4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27 /* Copyright 2016 Nexenta Systems, Inc. All rights reserved. */
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
33 #include <sys/dnode.h>
34 #include <sys/zfs_context.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dmu_traverse.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/zfs_ioctl.h>
45 #include <sys/zio_checksum.h>
46 #include <sys/zio_compress.h>
48 #include <sys/zfeature.h>
50 #include <sys/vmsystm.h>
51 #include <sys/zfs_znode.h>
55 * Enable/disable nopwrite feature.
57 int zfs_nopwrite_enabled
= 1;
60 * Tunable to control percentage of dirtied blocks from frees in one TXG.
61 * After this threshold is crossed, additional dirty blocks from frees
62 * wait until the next TXG.
63 * A value of zero will disable this throttle.
65 uint32_t zfs_per_txg_dirty_frees_percent
= 30;
67 const dmu_object_type_info_t dmu_ot
[DMU_OT_NUMTYPES
] = {
68 { DMU_BSWAP_UINT8
, TRUE
, "unallocated" },
69 { DMU_BSWAP_ZAP
, TRUE
, "object directory" },
70 { DMU_BSWAP_UINT64
, TRUE
, "object array" },
71 { DMU_BSWAP_UINT8
, TRUE
, "packed nvlist" },
72 { DMU_BSWAP_UINT64
, TRUE
, "packed nvlist size" },
73 { DMU_BSWAP_UINT64
, TRUE
, "bpobj" },
74 { DMU_BSWAP_UINT64
, TRUE
, "bpobj header" },
75 { DMU_BSWAP_UINT64
, TRUE
, "SPA space map header" },
76 { DMU_BSWAP_UINT64
, TRUE
, "SPA space map" },
77 { DMU_BSWAP_UINT64
, TRUE
, "ZIL intent log" },
78 { DMU_BSWAP_DNODE
, TRUE
, "DMU dnode" },
79 { DMU_BSWAP_OBJSET
, TRUE
, "DMU objset" },
80 { DMU_BSWAP_UINT64
, TRUE
, "DSL directory" },
81 { DMU_BSWAP_ZAP
, TRUE
, "DSL directory child map"},
82 { DMU_BSWAP_ZAP
, TRUE
, "DSL dataset snap map" },
83 { DMU_BSWAP_ZAP
, TRUE
, "DSL props" },
84 { DMU_BSWAP_UINT64
, TRUE
, "DSL dataset" },
85 { DMU_BSWAP_ZNODE
, TRUE
, "ZFS znode" },
86 { DMU_BSWAP_OLDACL
, TRUE
, "ZFS V0 ACL" },
87 { DMU_BSWAP_UINT8
, FALSE
, "ZFS plain file" },
88 { DMU_BSWAP_ZAP
, TRUE
, "ZFS directory" },
89 { DMU_BSWAP_ZAP
, TRUE
, "ZFS master node" },
90 { DMU_BSWAP_ZAP
, TRUE
, "ZFS delete queue" },
91 { DMU_BSWAP_UINT8
, FALSE
, "zvol object" },
92 { DMU_BSWAP_ZAP
, TRUE
, "zvol prop" },
93 { DMU_BSWAP_UINT8
, FALSE
, "other uint8[]" },
94 { DMU_BSWAP_UINT64
, FALSE
, "other uint64[]" },
95 { DMU_BSWAP_ZAP
, TRUE
, "other ZAP" },
96 { DMU_BSWAP_ZAP
, TRUE
, "persistent error log" },
97 { DMU_BSWAP_UINT8
, TRUE
, "SPA history" },
98 { DMU_BSWAP_UINT64
, TRUE
, "SPA history offsets" },
99 { DMU_BSWAP_ZAP
, TRUE
, "Pool properties" },
100 { DMU_BSWAP_ZAP
, TRUE
, "DSL permissions" },
101 { DMU_BSWAP_ACL
, TRUE
, "ZFS ACL" },
102 { DMU_BSWAP_UINT8
, TRUE
, "ZFS SYSACL" },
103 { DMU_BSWAP_UINT8
, TRUE
, "FUID table" },
104 { DMU_BSWAP_UINT64
, TRUE
, "FUID table size" },
105 { DMU_BSWAP_ZAP
, TRUE
, "DSL dataset next clones"},
106 { DMU_BSWAP_ZAP
, TRUE
, "scan work queue" },
107 { DMU_BSWAP_ZAP
, TRUE
, "ZFS user/group used" },
108 { DMU_BSWAP_ZAP
, TRUE
, "ZFS user/group quota" },
109 { DMU_BSWAP_ZAP
, TRUE
, "snapshot refcount tags"},
110 { DMU_BSWAP_ZAP
, TRUE
, "DDT ZAP algorithm" },
111 { DMU_BSWAP_ZAP
, TRUE
, "DDT statistics" },
112 { DMU_BSWAP_UINT8
, TRUE
, "System attributes" },
113 { DMU_BSWAP_ZAP
, TRUE
, "SA master node" },
114 { DMU_BSWAP_ZAP
, TRUE
, "SA attr registration" },
115 { DMU_BSWAP_ZAP
, TRUE
, "SA attr layouts" },
116 { DMU_BSWAP_ZAP
, TRUE
, "scan translations" },
117 { DMU_BSWAP_UINT8
, FALSE
, "deduplicated block" },
118 { DMU_BSWAP_ZAP
, TRUE
, "DSL deadlist map" },
119 { DMU_BSWAP_UINT64
, TRUE
, "DSL deadlist map hdr" },
120 { DMU_BSWAP_ZAP
, TRUE
, "DSL dir clones" },
121 { DMU_BSWAP_UINT64
, TRUE
, "bpobj subobj" }
124 const dmu_object_byteswap_info_t dmu_ot_byteswap
[DMU_BSWAP_NUMFUNCS
] = {
125 { byteswap_uint8_array
, "uint8" },
126 { byteswap_uint16_array
, "uint16" },
127 { byteswap_uint32_array
, "uint32" },
128 { byteswap_uint64_array
, "uint64" },
129 { zap_byteswap
, "zap" },
130 { dnode_buf_byteswap
, "dnode" },
131 { dmu_objset_byteswap
, "objset" },
132 { zfs_znode_byteswap
, "znode" },
133 { zfs_oldacl_byteswap
, "oldacl" },
134 { zfs_acl_byteswap
, "acl" }
138 dmu_buf_hold_noread_by_dnode(dnode_t
*dn
, uint64_t offset
,
139 void *tag
, dmu_buf_t
**dbp
)
144 blkid
= dbuf_whichblock(dn
, 0, offset
);
145 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
146 db
= dbuf_hold(dn
, blkid
, tag
);
147 rw_exit(&dn
->dn_struct_rwlock
);
151 return (SET_ERROR(EIO
));
158 dmu_buf_hold_noread(objset_t
*os
, uint64_t object
, uint64_t offset
,
159 void *tag
, dmu_buf_t
**dbp
)
166 err
= dnode_hold(os
, object
, FTAG
, &dn
);
169 blkid
= dbuf_whichblock(dn
, 0, offset
);
170 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
171 db
= dbuf_hold(dn
, blkid
, tag
);
172 rw_exit(&dn
->dn_struct_rwlock
);
173 dnode_rele(dn
, FTAG
);
177 return (SET_ERROR(EIO
));
185 dmu_buf_hold_by_dnode(dnode_t
*dn
, uint64_t offset
,
186 void *tag
, dmu_buf_t
**dbp
, int flags
)
189 int db_flags
= DB_RF_CANFAIL
;
191 if (flags
& DMU_READ_NO_PREFETCH
)
192 db_flags
|= DB_RF_NOPREFETCH
;
194 err
= dmu_buf_hold_noread_by_dnode(dn
, offset
, tag
, dbp
);
196 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)(*dbp
);
197 err
= dbuf_read(db
, NULL
, db_flags
);
208 dmu_buf_hold(objset_t
*os
, uint64_t object
, uint64_t offset
,
209 void *tag
, dmu_buf_t
**dbp
, int flags
)
212 int db_flags
= DB_RF_CANFAIL
;
214 if (flags
& DMU_READ_NO_PREFETCH
)
215 db_flags
|= DB_RF_NOPREFETCH
;
217 err
= dmu_buf_hold_noread(os
, object
, offset
, tag
, dbp
);
219 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)(*dbp
);
220 err
= dbuf_read(db
, NULL
, db_flags
);
233 return (DN_MAX_BONUSLEN
);
237 dmu_set_bonus(dmu_buf_t
*db_fake
, int newsize
, dmu_tx_t
*tx
)
239 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
246 if (dn
->dn_bonus
!= db
) {
247 error
= SET_ERROR(EINVAL
);
248 } else if (newsize
< 0 || newsize
> db_fake
->db_size
) {
249 error
= SET_ERROR(EINVAL
);
251 dnode_setbonuslen(dn
, newsize
, tx
);
260 dmu_set_bonustype(dmu_buf_t
*db_fake
, dmu_object_type_t type
, dmu_tx_t
*tx
)
262 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
269 if (!DMU_OT_IS_VALID(type
)) {
270 error
= SET_ERROR(EINVAL
);
271 } else if (dn
->dn_bonus
!= db
) {
272 error
= SET_ERROR(EINVAL
);
274 dnode_setbonus_type(dn
, type
, tx
);
283 dmu_get_bonustype(dmu_buf_t
*db_fake
)
285 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
287 dmu_object_type_t type
;
291 type
= dn
->dn_bonustype
;
298 dmu_rm_spill(objset_t
*os
, uint64_t object
, dmu_tx_t
*tx
)
303 error
= dnode_hold(os
, object
, FTAG
, &dn
);
304 dbuf_rm_spill(dn
, tx
);
305 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
306 dnode_rm_spill(dn
, tx
);
307 rw_exit(&dn
->dn_struct_rwlock
);
308 dnode_rele(dn
, FTAG
);
313 * returns ENOENT, EIO, or 0.
