8023 Panic destroying a metaslab deferred range tree
[unleashed.git] / usr / src / uts / common / fs / zfs / zap_leaf.c
blob35dca89728fb0ef1e82fb20b95ab3da561166b93
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
29 * The 512-byte leaf is broken into 32 16-byte chunks.
30 * chunk number n means l_chunk[n], even though the header precedes it.
31 * the names are stored null-terminated.
34 #include <sys/zio.h>
35 #include <sys/spa.h>
36 #include <sys/dmu.h>
37 #include <sys/zfs_context.h>
38 #include <sys/fs/zfs.h>
39 #include <sys/zap.h>
40 #include <sys/zap_impl.h>
41 #include <sys/zap_leaf.h>
42 #include <sys/arc.h>
44 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry);
46 #define CHAIN_END 0xffff /* end of the chunk chain */
48 /* half the (current) minimum block size */
49 #define MAX_ARRAY_BYTES (8<<10)
51 #define LEAF_HASH(l, h) \
52 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
53 ((h) >> \
54 (64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len)))
56 #define LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)])
58 extern inline zap_leaf_phys_t *zap_leaf_phys(zap_leaf_t *l);
60 static void
61 zap_memset(void *a, int c, size_t n)
63 char *cp = a;
64 char *cpend = cp + n;
66 while (cp < cpend)
67 *cp++ = c;
70 static void
71 stv(int len, void *addr, uint64_t value)
73 switch (len) {
74 case 1:
75 *(uint8_t *)addr = value;
76 return;
77 case 2:
78 *(uint16_t *)addr = value;
79 return;
80 case 4:
81 *(uint32_t *)addr = value;
82 return;
83 case 8:
84 *(uint64_t *)addr = value;
85 return;
87 ASSERT(!"bad int len");
90 static uint64_t
91 ldv(int len, const void *addr)
93 switch (len) {
94 case 1:
95 return (*(uint8_t *)addr);
96 case 2:
97 return (*(uint16_t *)addr);
98 case 4:
99 return (*(uint32_t *)addr);
100 case 8:
101 return (*(uint64_t *)addr);
103 ASSERT(!"bad int len");
104 return (0xFEEDFACEDEADBEEFULL);
107 void
108 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size)
110 int i;
111 zap_leaf_t l;
112 dmu_buf_t l_dbuf;
114 l_dbuf.db_data = buf;
115 l.l_bs = highbit64(size) - 1;
116 l.l_dbuf = &l_dbuf;
118 buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type);
119 buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix);
120 buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic);
121 buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree);
122 buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries);
123 buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len);
124 buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist);
126 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
127 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
129 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
130 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
131 struct zap_leaf_entry *le;
133 switch (lc->l_free.lf_type) {
134 case ZAP_CHUNK_ENTRY:
135 le = &lc->l_entry;
137 le->le_type = BSWAP_8(le->le_type);
138 le->le_value_intlen = BSWAP_8(le->le_value_intlen);
139 le->le_next = BSWAP_16(le->le_next);
140 le->le_name_chunk = BSWAP_16(le->le_name_chunk);
141 le->le_name_numints = BSWAP_16(le->le_name_numints);
142 le->le_value_chunk = BSWAP_16(le->le_value_chunk);
143 le->le_value_numints = BSWAP_16(le->le_value_numints);
144 le->le_cd = BSWAP_32(le->le_cd);
145 le->le_hash = BSWAP_64(le->le_hash);
146 break;
147 case ZAP_CHUNK_FREE:
148 lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type);
149 lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next);
150 break;
151 case ZAP_CHUNK_ARRAY:
152 lc->l_array.la_type = BSWAP_8(lc->l_array.la_type);
153 lc->l_array.la_next = BSWAP_16(lc->l_array.la_next);
154 /* la_array doesn't need swapping */
155 break;
156 default:
157 ASSERT(!"bad leaf type");
162 void
163 zap_leaf_init(zap_leaf_t *l, boolean_t sort)
165 int i;
167 l->l_bs = highbit64(l->l_dbuf->db_size) - 1;
168 zap_memset(&zap_leaf_phys(l)->l_hdr, 0,
169 sizeof (struct zap_leaf_header));
170 zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
171 2*ZAP_LEAF_HASH_NUMENTRIES(l));
172 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
173 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
174 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
176 ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
177 zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF;
178 zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
179 zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
180 if (sort)
181 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
185 * Routines which manipulate leaf chunks (l_chunk[]).
