8023 Panic destroying a metaslab deferred range tree
[unleashed.git] / usr / src / uts / common / fs / zfs / dsl_dir.c
blobb4e86ea7929d200467ce5b0b58d2e2da66239011
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
30 #include <sys/dmu.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_prop.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dsl_deleg.h>
38 #include <sys/dmu_impl.h>
39 #include <sys/spa.h>
40 #include <sys/metaslab.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/arc.h>
44 #include <sys/sunddi.h>
45 #include <sys/zfeature.h>
46 #include <sys/policy.h>
47 #include <sys/zfs_znode.h>
48 #include "zfs_namecheck.h"
49 #include "zfs_prop.h"
52 * Filesystem and Snapshot Limits
53 * ------------------------------
55 * These limits are used to restrict the number of filesystems and/or snapshots
56 * that can be created at a given level in the tree or below. A typical
57 * use-case is with a delegated dataset where the administrator wants to ensure
58 * that a user within the zone is not creating too many additional filesystems
59 * or snapshots, even though they're not exceeding their space quota.
61 * The filesystem and snapshot counts are stored as extensible properties. This
62 * capability is controlled by a feature flag and must be enabled to be used.
63 * Once enabled, the feature is not active until the first limit is set. At
64 * that point, future operations to create/destroy filesystems or snapshots
65 * will validate and update the counts.
67 * Because the count properties will not exist before the feature is active,
68 * the counts are updated when a limit is first set on an uninitialized
69 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
70 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
71 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
72 * snapshot count properties on a node indicate uninitialized counts on that
73 * node.) When first setting a limit on an uninitialized node, the code starts
74 * at the filesystem with the new limit and descends into all sub-filesystems
75 * to add the count properties.
77 * In practice this is lightweight since a limit is typically set when the
78 * filesystem is created and thus has no children. Once valid, changing the
79 * limit value won't require a re-traversal since the counts are already valid.
80 * When recursively fixing the counts, if a node with a limit is encountered
81 * during the descent, the counts are known to be valid and there is no need to
82 * descend into that filesystem's children. The counts on filesystems above the
83 * one with the new limit will still be uninitialized, unless a limit is
84 * eventually set on one of those filesystems. The counts are always recursively
85 * updated when a limit is set on a dataset, unless there is already a limit.
86 * When a new limit value is set on a filesystem with an existing limit, it is
87 * possible for the new limit to be less than the current count at that level
88 * since a user who can change the limit is also allowed to exceed the limit.
90 * Once the feature is active, then whenever a filesystem or snapshot is
91 * created, the code recurses up the tree, validating the new count against the
92 * limit at each initialized level. In practice, most levels will not have a
93 * limit set. If there is a limit at any initialized level up the tree, the
94 * check must pass or the creation will fail. Likewise, when a filesystem or
95 * snapshot is destroyed, the counts are recursively adjusted all the way up
96 * the initizized nodes in the tree. Renaming a filesystem into different point
97 * in the tree will first validate, then update the counts on each branch up to
98 * the common ancestor. A receive will also validate the counts and then update
99 * them.
101 * An exception to the above behavior is that the limit is not enforced if the
102 * user has permission to modify the limit. This is primarily so that
103 * recursive snapshots in the global zone always work. We want to prevent a
104 * denial-of-service in which a lower level delegated dataset could max out its
105 * limit and thus block recursive snapshots from being taken in the global zone.
106 * Because of this, it is possible for the snapshot count to be over the limit
107 * and snapshots taken in the global zone could cause a lower level dataset to
108 * hit or exceed its limit. The administrator taking the global zone recursive
109 * snapshot should be aware of this side-effect and behave accordingly.
110 * For consistency, the filesystem limit is also not enforced if the user can
111 * modify the limit.
113 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
114 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
115 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
116 * dsl_dir_init_fs_ss_count().
118 * There is a special case when we receive a filesystem that already exists. In
119 * this case a temporary clone name of %X is created (see dmu_recv_begin). We
120 * never update the filesystem counts for temporary clones.
122 * Likewise, we do not update the snapshot counts for temporary snapshots,
123 * such as those created by zfs diff.
126 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
128 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
130 static void
131 dsl_dir_evict_async(void *dbu)
133 dsl_dir_t *dd = dbu;
134 dsl_pool_t *dp = dd->dd_pool;
135 int t;
137 dd->dd_dbuf = NULL;
139 for (t = 0; t < TXG_SIZE; t++) {
140 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
141 ASSERT(dd->dd_tempreserved[t] == 0);
142 ASSERT(dd->dd_space_towrite[t] == 0);
145 if (dd->dd_parent)
146 dsl_dir_async_rele(dd->dd_parent, dd);
148 spa_async_close(dd->dd_pool->dp_spa, dd);
150 dsl_prop_fini(dd);
151 mutex_destroy(&dd->dd_lock);
152 kmem_free(dd, sizeof (dsl_dir_t));
156 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
157 const char *tail, void *tag, dsl_dir_t **ddp)
159 dmu_buf_t *dbuf;
160 dsl_dir_t *dd;
161 int err;
163 ASSERT(dsl_pool_config_held(dp));
165 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
166 if (err != 0)
167 return (err);
168 dd = dmu_buf_get_user(dbuf);
169 #ifdef ZFS_DEBUG
171 dmu_object_info_t doi;
172 dmu_object_info_from_db(dbuf, &doi);
173 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
174 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
176 #endif
177 if (dd == NULL) {
178 dsl_dir_t *winner;
180 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
181 dd->dd_object = ddobj;
182 dd->dd_dbuf = dbuf;
183 dd->dd_pool = dp;
184 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
185 dsl_prop_init(dd);
187 dsl_dir_snap_cmtime_update(dd);
189 if (dsl_dir_phys(dd)->dd_parent_obj) {
190 err = dsl_dir_hold_obj(dp,
191 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
192 &dd->dd_parent);
193 if (err != 0)
194 goto errout;
195 if (tail) {
196 #ifdef ZFS_DEBUG
197 uint64_t foundobj;
199 err = zap_lookup(dp->dp_meta_objset,
200 dsl_dir_phys(dd->dd_parent)->
201 dd_child_dir_zapobj, tail,
202 sizeof (foundobj), 1, &foundobj);
203 ASSERT(err || foundobj == ddobj);
204 #endif
205 (void) strcpy(dd->dd_myname, tail);
206 } else {
207 err = zap_value_search(dp->dp_meta_objset,
208 dsl_dir_phys(dd->dd_parent)->
209 dd_child_dir_zapobj,
210 ddobj, 0, dd->dd_myname);
212 if (err != 0)
213 goto errout;
214 } else {
215 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa));
218 if (dsl_dir_is_clone(dd)) {
219 dmu_buf_t *origin_bonus;
220 dsl_dataset_phys_t *origin_phys;
223 * We can't open the origin dataset, because
224 * that would require opening this dsl_dir.
225 * Just look at its phys directly instead.