316 dmu_bonus_hold(objset_t
*os
, uint64_t object
, void *tag
, dmu_buf_t
**dbp
)
322 error
= dnode_hold(os
, object
, FTAG
, &dn
);
326 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
327 if (dn
->dn_bonus
== NULL
) {
328 rw_exit(&dn
->dn_struct_rwlock
);
329 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
330 if (dn
->dn_bonus
== NULL
)
331 dbuf_create_bonus(dn
);
335 /* as long as the bonus buf is held, the dnode will be held */
336 if (refcount_add(&db
->db_holds
, tag
) == 1) {
337 VERIFY(dnode_add_ref(dn
, db
));
338 atomic_inc_32(&dn
->dn_dbufs_count
);
342 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
343 * hold and incrementing the dbuf count to ensure that dnode_move() sees
344 * a dnode hold for every dbuf.
346 rw_exit(&dn
->dn_struct_rwlock
);
348 dnode_rele(dn
, FTAG
);
350 VERIFY(0 == dbuf_read(db
, NULL
, DB_RF_MUST_SUCCEED
| DB_RF_NOPREFETCH
));
357 * returns ENOENT, EIO, or 0.
359 * This interface will allocate a blank spill dbuf when a spill blk
360 * doesn't already exist on the dnode.
362 * if you only want to find an already existing spill db, then
363 * dmu_spill_hold_existing() should be used.
366 dmu_spill_hold_by_dnode(dnode_t
*dn
, uint32_t flags
, void *tag
, dmu_buf_t
**dbp
)
368 dmu_buf_impl_t
*db
= NULL
;
371 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
372 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
374 db
= dbuf_hold(dn
, DMU_SPILL_BLKID
, tag
);
376 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
377 rw_exit(&dn
->dn_struct_rwlock
);
380 err
= dbuf_read(db
, NULL
, flags
);
389 dmu_spill_hold_existing(dmu_buf_t
*bonus
, void *tag
, dmu_buf_t
**dbp
)
391 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)bonus
;
398 if (spa_version(dn
->dn_objset
->os_spa
) < SPA_VERSION_SA
) {
399 err
= SET_ERROR(EINVAL
);
401 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
403 if (!dn
->dn_have_spill
) {
404 err
= SET_ERROR(ENOENT
);
406 err
= dmu_spill_hold_by_dnode(dn
,
407 DB_RF_HAVESTRUCT
| DB_RF_CANFAIL
, tag
, dbp
);
410 rw_exit(&dn
->dn_struct_rwlock
);
418 dmu_spill_hold_by_bonus(dmu_buf_t
*bonus
, void *tag
, dmu_buf_t
**dbp
)
420 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)bonus
;
426 err
= dmu_spill_hold_by_dnode(dn
, DB_RF_CANFAIL
, tag
, dbp
);
433 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
434 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
435 * and can induce severe lock contention when writing to several files
436 * whose dnodes are in the same block.
439 dmu_buf_hold_array_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t length
,
440 boolean_t read
, void *tag
, int *numbufsp
, dmu_buf_t
***dbpp
, uint32_t flags
)
443 uint64_t blkid
, nblks
, i
;
448 ASSERT(length
<= DMU_MAX_ACCESS
);
451 * Note: We directly notify the prefetch code of this read, so that
452 * we can tell it about the multi-block read. dbuf_read() only knows
453 * about the one block it is accessing.
455 dbuf_flags
= DB_RF_CANFAIL
| DB_RF_NEVERWAIT
| DB_RF_HAVESTRUCT
|
458 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
459 if (dn
->dn_datablkshift
) {
460 int blkshift
= dn
->dn_datablkshift
;
461 nblks
= (P2ROUNDUP(offset
+ length
, 1ULL << blkshift
) -
462 P2ALIGN(offset
, 1ULL << blkshift
)) >> blkshift
;
464 if (offset
+ length
> dn
->dn_datablksz
) {
465 zfs_panic_recover("zfs: accessing past end of object "
466 "%llx/%llx (size=%u access=%llu+%llu)",
467 (longlong_t
)dn
->dn_objset
->
468 os_dsl_dataset
->ds_object
,
469 (longlong_t
)dn
->dn_object
, dn
->dn_datablksz
,
470 (longlong_t
)offset
, (longlong_t
)length
);
471 rw_exit(&dn
->dn_struct_rwlock
);
472 return (SET_ERROR(EIO
));
476 dbp
= kmem_zalloc(sizeof (dmu_buf_t
*) * nblks
, KM_SLEEP
);
478 zio
= zio_root(dn
->dn_objset
->os_spa
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
479 blkid
= dbuf_whichblock(dn
, 0, offset
);
480 for (i
= 0; i
< nblks
; i
++) {
481 dmu_buf_impl_t
*db
= dbuf_hold(dn
, blkid
+ i
, tag
);
483 rw_exit(&dn
->dn_struct_rwlock
);
484 dmu_buf_rele_array(dbp
, nblks
, tag
);
486 return (SET_ERROR(EIO
));
489 /* initiate async i/o */
491 (void) dbuf_read(db
, zio
, dbuf_flags
);
495 if ((flags
& DMU_READ_NO_PREFETCH
) == 0 &&
496 DNODE_META_IS_CACHEABLE(dn
) && length
<= zfetch_array_rd_sz
) {
497 dmu_zfetch(&dn
->dn_zfetch
, blkid
, nblks
,
498 read
&& DNODE_IS_CACHEABLE(dn
));
500 rw_exit(&dn
->dn_struct_rwlock
);
502 /* wait for async i/o */
505 dmu_buf_rele_array(dbp
, nblks
, tag
);
509 /* wait for other io to complete */
511 for (i
= 0; i
< nblks
; i
++) {
512 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbp
[i
];
513 mutex_enter(&db
->db_mtx
);
514 while (db
->db_state
== DB_READ
||
515 db
->db_state
== DB_FILL
)
516 cv_wait(&db
->db_changed
, &db
->db_mtx
);
517 if (db
->db_state
== DB_UNCACHED
)
518 err
= SET_ERROR(EIO
);
519 mutex_exit(&db
->db_mtx
);
521 dmu_buf_rele_array(dbp
, nblks
, tag
);
533 dmu_buf_hold_array(objset_t
*os
, uint64_t object
, uint64_t offset
,
534 uint64_t length
, int read
, void *tag
, int *numbufsp
, dmu_buf_t
***dbpp
)
539 err
= dnode_hold(os
, object
, FTAG
, &dn
);
543 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, length
, read
, tag
,
544 numbufsp
, dbpp
, DMU_READ_PREFETCH
);
546 dnode_rele(dn
, FTAG
);
552 dmu_buf_hold_array_by_bonus(dmu_buf_t
*db_fake
, uint64_t offset
,
553 uint64_t length
, boolean_t read
, void *tag
, int *numbufsp
,
556 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
562 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, length
, read
, tag
,
563 numbufsp
, dbpp
, DMU_READ_PREFETCH
);
570 dmu_buf_rele_array(dmu_buf_t
**dbp_fake
, int numbufs
, void *tag
)
573 dmu_buf_impl_t
**dbp
= (dmu_buf_impl_t
**)dbp_fake
;
578 for (i
= 0; i
< numbufs
; i
++) {
580 dbuf_rele(dbp
[i
], tag
);
583 kmem_free(dbp
, sizeof (dmu_buf_t
*) * numbufs
);
587 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
588 * indirect blocks prefeteched will be those that point to the blocks containing
589 * the data starting at offset, and continuing to offset + len.
