c++)
1308 if (vdev_validate(vd->vdev_child[c]) != 0)
1309 return (EBADF);
1312 * If the device has already failed, or was marked offline, don't do
1313 * any further validation. Otherwise, label I/O will fail and we will
1314 * overwrite the previous state.
1316 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1317 uint64_t aux_guid = 0;
1318 nvlist_t *nvl;
1320 if ((label = vdev_label_read_config(vd)) == NULL) {
1321 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1322 VDEV_AUX_BAD_LABEL);
1323 return (0);
1327 * Determine if this vdev has been split off into another
1328 * pool. If so, then refuse to open it.
1330 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1331 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1332 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1333 VDEV_AUX_SPLIT_POOL);
1334 nvlist_free(label);
1335 return (0);
1338 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1339 &guid) != 0 || guid != spa_guid(spa)) {
1340 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1341 VDEV_AUX_CORRUPT_DATA);
1342 nvlist_free(label);
1343 return (0);
1346 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1347 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1348 &aux_guid) != 0)
1349 aux_guid = 0;
1352 * If this vdev just became a top-level vdev because its
1353 * sibling was detached, it will have adopted the parent's
1354 * vdev guid -- but the label may or may not be on disk yet.
1355 * Fortunately, either version of the label will have the
1356 * same top guid, so if we're a top-level vdev, we can
1357 * safely compare to that instead.
1359 * If we split this vdev off instead, then we also check the
1360 * original pool's guid. We don't want to consider the vdev
1361 * corrupt if it is partway through a split operation.
1363 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1364 &guid) != 0 ||
1365 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1366 &top_guid) != 0 ||
1367 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1368 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1369 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1370 VDEV_AUX_CORRUPT_DATA);
1371 nvlist_free(label);
1372 return (0);
1375 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1376 &state) != 0) {
1377 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1378 VDEV_AUX_CORRUPT_DATA);
1379 nvlist_free(label);
1380 return (0);
1383 nvlist_free(label);
1386 * If this is a verbatim import, no need to check the
1387 * state of the pool.
1389 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1390 spa_load_state(spa) == SPA_LOAD_OPEN &&
1391 state != POOL_STATE_ACTIVE)
1392 return (EBADF);
1395 * If we were able to open and validate a vdev that was
1396 * previously marked permanently unavailable, clear that state
1397 * now.
1399 if (vd->vdev_not_present)
1400 vd->vdev_not_present = 0;
1403 return (0);
1407 * Close a virtual device.
1409 void
1410 vdev_close(vdev_t *vd)
1412 spa_t *spa = vd->vdev_spa;
1413 vdev_t *pvd = vd->vdev_parent;
1415 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1418 * If our parent is reopening, then we are as well, unless we are
1419 * going offline.
1421 if (pvd != NULL && pvd->vdev_reopening)
1422 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1424 vd->vdev_ops->vdev_op_close(vd);
1426 vdev_cache_purge(vd);
1429 * We record the previous state before we close it, so that if we are
1430 * doing a reopen(), we don't generate FMA ereports if we notice that
1431 * it's still faulted.
1433 vd->vdev_prevstate = vd->vdev_state;
1435 if (vd->vdev_offline)
1436 vd->vdev_state = VDEV_STATE_OFFLINE;
1437 else
1438 vd->vdev_state = VDEV_STATE_CLOSED;
1439 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1442 void
1443 vdev_hold(vdev_t *vd)
1445 spa_t *spa = vd->vdev_spa;
1447 ASSERT(spa_is_root(spa));
1448 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1449 return;
1451 for (int c = 0; c < vd->vdev_children; c++)
1452 vdev_hold(vd->vdev_child[c]);
1454 if (vd->vdev_ops->vdev_op_leaf)
1455 vd->vdev_ops->vdev_op_hold(vd);
1458 void
1459 vdev_rele(vdev_t *vd)
1461 spa_t *spa = vd->vdev_spa;
1463 ASSERT(spa_is_root(spa));
1464 for (int c = 0; c < vd->vdev_children; c++)
1465 vdev_rele(vd->vdev_child[c]);
1467 if (vd->vdev_ops->vdev_op_leaf)
1468 vd->vdev_ops->vdev_op_rele(vd);
1472 * Reopen all interior vdevs and any unopened leaves. We don't actually
1473 * reopen leaf vdevs which had previously been opened as they might deadlock
1474 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1475 * If the leaf has never been opened then open it, as usual.
1477 void
1478 vdev_reopen(vdev_t *vd)
1480 spa_t *spa = vd->vdev_spa;
1482 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1484 /* set the reopening flag unless we're taking the vdev offline */
1485 vd->vdev_reopening = !vd->vdev_offline;
1486 vdev_close(vd);
1487 (void) vdev_open(vd);
1490 * Call vdev_validate() here to make sure we have the same device.
1491 * Otherwise, a device with an invalid label could be successfully
1492 * opened in response to vdev_reopen().
1494 if (vd->vdev_aux) {
1495 (void) vdev_validate_aux(vd);
1496 if (vdev_readable(vd) && vdev_writeable(vd) &&
1497 vd->vdev_aux == &spa->spa_l2cache &&
1498 !l2arc_vdev_present(vd))
1499 l2arc_add_vdev(spa, vd);
1500 } else {
1501 (void) vdev_validate(vd);
1505 * Reassess parent vdev's health.
1507 vdev_propagate_state(vd);
1511 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1513 int error;
1516 * Normally, partial opens (e.g. of a mirror) are allowed.
1517 * For a create, however, we want to fail the request if
1518 * there are any components we can't open.
1520 error = vdev_open(vd);
1522 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1523 vdev_close(vd);
1524 return (error ? error : ENXIO);
1528 * Recursively initialize all labels.
1530 if ((error = vdev_label_init(vd, txg, isreplacing ?
1531 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1532 vdev_close(vd);
1533 return (error);
1536 return (0);
1539 void
1540 vdev_metaslab_set_size(vdev_t *vd)
1543 * Aim for roughly 200 metaslabs per vdev.
1545 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1546 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1549 void
1550 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1552 ASSERT(vd == vd->vdev_top);
1553 ASSERT(!vd->vdev_ishole);
1554 ASSERT(ISP2(flags));
1555 ASSERT(spa_writeable(vd->vdev_spa));
1557 if (flags & VDD_METASLAB)
1558 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1560 if (flags & VDD_DTL)
1561 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1563 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1567 * DTLs.