227 err = dmu_bonus_hold(dp->dp_meta_objset,
228 dsl_dir_phys(dd)->dd_origin_obj, FTAG,
229 &origin_bonus);
230 if (err != 0)
231 goto errout;
232 origin_phys = origin_bonus->db_data;
233 dd->dd_origin_txg =
234 origin_phys->ds_creation_txg;
235 dmu_buf_rele(origin_bonus, FTAG);
238 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
239 &dd->dd_dbuf);
240 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
241 if (winner != NULL) {
242 if (dd->dd_parent)
243 dsl_dir_rele(dd->dd_parent, dd);
244 dsl_prop_fini(dd);
245 mutex_destroy(&dd->dd_lock);
246 kmem_free(dd, sizeof (dsl_dir_t));
247 dd = winner;
248 } else {
249 spa_open_ref(dp->dp_spa, dd);
254 * The dsl_dir_t has both open-to-close and instantiate-to-evict
255 * holds on the spa. We need the open-to-close holds because
256 * otherwise the spa_refcnt wouldn't change when we open a
257 * dir which the spa also has open, so we could incorrectly
258 * think it was OK to unload/export/destroy the pool. We need
259 * the instantiate-to-evict hold because the dsl_dir_t has a
260 * pointer to the dd_pool, which has a pointer to the spa_t.
262 spa_open_ref(dp->dp_spa, tag);
263 ASSERT3P(dd->dd_pool, ==, dp);
264 ASSERT3U(dd->dd_object, ==, ddobj);
265 ASSERT3P(dd->dd_dbuf, ==, dbuf);
266 *ddp = dd;
267 return (0);
269 errout:
270 if (dd->dd_parent)
271 dsl_dir_rele(dd->dd_parent, dd);
272 dsl_prop_fini(dd);
273 mutex_destroy(&dd->dd_lock);
274 kmem_free(dd, sizeof (dsl_dir_t));
275 dmu_buf_rele(dbuf, tag);
276 return (err);
279 void
280 dsl_dir_rele(dsl_dir_t *dd, void *tag)
282 dprintf_dd(dd, "%s\n", "");
283 spa_close(dd->dd_pool->dp_spa, tag);
284 dmu_buf_rele(dd->dd_dbuf, tag);
288 * Remove a reference to the given dsl dir that is being asynchronously
289 * released. Async releases occur from a taskq performing eviction of
290 * dsl datasets and dirs. This process is identical to a normal release
291 * with the exception of using the async API for releasing the reference on
292 * the spa.
294 void
295 dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
297 dprintf_dd(dd, "%s\n", "");
298 spa_async_close(dd->dd_pool->dp_spa, tag);
299 dmu_buf_rele(dd->dd_dbuf, tag);
302 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
303 void
304 dsl_dir_name(dsl_dir_t *dd, char *buf)
306 if (dd->dd_parent) {
307 dsl_dir_name(dd->dd_parent, buf);
308 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
309 ZFS_MAX_DATASET_NAME_LEN);
310 } else {
311 buf[0] = '\0';
313 if (!MUTEX_HELD(&dd->dd_lock)) {
315 * recursive mutex so that we can use
316 * dprintf_dd() with dd_lock held
318 mutex_enter(&dd->dd_lock);
319 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
320 <, ZFS_MAX_DATASET_NAME_LEN);
321 mutex_exit(&dd->dd_lock);
322 } else {
323 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
324 <, ZFS_MAX_DATASET_NAME_LEN);
328 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
330 dsl_dir_namelen(dsl_dir_t *dd)
332 int result = 0;
334 if (dd->dd_parent) {
335 /* parent's name + 1 for the "/" */
336 result = dsl_dir_namelen(dd->dd_parent) + 1;
339 if (!MUTEX_HELD(&dd->dd_lock)) {
340 /* see dsl_dir_name */
341 mutex_enter(&dd->dd_lock);
342 result += strlen(dd->dd_myname);
343 mutex_exit(&dd->dd_lock);
344 } else {
345 result += strlen(dd->dd_myname);
348 return (result);
351 static int
352 getcomponent(const char *path, char *component, const char **nextp)
354 char *p;
356 if ((path == NULL) || (path[0] == '\0'))
357 return (SET_ERROR(ENOENT));
358 /* This would be a good place to reserve some namespace... */
359 p = strpbrk(path, "/@");
360 if (p && (p[1] == '/' || p[1] == '@')) {
361 /* two separators in a row */
362 return (SET_ERROR(EINVAL));
364 if (p == NULL || p == path) {
366 * if the first thing is an @ or /, it had better be an
367 * @ and it had better not have any more ats or slashes,
368 * and it had better have something after the @.
370 if (p != NULL &&
371 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
372 return (SET_ERROR(EINVAL));
373 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
374 return (SET_ERROR(ENAMETOOLONG));
375 (void) strcpy(component, path);
376 p = NULL;
377 } else if (p[0] == '/') {
378 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
379 return (SET_ERROR(ENAMETOOLONG));
380 (void) strncpy(component, path, p - path);
381 component[p - path] = '\0';
382 p++;
383 } else if (p[0] == '@') {
385 * if the next separator is an @, there better not be
386 * any more slashes.
388 if (strchr(path, '/'))
389 return (SET_ERROR(EINVAL));
390 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
391 return (SET_ERROR(ENAMETOOLONG));
392 (void) strncpy(component, path, p - path);
393 component[p - path] = '\0';
394 } else {
395 panic("invalid p=%p", (void *)p);
397 *nextp = p;
398 return (0);
402 * Return the dsl_dir_t, and possibly the last component which couldn't
403 * be found in *tail. The name must be in the specified dsl_pool_t. This
404 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
405 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
406 * (*tail)[0] == '@' means that the last component is a snapshot.
409 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
410 dsl_dir_t **ddp, const char **tailp)
412 char buf[ZFS_MAX_DATASET_NAME_LEN];
413 const char *spaname, *next, *nextnext = NULL;
414 int err;
415 dsl_dir_t *dd;
416 uint64_t ddobj;
418 err = getcomponent(name, buf, &next);
419 if (err != 0)
420 return (err);
422 /* Make sure the name is in the specified pool. */
423 spaname = spa_name(dp->dp_spa);
424 if (strcmp(buf, spaname) != 0)
425 return (SET_ERROR(EXDEV));
427 ASSERT(dsl_pool_config_held(dp));
429 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
430 if (err != 0) {
431 return (err);
434 while (next != NULL) {
435 dsl_dir_t *child_dd;
436 err = getcomponent(next, buf, &nextnext);
437 if (err != 0)
438 break;
439 ASSERT(next[0] != '\0');
440 if (next[0] == '@')
441 break;
442 dprintf("looking up %s in obj%lld\n",
443 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj);
445 err = zap_lookup(dp->dp_meta_objset,
446 dsl_dir_phys(dd)->dd_child_dir_zapobj,
447 buf, sizeof (ddobj), 1, &ddobj);
448 if (err != 0) {
449 if (err == ENOENT)
450 err = 0;
451 break;
454 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
455 if (err != 0)
456 break;
457 dsl_dir_rele(dd, tag);
458 dd = child_dd;
459 next = nextnext;
462 if (err != 0) {
463 dsl_dir_rele(dd, tag);
464 return (err);
468 * It's an error if there's more than one component left, or
469 * tailp==NULL and there's any component left.