591 * Note that if the indirect blocks above the blocks being prefetched are not in
592 * cache, they will be asychronously read in.
595 dmu_prefetch(objset_t
*os
, uint64_t object
, int64_t level
, uint64_t offset
,
596 uint64_t len
, zio_priority_t pri
)
602 if (len
== 0) { /* they're interested in the bonus buffer */
603 dn
= DMU_META_DNODE(os
);
605 if (object
== 0 || object
>= DN_MAX_OBJECT
)
608 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
609 blkid
= dbuf_whichblock(dn
, level
,
610 object
* sizeof (dnode_phys_t
));
611 dbuf_prefetch(dn
, level
, blkid
, pri
, 0);
612 rw_exit(&dn
->dn_struct_rwlock
);
617 * XXX - Note, if the dnode for the requested object is not
618 * already cached, we will do a *synchronous* read in the
619 * dnode_hold() call. The same is true for any indirects.
621 err
= dnode_hold(os
, object
, FTAG
, &dn
);
625 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
627 * offset + len - 1 is the last byte we want to prefetch for, and offset
628 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
629 * last block we want to prefetch, and dbuf_whichblock(dn, level,
630 * offset) is the first. Then the number we need to prefetch is the
633 if (level
> 0 || dn
->dn_datablkshift
!= 0) {
634 nblks
= dbuf_whichblock(dn
, level
, offset
+ len
- 1) -
635 dbuf_whichblock(dn
, level
, offset
) + 1;
637 nblks
= (offset
< dn
->dn_datablksz
);
641 blkid
= dbuf_whichblock(dn
, level
, offset
);
642 for (int i
= 0; i
< nblks
; i
++)
643 dbuf_prefetch(dn
, level
, blkid
+ i
, pri
, 0);
646 rw_exit(&dn
->dn_struct_rwlock
);
648 dnode_rele(dn
, FTAG
);
652 * Get the next "chunk" of file data to free. We traverse the file from
653 * the end so that the file gets shorter over time (if we crashes in the
654 * middle, this will leave us in a better state). We find allocated file
655 * data by simply searching the allocated level 1 indirects.
657 * On input, *start should be the first offset that does not need to be
658 * freed (e.g. "offset + length"). On return, *start will be the first
659 * offset that should be freed.
662 get_next_chunk(dnode_t
*dn
, uint64_t *start
, uint64_t minimum
)
664 uint64_t maxblks
= DMU_MAX_ACCESS
>> (dn
->dn_indblkshift
+ 1);
665 /* bytes of data covered by a level-1 indirect block */
667 dn
->dn_datablksz
* EPB(dn
->dn_indblkshift
, SPA_BLKPTRSHIFT
);
669 ASSERT3U(minimum
, <=, *start
);
671 if (*start
- minimum
<= iblkrange
* maxblks
) {
675 ASSERT(ISP2(iblkrange
));
677 for (uint64_t blks
= 0; *start
> minimum
&& blks
< maxblks
; blks
++) {
681 * dnode_next_offset(BACKWARDS) will find an allocated L1
682 * indirect block at or before the input offset. We must
683 * decrement *start so that it is at the end of the region
687 err
= dnode_next_offset(dn
,
688 DNODE_FIND_BACKWARDS
, start
, 2, 1, 0);
690 /* if there are no indirect blocks before start, we are done */
694 } else if (err
!= 0) {
698 /* set start to the beginning of this L1 indirect */
699 *start
= P2ALIGN(*start
, iblkrange
);
701 if (*start
< minimum
)
707 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
708 * otherwise return false.
709 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
713 dmu_objset_zfs_unmounting(objset_t
*os
)
716 if (dmu_objset_type(os
) == DMU_OST_ZFS
)
717 return (zfs_get_vfs_flag_unmounted(os
));
723 dmu_free_long_range_impl(objset_t
*os
, dnode_t
*dn
, uint64_t offset
,
726 uint64_t object_size
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
;
728 uint64_t dirty_frees_threshold
;
729 dsl_pool_t
*dp
= dmu_objset_pool(os
);
731 if (offset
>= object_size
)
734 if (zfs_per_txg_dirty_frees_percent
<= 100)
735 dirty_frees_threshold
=
736 zfs_per_txg_dirty_frees_percent
* zfs_dirty_data_max
/ 100;
738 dirty_frees_threshold
= zfs_dirty_data_max
/ 4;
740 if (length
== DMU_OBJECT_END
|| offset
+ length
> object_size
)
741 length
= object_size
- offset
;
743 while (length
!= 0) {
744 uint64_t chunk_end
, chunk_begin
, chunk_len
;
745 uint64_t long_free_dirty_all_txgs
= 0;
748 if (dmu_objset_zfs_unmounting(dn
->dn_objset
))
749 return (SET_ERROR(EINTR
));
751 chunk_end
= chunk_begin
= offset
+ length
;
753 /* move chunk_begin backwards to the beginning of this chunk */
754 err
= get_next_chunk(dn
, &chunk_begin
, offset
);
757 ASSERT3U(chunk_begin
, >=, offset
);
758 ASSERT3U(chunk_begin
, <=, chunk_end
);
760 chunk_len
= chunk_end
- chunk_begin
;
762 mutex_enter(&dp
->dp_lock
);
763 for (int t
= 0; t
< TXG_SIZE
; t
++) {
764 long_free_dirty_all_txgs
+=
765 dp
->dp_long_free_dirty_pertxg
[t
];
767 mutex_exit(&dp
->dp_lock
);
770 * To avoid filling up a TXG with just frees wait for
771 * the next TXG to open before freeing more chunks if
772 * we have reached the threshold of frees
774 if (dirty_frees_threshold
!= 0 &&
775 long_free_dirty_all_txgs
>= dirty_frees_threshold
) {
776 txg_wait_open(dp
, 0);
780 tx
= dmu_tx_create(os
);
781 dmu_tx_hold_free(tx
, dn
->dn_object
, chunk_begin
, chunk_len
);
784 * Mark this transaction as typically resulting in a net
785 * reduction in space used.
787 dmu_tx_mark_netfree(tx
);
788 err
= dmu_tx_assign(tx
, TXG_WAIT
);
794 mutex_enter(&dp
->dp_lock
);
795 dp
->dp_long_free_dirty_pertxg
[dmu_tx_get_txg(tx
) & TXG_MASK
] +=
797 mutex_exit(&dp
->dp_lock
);
798 DTRACE_PROBE3(free__long__range
,
799 uint64_t, long_free_dirty_all_txgs
, uint64_t, chunk_len
,
800 uint64_t, dmu_tx_get_txg(tx
));
801 dnode_free_range(dn
, chunk_begin
, chunk_len
, tx
);
810 dmu_free_long_range(objset_t
*os
, uint64_t object
,
811 uint64_t offset
, uint64_t length
)
816 err
= dnode_hold(os
, object
, FTAG
, &dn
);
819 err
= dmu_free_long_range_impl(os
, dn
, offset
, length
);
822 * It is important to zero out the maxblkid when freeing the entire
823 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
824 * will take the fast path, and (b) dnode_reallocate() can verify
825 * that the entire file has been freed.