1569 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1570 * the vdev has less than perfect replication. There are four kinds of DTL:
1572 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1574 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1576 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1577 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1578 * txgs that was scrubbed.
1580 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1581 * persistent errors or just some device being offline.
1582 * Unlike the other three, the DTL_OUTAGE map is not generally
1583 * maintained; it's only computed when needed, typically to
1584 * determine whether a device can be detached.
1586 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1587 * either has the data or it doesn't.
1589 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1590 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1591 * if any child is less than fully replicated, then so is its parent.
1592 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1593 * comprising only those txgs which appear in 'maxfaults' or more children;
1594 * those are the txgs we don't have enough replication to read. For example,
1595 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1596 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1597 * two child DTL_MISSING maps.
1599 * It should be clear from the above that to compute the DTLs and outage maps
1600 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1601 * Therefore, that is all we keep on disk. When loading the pool, or after
1602 * a configuration change, we generate all other DTLs from first principles.
1604 void
1605 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1607 space_map_t *sm = &vd->vdev_dtl[t];
1609 ASSERT(t < DTL_TYPES);
1610 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1611 ASSERT(spa_writeable(vd->vdev_spa));
1613 mutex_enter(sm->sm_lock);
1614 if (!space_map_contains(sm, txg, size))
1615 space_map_add(sm, txg, size);
1616 mutex_exit(sm->sm_lock);
1619 boolean_t
1620 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1622 space_map_t *sm = &vd->vdev_dtl[t];
1623 boolean_t dirty = B_FALSE;
1625 ASSERT(t < DTL_TYPES);
1626 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1628 mutex_enter(sm->sm_lock);
1629 if (sm->sm_space != 0)
1630 dirty = space_map_contains(sm, txg, size);
1631 mutex_exit(sm->sm_lock);
1633 return (dirty);
1636 boolean_t
1637 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1639 space_map_t *sm = &vd->vdev_dtl[t];
1640 boolean_t empty;
1642 mutex_enter(sm->sm_lock);
1643 empty = (sm->sm_space == 0);
1644 mutex_exit(sm->sm_lock);
1646 return (empty);
1650 * Reassess DTLs after a config change or scrub completion.
1652 void
1653 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1655 spa_t *spa = vd->vdev_spa;
1656 avl_tree_t reftree;
1657 int minref;
1659 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1661 for (int c = 0; c < vd->vdev_children; c++)
1662 vdev_dtl_reassess(vd->vdev_child[c], txg,
1663 scrub_txg, scrub_done);
1665 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1666 return;
1668 if (vd->vdev_ops->vdev_op_leaf) {
1669 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1671 mutex_enter(&vd->vdev_dtl_lock);
1672 if (scrub_txg != 0 &&
1673 (spa->spa_scrub_started ||
1674 (scn && scn->scn_phys.scn_errors == 0))) {
1676 * We completed a scrub up to scrub_txg. If we
1677 * did it without rebooting, then the scrub dtl
1678 * will be valid, so excise the old region and
1679 * fold in the scrub dtl. Otherwise, leave the
1680 * dtl as-is if there was an error.
1682 * There's little trick here: to excise the beginning
1683 * of the DTL_MISSING map, we put it into a reference
1684 * tree and then add a segment with refcnt -1 that
1685 * covers the range [0, scrub_txg). This means
1686 * that each txg in that range has refcnt -1 or 0.
1687 * We then add DTL_SCRUB with a refcnt of 2, so that
1688 * entries in the range [0, scrub_txg) will have a
1689 * positive refcnt -- either 1 or 2. We then convert
1690 * the reference tree into the new DTL_MISSING map.
1692 space_map_ref_create(&reftree);
1693 space_map_ref_add_map(&reftree,
1694 &vd->vdev_dtl[DTL_MISSING], 1);
1695 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1696 space_map_ref_add_map(&reftree,
1697 &vd->vdev_dtl[DTL_SCRUB], 2);
1698 space_map_ref_generate_map(&reftree,
1699 &vd->vdev_dtl[DTL_MISSING], 1);
1700 space_map_ref_destroy(&reftree);
1702 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1703 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1704 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1705 if (scrub_done)
1706 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1707 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1708 if (!vdev_readable(vd))
1709 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1710 else
1711 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1712 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1713 mutex_exit(&vd->vdev_dtl_lock);
1715 if (txg != 0)
1716 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1717 return;
1720 mutex_enter(&vd->vdev_dtl_lock);
1721 for (int t = 0; t < DTL_TYPES; t++) {
1722 /* account for child's outage in parent's missing map */
1723 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1724 if (t == DTL_SCRUB)
1725 continue; /* leaf vdevs only */
1726 if (t == DTL_PARTIAL)
1727 minref = 1; /* i.e. non-zero */
1728 else if (vd->vdev_nparity != 0)
1729 minref = vd->vdev_nparity + 1; /* RAID-Z */
1730 else
1731 minref = vd->vdev_children; /* any kind of mirror */
1732 space_map_ref_create(&reftree);
1733 for (int c = 0; c < vd->vdev_children; c++) {
1734 vdev_t *cvd = vd->vdev_child[c];
1735 mutex_enter(&cvd->vdev_dtl_lock);
1736 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1737 mutex_exit(&cvd->vdev_dtl_lock);
1739 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1740 space_map_ref_destroy(&reftree);
1742 mutex_exit(&vd->vdev_dtl_lock);
1745 static int
1746 vdev_dtl_load(vdev_t *vd)
1748 spa_t *spa = vd->vdev_spa;