471 if (next != NULL &&
472 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
473 /* bad path name */
474 dsl_dir_rele(dd, tag);
475 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
476 err = SET_ERROR(ENOENT);
478 if (tailp != NULL)
479 *tailp = next;
480 *ddp = dd;
481 return (err);
485 * If the counts are already initialized for this filesystem and its
486 * descendants then do nothing, otherwise initialize the counts.
488 * The counts on this filesystem, and those below, may be uninitialized due to
489 * either the use of a pre-existing pool which did not support the
490 * filesystem/snapshot limit feature, or one in which the feature had not yet
491 * been enabled.
493 * Recursively descend the filesystem tree and update the filesystem/snapshot
494 * counts on each filesystem below, then update the cumulative count on the
495 * current filesystem. If the filesystem already has a count set on it,
496 * then we know that its counts, and the counts on the filesystems below it,
497 * are already correct, so we don't have to update this filesystem.
499 static void
500 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
502 uint64_t my_fs_cnt = 0;
503 uint64_t my_ss_cnt = 0;
504 dsl_pool_t *dp = dd->dd_pool;
505 objset_t *os = dp->dp_meta_objset;
506 zap_cursor_t *zc;
507 zap_attribute_t *za;
508 dsl_dataset_t *ds;
510 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
511 ASSERT(dsl_pool_config_held(dp));
512 ASSERT(dmu_tx_is_syncing(tx));
514 dsl_dir_zapify(dd, tx);
517 * If the filesystem count has already been initialized then we
518 * don't need to recurse down any further.
520 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
521 return;
523 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
524 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
526 /* Iterate my child dirs */
527 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
528 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
529 dsl_dir_t *chld_dd;
530 uint64_t count;
532 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
533 &chld_dd));
536 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and
537 * temporary datasets.
539 if (chld_dd->dd_myname[0] == '$' ||
540 chld_dd->dd_myname[0] == '%') {
541 dsl_dir_rele(chld_dd, FTAG);
542 continue;
545 my_fs_cnt++; /* count this child */
547 dsl_dir_init_fs_ss_count(chld_dd, tx);
549 VERIFY0(zap_lookup(os, chld_dd->dd_object,
550 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
551 my_fs_cnt += count;
552 VERIFY0(zap_lookup(os, chld_dd->dd_object,
553 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
554 my_ss_cnt += count;
556 dsl_dir_rele(chld_dd, FTAG);
558 zap_cursor_fini(zc);
559 /* Count my snapshots (we counted children's snapshots above) */
560 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
561 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
563 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
564 zap_cursor_retrieve(zc, za) == 0;
565 zap_cursor_advance(zc)) {
566 /* Don't count temporary snapshots */
567 if (za->za_name[0] != '%')
568 my_ss_cnt++;
570 zap_cursor_fini(zc);
572 dsl_dataset_rele(ds, FTAG);
574 kmem_free(zc, sizeof (zap_cursor_t));
575 kmem_free(za, sizeof (zap_attribute_t));
577 /* we're in a sync task, update counts */
578 dmu_buf_will_dirty(dd->dd_dbuf, tx);
579 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
580 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
581 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
582 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
585 static int
586 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
588 char *ddname = (char *)arg;
589 dsl_pool_t *dp = dmu_tx_pool(tx);
590 dsl_dataset_t *ds;
591 dsl_dir_t *dd;
592 int error;
594 error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
595 if (error != 0)
596 return (error);
598 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
599 dsl_dataset_rele(ds, FTAG);
600 return (SET_ERROR(ENOTSUP));
603 dd = ds->ds_dir;
604 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
605 dsl_dir_is_zapified(dd) &&
606 zap_contains(dp->dp_meta_objset, dd->dd_object,
607 DD_FIELD_FILESYSTEM_COUNT) == 0) {
608 dsl_dataset_rele(ds, FTAG);
609 return (SET_ERROR(EALREADY));
612 dsl_dataset_rele(ds, FTAG);
613 return (0);
616 static void
617 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
619 char *ddname = (char *)arg;
620 dsl_pool_t *dp = dmu_tx_pool(tx);
621 dsl_dataset_t *ds;
622 spa_t *spa;
624 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
626 spa = dsl_dataset_get_spa(ds);
628 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
630 * Since the feature was not active and we're now setting a
631 * limit, increment the feature-active counter so that the
632 * feature becomes active for the first time.
634 * We are already in a sync task so we can update the MOS.
636 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
640 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
641 * we need to ensure the counts are correct. Descend down the tree from
642 * this point and update all of the counts to be accurate.
644 dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
646 dsl_dataset_rele(ds, FTAG);
650 * Make sure the feature is enabled and activate it if necessary.
651 * Since we're setting a limit, ensure the on-disk counts are valid.
652 * This is only called by the ioctl path when setting a limit value.
654 * We do not need to validate the new limit, since users who can change the
655 * limit are also allowed to exceed the limit.
658 dsl_dir_activate_fs_ss_limit(const char *ddname)
660 int error;
662 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
663 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
664 ZFS_SPACE_CHECK_RESERVED);
666 if (error == EALREADY)
667 error = 0;
669 return (error);
673 * Used to determine if the filesystem_limit or snapshot_limit should be
674 * enforced. We allow the limit to be exceeded if the user has permission to
675 * write the property value. We pass in the creds that we got in the open
676 * context since we will always be the GZ root in syncing context. We also have
677 * to handle the case where we are allowed to change the limit on the current
678 * dataset, but there may be another limit in the tree above.
680 * We can never modify these two properties within a non-global zone. In
681 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
682 * can't use that function since we are already holding the dp_config_rwlock.
683 * In addition, we already have the dd and dealing with snapshots is simplified
684 * in this code.
687 typedef enum {
688 ENFORCE_ALWAYS,
689 ENFORCE_NEVER,
690 ENFORCE_ABOVE
691 } enforce_res_t;
693 static enforce_res_t
694 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr)
696 enforce_res_t enforce = ENFORCE_ALWAYS;
697 uint64_t obj;
698 dsl_dataset_t *ds;
699 uint64_t zoned;
701 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
702 prop == ZFS_PROP_SNAPSHOT_LIMIT);
704 #ifdef _KERNEL
705 if (crgetzoneid(cr) != GLOBAL_ZONEID)
706 return (ENFORCE_ALWAYS);
708 if (secpolicy_zfs(cr) == 0)
709 return (ENFORCE_NEVER);
710 #endif
712 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
713 return (ENFORCE_ALWAYS);
715 ASSERT(dsl_pool_config_held(dd->dd_pool));
717 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
718 return (ENFORCE_ALWAYS);
720 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) {
721 /* Only root can access zoned fs's from the GZ */
722 enforce = ENFORCE_ALWAYS;
723 } else {
724 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
725 enforce = ENFORCE_ABOVE;
728 dsl_dataset_rele(ds, FTAG);
729 return (enforce);
733 * Check if adding additional child filesystem(s) would exceed any filesystem
734 * limits or adding additional snapshot(s) would exceed any snapshot limits.