188 static uint16_t
189 zap_leaf_chunk_alloc(zap_leaf_t *l)
191 int chunk;
193 ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0);
195 chunk = zap_leaf_phys(l)->l_hdr.lh_freelist;
196 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
197 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
199 zap_leaf_phys(l)->l_hdr.lh_freelist =
200 ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
202 zap_leaf_phys(l)->l_hdr.lh_nfree--;
204 return (chunk);
207 static void
208 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
210 struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
211 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
212 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
213 ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
215 zlf->lf_type = ZAP_CHUNK_FREE;
216 zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist;
217 bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */
218 zap_leaf_phys(l)->l_hdr.lh_freelist = chunk;
220 zap_leaf_phys(l)->l_hdr.lh_nfree++;
224 * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
227 static uint16_t
228 zap_leaf_array_create(zap_leaf_t *l, const char *buf,
229 int integer_size, int num_integers)
231 uint16_t chunk_head;
232 uint16_t *chunkp = &chunk_head;
233 int byten = 0;
234 uint64_t value = 0;
235 int shift = (integer_size-1)*8;
236 int len = num_integers;
238 ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES);
240 while (len > 0) {
241 uint16_t chunk = zap_leaf_chunk_alloc(l);
242 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
243 int i;
245 la->la_type = ZAP_CHUNK_ARRAY;
246 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
247 if (byten == 0)
248 value = ldv(integer_size, buf);
249 la->la_array[i] = value >> shift;
250 value <<= 8;
251 if (++byten == integer_size) {
252 byten = 0;
253 buf += integer_size;
254 if (--len == 0)
255 break;
259 *chunkp = chunk;
260 chunkp = &la->la_next;
262 *chunkp = CHAIN_END;
264 return (chunk_head);
267 static void
268 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
270 uint16_t chunk = *chunkp;
272 *chunkp = CHAIN_END;
274 while (chunk != CHAIN_END) {
275 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
276 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
277 ZAP_CHUNK_ARRAY);
278 zap_leaf_chunk_free(l, chunk);
279 chunk = nextchunk;
283 /* array_len and buf_len are in integers, not bytes */
284 static void
285 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
286 int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
287 void *buf)
289 int len = MIN(array_len, buf_len);
290 int byten = 0;
291 uint64_t value = 0;
292 char *p = buf;
294 ASSERT3U(array_int_len, <=, buf_int_len);
296 /* Fast path for one 8-byte integer */
297 if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
298 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
299 uint8_t *ip = la->la_array;
300 uint64_t *buf64 = buf;
302 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
303 (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
304 (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
305 (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
306 return;
309 /* Fast path for an array of 1-byte integers (eg. the entry name) */
310 if (array_int_len == 1 && buf_int_len == 1 &&
311 buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
312 while (chunk != CHAIN_END) {
313 struct zap_leaf_array *la =
314 &ZAP_LEAF_CHUNK(l, chunk).l_array;
315 bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES);
316 p += ZAP_LEAF_ARRAY_BYTES;
317 chunk = la->la_next;
319 return;
322 while (len > 0) {
323 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
324 int i;
326 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
327 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
328 value = (value << 8) | la->la_array[i];
329 byten++;
330 if (byten == array_int_len) {
331 stv(buf_int_len, p, value);
332 byten = 0;
333 len--;
334 if (len == 0)
335 return;
336 p += buf_int_len;
339 chunk = la->la_next;
343 static boolean_t
344 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
345 int chunk, int array_numints)
347 int bseen = 0;
349 if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
350 uint64_t *thiskey;
351 boolean_t match;
353 ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
354 thiskey = kmem_alloc(array_numints * sizeof (*thiskey),
355 KM_SLEEP);
357 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
358 sizeof (*thiskey), array_numints, thiskey);
359 match = bcmp(thiskey, zn->zn_key_orig,
360 array_numints * sizeof (*thiskey)) == 0;
361 kmem_free(thiskey, array_numints * sizeof (*thiskey));
362 return (match);
365 ASSERT(zn->zn_key_intlen == 1);
366 if (zn->zn_matchtype & MT_NORMALIZE) {
367 char *thisname = kmem_alloc(array_numints, KM_SLEEP);
368 boolean_t match;
370 zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
371 sizeof (char), array_numints, thisname);
372 match = zap_match(zn, thisname);
373 kmem_free(thisname, array_numints);
374 return (match);
378 * Fast path for exact matching.
379 * First check that the lengths match, so that we don't read
380 * past the end of the zn_key_orig array.
382 if (array_numints != zn->zn_key_orig_numints)
383 return (B_FALSE);
384 while (bseen < array_numints) {
385 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
386 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
387 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
388 if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread))
389 break;
390 chunk = la->la_next;
391 bseen += toread;
393 return (bseen == array_numints);
397 * Routines which manipulate leaf entries.