827 if (err
== 0 && offset
== 0 && length
== DMU_OBJECT_END
)
830 dnode_rele(dn
, FTAG
);
835 dmu_free_long_object(objset_t
*os
, uint64_t object
)
840 err
= dmu_free_long_range(os
, object
, 0, DMU_OBJECT_END
);
844 tx
= dmu_tx_create(os
);
845 dmu_tx_hold_bonus(tx
, object
);
846 dmu_tx_hold_free(tx
, object
, 0, DMU_OBJECT_END
);
847 dmu_tx_mark_netfree(tx
);
848 err
= dmu_tx_assign(tx
, TXG_WAIT
);
850 err
= dmu_object_free(os
, object
, tx
);
860 dmu_free_range(objset_t
*os
, uint64_t object
, uint64_t offset
,
861 uint64_t size
, dmu_tx_t
*tx
)
864 int err
= dnode_hold(os
, object
, FTAG
, &dn
);
867 ASSERT(offset
< UINT64_MAX
);
868 ASSERT(size
== -1ULL || size
<= UINT64_MAX
- offset
);
869 dnode_free_range(dn
, offset
, size
, tx
);
870 dnode_rele(dn
, FTAG
);
875 dmu_read_impl(dnode_t
*dn
, uint64_t offset
, uint64_t size
,
876 void *buf
, uint32_t flags
)
879 int numbufs
, err
= 0;
882 * Deal with odd block sizes, where there can't be data past the first
883 * block. If we ever do the tail block optimization, we will need to
884 * handle that here as well.
886 if (dn
->dn_maxblkid
== 0) {
887 int newsz
= offset
> dn
->dn_datablksz
? 0 :
888 MIN(size
, dn
->dn_datablksz
- offset
);
889 bzero((char *)buf
+ newsz
, size
- newsz
);
894 uint64_t mylen
= MIN(size
, DMU_MAX_ACCESS
/ 2);
898 * NB: we could do this block-at-a-time, but it's nice
899 * to be reading in parallel.
901 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, mylen
,
902 TRUE
, FTAG
, &numbufs
, &dbp
, flags
);
906 for (i
= 0; i
< numbufs
; i
++) {
909 dmu_buf_t
*db
= dbp
[i
];
913 bufoff
= offset
- db
->db_offset
;
914 tocpy
= (int)MIN(db
->db_size
- bufoff
, size
);
916 bcopy((char *)db
->db_data
+ bufoff
, buf
, tocpy
);
920 buf
= (char *)buf
+ tocpy
;
922 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
928 dmu_read(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
929 void *buf
, uint32_t flags
)
934 err
= dnode_hold(os
, object
, FTAG
, &dn
);
938 err
= dmu_read_impl(dn
, offset
, size
, buf
, flags
);
939 dnode_rele(dn
, FTAG
);
944 dmu_read_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t size
, void *buf
,
947 return (dmu_read_impl(dn
, offset
, size
, buf
, flags
));
951 dmu_write_impl(dmu_buf_t
**dbp
, int numbufs
, uint64_t offset
, uint64_t size
,
952 const void *buf
, dmu_tx_t
*tx
)
956 for (i
= 0; i
< numbufs
; i
++) {
959 dmu_buf_t
*db
= dbp
[i
];
963 bufoff
= offset
- db
->db_offset
;
964 tocpy
= (int)MIN(db
->db_size
- bufoff
, size
);
966 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
968 if (tocpy
== db
->db_size
)
969 dmu_buf_will_fill(db
, tx
);
971 dmu_buf_will_dirty(db
, tx
);
973 bcopy(buf
, (char *)db
->db_data
+ bufoff
, tocpy
);
975 if (tocpy
== db
->db_size
)
976 dmu_buf_fill_done(db
, tx
);
980 buf
= (char *)buf
+ tocpy
;
985 dmu_write(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
986 const void *buf
, dmu_tx_t
*tx
)
994 VERIFY0(dmu_buf_hold_array(os
, object
, offset
, size
,
995 FALSE
, FTAG
, &numbufs
, &dbp
));
996 dmu_write_impl(dbp
, numbufs
, offset
, size
, buf
, tx
);
997 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1001 dmu_write_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t size
,
1002 const void *buf
, dmu_tx_t
*tx
)
1010 VERIFY0(dmu_buf_hold_array_by_dnode(dn
, offset
, size
,
1011 FALSE
, FTAG
, &numbufs
, &dbp
, DMU_READ_PREFETCH
));
1012 dmu_write_impl(dbp
, numbufs
, offset
, size
, buf
, tx
);
1013 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1017 dmu_prealloc(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1026 VERIFY(0 == dmu_buf_hold_array(os
, object
, offset
, size
,
1027 FALSE
, FTAG
, &numbufs
, &dbp
));
1029 for (i
= 0; i
< numbufs
; i
++) {
1030 dmu_buf_t
*db
= dbp
[i
];
1032 dmu_buf_will_not_fill(db
, tx
);
1034 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1038 dmu_write_embedded(objset_t
*os
, uint64_t object
, uint64_t offset
,
1039 void *data
, uint8_t etype
, uint8_t comp
, int uncompressed_size
,
1040 int compressed_size
, int byteorder
, dmu_tx_t
*tx
)
1044 ASSERT3U(etype
, <, NUM_BP_EMBEDDED_TYPES
);
1045 ASSERT3U(comp
, <, ZIO_COMPRESS_FUNCTIONS
);
1046 VERIFY0(dmu_buf_hold_noread(os
, object
, offset
,
1049 dmu_buf_write_embedded(db
,
1050 data
, (bp_embedded_type_t
)etype
, (enum zio_compress
)comp
,
1051 uncompressed_size
, compressed_size
, byteorder
, tx
);
1053 dmu_buf_rele(db
, FTAG
);
1057 * DMU support for xuio
1059 kstat_t
*xuio_ksp
= NULL
;
1062 dmu_xuio_init(xuio_t
*xuio
, int nblk
)
1065 uio_t
*uio
= &xuio
->xu_uio
;
1067 uio
->uio_iovcnt
= nblk
;
1068 uio
->uio_iov
= kmem_zalloc(nblk
* sizeof (iovec_t
), KM_SLEEP
);
1070 priv
= kmem_zalloc(sizeof (dmu_xuio_t
), KM_SLEEP
);
1072 priv
->bufs
= kmem_zalloc(nblk
* sizeof (arc_buf_t
*), KM_SLEEP
);
1073 priv
->iovp
= uio
->uio_iov
;
1074 XUIO_XUZC_PRIV(xuio
) = priv
;
1076 if (XUIO_XUZC_RW(xuio
) == UIO_READ
)
1077 XUIOSTAT_INCR(xuiostat_onloan_rbuf
, nblk
);
1079 XUIOSTAT_INCR(xuiostat_onloan_wbuf
, nblk
);
1085 dmu_xuio_fini(xuio_t
*xuio
)
1087 dmu_xuio_t
*priv
= XUIO_XUZC_PRIV(xuio
);
1088 int nblk
= priv
->cnt
;
1090 kmem_free(priv
->iovp
, nblk
* sizeof (iovec_t
));
1091 kmem_free(priv
->bufs
, nblk
* sizeof (arc_buf_t
*));
1092 kmem_free(priv
, sizeof (dmu_xuio_t
));
1094 if (XUIO_XUZC_RW(xuio
) == UIO_READ
)
1095 XUIOSTAT_INCR(xuiostat_onloan_rbuf
, -nblk
);
1097 XUIOSTAT_INCR(xuiostat_onloan_wbuf
, -nblk
);
1101 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1102 * and increase priv->next by 1.