735 * The prop argument indicates which limit to check.
737 * Note that all filesystem limits up to the root (or the highest
738 * initialized) filesystem or the given ancestor must be satisfied.
741 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
742 dsl_dir_t *ancestor, cred_t *cr)
744 objset_t *os = dd->dd_pool->dp_meta_objset;
745 uint64_t limit, count;
746 char *count_prop;
747 enforce_res_t enforce;
748 int err = 0;
750 ASSERT(dsl_pool_config_held(dd->dd_pool));
751 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
752 prop == ZFS_PROP_SNAPSHOT_LIMIT);
755 * If we're allowed to change the limit, don't enforce the limit
756 * e.g. this can happen if a snapshot is taken by an administrative
757 * user in the global zone (i.e. a recursive snapshot by root).
758 * However, we must handle the case of delegated permissions where we
759 * are allowed to change the limit on the current dataset, but there
760 * is another limit in the tree above.
762 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr);
763 if (enforce == ENFORCE_NEVER)
764 return (0);
767 * e.g. if renaming a dataset with no snapshots, count adjustment
768 * is 0.
770 if (delta == 0)
771 return (0);
773 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
775 * We don't enforce the limit for temporary snapshots. This is
776 * indicated by a NULL cred_t argument.
778 if (cr == NULL)
779 return (0);
781 count_prop = DD_FIELD_SNAPSHOT_COUNT;
782 } else {
783 count_prop = DD_FIELD_FILESYSTEM_COUNT;
787 * If an ancestor has been provided, stop checking the limit once we
788 * hit that dir. We need this during rename so that we don't overcount
789 * the check once we recurse up to the common ancestor.
791 if (ancestor == dd)
792 return (0);
795 * If we hit an uninitialized node while recursing up the tree, we can
796 * stop since we know there is no limit here (or above). The counts are
797 * not valid on this node and we know we won't touch this node's counts.
799 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object,
800 count_prop, sizeof (count), 1, &count) == ENOENT)
801 return (0);
803 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
804 B_FALSE);
805 if (err != 0)
806 return (err);
808 /* Is there a limit which we've hit? */
809 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
810 return (SET_ERROR(EDQUOT));
812 if (dd->dd_parent != NULL)
813 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
814 ancestor, cr);
816 return (err);
820 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
821 * parents. When a new filesystem/snapshot is created, increment the count on
822 * all parents, and when a filesystem/snapshot is destroyed, decrement the
823 * count.
825 void
826 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
827 dmu_tx_t *tx)
829 int err;
830 objset_t *os = dd->dd_pool->dp_meta_objset;
831 uint64_t count;
833 ASSERT(dsl_pool_config_held(dd->dd_pool));
834 ASSERT(dmu_tx_is_syncing(tx));
835 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
836 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
839 * When we receive an incremental stream into a filesystem that already
840 * exists, a temporary clone is created. We don't count this temporary
841 * clone, whose name begins with a '%'. We also ignore hidden ($FREE,
842 * $MOS & $ORIGIN) objsets.
844 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') &&
845 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0)
846 return;
849 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
851 if (delta == 0)
852 return;
855 * If we hit an uninitialized node while recursing up the tree, we can
856 * stop since we know the counts are not valid on this node and we
857 * know we shouldn't touch this node's counts. An uninitialized count
858 * on the node indicates that either the feature has not yet been
859 * activated or there are no limits on this part of the tree.
861 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
862 prop, sizeof (count), 1, &count)) == ENOENT)
863 return;
864 VERIFY0(err);
866 count += delta;
867 /* Use a signed verify to make sure we're not neg. */
868 VERIFY3S(count, >=, 0);
870 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
871 tx));
873 /* Roll up this additional count into our ancestors */
874 if (dd->dd_parent != NULL)
875 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
878 uint64_t
879 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
880 dmu_tx_t *tx)
882 objset_t *mos = dp->dp_meta_objset;
883 uint64_t ddobj;
884 dsl_dir_phys_t *ddphys;
885 dmu_buf_t *dbuf;
887 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
888 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
889 if (pds) {
890 VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
891 name, sizeof (uint64_t), 1, &ddobj, tx));
892 } else {
893 /* it's the root dir */
894 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
895 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
897 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
898 dmu_buf_will_dirty(dbuf, tx);
899 ddphys = dbuf->db_data;
901 ddphys->dd_creation_time = gethrestime_sec();
902 if (pds) {
903 ddphys->dd_parent_obj = pds->dd_object;
905 /* update the filesystem counts */
906 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
908 ddphys->dd_props_zapobj = zap_create(mos,
909 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
910 ddphys->dd_child_dir_zapobj = zap_create(mos,
911 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
912 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
913 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
914 dmu_buf_rele(dbuf, FTAG);
916 return (ddobj);
919 boolean_t
920 dsl_dir_is_clone(dsl_dir_t *dd)
922 return (dsl_dir_phys(dd)->dd_origin_obj &&
923 (dd->dd_pool->dp_origin_snap == NULL ||
924 dsl_dir_phys(dd)->dd_origin_obj !=
925 dd->dd_pool->dp_origin_snap->ds_object));
928 void
929 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
931 mutex_enter(&dd->dd_lock);
932 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED,
933 dsl_dir_phys(dd)->dd_used_bytes);
934 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
935 dsl_dir_phys(dd)->dd_quota);
936 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
937 dsl_dir_phys(dd)->dd_reserved);
938 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO,
939 dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
940 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
941 dsl_dir_phys(dd)->dd_compressed_bytes));
942 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
943 dsl_dir_phys(dd)->dd_uncompressed_bytes);
944 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
945 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
946 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
947 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
948 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
949 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
950 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
951 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
952 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
953 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
955 mutex_exit(&dd->dd_lock);
957 if (dsl_dir_is_zapified(dd)) {
958 uint64_t count;
959 objset_t *os = dd->dd_pool->dp_meta_objset;
961 if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
962 sizeof (count), 1, &count) == 0) {
963 dsl_prop_nvlist_add_uint64(nv,
964 ZFS_PROP_FILESYSTEM_COUNT, count);
966 if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
967 sizeof (count), 1, &count) == 0) {
968 dsl_prop_nvlist_add_uint64(nv,
969 ZFS_PROP_SNAPSHOT_COUNT, count);
973 if (dsl_dir_is_clone(dd)) {
974 dsl_dataset_t *ds;
975 char buf[ZFS_MAX_DATASET_NAME_LEN];
977 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
978 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
979 dsl_dataset_name(ds, buf);
980 dsl_dataset_rele(ds, FTAG);
981 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
985 void
986 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
988 dsl_pool_t *dp = dd->dd_pool;
990 ASSERT(dsl_dir_phys(dd));
992 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
993 /* up the hold count until we can be written out */
994 dmu_buf_add_ref(dd->dd_dbuf, dd);
998 static int64_t
999 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1001 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1002 uint64_t new_accounted =
1003 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1004 return (new_accounted - old_accounted);
1007 void
1008 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1010 ASSERT(dmu_tx_is_syncing(tx));
1012 mutex_enter(&dd->dd_lock);
1013 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]);
1014 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
1015 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024);
1016 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0;
1017 mutex_exit(&dd->dd_lock);
1019 /* release the hold from dsl_dir_dirty */
1020 dmu_buf_rele(dd->dd_dbuf, dd);
1023 static uint64_t
1024 dsl_dir_space_towrite(dsl_dir_t *dd)
1026 uint64_t space = 0;
1028 ASSERT(MUTEX_HELD(&dd->dd_lock));
1030 for (int i = 0; i < TXG_SIZE; i++) {
1031 space += dd->dd_space_towrite[i & TXG_MASK];
1032 ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0);
1034 return (space);
1038 * How much space would dd have available if ancestor had delta applied
1039 * to it? If ondiskonly is set, we're only interested in what's
1040 * on-disk, not estimated pending changes.