1749 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1750 objset_t *mos = spa->spa_meta_objset;
1751 dmu_buf_t *db;
1752 int error;
1754 ASSERT(vd->vdev_children == 0);
1756 if (smo->smo_object == 0)
1757 return (0);
1759 ASSERT(!vd->vdev_ishole);
1761 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1762 return (error);
1764 ASSERT3U(db->db_size, >=, sizeof (*smo));
1765 bcopy(db->db_data, smo, sizeof (*smo));
1766 dmu_buf_rele(db, FTAG);
1768 mutex_enter(&vd->vdev_dtl_lock);
1769 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1770 NULL, SM_ALLOC, smo, mos);
1771 mutex_exit(&vd->vdev_dtl_lock);
1773 return (error);
1776 void
1777 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1779 spa_t *spa = vd->vdev_spa;
1780 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1781 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1782 objset_t *mos = spa->spa_meta_objset;
1783 space_map_t smsync;
1784 kmutex_t smlock;
1785 dmu_buf_t *db;
1786 dmu_tx_t *tx;
1788 ASSERT(!vd->vdev_ishole);
1790 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1792 if (vd->vdev_detached) {
1793 if (smo->smo_object != 0) {
1794 int err = dmu_object_free(mos, smo->smo_object, tx);
1795 ASSERT3U(err, ==, 0);
1796 smo->smo_object = 0;
1798 dmu_tx_commit(tx);
1799 return;
1802 if (smo->smo_object == 0) {
1803 ASSERT(smo->smo_objsize == 0);
1804 ASSERT(smo->smo_alloc == 0);
1805 smo->smo_object = dmu_object_alloc(mos,
1806 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1807 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1808 ASSERT(smo->smo_object != 0);
1809 vdev_config_dirty(vd->vdev_top);
1812 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1814 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1815 &smlock);
1817 mutex_enter(&smlock);
1819 mutex_enter(&vd->vdev_dtl_lock);
1820 space_map_walk(sm, space_map_add, &smsync);
1821 mutex_exit(&vd->vdev_dtl_lock);
1823 space_map_truncate(smo, mos, tx);
1824 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1826 space_map_destroy(&smsync);
1828 mutex_exit(&smlock);
1829 mutex_destroy(&smlock);
1831 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1832 dmu_buf_will_dirty(db, tx);
1833 ASSERT3U(db->db_size, >=, sizeof (*smo));
1834 bcopy(smo, db->db_data, sizeof (*smo));
1835 dmu_buf_rele(db, FTAG);
1837 dmu_tx_commit(tx);
1841 * Determine whether the specified vdev can be offlined/detached/removed
1842 * without losing data.
1844 boolean_t
1845 vdev_dtl_required(vdev_t *vd)
1847 spa_t *spa = vd->vdev_spa;
1848 vdev_t *tvd = vd->vdev_top;
1849 uint8_t cant_read = vd->vdev_cant_read;
1850 boolean_t required;
1852 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1854 if (vd == spa->spa_root_vdev || vd == tvd)
1855 return (B_TRUE);
1858 * Temporarily mark the device as unreadable, and then determine
1859 * whether this results in any DTL outages in the top-level vdev.
1860 * If not, we can safely offline/detach/remove the device.
1862 vd->vdev_cant_read = B_TRUE;
1863 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1864 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1865 vd->vdev_cant_read = cant_read;
1866 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1868 if (!required && zio_injection_enabled)
1869 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1871 return (required);
1875 * Determine if resilver is needed, and if so the txg range.
1877 boolean_t
1878 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1880 boolean_t needed = B_FALSE;
1881 uint64_t thismin = UINT64_MAX;
1882 uint64_t thismax = 0;
1884 if (vd->vdev_children == 0) {
1885 mutex_enter(&vd->vdev_dtl_lock);
1886 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1887 vdev_writeable(vd)) {
1888 space_seg_t *ss;
1890 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1891 thismin = ss->ss_start - 1;
1892 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1893 thismax = ss->ss_end;
1894 needed = B_TRUE;
1896 mutex_exit(&vd->vdev_dtl_lock);
1897 } else {
1898 for (int c = 0; c < vd->vdev_children; c++) {
1899 vdev_t *cvd = vd->vdev_child[c];
1900 uint64_t cmin, cmax;
1902 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1903 thismin = MIN(thismin, cmin);
1904 thismax = MAX(thismax, cmax);
1905 needed = B_TRUE;
1910 if (needed && minp) {
1911 *minp = thismin;
1912 *maxp = thismax;
1914 return (needed);
1917 void
1918 vdev_load(vdev_t *vd)
1921 * Recursively load all children.
1923 for (int c = 0; c < vd->vdev_children; c++)
1924 vdev_load(vd->vdev_child[c]);
1927 * If this is a top-level vdev, initialize its metaslabs.
1929 if (vd == vd->vdev_top && !vd->vdev_ishole &&
1930 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1931 vdev_metaslab_init(vd, 0) != 0))
1932 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1933 VDEV_AUX_CORRUPT_DATA);
1936 * If this is a leaf vdev, load its DTL.
1938 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1939 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1940 VDEV_AUX_CORRUPT_DATA);
1944 * The special vdev case is used for hot spares and l2cache devices. Its
1945 * sole purpose it to set the vdev state for the associated vdev. To do this,
1946 * we make sure that we can open the underlying device, then try to read the
1947 * label, and make sure that the label is sane and that it hasn't been
1948 * repurposed to another pool.
1951 vdev_validate_aux(vdev_t *vd)
1953 nvlist_t *label;
1954 uint64_t guid, version;
1955 uint64_t state;
1957 if (!vdev_readable(vd))
1958 return (0);
1960 if ((label = vdev_label_read_config(vd)) == NULL) {
1961 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1962 VDEV_AUX_CORRUPT_DATA);
1963 return (-1);
1966 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1967 version > SPA_VERSION ||
1968 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1969 guid != vd->vdev_guid ||
1970 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1971 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1972 VDEV_AUX_CORRUPT_DATA);
1973 nvlist_free(label);
1974 return (-1);
1978 * We don't actually check the pool state here. If it's in fact in
1979 * use by another pool, we update this fact on the fly when requested.