1105 dmu_xuio_add(xuio_t
*xuio
, arc_buf_t
*abuf
, offset_t off
, size_t n
)
1108 uio_t
*uio
= &xuio
->xu_uio
;
1109 dmu_xuio_t
*priv
= XUIO_XUZC_PRIV(xuio
);
1110 int i
= priv
->next
++;
1112 ASSERT(i
< priv
->cnt
);
1113 ASSERT(off
+ n
<= arc_buf_lsize(abuf
));
1114 iov
= uio
->uio_iov
+ i
;
1115 iov
->iov_base
= (char *)abuf
->b_data
+ off
;
1117 priv
->bufs
[i
] = abuf
;
1122 dmu_xuio_cnt(xuio_t
*xuio
)
1124 dmu_xuio_t
*priv
= XUIO_XUZC_PRIV(xuio
);
1129 dmu_xuio_arcbuf(xuio_t
*xuio
, int i
)
1131 dmu_xuio_t
*priv
= XUIO_XUZC_PRIV(xuio
);
1133 ASSERT(i
< priv
->cnt
);
1134 return (priv
->bufs
[i
]);
1138 dmu_xuio_clear(xuio_t
*xuio
, int i
)
1140 dmu_xuio_t
*priv
= XUIO_XUZC_PRIV(xuio
);
1142 ASSERT(i
< priv
->cnt
);
1143 priv
->bufs
[i
] = NULL
;
1147 xuio_stat_init(void)
1149 xuio_ksp
= kstat_create("zfs", 0, "xuio_stats", "misc",
1150 KSTAT_TYPE_NAMED
, sizeof (xuio_stats
) / sizeof (kstat_named_t
),
1151 KSTAT_FLAG_VIRTUAL
);
1152 if (xuio_ksp
!= NULL
) {
1153 xuio_ksp
->ks_data
= &xuio_stats
;
1154 kstat_install(xuio_ksp
);
1159 xuio_stat_fini(void)
1161 if (xuio_ksp
!= NULL
) {
1162 kstat_delete(xuio_ksp
);
1168 xuio_stat_wbuf_copied(void)
1170 XUIOSTAT_BUMP(xuiostat_wbuf_copied
);
1174 xuio_stat_wbuf_nocopy(void)
1176 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy
);
1181 dmu_read_uio_dnode(dnode_t
*dn
, uio_t
*uio
, uint64_t size
)
1184 int numbufs
, i
, err
;
1185 xuio_t
*xuio
= NULL
;
1188 * NB: we could do this block-at-a-time, but it's nice
1189 * to be reading in parallel.
1191 err
= dmu_buf_hold_array_by_dnode(dn
, uio
->uio_loffset
, size
,
1192 TRUE
, FTAG
, &numbufs
, &dbp
, 0);
1196 if (uio
->uio_extflg
== UIO_XUIO
)
1197 xuio
= (xuio_t
*)uio
;
1199 for (i
= 0; i
< numbufs
; i
++) {
1202 dmu_buf_t
*db
= dbp
[i
];
1206 bufoff
= uio
->uio_loffset
- db
->db_offset
;
1207 tocpy
= (int)MIN(db
->db_size
- bufoff
, size
);
1210 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
1211 arc_buf_t
*dbuf_abuf
= dbi
->db_buf
;
1212 arc_buf_t
*abuf
= dbuf_loan_arcbuf(dbi
);
1213 err
= dmu_xuio_add(xuio
, abuf
, bufoff
, tocpy
);
1215 uio
->uio_resid
-= tocpy
;
1216 uio
->uio_loffset
+= tocpy
;
1219 if (abuf
== dbuf_abuf
)
1220 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy
);
1222 XUIOSTAT_BUMP(xuiostat_rbuf_copied
);
1224 err
= uiomove((char *)db
->db_data
+ bufoff
, tocpy
,
1232 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1238 * Read 'size' bytes into the uio buffer.
1239 * From object zdb->db_object.
1240 * Starting at offset uio->uio_loffset.
1242 * If the caller already has a dbuf in the target object
1243 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1244 * because we don't have to find the dnode_t for the object.
1247 dmu_read_uio_dbuf(dmu_buf_t
*zdb
, uio_t
*uio
, uint64_t size
)
1249 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zdb
;
1258 err
= dmu_read_uio_dnode(dn
, uio
, size
);
1265 * Read 'size' bytes into the uio buffer.
1266 * From the specified object
1267 * Starting at offset uio->uio_loffset.
1270 dmu_read_uio(objset_t
*os
, uint64_t object
, uio_t
*uio
, uint64_t size
)
1278 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1282 err
= dmu_read_uio_dnode(dn
, uio
, size
);
1284 dnode_rele(dn
, FTAG
);
1290 dmu_write_uio_dnode(dnode_t
*dn
, uio_t
*uio
, uint64_t size
, dmu_tx_t
*tx
)
1297 err
= dmu_buf_hold_array_by_dnode(dn
, uio
->uio_loffset
, size
,
1298 FALSE
, FTAG
, &numbufs
, &dbp
, DMU_READ_PREFETCH
);
1302 for (i
= 0; i
< numbufs
; i
++) {
1305 dmu_buf_t
*db
= dbp
[i
];
1309 bufoff
= uio
->uio_loffset
- db
->db_offset
;
1310 tocpy
= (int)MIN(db
->db_size
- bufoff
, size
);
1312 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
1314 if (tocpy
== db
->db_size
)
1315 dmu_buf_will_fill(db
, tx
);
1317 dmu_buf_will_dirty(db
, tx
);
1320 * XXX uiomove could block forever (eg. nfs-backed
1321 * pages). There needs to be a uiolockdown() function
1322 * to lock the pages in memory, so that uiomove won't
1325 err
= uiomove((char *)db
->db_data
+ bufoff
, tocpy
,
1328 if (tocpy
== db
->db_size
)
1329 dmu_buf_fill_done(db
, tx
);
1337 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1342 * Write 'size' bytes from the uio buffer.
1343 * To object zdb->db_object.
1344 * Starting at offset uio->uio_loffset.
1346 * If the caller already has a dbuf in the target object
1347 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1348 * because we don't have to find the dnode_t for the object.
1351 dmu_write_uio_dbuf(dmu_buf_t
*zdb
, uio_t
*uio
, uint64_t size
,
1354 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zdb
;
1363 err
= dmu_write_uio_dnode(dn
, uio
, size
, tx
);
1370 * Write 'size' bytes from the uio buffer.
1371 * To the specified object.
1372 * Starting at offset uio->uio_loffset.
1375 dmu_write_uio(objset_t
*os
, uint64_t object
, uio_t
*uio
, uint64_t size
,
1384 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1388 err
= dmu_write_uio_dnode(dn
, uio
, size
, tx
);
1390 dnode_rele(dn
, FTAG
);
1396 dmu_write_pages(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1397 page_t
*pp
, dmu_tx_t
*tx
)
1406 err
= dmu_buf_hold_array(os
, object
, offset
, size
,
1407 FALSE
, FTAG
, &numbufs
, &dbp
);
1411 for (i
= 0; i
< numbufs
; i
++) {
1412 int tocpy
, copied
, thiscpy
;
1414 dmu_buf_t
*db
= dbp
[i
];
1418 ASSERT3U(db
->db_size
, >=, PAGESIZE
);
1420 bufoff
= offset
- db
->db_offset
;
1421 tocpy
= (int)MIN(db
->db_size
- bufoff
, size
);
1423 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
1425 if (tocpy
== db
->db_size
)
1426 dmu_buf_will_fill(db
, tx
);
1428 dmu_buf_will_dirty(db
, tx
);
1430 for (copied
= 0; copied
< tocpy
; copied
+= PAGESIZE
) {
1431 ASSERT3U(pp
->p_offset
, ==, db
->db_offset
+ bufoff
);
1432 thiscpy
= MIN(PAGESIZE
, tocpy
- copied
);
1433 va
= zfs_map_page(pp
, S_READ
);
1434 bcopy(va
, (char *)db
->db_data
+ bufoff
, thiscpy
);
1435 zfs_unmap_page(pp
, va
);
1440 if (tocpy
== db
->db_size
)
1441 dmu_buf_fill_done(db
, tx
);
1446 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1452 * Allocate a loaned anonymous arc buffer.
1455 dmu_request_arcbuf(dmu_buf_t
*handle
, int size
)
1457 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)handle
;
1459 return (arc_loan_buf(db
->db_objset
->os_spa
, B_FALSE
, size
));
1463 * Free a loaned arc buffer.
1466 dmu_return_arcbuf(arc_buf_t
*buf
)
1468 arc_return_buf(buf
, FTAG
);
1469 arc_buf_destroy(buf
, FTAG
);
1473 * When possible directly assign passed loaned arc buffer to a dbuf.
1474 * If this is not possible copy the contents of passed arc buf via
1478 dmu_assign_arcbuf(dmu_buf_t
*handle
, uint64_t offset
, arc_buf_t
*buf
,
1481 dmu_buf_impl_t
*dbuf
= (dmu_buf_impl_t
*)handle
;
1484 uint32_t blksz
= (uint32_t)arc_buf_lsize(buf
);
1487 DB_DNODE_ENTER(dbuf
);
1488 dn
= DB_DNODE(dbuf
);
1489 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
1490 blkid
= dbuf_whichblock(dn
, 0, offset
);
1491 VERIFY((db
= dbuf_hold(dn
, blkid
, FTAG
)) != NULL
);
1492 rw_exit(&dn
->dn_struct_rwlock
);
1493 DB_DNODE_EXIT(dbuf
);
1496 * We can only assign if the offset is aligned, the arc buf is the
1497 * same size as the dbuf, and the dbuf is not metadata.