401 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
403 uint16_t *chunkp;
404 struct zap_leaf_entry *le;
406 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
408 for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
409 *chunkp != CHAIN_END; chunkp = &le->le_next) {
410 uint16_t chunk = *chunkp;
411 le = ZAP_LEAF_ENTRY(l, chunk);
413 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
414 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
416 if (le->le_hash != zn->zn_hash)
417 continue;
420 * NB: the entry chain is always sorted by cd on
421 * normalized zap objects, so this will find the
422 * lowest-cd match for MT_NORMALIZE.
424 ASSERT((zn->zn_matchtype == 0) ||
425 (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
426 if (zap_leaf_array_match(l, zn, le->le_name_chunk,
427 le->le_name_numints)) {
428 zeh->zeh_num_integers = le->le_value_numints;
429 zeh->zeh_integer_size = le->le_value_intlen;
430 zeh->zeh_cd = le->le_cd;
431 zeh->zeh_hash = le->le_hash;
432 zeh->zeh_chunkp = chunkp;
433 zeh->zeh_leaf = l;
434 return (0);
438 return (SET_ERROR(ENOENT));
441 /* Return (h1,cd1 >= h2,cd2) */
442 #define HCD_GTEQ(h1, cd1, h2, cd2) \
443 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
446 zap_leaf_lookup_closest(zap_leaf_t *l,
447 uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
449 uint16_t chunk;
450 uint64_t besth = -1ULL;
451 uint32_t bestcd = -1U;
452 uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
453 uint16_t lh;
454 struct zap_leaf_entry *le;
456 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
458 for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
459 for (chunk = zap_leaf_phys(l)->l_hash[lh];
460 chunk != CHAIN_END; chunk = le->le_next) {
461 le = ZAP_LEAF_ENTRY(l, chunk);
463 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
464 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
466 if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
467 HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
468 ASSERT3U(bestlh, >=, lh);
469 bestlh = lh;
470 besth = le->le_hash;
471 bestcd = le->le_cd;
473 zeh->zeh_num_integers = le->le_value_numints;
474 zeh->zeh_integer_size = le->le_value_intlen;
475 zeh->zeh_cd = le->le_cd;
476 zeh->zeh_hash = le->le_hash;
477 zeh->zeh_fakechunk = chunk;
478 zeh->zeh_chunkp = &zeh->zeh_fakechunk;
479 zeh->zeh_leaf = l;
484 return (bestcd == -1U ? ENOENT : 0);
488 zap_entry_read(const zap_entry_handle_t *zeh,
489 uint8_t integer_size, uint64_t num_integers, void *buf)
491 struct zap_leaf_entry *le =
492 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
493 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
495 if (le->le_value_intlen > integer_size)
496 return (SET_ERROR(EINVAL));
498 zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
499 le->le_value_intlen, le->le_value_numints,
500 integer_size, num_integers, buf);
502 if (zeh->zeh_num_integers > num_integers)
503 return (SET_ERROR(EOVERFLOW));
504 return (0);
509 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
510 char *buf)
512 struct zap_leaf_entry *le =
513 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
514 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
516 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
517 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
518 le->le_name_numints, 8, buflen / 8, buf);
519 } else {
520 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
521 le->le_name_numints, 1, buflen, buf);
523 if (le->le_name_numints > buflen)
524 return (SET_ERROR(EOVERFLOW));
525 return (0);
529 zap_entry_update(zap_entry_handle_t *zeh,
530 uint8_t integer_size, uint64_t num_integers, const void *buf)
532 int delta_chunks;
533 zap_leaf_t *l = zeh->zeh_leaf;
534 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
536 delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
537 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);
539 if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks)
540 return (SET_ERROR(EAGAIN));
542 zap_leaf_array_free(l, &le->le_value_chunk);
543 le->le_value_chunk =
544 zap_leaf_array_create(l, buf, integer_size, num_integers);
545 le->le_value_numints = num_integers;
546 le->le_value_intlen = integer_size;
547 return (0);
550 void
551 zap_entry_remove(zap_entry_handle_t *zeh)
553 uint16_t entry_chunk;
554 struct zap_leaf_entry *le;