1981 nvlist_free(label);
1982 return (0);
1985 void
1986 vdev_remove(vdev_t *vd, uint64_t txg)
1988 spa_t *spa = vd->vdev_spa;
1989 objset_t *mos = spa->spa_meta_objset;
1990 dmu_tx_t *tx;
1992 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1994 if (vd->vdev_dtl_smo.smo_object) {
1995 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1996 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1997 vd->vdev_dtl_smo.smo_object = 0;
2000 if (vd->vdev_ms != NULL) {
2001 for (int m = 0; m < vd->vdev_ms_count; m++) {
2002 metaslab_t *msp = vd->vdev_ms[m];
2004 if (msp == NULL || msp->ms_smo.smo_object == 0)
2005 continue;
2007 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2008 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2009 msp->ms_smo.smo_object = 0;
2013 if (vd->vdev_ms_array) {
2014 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2015 vd->vdev_ms_array = 0;
2016 vd->vdev_ms_shift = 0;
2018 dmu_tx_commit(tx);
2021 void
2022 vdev_sync_done(vdev_t *vd, uint64_t txg)
2024 metaslab_t *msp;
2025 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2027 ASSERT(!vd->vdev_ishole);
2029 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2030 metaslab_sync_done(msp, txg);
2032 if (reassess)
2033 metaslab_sync_reassess(vd->vdev_mg);
2036 void
2037 vdev_sync(vdev_t *vd, uint64_t txg)
2039 spa_t *spa = vd->vdev_spa;
2040 vdev_t *lvd;
2041 metaslab_t *msp;
2042 dmu_tx_t *tx;
2044 ASSERT(!vd->vdev_ishole);
2046 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2047 ASSERT(vd == vd->vdev_top);
2048 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2049 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2050 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2051 ASSERT(vd->vdev_ms_array != 0);
2052 vdev_config_dirty(vd);
2053 dmu_tx_commit(tx);
2057 * Remove the metadata associated with this vdev once it's empty.
2059 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2060 vdev_remove(vd, txg);
2062 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2063 metaslab_sync(msp, txg);
2064 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2067 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2068 vdev_dtl_sync(lvd, txg);
2070 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2073 uint64_t
2074 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2076 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2080 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2081 * not be opened, and no I/O is attempted.
2084 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2086 vdev_t *vd, *tvd;
2088 spa_vdev_state_enter(spa, SCL_NONE);
2090 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2091 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2093 if (!vd->vdev_ops->vdev_op_leaf)
2094 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2096 tvd = vd->vdev_top;
2099 * We don't directly use the aux state here, but if we do a
2100 * vdev_reopen(), we need this value to be present to remember why we
2101 * were faulted.
2103 vd->vdev_label_aux = aux;
2106 * Faulted state takes precedence over degraded.
2108 vd->vdev_delayed_close = B_FALSE;
2109 vd->vdev_faulted = 1ULL;
2110 vd->vdev_degraded = 0ULL;
2111 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2114 * If this device has the only valid copy of the data, then
2115 * back off and simply mark the vdev as degraded instead.
2117 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2118 vd->vdev_degraded = 1ULL;
2119 vd->vdev_faulted = 0ULL;
2122 * If we reopen the device and it's not dead, only then do we
2123 * mark it degraded.
2125 vdev_reopen(tvd);
2127 if (vdev_readable(vd))
2128 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2131 return (spa_vdev_state_exit(spa, vd, 0));
2135 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2136 * user that something is wrong. The vdev continues to operate as normal as far
2137 * as I/O is concerned.
2140 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2142 vdev_t *vd;
2144 spa_vdev_state_enter(spa, SCL_NONE);
2146 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2147 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2149 if (!vd->vdev_ops->vdev_op_leaf)
2150 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2153 * If the vdev is already faulted, then don't do anything.
2155 if (vd->vdev_faulted || vd->vdev_degraded)
2156 return (spa_vdev_state_exit(spa, NULL, 0));
2158 vd->vdev_degraded = 1ULL;
2159 if (!vdev_is_dead(vd))
2160 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2161 aux);
2163 return (spa_vdev_state_exit(spa, vd, 0));
2167 * Online the given vdev. If 'unspare' is set, it implies two things. First,
2168 * any attached spare device should be detached when the device finishes
2169 * resilvering. Second, the online should be treated like a 'test' online case,
2170 * so no FMA events are generated if the device fails to open.
2173 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2175 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2177 spa_vdev_state_enter(spa, SCL_NONE);
2179 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2180 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2182 if (!vd->vdev_ops->vdev_op_leaf)
2183 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2185 tvd = vd->vdev_top;
2186 vd->vdev_offline = B_FALSE;
2187 vd->vdev_tmpoffline = B_FALSE;
2188 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2189 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2191 /* XXX - L2ARC 1.0 does not support expansion */
2192 if (!vd->vdev_aux) {
2193 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2194 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2197 vdev_reopen(tvd);
2198 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2200 if (!vd->vdev_aux) {
2201 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2202 pvd->vdev_expanding = B_FALSE;
2205 if (newstate)
2206 *newstate = vd->vdev_state;
2207 if ((flags & ZFS_ONLINE_UNSPARE) &&
2208 !vdev_is_dead(vd) && vd->vdev_parent &&
2209 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2210 vd->vdev_parent->vdev_child[0] == vd)
2211 vd->vdev_unspare = B_TRUE;
2213 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2215 /* XXX - L2ARC 1.0 does not support expansion */
2216 if (vd->vdev_aux)
2217 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2218 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2220 return (spa_vdev_state_exit(spa, vd, 0));
2223 static int
2224 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2226 vdev_t *vd, *tvd;
2227 int error = 0;
2228 uint64_t generation;
2229 metaslab_group_t *mg;
2231 top:
2232 spa_vdev_state_enter(spa, SCL_ALLOC);
2234 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2235 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2237 if (!vd->vdev_ops->vdev_op_leaf)
2238 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2240 tvd = vd->vdev_top;
2241 mg = tvd->vdev_mg;
2242 generation = spa->spa_config_generation + 1;
2245 * If the device isn't already offline, try to offline it.
2247 if (!vd->vdev_offline) {
2249 * If this device has the only valid copy of some data,
2250 * don't allow it to be offlined. Log devices are always
2251 * expendable.
2253 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2254 vdev_dtl_required(vd))
2255 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2258 * If the top-level is a slog and it has had allocations
2259 * then proceed. We check that the vdev's metaslab group
2260 * is not NULL since it's possible that we may have just
2261 * added this vdev but not yet initialized its metaslabs.
2263 if (tvd->vdev_islog && mg != NULL) {
2265 * Prevent any future allocations.
2267 metaslab_group_passivate(mg);
2268 (void) spa_vdev_state_exit(spa, vd, 0);
2270 error = spa_offline_log(spa);
2272 spa_vdev_state_enter(spa, SCL_ALLOC);
2275 * Check to see if the config has changed.
