8023 Panic destroying a metaslab deferred range tree
[unleashed.git] / usr / src / uts / common / fs / zfs / dbuf.c
blobc8a981d512b88d1433bc6f769e7ee4d797bb192b
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
31 #include <sys/zfs_context.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dbuf.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/spa.h>
41 #include <sys/zio.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/sa.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 #include <sys/callb.h>
50 uint_t zfs_dbuf_evict_key;
52 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
53 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
55 #ifndef __lint
56 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
57 dmu_buf_evict_func_t *evict_func_sync,
58 dmu_buf_evict_func_t *evict_func_async,
59 dmu_buf_t **clear_on_evict_dbufp);
60 #endif /* ! __lint */
63 * Global data structures and functions for the dbuf cache.
65 static kmem_cache_t *dbuf_kmem_cache;
66 static taskq_t *dbu_evict_taskq;
68 static kthread_t *dbuf_cache_evict_thread;
69 static kmutex_t dbuf_evict_lock;
70 static kcondvar_t dbuf_evict_cv;
71 static boolean_t dbuf_evict_thread_exit;
74 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
75 * are not currently held but have been recently released. These dbufs
76 * are not eligible for arc eviction until they are aged out of the cache.
77 * Dbufs are added to the dbuf cache once the last hold is released. If a
78 * dbuf is later accessed and still exists in the dbuf cache, then it will
79 * be removed from the cache and later re-added to the head of the cache.
80 * Dbufs that are aged out of the cache will be immediately destroyed and
81 * become eligible for arc eviction.
83 static multilist_t *dbuf_cache;
84 static refcount_t dbuf_cache_size;
85 uint64_t dbuf_cache_max_bytes = 100 * 1024 * 1024;
87 /* Cap the size of the dbuf cache to log2 fraction of arc size. */
88 int dbuf_cache_max_shift = 5;
91 * The dbuf cache uses a three-stage eviction policy:
92 * - A low water marker designates when the dbuf eviction thread
93 * should stop evicting from the dbuf cache.
94 * - When we reach the maximum size (aka mid water mark), we
95 * signal the eviction thread to run.
96 * - The high water mark indicates when the eviction thread
97 * is unable to keep up with the incoming load and eviction must
98 * happen in the context of the calling thread.
100 * The dbuf cache:
101 * (max size)
102 * low water mid water hi water
103 * +----------------------------------------+----------+----------+
104 * | | | |
105 * | | | |
106 * | | | |
107 * | | | |
108 * +----------------------------------------+----------+----------+
109 * stop signal evict
110 * evicting eviction directly
111 * thread
113 * The high and low water marks indicate the operating range for the eviction
114 * thread. The low water mark is, by default, 90% of the total size of the
115 * cache and the high water mark is at 110% (both of these percentages can be
116 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
117 * respectively). The eviction thread will try to ensure that the cache remains
118 * within this range by waking up every second and checking if the cache is
119 * above the low water mark. The thread can also be woken up by callers adding
120 * elements into the cache if the cache is larger than the mid water (i.e max
121 * cache size). Once the eviction thread is woken up and eviction is required,
122 * it will continue evicting buffers until it's able to reduce the cache size
123 * to the low water mark. If the cache size continues to grow and hits the high
124 * water mark, then callers adding elments to the cache will begin to evict
125 * directly from the cache until the cache is no longer above the high water
126 * mark.
130 * The percentage above and below the maximum cache size.