555 zap_leaf_t *l = zeh->zeh_leaf;
557 ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
559 entry_chunk = *zeh->zeh_chunkp;
560 le = ZAP_LEAF_ENTRY(l, entry_chunk);
561 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
563 zap_leaf_array_free(l, &le->le_name_chunk);
564 zap_leaf_array_free(l, &le->le_value_chunk);
566 *zeh->zeh_chunkp = le->le_next;
567 zap_leaf_chunk_free(l, entry_chunk);
569 zap_leaf_phys(l)->l_hdr.lh_nentries--;
573 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
574 uint8_t integer_size, uint64_t num_integers, const void *buf,
575 zap_entry_handle_t *zeh)
577 uint16_t chunk;
578 uint16_t *chunkp;
579 struct zap_leaf_entry *le;
580 uint64_t valuelen;
581 int numchunks;
582 uint64_t h = zn->zn_hash;
584 valuelen = integer_size * num_integers;
586 numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
587 zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
588 if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
589 return (E2BIG);
591 if (cd == ZAP_NEED_CD) {
592 /* find the lowest unused cd */
593 if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
594 cd = 0;
596 for (chunk = *LEAF_HASH_ENTPTR(l, h);
597 chunk != CHAIN_END; chunk = le->le_next) {
598 le = ZAP_LEAF_ENTRY(l, chunk);
599 if (le->le_cd > cd)
600 break;
601 if (le->le_hash == h) {
602 ASSERT3U(cd, ==, le->le_cd);
603 cd++;
606 } else {
607 /* old unsorted format; do it the O(n^2) way */
608 for (cd = 0; ; cd++) {
609 for (chunk = *LEAF_HASH_ENTPTR(l, h);
610 chunk != CHAIN_END; chunk = le->le_next) {
611 le = ZAP_LEAF_ENTRY(l, chunk);
612 if (le->le_hash == h &&
613 le->le_cd == cd) {
614 break;
617 /* If this cd is not in use, we are good. */
618 if (chunk == CHAIN_END)
619 break;
623 * We would run out of space in a block before we could
624 * store enough entries to run out of CD values.
626 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
629 if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks)
630 return (SET_ERROR(EAGAIN));
632 /* make the entry */
633 chunk = zap_leaf_chunk_alloc(l);
634 le = ZAP_LEAF_ENTRY(l, chunk);
635 le->le_type = ZAP_CHUNK_ENTRY;
636 le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
637 zn->zn_key_intlen, zn->zn_key_orig_numints);
638 le->le_name_numints = zn->zn_key_orig_numints;
639 le->le_value_chunk =
640 zap_leaf_array_create(l, buf, integer_size, num_integers);
641 le->le_value_numints = num_integers;
642 le->le_value_intlen = integer_size;
643 le->le_hash = h;
644 le->le_cd = cd;
646 /* link it into the hash chain */
647 /* XXX if we did the search above, we could just use that */
648 chunkp = zap_leaf_rehash_entry(l, chunk);
650 zap_leaf_phys(l)->l_hdr.lh_nentries++;
652 zeh->zeh_leaf = l;
653 zeh->zeh_num_integers = num_integers;
654 zeh->zeh_integer_size = le->le_value_intlen;
655 zeh->zeh_cd = le->le_cd;
656 zeh->zeh_hash = le->le_hash;
657 zeh->zeh_chunkp = chunkp;
659 return (0);
663 * Determine if there is another entry with the same normalized form.
664 * For performance purposes, either zn or name must be provided (the
665 * other can be NULL). Note, there usually won't be any hash
666 * conflicts, in which case we don't need the concatenated/normalized
667 * form of the name. But all callers have one of these on hand anyway,
668 * so might as well take advantage. A cleaner but slower interface
669 * would accept neither argument, and compute the normalized name as
670 * needed (using zap_name_alloc(zap_entry_read_name(zeh))).
672 boolean_t
673 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
674 const char *name, zap_t *zap)
676 uint64_t chunk;
677 struct zap_leaf_entry *le;
678 boolean_t allocdzn = B_FALSE;
680 if (zap->zap_normflags == 0)
681 return (B_FALSE);
683 for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
684 chunk != CHAIN_END; chunk = le->le_next) {
685 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
686 if (le->le_hash != zeh->zeh_hash)
687 continue;
688 if (le->le_cd == zeh->zeh_cd)
689 continue;
691 if (zn == NULL) {
692 zn = zap_name_alloc(zap, name, MT_NORMALIZE);
693 allocdzn = B_TRUE;
695 if (zap_leaf_array_match(zeh->zeh_leaf, zn,
696 le->le_name_chunk, le->le_name_numints)) {
697 if (allocdzn)
698 zap_name_free(zn);
699 return (B_TRUE);
702 if (allocdzn)
703 zap_name_free(zn);
704 return (B_FALSE);
708 * Routines for transferring entries between leafs.