2277 if (error || generation != spa->spa_config_generation) {
2278 metaslab_group_activate(mg);
2279 if (error)
2280 return (spa_vdev_state_exit(spa,
2281 vd, error));
2282 (void) spa_vdev_state_exit(spa, vd, 0);
2283 goto top;
2285 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2289 * Offline this device and reopen its top-level vdev.
2290 * If the top-level vdev is a log device then just offline
2291 * it. Otherwise, if this action results in the top-level
2292 * vdev becoming unusable, undo it and fail the request.
2294 vd->vdev_offline = B_TRUE;
2295 vdev_reopen(tvd);
2297 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2298 vdev_is_dead(tvd)) {
2299 vd->vdev_offline = B_FALSE;
2300 vdev_reopen(tvd);
2301 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2305 * Add the device back into the metaslab rotor so that
2306 * once we online the device it's open for business.
2308 if (tvd->vdev_islog && mg != NULL)
2309 metaslab_group_activate(mg);
2312 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2314 return (spa_vdev_state_exit(spa, vd, 0));
2318 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2320 int error;
2322 mutex_enter(&spa->spa_vdev_top_lock);
2323 error = vdev_offline_locked(spa, guid, flags);
2324 mutex_exit(&spa->spa_vdev_top_lock);
2326 return (error);
2330 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2331 * vdev_offline(), we assume the spa config is locked. We also clear all
2332 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2334 void
2335 vdev_clear(spa_t *spa, vdev_t *vd)
2337 vdev_t *rvd = spa->spa_root_vdev;
2339 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2341 if (vd == NULL)
2342 vd = rvd;
2344 vd->vdev_stat.vs_read_errors = 0;
2345 vd->vdev_stat.vs_write_errors = 0;
2346 vd->vdev_stat.vs_checksum_errors = 0;
2348 for (int c = 0; c < vd->vdev_children; c++)
2349 vdev_clear(spa, vd->vdev_child[c]);
2352 * If we're in the FAULTED state or have experienced failed I/O, then
2353 * clear the persistent state and attempt to reopen the device. We
2354 * also mark the vdev config dirty, so that the new faulted state is
2355 * written out to disk.
2357 if (vd->vdev_faulted || vd->vdev_degraded ||
2358 !vdev_readable(vd) || !vdev_writeable(vd)) {
2361 * When reopening in reponse to a clear event, it may be due to
2362 * a fmadm repair request. In this case, if the device is
2363 * still broken, we want to still post the ereport again.
2365 vd->vdev_forcefault = B_TRUE;
2367 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2368 vd->vdev_cant_read = B_FALSE;
2369 vd->vdev_cant_write = B_FALSE;
2371 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2373 vd->vdev_forcefault = B_FALSE;
2375 if (vd != rvd && vdev_writeable(vd->vdev_top))
2376 vdev_state_dirty(vd->vdev_top);
2378 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2379 spa_async_request(spa, SPA_ASYNC_RESILVER);
2381 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2385 * When clearing a FMA-diagnosed fault, we always want to
2386 * unspare the device, as we assume that the original spare was
2387 * done in response to the FMA fault.
2389 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2390 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2391 vd->vdev_parent->vdev_child[0] == vd)
2392 vd->vdev_unspare = B_TRUE;
2395 boolean_t
2396 vdev_is_dead(vdev_t *vd)
2399 * Holes and missing devices are always considered "dead".
2400 * This simplifies the code since we don't have to check for
2401 * these types of devices in the various code paths.
2402 * Instead we rely on the fact that we skip over dead devices
2403 * before issuing I/O to them.
2405 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2406 vd->vdev_ops == &vdev_missing_ops);
2409 boolean_t
2410 vdev_readable(vdev_t *vd)
2412 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2415 boolean_t
2416 vdev_writeable(vdev_t *vd)
2418 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2421 boolean_t
2422 vdev_allocatable(vdev_t *vd)
2424 uint64_t state = vd->vdev_state;
2427 * We currently allow allocations from vdevs which may be in the
2428 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2429 * fails to reopen then we'll catch it later when we're holding
2430 * the proper locks. Note that we have to get the vdev state
2431 * in a local variable because although it changes atomically,
2432 * we're asking two separate questions about it.
2434 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2435 !vd->vdev_cant_write && !vd->vdev_ishole);
2438 boolean_t
2439 vdev_accessible(vdev_t *vd, zio_t *zio)
2441 ASSERT(zio->io_vd == vd);
2443 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2444 return (B_FALSE);
2446 if (zio->io_type == ZIO_TYPE_READ)
2447 return (!vd->vdev_cant_read);
2449 if (zio->io_type == ZIO_TYPE_WRITE)
2450 return (!vd->vdev_cant_write);
2452 return (B_TRUE);
2456 * Get statistics for the given vdev.
2458 void
2459 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2461 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2463 mutex_enter(&vd->vdev_stat_lock);
2464 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2465 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2466 vs->vs_state = vd->vdev_state;
2467 vs->vs_rsize = vdev_get_min_asize(vd);
2468 if (vd->vdev_ops->vdev_op_leaf)
2469 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2470 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2471 mutex_exit(&vd->vdev_stat_lock);
2474 * If we're getting stats on the root vdev, aggregate the I/O counts
2475 * over all top-level vdevs (i.e. the direct children of the root).
2477 if (vd == rvd) {
2478 for (int c = 0; c < rvd->vdev_children; c++) {
2479 vdev_t *cvd = rvd->vdev_child[c];
2480 vdev_stat_t *cvs = &cvd->vdev_stat;
2482 mutex_enter(&vd->vdev_stat_lock);
2483 for (int t = 0; t < ZIO_TYPES; t++) {
2484 vs->vs_ops[t] += cvs->vs_ops[t];
2485 vs->vs_bytes[t] += cvs->vs_bytes[t];
2487 cvs->vs_scan_removing = cvd->vdev_removing;
2488 mutex_exit(&vd->vdev_stat_lock);
2493 void
2494 vdev_clear_stats(vdev_t *vd)
2496 mutex_enter(&vd->vdev_stat_lock);
2497 vd->vdev_stat.vs_space = 0;
2498 vd->vdev_stat.vs_dspace = 0;
2499 vd->vdev_stat.vs_alloc = 0;
2500 mutex_exit(&vd->vdev_stat_lock);
2503 void
2504 vdev_scan_stat_init(vdev_t *vd)
2506 vdev_stat_t *vs = &vd->vdev_stat;
2508 for (int c = 0; c < vd->vdev_children; c++)
2509 vdev_scan_stat_init(vd->vdev_child[c]);
2511 mutex_enter(&vd->vdev_stat_lock);
2512 vs->vs_scan_processed = 0;
2513 mutex_exit(&vd->vdev_stat_lock);
2516 void
2517 vdev_stat_update(zio_t *zio, uint64_t psize)
2519 spa_t *spa = zio->io_spa;
2520 vdev_t *rvd = spa->spa_root_vdev;
2521 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2522 vdev_t *pvd;
2523 uint64_t txg = zio->io_txg;
2524 vdev_stat_t *vs = &vd->vdev_stat;
2525 zio_type_t type = zio->io_type;
2526 int flags = zio->io_flags;
2529 * If this i/o is a gang leader, it didn't do any actual work.