1042 uint64_t
1043 dsl_dir_space_available(dsl_dir_t *dd,
1044 dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1046 uint64_t parentspace, myspace, quota, used;
1049 * If there are no restrictions otherwise, assume we have
1050 * unlimited space available.
1052 quota = UINT64_MAX;
1053 parentspace = UINT64_MAX;
1055 if (dd->dd_parent != NULL) {
1056 parentspace = dsl_dir_space_available(dd->dd_parent,
1057 ancestor, delta, ondiskonly);
1060 mutex_enter(&dd->dd_lock);
1061 if (dsl_dir_phys(dd)->dd_quota != 0)
1062 quota = dsl_dir_phys(dd)->dd_quota;
1063 used = dsl_dir_phys(dd)->dd_used_bytes;
1064 if (!ondiskonly)
1065 used += dsl_dir_space_towrite(dd);
1067 if (dd->dd_parent == NULL) {
1068 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE);
1069 quota = MIN(quota, poolsize);
1072 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1074 * We have some space reserved, in addition to what our
1075 * parent gave us.
1077 parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1080 if (dd == ancestor) {
1081 ASSERT(delta <= 0);
1082 ASSERT(used >= -delta);
1083 used += delta;
1084 if (parentspace != UINT64_MAX)
1085 parentspace -= delta;
1088 if (used > quota) {
1089 /* over quota */
1090 myspace = 0;
1091 } else {
1093 * the lesser of the space provided by our parent and
1094 * the space left in our quota
1096 myspace = MIN(parentspace, quota - used);
1099 mutex_exit(&dd->dd_lock);
1101 return (myspace);
1104 struct tempreserve {
1105 list_node_t tr_node;
1106 dsl_dir_t *tr_ds;
1107 uint64_t tr_size;
1110 static int
1111 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1112 boolean_t ignorequota, list_t *tr_list,
1113 dmu_tx_t *tx, boolean_t first)
1115 uint64_t txg = tx->tx_txg;
1116 uint64_t quota;
1117 struct tempreserve *tr;
1118 int retval = EDQUOT;
1119 uint64_t ref_rsrv = 0;
1121 ASSERT3U(txg, !=, 0);
1122 ASSERT3S(asize, >, 0);
1124 mutex_enter(&dd->dd_lock);
1127 * Check against the dsl_dir's quota. We don't add in the delta
1128 * when checking for over-quota because they get one free hit.
1130 uint64_t est_inflight = dsl_dir_space_towrite(dd);
1131 for (int i = 0; i < TXG_SIZE; i++)
1132 est_inflight += dd->dd_tempreserved[i];
1133 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1136 * On the first iteration, fetch the dataset's used-on-disk and
1137 * refreservation values. Also, if checkrefquota is set, test if
1138 * allocating this space would exceed the dataset's refquota.
1140 if (first && tx->tx_objset) {
1141 int error;
1142 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1144 error = dsl_dataset_check_quota(ds, !netfree,
1145 asize, est_inflight, &used_on_disk, &ref_rsrv);
1146 if (error != 0) {
1147 mutex_exit(&dd->dd_lock);
1148 return (error);
1153 * If this transaction will result in a net free of space,
1154 * we want to let it through.
1156 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1157 quota = UINT64_MAX;
1158 else
1159 quota = dsl_dir_phys(dd)->dd_quota;
1162 * Adjust the quota against the actual pool size at the root
1163 * minus any outstanding deferred frees.
1164 * To ensure that it's possible to remove files from a full
1165 * pool without inducing transient overcommits, we throttle
1166 * netfree transactions against a quota that is slightly larger,
1167 * but still within the pool's allocation slop. In cases where
1168 * we're very close to full, this will allow a steady trickle of
1169 * removes to get through.
1171 uint64_t deferred = 0;
1172 if (dd->dd_parent == NULL) {
1173 spa_t *spa = dd->dd_pool->dp_spa;
1174 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree);
1175 deferred = metaslab_class_get_deferred(spa_normal_class(spa));
1176 if (poolsize - deferred < quota) {
1177 quota = poolsize - deferred;
1178 retval = ENOSPC;
1183 * If they are requesting more space, and our current estimate
1184 * is over quota, they get to try again unless the actual
1185 * on-disk is over quota and there are no pending changes (which
1186 * may free up space for us).
1188 if (used_on_disk + est_inflight >= quota) {
1189 if (est_inflight > 0 || used_on_disk < quota ||
1190 (retval == ENOSPC && used_on_disk < quota + deferred))
1191 retval = ERESTART;
1192 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1193 "quota=%lluK tr=%lluK err=%d\n",
1194 used_on_disk>>10, est_inflight>>10,
1195 quota>>10, asize>>10, retval);
1196 mutex_exit(&dd->dd_lock);
1197 return (SET_ERROR(retval));
1200 /* We need to up our estimated delta before dropping dd_lock */
1201 dd->dd_tempreserved[txg & TXG_MASK] += asize;
1203 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1204 asize - ref_rsrv);
1205 mutex_exit(&dd->dd_lock);
1207 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1208 tr->tr_ds = dd;
1209 tr->tr_size = asize;
1210 list_insert_tail(tr_list, tr);
1212 /* see if it's OK with our parent */
1213 if (dd->dd_parent != NULL && parent_rsrv != 0) {
1214 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1216 return (dsl_dir_tempreserve_impl(dd->dd_parent,
1217 parent_rsrv, netfree, ismos, tr_list, tx, B_FALSE));
1218 } else {
1219 return (0);
1224 * Reserve space in this dsl_dir, to be used in this tx's txg.