711 static uint16_t *
712 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
714 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
715 struct zap_leaf_entry *le2;
716 uint16_t *chunkp;
719 * keep the entry chain sorted by cd
720 * NB: this will not cause problems for unsorted leafs, though
721 * it is unnecessary there.
723 for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
724 *chunkp != CHAIN_END; chunkp = &le2->le_next) {
725 le2 = ZAP_LEAF_ENTRY(l, *chunkp);
726 if (le2->le_cd > le->le_cd)
727 break;
730 le->le_next = *chunkp;
731 *chunkp = entry;
732 return (chunkp);
735 static uint16_t
736 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
738 uint16_t new_chunk;
739 uint16_t *nchunkp = &new_chunk;
741 while (chunk != CHAIN_END) {
742 uint16_t nchunk = zap_leaf_chunk_alloc(nl);
743 struct zap_leaf_array *nla =
744 &ZAP_LEAF_CHUNK(nl, nchunk).l_array;
745 struct zap_leaf_array *la =
746 &ZAP_LEAF_CHUNK(l, chunk).l_array;
747 int nextchunk = la->la_next;
749 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
750 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
752 *nla = *la; /* structure assignment */
754 zap_leaf_chunk_free(l, chunk);
755 chunk = nextchunk;
756 *nchunkp = nchunk;
757 nchunkp = &nla->la_next;
759 *nchunkp = CHAIN_END;
760 return (new_chunk);
763 static void
764 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl)
766 struct zap_leaf_entry *le, *nle;
767 uint16_t chunk;
769 le = ZAP_LEAF_ENTRY(l, entry);
770 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
772 chunk = zap_leaf_chunk_alloc(nl);
773 nle = ZAP_LEAF_ENTRY(nl, chunk);
774 *nle = *le; /* structure assignment */
776 (void) zap_leaf_rehash_entry(nl, chunk);
778 nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
779 nle->le_value_chunk =
780 zap_leaf_transfer_array(l, le->le_value_chunk, nl);
782 zap_leaf_chunk_free(l, entry);
784 zap_leaf_phys(l)->l_hdr.lh_nentries--;
785 zap_leaf_phys(nl)->l_hdr.lh_nentries++;
789 * Transfer the entries whose hash prefix ends in 1 to the new leaf.
791 void
792 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
794 int i;
795 int bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len;
797 /* set new prefix and prefix_len */
798 zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1;
799 zap_leaf_phys(l)->l_hdr.lh_prefix_len++;
800 zap_leaf_phys(nl)->l_hdr.lh_prefix =
801 zap_leaf_phys(l)->l_hdr.lh_prefix | 1;
802 zap_leaf_phys(nl)->l_hdr.lh_prefix_len =
803 zap_leaf_phys(l)->l_hdr.lh_prefix_len;
805 /* break existing hash chains */
806 zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
807 2*ZAP_LEAF_HASH_NUMENTRIES(l));
809 if (sort)
810 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
813 * Transfer entries whose hash bit 'bit' is set to nl; rehash
814 * the remaining entries
816 * NB: We could find entries via the hashtable instead. That
817 * would be O(hashents+numents) rather than O(numblks+numents),
818 * but this accesses memory more sequentially, and when we're
819 * called, the block is usually pretty full.
821 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
822 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
823 if (le->le_type != ZAP_CHUNK_ENTRY)
824 continue;
826 if (le->le_hash & (1ULL << bit))
827 zap_leaf_transfer_entry(l, i, nl);
828 else
829 (void) zap_leaf_rehash_entry(l, i);
833 void
834 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
836 int i, n;
838 n = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
839 zap_leaf_phys(l)->l_hdr.lh_prefix_len;
840 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
841 zs->zs_leafs_with_2n_pointers[n]++;
844 n = zap_leaf_phys(l)->l_hdr.lh_nentries/5;
845 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
846 zs->zs_blocks_with_n5_entries[n]++;
848 n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
849 zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
850 (1<<FZAP_BLOCK_SHIFT(zap));
851 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
852 zs->zs_blocks_n_tenths_full[n]++;
854 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
855 int nentries = 0;
856 int chunk = zap_leaf_phys(l)->l_hash[i];
858 while (chunk != CHAIN_END) {
859 struct zap_leaf_entry *le =
860 ZAP_LEAF_ENTRY(l, chunk);
862 n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
863 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
864 le->le_value_intlen);
865 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
866 zs->zs_entries_using_n_chunks[n]++;
868 chunk = le->le_next;
869 nentries++;
872 n = nentries;
873 n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
874 zs->zs_buckets_with_n_entries[n]++;