2531 if (zio->io_gang_tree)
2532 return;
2534 if (zio->io_error == 0) {
2536 * If this is a root i/o, don't count it -- we've already
2537 * counted the top-level vdevs, and vdev_get_stats() will
2538 * aggregate them when asked. This reduces contention on
2539 * the root vdev_stat_lock and implicitly handles blocks
2540 * that compress away to holes, for which there is no i/o.
2541 * (Holes never create vdev children, so all the counters
2542 * remain zero, which is what we want.)
2544 * Note: this only applies to successful i/o (io_error == 0)
2545 * because unlike i/o counts, errors are not additive.
2546 * When reading a ditto block, for example, failure of
2547 * one top-level vdev does not imply a root-level error.
2549 if (vd == rvd)
2550 return;
2552 ASSERT(vd == zio->io_vd);
2554 if (flags & ZIO_FLAG_IO_BYPASS)
2555 return;
2557 mutex_enter(&vd->vdev_stat_lock);
2559 if (flags & ZIO_FLAG_IO_REPAIR) {
2560 if (flags & ZIO_FLAG_SCAN_THREAD) {
2561 dsl_scan_phys_t *scn_phys =
2562 &spa->spa_dsl_pool->dp_scan->scn_phys;
2563 uint64_t *processed = &scn_phys->scn_processed;
2565 /* XXX cleanup? */
2566 if (vd->vdev_ops->vdev_op_leaf)
2567 atomic_add_64(processed, psize);
2568 vs->vs_scan_processed += psize;
2571 if (flags & ZIO_FLAG_SELF_HEAL)
2572 vs->vs_self_healed += psize;
2575 vs->vs_ops[type]++;
2576 vs->vs_bytes[type] += psize;
2578 mutex_exit(&vd->vdev_stat_lock);
2579 return;
2582 if (flags & ZIO_FLAG_SPECULATIVE)
2583 return;
2586 * If this is an I/O error that is going to be retried, then ignore the
2587 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2588 * hard errors, when in reality they can happen for any number of
2589 * innocuous reasons (bus resets, MPxIO link failure, etc).
2591 if (zio->io_error == EIO &&
2592 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2593 return;
2596 * Intent logs writes won't propagate their error to the root
2597 * I/O so don't mark these types of failures as pool-level
2598 * errors.
2600 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2601 return;
2603 mutex_enter(&vd->vdev_stat_lock);
2604 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2605 if (zio->io_error == ECKSUM)
2606 vs->vs_checksum_errors++;
2607 else
2608 vs->vs_read_errors++;
2610 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2611 vs->vs_write_errors++;
2612 mutex_exit(&vd->vdev_stat_lock);
2614 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2615 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2616 (flags & ZIO_FLAG_SCAN_THREAD) ||
2617 spa->spa_claiming)) {
2619 * This is either a normal write (not a repair), or it's
2620 * a repair induced by the scrub thread, or it's a repair
2621 * made by zil_claim() during spa_load() in the first txg.
2622 * In the normal case, we commit the DTL change in the same
2623 * txg as the block was born. In the scrub-induced repair
2624 * case, we know that scrubs run in first-pass syncing context,
2625 * so we commit the DTL change in spa_syncing_txg(spa).
2626 * In the zil_claim() case, we commit in spa_first_txg(spa).
2628 * We currently do not make DTL entries for failed spontaneous
2629 * self-healing writes triggered by normal (non-scrubbing)
2630 * reads, because we have no transactional context in which to
2631 * do so -- and it's not clear that it'd be desirable anyway.
2633 if (vd->vdev_ops->vdev_op_leaf) {
2634 uint64_t commit_txg = txg;
2635 if (flags & ZIO_FLAG_SCAN_THREAD) {
2636 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2637 ASSERT(spa_sync_pass(spa) == 1);
2638 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2639 commit_txg = spa_syncing_txg(spa);
2640 } else if (spa->spa_claiming) {
2641 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2642 commit_txg = spa_first_txg(spa);
2644 ASSERT(commit_txg >= spa_syncing_txg(spa));
2645 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2646 return;
2647 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2648 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2649 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2651 if (vd != rvd)
2652 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2657 * Update the in-core space usage stats for this vdev, its metaslab class,
2658 * and the root vdev.
2660 void
2661 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2662 int64_t space_delta)
2664 int64_t dspace_delta = space_delta;
2665 spa_t *spa = vd->vdev_spa;
2666 vdev_t *rvd = spa->spa_root_vdev;
2667 metaslab_group_t *mg = vd->vdev_mg;
2668 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2670 ASSERT(vd == vd->vdev_top);
2673 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2674 * factor. We must calculate this here and not at the root vdev
2675 * because the root vdev's psize-to-asize is simply the max of its
2676 * childrens', thus not accurate enough for us.
2678 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2679 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2680 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2681 vd->vdev_deflate_ratio;
2683 mutex_enter(&vd->vdev_stat_lock);
2684 vd->vdev_stat.vs_alloc += alloc_delta;
2685 vd->vdev_stat.vs_space += space_delta;
2686 vd->vdev_stat.vs_dspace += dspace_delta;
2687 mutex_exit(&vd->vdev_stat_lock);
2689 if (mc == spa_normal_class(spa)) {
2690 mutex_enter(&rvd->vdev_stat_lock);
2691 rvd->vdev_stat.vs_alloc += alloc_delta;
2692 rvd->vdev_stat.vs_space += space_delta;
2693 rvd->vdev_stat.vs_dspace += dspace_delta;
2694 mutex_exit(&rvd->vdev_stat_lock);
2697 if (mc != NULL) {
2698 ASSERT(rvd == vd->vdev_parent);
2699 ASSERT(vd->vdev_ms_count != 0);
2701 metaslab_class_space_update(mc,
2702 alloc_delta, defer_delta, space_delta, dspace_delta);
2707 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2708 * so that it will be written out next time the vdev configuration is synced.