1499 if (offset
== db
->db
.db_offset
&& blksz
== db
->db
.db_size
) {
1500 dbuf_assign_arcbuf(db
, buf
, tx
);
1501 dbuf_rele(db
, FTAG
);
1506 /* compressed bufs must always be assignable to their dbuf */
1507 ASSERT3U(arc_get_compression(buf
), ==, ZIO_COMPRESS_OFF
);
1508 ASSERT(!(buf
->b_flags
& ARC_BUF_FLAG_COMPRESSED
));
1510 DB_DNODE_ENTER(dbuf
);
1511 dn
= DB_DNODE(dbuf
);
1513 object
= dn
->dn_object
;
1514 DB_DNODE_EXIT(dbuf
);
1516 dbuf_rele(db
, FTAG
);
1517 dmu_write(os
, object
, offset
, blksz
, buf
->b_data
, tx
);
1518 dmu_return_arcbuf(buf
);
1519 XUIOSTAT_BUMP(xuiostat_wbuf_copied
);
1524 dbuf_dirty_record_t
*dsa_dr
;
1525 dmu_sync_cb_t
*dsa_done
;
1532 dmu_sync_ready(zio_t
*zio
, arc_buf_t
*buf
, void *varg
)
1534 dmu_sync_arg_t
*dsa
= varg
;
1535 dmu_buf_t
*db
= dsa
->dsa_zgd
->zgd_db
;
1536 blkptr_t
*bp
= zio
->io_bp
;
1538 if (zio
->io_error
== 0) {
1539 if (BP_IS_HOLE(bp
)) {
1541 * A block of zeros may compress to a hole, but the
1542 * block size still needs to be known for replay.
1544 BP_SET_LSIZE(bp
, db
->db_size
);
1545 } else if (!BP_IS_EMBEDDED(bp
)) {
1546 ASSERT(BP_GET_LEVEL(bp
) == 0);
1553 dmu_sync_late_arrival_ready(zio_t
*zio
)
1555 dmu_sync_ready(zio
, NULL
, zio
->io_private
);
1560 dmu_sync_done(zio_t
*zio
, arc_buf_t
*buf
, void *varg
)
1562 dmu_sync_arg_t
*dsa
= varg
;
1563 dbuf_dirty_record_t
*dr
= dsa
->dsa_dr
;
1564 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
1566 mutex_enter(&db
->db_mtx
);
1567 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
);
1568 if (zio
->io_error
== 0) {
1569 dr
->dt
.dl
.dr_nopwrite
= !!(zio
->io_flags
& ZIO_FLAG_NOPWRITE
);
1570 if (dr
->dt
.dl
.dr_nopwrite
) {
1571 blkptr_t
*bp
= zio
->io_bp
;
1572 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
1573 uint8_t chksum
= BP_GET_CHECKSUM(bp_orig
);
1575 ASSERT(BP_EQUAL(bp
, bp_orig
));
1576 ASSERT(zio
->io_prop
.zp_compress
!= ZIO_COMPRESS_OFF
);
1577 ASSERT(zio_checksum_table
[chksum
].ci_flags
&
1578 ZCHECKSUM_FLAG_NOPWRITE
);
1580 dr
->dt
.dl
.dr_overridden_by
= *zio
->io_bp
;
1581 dr
->dt
.dl
.dr_override_state
= DR_OVERRIDDEN
;
1582 dr
->dt
.dl
.dr_copies
= zio
->io_prop
.zp_copies
;
1585 * Old style holes are filled with all zeros, whereas
1586 * new-style holes maintain their lsize, type, level,
1587 * and birth time (see zio_write_compress). While we
1588 * need to reset the BP_SET_LSIZE() call that happened
1589 * in dmu_sync_ready for old style holes, we do *not*
1590 * want to wipe out the information contained in new
1591 * style holes. Thus, only zero out the block pointer if
1592 * it's an old style hole.
1594 if (BP_IS_HOLE(&dr
->dt
.dl
.dr_overridden_by
) &&
1595 dr
->dt
.dl
.dr_overridden_by
.blk_birth
== 0)
1596 BP_ZERO(&dr
->dt
.dl
.dr_overridden_by
);
1598 dr
->dt
.dl
.dr_override_state
= DR_NOT_OVERRIDDEN
;
1600 cv_broadcast(&db
->db_changed
);
1601 mutex_exit(&db
->db_mtx
);
1603 dsa
->dsa_done(dsa
->dsa_zgd
, zio
->io_error
);
1605 kmem_free(dsa
, sizeof (*dsa
));
1609 dmu_sync_late_arrival_done(zio_t
*zio
)
1611 blkptr_t
*bp
= zio
->io_bp
;
1612 dmu_sync_arg_t
*dsa
= zio
->io_private
;
1613 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
1615 if (zio
->io_error
== 0 && !BP_IS_HOLE(bp
)) {
1617 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1618 * then there is nothing to do here. Otherwise, free the
1619 * newly allocated block in this txg.
1621 if (zio
->io_flags
& ZIO_FLAG_NOPWRITE
) {
1622 ASSERT(BP_EQUAL(bp
, bp_orig
));
1624 ASSERT(BP_IS_HOLE(bp_orig
) || !BP_EQUAL(bp
, bp_orig
));
1625 ASSERT(zio
->io_bp
->blk_birth
== zio
->io_txg
);
1626 ASSERT(zio
->io_txg
> spa_syncing_txg(zio
->io_spa
));
1627 zio_free(zio
->io_spa
, zio
->io_txg
, zio
->io_bp
);
1631 dmu_tx_commit(dsa
->dsa_tx
);
1633 dsa
->dsa_done(dsa
->dsa_zgd
, zio
->io_error
);
1635 kmem_free(dsa
, sizeof (*dsa
));
1639 dmu_sync_late_arrival(zio_t
*pio
, objset_t
*os
, dmu_sync_cb_t
*done
, zgd_t
*zgd
,
1640 zio_prop_t
*zp
, zbookmark_phys_t
*zb
)
1642 dmu_sync_arg_t
*dsa
;
1645 tx
= dmu_tx_create(os
);
1646 dmu_tx_hold_space(tx
, zgd
->zgd_db
->db_size
);
1647 if (dmu_tx_assign(tx
, TXG_WAIT
) != 0) {
1649 /* Make zl_get_data do txg_waited_synced() */
1650 return (SET_ERROR(EIO
));
1653 dsa
= kmem_alloc(sizeof (dmu_sync_arg_t
), KM_SLEEP
);
1655 dsa
->dsa_done
= done
;
1659 zio_nowait(zio_write(pio
, os
->os_spa
, dmu_tx_get_txg(tx
), zgd
->zgd_bp
,
1660 zgd
->zgd_db
->db_data
, zgd
->zgd_db
->db_size
, zgd
->zgd_db
->db_size
,
1661 zp
, dmu_sync_late_arrival_ready
, NULL
,
1662 NULL
, dmu_sync_late_arrival_done
, dsa
, ZIO_PRIORITY_SYNC_WRITE
,
1663 ZIO_FLAG_CANFAIL
, zb
));
1669 * Intent log support: sync the block associated with db to disk.
1670 * N.B. and XXX: the caller is responsible for making sure that the
1671 * data isn't changing while dmu_sync() is writing it.
1675 * EEXIST: this txg has already been synced, so there's nothing to do.
1676 * The caller should not log the write.
1678 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1679 * The caller should not log the write.
1681 * EALREADY: this block is already in the process of being synced.
1682 * The caller should track its progress (somehow).
1684 * EIO: could not do the I/O.
1685 * The caller should do a txg_wait_synced().
1687 * 0: the I/O has been initiated.
1688 * The caller should log this blkptr in the done callback.
1689 * It is possible that the I/O will fail, in which case
1690 * the error will be reported to the done callback and
1691 * propagated to pio from zio_done().