1225 * After the space has been dirtied (and dsl_dir_willuse_space()
1226 * has been called), the reservation should be canceled, using
1227 * dsl_dir_tempreserve_clear().
1230 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1231 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1233 int err;
1234 list_t *tr_list;
1236 if (asize == 0) {
1237 *tr_cookiep = NULL;
1238 return (0);
1241 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1242 list_create(tr_list, sizeof (struct tempreserve),
1243 offsetof(struct tempreserve, tr_node));
1244 ASSERT3S(asize, >, 0);
1246 err = arc_tempreserve_space(lsize, tx->tx_txg);
1247 if (err == 0) {
1248 struct tempreserve *tr;
1250 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1251 tr->tr_size = lsize;
1252 list_insert_tail(tr_list, tr);
1253 } else {
1254 if (err == EAGAIN) {
1256 * If arc_memory_throttle() detected that pageout
1257 * is running and we are low on memory, we delay new
1258 * non-pageout transactions to give pageout an
1259 * advantage.
1261 * It is unfortunate to be delaying while the caller's
1262 * locks are held.
1264 txg_delay(dd->dd_pool, tx->tx_txg,
1265 MSEC2NSEC(10), MSEC2NSEC(10));
1266 err = SET_ERROR(ERESTART);
1270 if (err == 0) {
1271 err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1272 B_FALSE, tr_list, tx, B_TRUE);
1275 if (err != 0)
1276 dsl_dir_tempreserve_clear(tr_list, tx);
1277 else
1278 *tr_cookiep = tr_list;
1280 return (err);
1284 * Clear a temporary reservation that we previously made with
1285 * dsl_dir_tempreserve_space().
1287 void
1288 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1290 int txgidx = tx->tx_txg & TXG_MASK;
1291 list_t *tr_list = tr_cookie;
1292 struct tempreserve *tr;
1294 ASSERT3U(tx->tx_txg, !=, 0);
1296 if (tr_cookie == NULL)
1297 return;
1299 while ((tr = list_head(tr_list)) != NULL) {
1300 if (tr->tr_ds) {
1301 mutex_enter(&tr->tr_ds->dd_lock);
1302 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1303 tr->tr_size);
1304 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1305 mutex_exit(&tr->tr_ds->dd_lock);
1306 } else {
1307 arc_tempreserve_clear(tr->tr_size);
1309 list_remove(tr_list, tr);
1310 kmem_free(tr, sizeof (struct tempreserve));
1313 kmem_free(tr_list, sizeof (list_t));
1317 * This should be called from open context when we think we're going to write
1318 * or free space, for example when dirtying data. Be conservative; it's okay
1319 * to write less space or free more, but we don't want to write more or free
1320 * less than the amount specified.
1322 void
1323 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1325 int64_t parent_space;
1326 uint64_t est_used;
1328 mutex_enter(&dd->dd_lock);
1329 if (space > 0)
1330 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1332 est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes;
1333 parent_space = parent_delta(dd, est_used, space);
1334 mutex_exit(&dd->dd_lock);
1336 /* Make sure that we clean up dd_space_to* */
1337 dsl_dir_dirty(dd, tx);
1339 /* XXX this is potentially expensive and unnecessary... */
1340 if (parent_space && dd->dd_parent)
1341 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx);
1344 /* call from syncing context when we actually write/free space for this dd */
1345 void
1346 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1347 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1349 int64_t accounted_delta;
1352 * dsl_dataset_set_refreservation_sync_impl() calls this with
1353 * dd_lock held, so that it can atomically update
1354 * ds->ds_reserved and the dsl_dir accounting, so that
1355 * dsl_dataset_check_quota() can see dataset and dir accounting
1356 * consistently.
1358 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1360 ASSERT(dmu_tx_is_syncing(tx));
1361 ASSERT(type < DD_USED_NUM);
1363 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1365 if (needlock)
1366 mutex_enter(&dd->dd_lock);
1367 accounted_delta =
1368 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
1369 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
1370 ASSERT(compressed >= 0 ||
1371 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
1372 ASSERT(uncompressed >= 0 ||
1373 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
1374 dsl_dir_phys(dd)->dd_used_bytes += used;
1375 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
1376 dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
1378 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1379 ASSERT(used > 0 ||
1380 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
1381 dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
1382 #ifdef DEBUG
1383 dd_used_t t;
1384 uint64_t u = 0;
1385 for (t = 0; t < DD_USED_NUM; t++)
1386 u += dsl_dir_phys(dd)->dd_used_breakdown[t];
1387 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
1388 #endif
1390 if (needlock)
1391 mutex_exit(&dd->dd_lock);
1393 if (dd->dd_parent != NULL) {
1394 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1395 accounted_delta, compressed, uncompressed, tx);
1396 dsl_dir_transfer_space(dd->dd_parent,
1397 used - accounted_delta,
1398 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1402 void
1403 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1404 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1406 ASSERT(dmu_tx_is_syncing(tx));
1407 ASSERT(oldtype < DD_USED_NUM);
1408 ASSERT(newtype < DD_USED_NUM);
1410 if (delta == 0 ||
1411 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
1412 return;
1414 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1415 mutex_enter(&dd->dd_lock);
1416 ASSERT(delta > 0 ?
1417 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
1418 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
1419 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
1420 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
1421 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
1422 mutex_exit(&dd->dd_lock);
1425 typedef struct dsl_dir_set_qr_arg {
1426 const char *ddsqra_name;
1427 zprop_source_t ddsqra_source;
1428 uint64_t ddsqra_value;
1429 } dsl_dir_set_qr_arg_t;
1431 static int
1432 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1434 dsl_dir_set_qr_arg_t *ddsqra = arg;
1435 dsl_pool_t *dp = dmu_tx_pool(tx);
1436 dsl_dataset_t *ds;
1437 int error;
1438 uint64_t towrite, newval;
1440 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1441 if (error != 0)
1442 return (error);
1444 error = dsl_prop_predict(ds->ds_dir, "quota",
1445 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1446 if (error != 0) {
1447 dsl_dataset_rele(ds, FTAG);
1448 return (error);
1451 if (newval == 0) {
1452 dsl_dataset_rele(ds, FTAG);
1453 return (0);
1456 mutex_enter(&ds->ds_dir->dd_lock);
1458 * If we are doing the preliminary check in open context, and
1459 * there are pending changes, then don't fail it, since the
1460 * pending changes could under-estimate the amount of space to be
1461 * freed up.