2709 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2711 void
2712 vdev_config_dirty(vdev_t *vd)
2714 spa_t *spa = vd->vdev_spa;
2715 vdev_t *rvd = spa->spa_root_vdev;
2716 int c;
2718 ASSERT(spa_writeable(spa));
2721 * If this is an aux vdev (as with l2cache and spare devices), then we
2722 * update the vdev config manually and set the sync flag.
2724 if (vd->vdev_aux != NULL) {
2725 spa_aux_vdev_t *sav = vd->vdev_aux;
2726 nvlist_t **aux;
2727 uint_t naux;
2729 for (c = 0; c < sav->sav_count; c++) {
2730 if (sav->sav_vdevs[c] == vd)
2731 break;
2734 if (c == sav->sav_count) {
2736 * We're being removed. There's nothing more to do.
2738 ASSERT(sav->sav_sync == B_TRUE);
2739 return;
2742 sav->sav_sync = B_TRUE;
2744 if (nvlist_lookup_nvlist_array(sav->sav_config,
2745 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2746 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2747 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2750 ASSERT(c < naux);
2753 * Setting the nvlist in the middle if the array is a little
2754 * sketchy, but it will work.
2756 nvlist_free(aux[c]);
2757 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2759 return;
2763 * The dirty list is protected by the SCL_CONFIG lock. The caller
2764 * must either hold SCL_CONFIG as writer, or must be the sync thread
2765 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2766 * so this is sufficient to ensure mutual exclusion.
2768 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2769 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2770 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2772 if (vd == rvd) {
2773 for (c = 0; c < rvd->vdev_children; c++)
2774 vdev_config_dirty(rvd->vdev_child[c]);
2775 } else {
2776 ASSERT(vd == vd->vdev_top);
2778 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2779 !vd->vdev_ishole)
2780 list_insert_head(&spa->spa_config_dirty_list, vd);
2784 void
2785 vdev_config_clean(vdev_t *vd)
2787 spa_t *spa = vd->vdev_spa;
2789 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2790 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2791 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2793 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2794 list_remove(&spa->spa_config_dirty_list, vd);
2798 * Mark a top-level vdev's state as dirty, so that the next pass of
2799 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2800 * the state changes from larger config changes because they require
2801 * much less locking, and are often needed for administrative actions.
2803 void
2804 vdev_state_dirty(vdev_t *vd)
2806 spa_t *spa = vd->vdev_spa;
2808 ASSERT(spa_writeable(spa));
2809 ASSERT(vd == vd->vdev_top);
2812 * The state list is protected by the SCL_STATE lock. The caller
2813 * must either hold SCL_STATE as writer, or must be the sync thread
2814 * (which holds SCL_STATE as reader). There's only one sync thread,
2815 * so this is sufficient to ensure mutual exclusion.
2817 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2818 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2819 spa_config_held(spa, SCL_STATE, RW_READER)));
2821 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2822 list_insert_head(&spa->spa_state_dirty_list, vd);
2825 void
2826 vdev_state_clean(vdev_t *vd)
2828 spa_t *spa = vd->vdev_spa;
2830 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2831 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2832 spa_config_held(spa, SCL_STATE, RW_READER)));
2834 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2835 list_remove(&spa->spa_state_dirty_list, vd);
2839 * Propagate vdev state up from children to parent.
2841 void
2842 vdev_propagate_state(vdev_t *vd)
2844 spa_t *spa = vd->vdev_spa;
2845 vdev_t *rvd = spa->spa_root_vdev;
2846 int degraded = 0, faulted = 0;
2847 int corrupted = 0;
2848 vdev_t *child;
2850 if (vd->vdev_children > 0) {
2851 for (int c = 0; c < vd->vdev_children; c++) {
2852 child = vd->vdev_child[c];
2855 * Don't factor holes into the decision.
2857 if (child->vdev_ishole)
2858 continue;
2860 if (!vdev_readable(child) ||
2861 (!vdev_writeable(child) && spa_writeable(spa))) {
2863 * Root special: if there is a top-level log
2864 * device, treat the root vdev as if it were
2865 * degraded.
2867 if (child->vdev_islog && vd == rvd)
2868 degraded++;
2869 else
2870 faulted++;
2871 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2872 degraded++;
2875 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2876 corrupted++;
2879 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2882 * Root special: if there is a top-level vdev that cannot be
2883 * opened due to corrupted metadata, then propagate the root
2884 * vdev's aux state as 'corrupt' rather than 'insufficient
2885 * replicas'.
2887 if (corrupted && vd == rvd &&
2888 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2889 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2890 VDEV_AUX_CORRUPT_DATA);
2893 if (vd->vdev_parent)
2894 vdev_propagate_state(vd->vdev_parent);
2898 * Set a vdev's state. If this is during an open, we don't update the parent
2899 * state, because we're in the process of opening children depth-first.
2900 * Otherwise, we propagate the change to the parent.
2902 * If this routine places a device in a faulted state, an appropriate ereport is
2903 * generated.
2905 void
2906 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2908 uint64_t save_state;
2909 spa_t *spa = vd->vdev_spa;
2911 if (state == vd->vdev_state) {
2912 vd->vdev_stat.vs_aux = aux;
2913 return;
2916 save_state = vd->vdev_state;
2918 vd->vdev_state = state;
2919 vd->vdev_stat.vs_aux = aux;
2922 * If we are setting the vdev state to anything but an open state, then
2923 * always close the underlying device unless the device has requested
2924 * a delayed close (i.e. we're about to remove or fault the device).
2925 * Otherwise, we keep accessible but invalid devices open forever.
2926 * We don't call vdev_close() itself, because that implies some extra
2927 * checks (offline, etc) that we don't want here. This is limited to
2928 * leaf devices, because otherwise closing the device will affect other
2929 * children.