1694 dmu_sync(zio_t
*pio
, uint64_t txg
, dmu_sync_cb_t
*done
, zgd_t
*zgd
)
1696 blkptr_t
*bp
= zgd
->zgd_bp
;
1697 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zgd
->zgd_db
;
1698 objset_t
*os
= db
->db_objset
;
1699 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
1700 dbuf_dirty_record_t
*dr
;
1701 dmu_sync_arg_t
*dsa
;
1702 zbookmark_phys_t zb
;
1706 ASSERT(pio
!= NULL
);
1709 SET_BOOKMARK(&zb
, ds
->ds_object
,
1710 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
1714 dmu_write_policy(os
, dn
, db
->db_level
, WP_DMU_SYNC
,
1715 ZIO_COMPRESS_INHERIT
, &zp
);
1719 * If we're frozen (running ziltest), we always need to generate a bp.
1721 if (txg
> spa_freeze_txg(os
->os_spa
))
1722 return (dmu_sync_late_arrival(pio
, os
, done
, zgd
, &zp
, &zb
));
1725 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1726 * and us. If we determine that this txg is not yet syncing,
1727 * but it begins to sync a moment later, that's OK because the
1728 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1730 mutex_enter(&db
->db_mtx
);
1732 if (txg
<= spa_last_synced_txg(os
->os_spa
)) {
1734 * This txg has already synced. There's nothing to do.
1736 mutex_exit(&db
->db_mtx
);
1737 return (SET_ERROR(EEXIST
));
1740 if (txg
<= spa_syncing_txg(os
->os_spa
)) {
1742 * This txg is currently syncing, so we can't mess with
1743 * the dirty record anymore; just write a new log block.
1745 mutex_exit(&db
->db_mtx
);
1746 return (dmu_sync_late_arrival(pio
, os
, done
, zgd
, &zp
, &zb
));
1749 dr
= db
->db_last_dirty
;
1750 while (dr
&& dr
->dr_txg
!= txg
)
1755 * There's no dr for this dbuf, so it must have been freed.
1756 * There's no need to log writes to freed blocks, so we're done.
1758 mutex_exit(&db
->db_mtx
);
1759 return (SET_ERROR(ENOENT
));
1762 ASSERT(dr
->dr_next
== NULL
|| dr
->dr_next
->dr_txg
< txg
);
1765 * Assume the on-disk data is X, the current syncing data (in
1766 * txg - 1) is Y, and the current in-memory data is Z (currently
1769 * We usually want to perform a nopwrite if X and Z are the
1770 * same. However, if Y is different (i.e. the BP is going to
1771 * change before this write takes effect), then a nopwrite will
1772 * be incorrect - we would override with X, which could have
1773 * been freed when Y was written.
1775 * (Note that this is not a concern when we are nop-writing from
1776 * syncing context, because X and Y must be identical, because
1777 * all previous txgs have been synced.)
1779 * Therefore, we disable nopwrite if the current BP could change
1780 * before this TXG. There are two ways it could change: by
1781 * being dirty (dr_next is non-NULL), or by being freed
1782 * (dnode_block_freed()). This behavior is verified by
1783 * zio_done(), which VERIFYs that the override BP is identical
1784 * to the on-disk BP.
1788 if (dr
->dr_next
!= NULL
|| dnode_block_freed(dn
, db
->db_blkid
))
1789 zp
.zp_nopwrite
= B_FALSE
;
1792 ASSERT(dr
->dr_txg
== txg
);
1793 if (dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
||
1794 dr
->dt
.dl
.dr_override_state
== DR_OVERRIDDEN
) {
1796 * We have already issued a sync write for this buffer,
1797 * or this buffer has already been synced. It could not
1798 * have been dirtied since, or we would have cleared the state.
1800 mutex_exit(&db
->db_mtx
);
1801 return (SET_ERROR(EALREADY
));
1804 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_NOT_OVERRIDDEN
);
1805 dr
->dt
.dl
.dr_override_state
= DR_IN_DMU_SYNC
;
1806 mutex_exit(&db
->db_mtx
);
1808 dsa
= kmem_alloc(sizeof (dmu_sync_arg_t
), KM_SLEEP
);
1810 dsa
->dsa_done
= done
;
1814 zio_nowait(arc_write(pio
, os
->os_spa
, txg
,
1815 bp
, dr
->dt
.dl
.dr_data
, DBUF_IS_L2CACHEABLE(db
),
1816 &zp
, dmu_sync_ready
, NULL
, NULL
, dmu_sync_done
, dsa
,
1817 ZIO_PRIORITY_SYNC_WRITE
, ZIO_FLAG_CANFAIL
, &zb
));
1823 dmu_object_set_blocksize(objset_t
*os
, uint64_t object
, uint64_t size
, int ibs
,
1829 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1832 err
= dnode_set_blksz(dn
, size
, ibs
, tx
);
1833 dnode_rele(dn
, FTAG
);
1838 dmu_object_set_checksum(objset_t
*os
, uint64_t object
, uint8_t checksum
,
1844 * Send streams include each object's checksum function. This
1845 * check ensures that the receiving system can understand the
1846 * checksum function transmitted.
1848 ASSERT3U(checksum
, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS
);
1850 VERIFY0(dnode_hold(os
, object
, FTAG
, &dn
));
1851 ASSERT3U(checksum
, <, ZIO_CHECKSUM_FUNCTIONS
);
1852 dn
->dn_checksum
= checksum
;
1853 dnode_setdirty(dn
, tx
);
1854 dnode_rele(dn
, FTAG
);
1858 dmu_object_set_compress(objset_t
*os
, uint64_t object
, uint8_t compress
,
1864 * Send streams include each object's compression function. This
1865 * check ensures that the receiving system can understand the
1866 * compression function transmitted.
1868 ASSERT3U(compress
, <, ZIO_COMPRESS_LEGACY_FUNCTIONS
);
1870 VERIFY0(dnode_hold(os
, object
, FTAG
, &dn
));
1871 dn
->dn_compress
= compress
;
1872 dnode_setdirty(dn
, tx
);
1873 dnode_rele(dn
, FTAG
);
1876 int zfs_mdcomp_disable
= 0;
1879 * When the "redundant_metadata" property is set to "most", only indirect
1880 * blocks of this level and higher will have an additional ditto block.
1882 int zfs_redundant_metadata_most_ditto_level
= 2;
1885 dmu_write_policy(objset_t
*os
, dnode_t
*dn
, int level
, int wp
,
1886 enum zio_compress override_compress
, zio_prop_t
*zp
)
1888 dmu_object_type_t type
= dn
? dn
->dn_type
: DMU_OT_OBJSET
;
1889 boolean_t ismd
= (level
> 0 || DMU_OT_IS_METADATA(type
) ||
1891 enum zio_checksum checksum
= os
->os_checksum
;
1892 enum zio_compress compress
= os
->os_compress
;
1893 enum zio_checksum dedup_checksum
= os
->os_dedup_checksum
;
1894 boolean_t dedup
= B_FALSE
;
1895 boolean_t nopwrite
= B_FALSE
;
1896 boolean_t dedup_verify
= os
->os_dedup_verify
;
1897 int copies
= os
->os_copies
;
1898 boolean_t lz4_ac
= spa_feature_is_active(os
->os_spa
,
1899 SPA_FEATURE_LZ4_COMPRESS
);
1901 IMPLY(override_compress
== ZIO_COMPRESS_LZ4
, lz4_ac
);
1904 * We maintain different write policies for each of the following
1907 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1908 * 3. all other level 0 blocks
1911 if (zfs_mdcomp_disable
) {
1912 compress
= ZIO_COMPRESS_EMPTY
;
1915 * XXX -- we should design a compression algorithm
1916 * that specializes in arrays of bps.