1463 towrite = dsl_dir_space_towrite(ds->ds_dir);
1464 if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1465 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1466 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1467 error = SET_ERROR(ENOSPC);
1469 mutex_exit(&ds->ds_dir->dd_lock);
1470 dsl_dataset_rele(ds, FTAG);
1471 return (error);
1474 static void
1475 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1477 dsl_dir_set_qr_arg_t *ddsqra = arg;
1478 dsl_pool_t *dp = dmu_tx_pool(tx);
1479 dsl_dataset_t *ds;
1480 uint64_t newval;
1482 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1484 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1485 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1486 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1487 &ddsqra->ddsqra_value, tx);
1489 VERIFY0(dsl_prop_get_int_ds(ds,
1490 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1491 } else {
1492 newval = ddsqra->ddsqra_value;
1493 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1494 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1497 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1498 mutex_enter(&ds->ds_dir->dd_lock);
1499 dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1500 mutex_exit(&ds->ds_dir->dd_lock);
1501 dsl_dataset_rele(ds, FTAG);
1505 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1507 dsl_dir_set_qr_arg_t ddsqra;
1509 ddsqra.ddsqra_name = ddname;
1510 ddsqra.ddsqra_source = source;
1511 ddsqra.ddsqra_value = quota;
1513 return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1514 dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1518 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1520 dsl_dir_set_qr_arg_t *ddsqra = arg;
1521 dsl_pool_t *dp = dmu_tx_pool(tx);
1522 dsl_dataset_t *ds;
1523 dsl_dir_t *dd;
1524 uint64_t newval, used, avail;
1525 int error;
1527 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1528 if (error != 0)
1529 return (error);
1530 dd = ds->ds_dir;
1533 * If we are doing the preliminary check in open context, the
1534 * space estimates may be inaccurate.
1536 if (!dmu_tx_is_syncing(tx)) {
1537 dsl_dataset_rele(ds, FTAG);
1538 return (0);
1541 error = dsl_prop_predict(ds->ds_dir,
1542 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1543 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1544 if (error != 0) {
1545 dsl_dataset_rele(ds, FTAG);
1546 return (error);
1549 mutex_enter(&dd->dd_lock);
1550 used = dsl_dir_phys(dd)->dd_used_bytes;
1551 mutex_exit(&dd->dd_lock);
1553 if (dd->dd_parent) {
1554 avail = dsl_dir_space_available(dd->dd_parent,
1555 NULL, 0, FALSE);
1556 } else {
1557 avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used;
1560 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1561 uint64_t delta = MAX(used, newval) -
1562 MAX(used, dsl_dir_phys(dd)->dd_reserved);
1564 if (delta > avail ||
1565 (dsl_dir_phys(dd)->dd_quota > 0 &&
1566 newval > dsl_dir_phys(dd)->dd_quota))
1567 error = SET_ERROR(ENOSPC);
1570 dsl_dataset_rele(ds, FTAG);
1571 return (error);
1574 void
1575 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1577 uint64_t used;
1578 int64_t delta;
1580 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1582 mutex_enter(&dd->dd_lock);
1583 used = dsl_dir_phys(dd)->dd_used_bytes;
1584 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1585 dsl_dir_phys(dd)->dd_reserved = value;
1587 if (dd->dd_parent != NULL) {
1588 /* Roll up this additional usage into our ancestors */
1589 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1590 delta, 0, 0, tx);
1592 mutex_exit(&dd->dd_lock);
1596 static void
1597 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1599 dsl_dir_set_qr_arg_t *ddsqra = arg;
1600 dsl_pool_t *dp = dmu_tx_pool(tx);
1601 dsl_dataset_t *ds;
1602 uint64_t newval;
1604 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1606 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1607 dsl_prop_set_sync_impl(ds,
1608 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1609 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1610 &ddsqra->ddsqra_value, tx);
1612 VERIFY0(dsl_prop_get_int_ds(ds,
1613 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1614 } else {
1615 newval = ddsqra->ddsqra_value;
1616 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1617 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1618 (longlong_t)newval);
1621 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1622 dsl_dataset_rele(ds, FTAG);
1626 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1627 uint64_t reservation)
1629 dsl_dir_set_qr_arg_t ddsqra;
1631 ddsqra.ddsqra_name = ddname;
1632 ddsqra.ddsqra_source = source;
1633 ddsqra.ddsqra_value = reservation;
1635 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1636 dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1639 static dsl_dir_t *
1640 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1642 for (; ds1; ds1 = ds1->dd_parent) {
1643 dsl_dir_t *dd;
1644 for (dd = ds2; dd; dd = dd->dd_parent) {
1645 if (ds1 == dd)
1646 return (dd);
1649 return (NULL);
1653 * If delta is applied to dd, how much of that delta would be applied to
1654 * ancestor? Syncing context only.
1656 static int64_t
1657 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1659 if (dd == ancestor)
1660 return (delta);
1662 mutex_enter(&dd->dd_lock);
1663 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1664 mutex_exit(&dd->dd_lock);
1665 return (would_change(dd->dd_parent, delta, ancestor));
1668 typedef struct dsl_dir_rename_arg {
1669 const char *ddra_oldname;
1670 const char *ddra_newname;
1671 cred_t *ddra_cred;
1672 } dsl_dir_rename_arg_t;
1674 /* ARGSUSED */
1675 static int
1676 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1678 int *deltap = arg;
1679 char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1681 dsl_dataset_name(ds, namebuf);
1683 if (strlen(namebuf) + *deltap >= ZFS_MAX_DATASET_NAME_LEN)
1684 return (SET_ERROR(ENAMETOOLONG));
1685 return (0);
1688 static int
1689 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1691 dsl_dir_rename_arg_t *ddra = arg;
1692 dsl_pool_t *dp = dmu_tx_pool(tx);
1693 dsl_dir_t *dd, *newparent;
1694 const char *mynewname;
1695 int error;
1696 int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname);
1698 /* target dir should exist */
1699 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1700 if (error != 0)
1701 return (error);
1703 /* new parent should exist */
1704 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1705 &newparent, &mynewname);
1706 if (error != 0) {
1707 dsl_dir_rele(dd, FTAG);
1708 return (error);
1711 /* can't rename to different pool */
1712 if (dd->dd_pool != newparent->dd_pool) {
1713 dsl_dir_rele(newparent, FTAG);
1714 dsl_dir_rele(dd, FTAG);
1715 return (SET_ERROR(ENXIO));
1718 /* new name should not already exist */
1719 if (mynewname == NULL) {
1720 dsl_dir_rele(newparent, FTAG);
1721 dsl_dir_rele(dd, FTAG);
1722 return (SET_ERROR(EEXIST));
1725 /* if the name length is growing, validate child name lengths */
1726 if (delta > 0) {
1727 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
1728 &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1729 if (error != 0) {
1730 dsl_dir_rele(newparent, FTAG);
1731 dsl_dir_rele(dd, FTAG);
1732 return (error);
1736 if (dmu_tx_is_syncing(tx)) {
1737 if (spa_feature_is_active(dp->dp_spa,
1738 SPA_FEATURE_FS_SS_LIMIT)) {
1740 * Although this is the check function and we don't
1741 * normally make on-disk changes in check functions,
1742 * we need to do that here.
1744 * Ensure this portion of the tree's counts have been
1745 * initialized in case the new parent has limits set.