2931 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2932 vd->vdev_ops->vdev_op_leaf)
2933 vd->vdev_ops->vdev_op_close(vd);
2936 * If we have brought this vdev back into service, we need
2937 * to notify fmd so that it can gracefully repair any outstanding
2938 * cases due to a missing device. We do this in all cases, even those
2939 * that probably don't correlate to a repaired fault. This is sure to
2940 * catch all cases, and we let the zfs-retire agent sort it out. If
2941 * this is a transient state it's OK, as the retire agent will
2942 * double-check the state of the vdev before repairing it.
2944 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2945 vd->vdev_prevstate != state)
2946 zfs_post_state_change(spa, vd);
2948 if (vd->vdev_removed &&
2949 state == VDEV_STATE_CANT_OPEN &&
2950 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2952 * If the previous state is set to VDEV_STATE_REMOVED, then this
2953 * device was previously marked removed and someone attempted to
2954 * reopen it. If this failed due to a nonexistent device, then
2955 * keep the device in the REMOVED state. We also let this be if
2956 * it is one of our special test online cases, which is only
2957 * attempting to online the device and shouldn't generate an FMA
2958 * fault.
2960 vd->vdev_state = VDEV_STATE_REMOVED;
2961 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2962 } else if (state == VDEV_STATE_REMOVED) {
2963 vd->vdev_removed = B_TRUE;
2964 } else if (state == VDEV_STATE_CANT_OPEN) {
2966 * If we fail to open a vdev during an import or recovery, we
2967 * mark it as "not available", which signifies that it was
2968 * never there to begin with. Failure to open such a device
2969 * is not considered an error.
2971 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2972 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2973 vd->vdev_ops->vdev_op_leaf)
2974 vd->vdev_not_present = 1;
2977 * Post the appropriate ereport. If the 'prevstate' field is
2978 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2979 * that this is part of a vdev_reopen(). In this case, we don't
2980 * want to post the ereport if the device was already in the
2981 * CANT_OPEN state beforehand.
2983 * If the 'checkremove' flag is set, then this is an attempt to
2984 * online the device in response to an insertion event. If we
2985 * hit this case, then we have detected an insertion event for a
2986 * faulted or offline device that wasn't in the removed state.
2987 * In this scenario, we don't post an ereport because we are
2988 * about to replace the device, or attempt an online with
2989 * vdev_forcefault, which will generate the fault for us.
2991 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2992 !vd->vdev_not_present && !vd->vdev_checkremove &&
2993 vd != spa->spa_root_vdev) {
2994 const char *class;
2996 switch (aux) {
2997 case VDEV_AUX_OPEN_FAILED:
2998 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2999 break;
3000 case VDEV_AUX_CORRUPT_DATA:
3001 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3002 break;
3003 case VDEV_AUX_NO_REPLICAS:
3004 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3005 break;
3006 case VDEV_AUX_BAD_GUID_SUM:
3007 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3008 break;
3009 case VDEV_AUX_TOO_SMALL:
3010 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3011 break;
3012 case VDEV_AUX_BAD_LABEL:
3013 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3014 break;
3015 default:
3016 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3019 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3022 /* Erase any notion of persistent removed state */
3023 vd->vdev_removed = B_FALSE;
3024 } else {
3025 vd->vdev_removed = B_FALSE;
3028 if (!isopen && vd->vdev_parent)
3029 vdev_propagate_state(vd->vdev_parent);
3033 * Check the vdev configuration to ensure that it's capable of supporting
3034 * a root pool. Currently, we do not support RAID-Z or partial configuration.
3035 * In addition, only a single top-level vdev is allowed and none of the leaves
3036 * can be wholedisks.
3038 boolean_t
3039 vdev_is_bootable(vdev_t *vd)
3041 if (!vd->vdev_ops->vdev_op_leaf) {
3042 char *vdev_type = vd->vdev_ops->vdev_op_type;
3044 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3045 vd->vdev_children > 1) {
3046 return (B_FALSE);
3047 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3048 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3049 return (B_FALSE);
3051 } else if (vd->vdev_wholedisk == 1) {
3052 return (B_FALSE);
3055 for (int c = 0; c < vd->vdev_children; c++) {
3056 if (!vdev_is_bootable(vd->vdev_child[c]))
3057 return (B_FALSE);
3059 return (B_TRUE);
3063 * Load the state from the original vdev tree (ovd) which
3064 * we've retrieved from the MOS config object. If the original
3065 * vdev was offline or faulted then we transfer that state to the
3066 * device in the current vdev tree (nvd).
3068 void
3069 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3071 spa_t *spa = nvd->vdev_spa;
3073 ASSERT(nvd->vdev_top->vdev_islog);
3074 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3075 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3077 for (int c = 0; c < nvd->vdev_children; c++)
3078 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3080 if (nvd->vdev_ops->vdev_op_leaf) {
3082 * Restore the persistent vdev state
3084 nvd->vdev_offline = ovd->vdev_offline;
3085 nvd->vdev_faulted = ovd->vdev_faulted;
3086 nvd->vdev_degraded = ovd->vdev_degraded;
3087 nvd->vdev_removed = ovd->vdev_removed;
3092 * Determine if a log device has valid content. If the vdev was
3093 * removed or faulted in the MOS config then we know that
3094 * the content on the log device has already been written to the pool.
3096 boolean_t
3097 vdev_log_state_valid(vdev_t *vd)
3099 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3100 !vd->vdev_removed)
3101 return (B_TRUE);
3103 for (int c = 0; c < vd->vdev_children; c++)
3104 if (vdev_log_state_valid(vd->vdev_child[c]))
3105 return (B_TRUE);
3107 return (B_FALSE);
3111 * Expand a vdev if possible.
3113 void
3114 vdev_expand(vdev_t *vd, uint64_t txg)
3116 ASSERT(vd->vdev_top == vd);
3117 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3119 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3120 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3121 vdev_config_dirty(vd);
3126 * Split a vdev.
3128 void
3129 vdev_split(vdev_t *vd)
3131 vdev_t *cvd, *pvd = vd->vdev_parent;
3133 vdev_remove_child(pvd, vd);
3134 vdev_compact_children(pvd);
3136 cvd = pvd->vdev_child[0];
3137 if (pvd->vdev_children == 1) {
3138 vdev_remove_parent(cvd);
3139 cvd->vdev_splitting = B_TRUE;
3141 vdev_propagate_state(cvd);