1918 compress
= zio_compress_select(os
->os_spa
,
1919 ZIO_COMPRESS_ON
, ZIO_COMPRESS_ON
);
1923 * Metadata always gets checksummed. If the data
1924 * checksum is multi-bit correctable, and it's not a
1925 * ZBT-style checksum, then it's suitable for metadata
1926 * as well. Otherwise, the metadata checksum defaults
1929 if (!(zio_checksum_table
[checksum
].ci_flags
&
1930 ZCHECKSUM_FLAG_METADATA
) ||
1931 (zio_checksum_table
[checksum
].ci_flags
&
1932 ZCHECKSUM_FLAG_EMBEDDED
))
1933 checksum
= ZIO_CHECKSUM_FLETCHER_4
;
1935 if (os
->os_redundant_metadata
== ZFS_REDUNDANT_METADATA_ALL
||
1936 (os
->os_redundant_metadata
==
1937 ZFS_REDUNDANT_METADATA_MOST
&&
1938 (level
>= zfs_redundant_metadata_most_ditto_level
||
1939 DMU_OT_IS_METADATA(type
) || (wp
& WP_SPILL
))))
1941 } else if (wp
& WP_NOFILL
) {
1945 * If we're writing preallocated blocks, we aren't actually
1946 * writing them so don't set any policy properties. These
1947 * blocks are currently only used by an external subsystem
1948 * outside of zfs (i.e. dump) and not written by the zio
1951 compress
= ZIO_COMPRESS_OFF
;
1952 checksum
= ZIO_CHECKSUM_NOPARITY
;
1954 compress
= zio_compress_select(os
->os_spa
, dn
->dn_compress
,
1957 checksum
= (dedup_checksum
== ZIO_CHECKSUM_OFF
) ?
1958 zio_checksum_select(dn
->dn_checksum
, checksum
) :
1962 * Determine dedup setting. If we are in dmu_sync(),
1963 * we won't actually dedup now because that's all
1964 * done in syncing context; but we do want to use the
1965 * dedup checkum. If the checksum is not strong
1966 * enough to ensure unique signatures, force
1969 if (dedup_checksum
!= ZIO_CHECKSUM_OFF
) {
1970 dedup
= (wp
& WP_DMU_SYNC
) ? B_FALSE
: B_TRUE
;
1971 if (!(zio_checksum_table
[checksum
].ci_flags
&
1972 ZCHECKSUM_FLAG_DEDUP
))
1973 dedup_verify
= B_TRUE
;
1977 * Enable nopwrite if we have secure enough checksum
1978 * algorithm (see comment in zio_nop_write) and
1979 * compression is enabled. We don't enable nopwrite if
1980 * dedup is enabled as the two features are mutually
1983 nopwrite
= (!dedup
&& (zio_checksum_table
[checksum
].ci_flags
&
1984 ZCHECKSUM_FLAG_NOPWRITE
) &&
1985 compress
!= ZIO_COMPRESS_OFF
&& zfs_nopwrite_enabled
);
1988 zp
->zp_checksum
= checksum
;
1991 * If we're writing a pre-compressed buffer, the compression type we use
1992 * must match the data. If it hasn't been compressed yet, then we should
1993 * use the value dictated by the policies above.
1995 zp
->zp_compress
= override_compress
!= ZIO_COMPRESS_INHERIT
1996 ? override_compress
: compress
;
1997 ASSERT3U(zp
->zp_compress
, !=, ZIO_COMPRESS_INHERIT
);
1999 zp
->zp_type
= (wp
& WP_SPILL
) ? dn
->dn_bonustype
: type
;
2000 zp
->zp_level
= level
;
2001 zp
->zp_copies
= MIN(copies
, spa_max_replication(os
->os_spa
));
2002 zp
->zp_dedup
= dedup
;
2003 zp
->zp_dedup_verify
= dedup
&& dedup_verify
;
2004 zp
->zp_nopwrite
= nopwrite
;
2008 dmu_offset_next(objset_t
*os
, uint64_t object
, boolean_t hole
, uint64_t *off
)
2014 * Sync any current changes before
2015 * we go trundling through the block pointers.
2017 err
= dmu_object_wait_synced(os
, object
);
2022 err
= dnode_hold(os
, object
, FTAG
, &dn
);
2027 err
= dnode_next_offset(dn
, (hole
? DNODE_FIND_HOLE
: 0), off
, 1, 1, 0);
2028 dnode_rele(dn
, FTAG
);
2034 * Given the ZFS object, if it contains any dirty nodes
2035 * this function flushes all dirty blocks to disk. This
2036 * ensures the DMU object info is updated. A more efficient
2037 * future version might just find the TXG with the maximum
2038 * ID and wait for that to be synced.
2041 dmu_object_wait_synced(objset_t
*os
, uint64_t object
)
2046 error
= dnode_hold(os
, object
, FTAG
, &dn
);
2051 for (i
= 0; i
< TXG_SIZE
; i
++) {
2052 if (list_link_active(&dn
->dn_dirty_link
[i
])) {
2056 dnode_rele(dn
, FTAG
);
2057 if (i
!= TXG_SIZE
) {
2058 txg_wait_synced(dmu_objset_pool(os
), 0);
2065 dmu_object_info_from_dnode(dnode_t
*dn
, dmu_object_info_t
*doi
)
2069 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2070 mutex_enter(&dn
->dn_mtx
);
2074 doi
->doi_data_block_size
= dn
->dn_datablksz
;
2075 doi
->doi_metadata_block_size
= dn
->dn_indblkshift
?
2076 1ULL << dn
->dn_indblkshift
: 0;
2077 doi
->doi_type
= dn
->dn_type
;
2078 doi
->doi_bonus_type
= dn
->dn_bonustype
;
2079 doi
->doi_bonus_size
= dn
->dn_bonuslen
;
2080 doi
->doi_indirection
= dn
->dn_nlevels
;
2081 doi
->doi_checksum
= dn
->dn_checksum
;
2082 doi
->doi_compress
= dn
->dn_compress
;
2083 doi
->doi_nblkptr
= dn
->dn_nblkptr
;
2084 doi
->doi_physical_blocks_512
= (DN_USED_BYTES(dnp
) + 256) >> 9;
2085 doi
->doi_max_offset
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
;
2086 doi
->doi_fill_count
= 0;
2087 for (int i
= 0; i
< dnp
->dn_nblkptr
; i
++)
2088 doi
->doi_fill_count
+= BP_GET_FILL(&dnp
->dn_blkptr
[i
]);
2090 mutex_exit(&dn
->dn_mtx
);
2091 rw_exit(&dn
->dn_struct_rwlock
);
2095 * Get information on a DMU object.
2096 * If doi is NULL, just indicates whether the object exists.
2099 dmu_object_info(objset_t
*os
, uint64_t object
, dmu_object_info_t
*doi
)
2102 int err
= dnode_hold(os
, object
, FTAG
, &dn
);
2108 dmu_object_info_from_dnode(dn
, doi
);
2110 dnode_rele(dn
, FTAG
);
2115 * As above, but faster; can be used when you have a held dbuf in hand.
2118 dmu_object_info_from_db(dmu_buf_t
*db_fake
, dmu_object_info_t
*doi
)
2120 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2123 dmu_object_info_from_dnode(DB_DNODE(db
), doi
);
2128 * Faster still when you only care about the size.
2129 * This is specifically optimized for zfs_getattr().
2132 dmu_object_size_from_db(dmu_buf_t
*db_fake
, uint32_t *blksize
,
2133 u_longlong_t
*nblk512
)
2135 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2141 *blksize
= dn
->dn_datablksz
;
2142 /* add 1 for dnode space */
2143 *nblk512
= ((DN_USED_BYTES(dn
->dn_phys
) + SPA_MINBLOCKSIZE
/2) >>
2144 SPA_MINBLOCKSHIFT
) + 1;
2149 byteswap_uint64_array(void *vbuf
, size_t size
)
2151 uint64_t *buf
= vbuf
;
2152 size_t count
= size
>> 3;
2155 ASSERT((size
& 7) == 0);
2157 for (i
= 0; i
< count
; i
++)
2158 buf
[i
] = BSWAP_64(buf
[i
]);
2162 byteswap_uint32_array(void *vbuf
, size_t size
)
2164 uint32_t *buf
= vbuf
;
2165 size_t count
= size
>> 2;
2168 ASSERT((size
& 3) == 0);
2170 for (i
= 0; i
< count
; i
++)
2171 buf
[i
] = BSWAP_32(buf
[i
]);
2175 byteswap_uint16_array(void *vbuf
, size_t size
)
2177 uint16_t *buf
= vbuf
;
2178 size_t count
= size
>> 1;
2181 ASSERT((size
& 1) == 0);
2183 for (i
= 0; i
< count
; i
++)
2184 buf
[i
] = BSWAP_16(buf
[i
]);
2189 byteswap_uint8_array(void *vbuf
, size_t size
)
2210 arc_fini(); /* arc depends on l2arc, so arc must go first */