1747 dsl_dir_init_fs_ss_count(dd, tx);
1751 if (newparent != dd->dd_parent) {
1752 /* is there enough space? */
1753 uint64_t myspace =
1754 MAX(dsl_dir_phys(dd)->dd_used_bytes,
1755 dsl_dir_phys(dd)->dd_reserved);
1756 objset_t *os = dd->dd_pool->dp_meta_objset;
1757 uint64_t fs_cnt = 0;
1758 uint64_t ss_cnt = 0;
1760 if (dsl_dir_is_zapified(dd)) {
1761 int err;
1763 err = zap_lookup(os, dd->dd_object,
1764 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1765 &fs_cnt);
1766 if (err != ENOENT && err != 0) {
1767 dsl_dir_rele(newparent, FTAG);
1768 dsl_dir_rele(dd, FTAG);
1769 return (err);
1773 * have to add 1 for the filesystem itself that we're
1774 * moving
1776 fs_cnt++;
1778 err = zap_lookup(os, dd->dd_object,
1779 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1780 &ss_cnt);
1781 if (err != ENOENT && err != 0) {
1782 dsl_dir_rele(newparent, FTAG);
1783 dsl_dir_rele(dd, FTAG);
1784 return (err);
1788 /* no rename into our descendant */
1789 if (closest_common_ancestor(dd, newparent) == dd) {
1790 dsl_dir_rele(newparent, FTAG);
1791 dsl_dir_rele(dd, FTAG);
1792 return (SET_ERROR(EINVAL));
1795 error = dsl_dir_transfer_possible(dd->dd_parent,
1796 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred);
1797 if (error != 0) {
1798 dsl_dir_rele(newparent, FTAG);
1799 dsl_dir_rele(dd, FTAG);
1800 return (error);
1804 dsl_dir_rele(newparent, FTAG);
1805 dsl_dir_rele(dd, FTAG);
1806 return (0);
1809 static void
1810 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
1812 dsl_dir_rename_arg_t *ddra = arg;
1813 dsl_pool_t *dp = dmu_tx_pool(tx);
1814 dsl_dir_t *dd, *newparent;
1815 const char *mynewname;
1816 int error;
1817 objset_t *mos = dp->dp_meta_objset;
1819 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
1820 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
1821 &mynewname));
1823 /* Log this before we change the name. */
1824 spa_history_log_internal_dd(dd, "rename", tx,
1825 "-> %s", ddra->ddra_newname);
1827 if (newparent != dd->dd_parent) {
1828 objset_t *os = dd->dd_pool->dp_meta_objset;
1829 uint64_t fs_cnt = 0;
1830 uint64_t ss_cnt = 0;
1833 * We already made sure the dd counts were initialized in the
1834 * check function.
1836 if (spa_feature_is_active(dp->dp_spa,
1837 SPA_FEATURE_FS_SS_LIMIT)) {
1838 VERIFY0(zap_lookup(os, dd->dd_object,
1839 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1840 &fs_cnt));
1841 /* add 1 for the filesystem itself that we're moving */
1842 fs_cnt++;
1844 VERIFY0(zap_lookup(os, dd->dd_object,
1845 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1846 &ss_cnt));
1849 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
1850 DD_FIELD_FILESYSTEM_COUNT, tx);
1851 dsl_fs_ss_count_adjust(newparent, fs_cnt,
1852 DD_FIELD_FILESYSTEM_COUNT, tx);
1854 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
1855 DD_FIELD_SNAPSHOT_COUNT, tx);
1856 dsl_fs_ss_count_adjust(newparent, ss_cnt,
1857 DD_FIELD_SNAPSHOT_COUNT, tx);
1859 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1860 -dsl_dir_phys(dd)->dd_used_bytes,
1861 -dsl_dir_phys(dd)->dd_compressed_bytes,
1862 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1863 dsl_dir_diduse_space(newparent, DD_USED_CHILD,
1864 dsl_dir_phys(dd)->dd_used_bytes,
1865 dsl_dir_phys(dd)->dd_compressed_bytes,
1866 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1868 if (dsl_dir_phys(dd)->dd_reserved >
1869 dsl_dir_phys(dd)->dd_used_bytes) {
1870 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
1871 dsl_dir_phys(dd)->dd_used_bytes;
1873 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1874 -unused_rsrv, 0, 0, tx);
1875 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
1876 unused_rsrv, 0, 0, tx);
1880 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1882 /* remove from old parent zapobj */
1883 error = zap_remove(mos,
1884 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
1885 dd->dd_myname, tx);
1886 ASSERT0(error);
1888 (void) strcpy(dd->dd_myname, mynewname);
1889 dsl_dir_rele(dd->dd_parent, dd);
1890 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
1891 VERIFY0(dsl_dir_hold_obj(dp,
1892 newparent->dd_object, NULL, dd, &dd->dd_parent));
1894 /* add to new parent zapobj */
1895 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
1896 dd->dd_myname, 8, 1, &dd->dd_object, tx));
1898 dsl_prop_notify_all(dd);
1900 dsl_dir_rele(newparent, FTAG);
1901 dsl_dir_rele(dd, FTAG);
1905 dsl_dir_rename(const char *oldname, const char *newname)
1907 dsl_dir_rename_arg_t ddra;
1909 ddra.ddra_oldname = oldname;
1910 ddra.ddra_newname = newname;
1911 ddra.ddra_cred = CRED();
1913 return (dsl_sync_task(oldname,
1914 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
1915 3, ZFS_SPACE_CHECK_RESERVED));
1919 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
1920 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr)
1922 dsl_dir_t *ancestor;
1923 int64_t adelta;
1924 uint64_t avail;
1925 int err;
1927 ancestor = closest_common_ancestor(sdd, tdd);
1928 adelta = would_change(sdd, -space, ancestor);
1929 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
1930 if (avail < space)
1931 return (SET_ERROR(ENOSPC));
1933 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
1934 ancestor, cr);
1935 if (err != 0)
1936 return (err);
1937 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
1938 ancestor, cr);
1939 if (err != 0)
1940 return (err);
1942 return (0);
1945 timestruc_t
1946 dsl_dir_snap_cmtime(dsl_dir_t *dd)
1948 timestruc_t t;
1950 mutex_enter(&dd->dd_lock);
1951 t = dd->dd_snap_cmtime;
1952 mutex_exit(&dd->dd_lock);
1954 return (t);
1957 void
1958 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
1960 timestruc_t t;
1962 gethrestime(&t);
1963 mutex_enter(&dd->dd_lock);
1964 dd->dd_snap_cmtime = t;
1965 mutex_exit(&dd->dd_lock);
1968 void
1969 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
1971 objset_t *mos = dd->dd_pool->dp_meta_objset;
1972 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
1975 boolean_t
1976 dsl_dir_is_zapified(dsl_dir_t *dd)
1978 dmu_object_info_t doi;
1980 dmu_object_info_from_db(dd->dd_dbuf, &doi);
1981 return (doi.doi_type == DMU_OTN_ZAP_METADATA);