132 uint_t dbuf_cache_hiwater_pct = 10;
133 uint_t dbuf_cache_lowater_pct = 10;
135 /* ARGSUSED */
136 static int
137 dbuf_cons(void *vdb, void *unused, int kmflag)
139 dmu_buf_impl_t *db = vdb;
140 bzero(db, sizeof (dmu_buf_impl_t));
142 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
143 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
144 multilist_link_init(&db->db_cache_link);
145 refcount_create(&db->db_holds);
147 return (0);
150 /* ARGSUSED */
151 static void
152 dbuf_dest(void *vdb, void *unused)
154 dmu_buf_impl_t *db = vdb;
155 mutex_destroy(&db->db_mtx);
156 cv_destroy(&db->db_changed);
157 ASSERT(!multilist_link_active(&db->db_cache_link));
158 refcount_destroy(&db->db_holds);
162 * dbuf hash table routines
164 static dbuf_hash_table_t dbuf_hash_table;
166 static uint64_t dbuf_hash_count;
168 static uint64_t
169 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
171 uintptr_t osv = (uintptr_t)os;
172 uint64_t crc = -1ULL;
174 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
175 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
176 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
177 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
178 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
179 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
180 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
182 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
184 return (crc);
187 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
188 ((dbuf)->db.db_object == (obj) && \
189 (dbuf)->db_objset == (os) && \
190 (dbuf)->db_level == (level) && \
191 (dbuf)->db_blkid == (blkid))
193 dmu_buf_impl_t *
194 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
196 dbuf_hash_table_t *h = &dbuf_hash_table;
197 uint64_t hv = dbuf_hash(os, obj, level, blkid);
198 uint64_t idx = hv & h->hash_table_mask;
199 dmu_buf_impl_t *db;
201 mutex_enter(DBUF_HASH_MUTEX(h, idx));
202 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
203 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
204 mutex_enter(&db->db_mtx);
205 if (db->db_state != DB_EVICTING) {
206 mutex_exit(DBUF_HASH_MUTEX(h, idx));
207 return (db);
209 mutex_exit(&db->db_mtx);
212 mutex_exit(DBUF_HASH_MUTEX(h, idx));
213 return (NULL);
216 static dmu_buf_impl_t *
217 dbuf_find_bonus(objset_t *os, uint64_t object)
219 dnode_t *dn;
220 dmu_buf_impl_t *db = NULL;
222 if (dnode_hold(os, object, FTAG, &dn) == 0) {
223 rw_enter(&dn->dn_struct_rwlock, RW_READER);
224 if (dn->dn_bonus != NULL) {
225 db = dn->dn_bonus;
226 mutex_enter(&db->db_mtx);
228 rw_exit(&dn->dn_struct_rwlock);
229 dnode_rele(dn, FTAG);
231 return (db);
235 * Insert an entry into the hash table. If there is already an element
236 * equal to elem in the hash table, then the already existing element
237 * will be returned and the new element will not be inserted.
238 * Otherwise returns NULL.
240 static dmu_buf_impl_t *
241 dbuf_hash_insert(dmu_buf_impl_t *db)
243 dbuf_hash_table_t *h = &dbuf_hash_table;
244 objset_t *os = db->db_objset;
245 uint64_t obj = db->db.db_object;
246 int level = db->db_level;
247 uint64_t blkid = db->db_blkid;
248 uint64_t hv = dbuf_hash(os, obj, level, blkid);
249 uint64_t idx = hv & h->hash_table_mask;
250 dmu_buf_impl_t *dbf;
252 mutex_enter(DBUF_HASH_MUTEX(h, idx));
253 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
254 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
255 mutex_enter(&dbf->db_mtx);
256 if (dbf->db_state != DB_EVICTING) {
257 mutex_exit(DBUF_HASH_MUTEX(h, idx));
258 return (dbf);
260 mutex_exit(&dbf->db_mtx);
264 mutex_enter(&db->db_mtx);
265 db->db_hash_next = h->hash_table[idx];
266 h->hash_table[idx] = db;
267 mutex_exit(DBUF_HASH_MUTEX(h, idx));
268 atomic_inc_64(&dbuf_hash_count);
270 return (NULL);
274 * Remove an entry from the hash table. It must be in the EVICTING state.
276 static void
277 dbuf_hash_remove(dmu_buf_impl_t *db)
279 dbuf_hash_table_t *h = &dbuf_hash_table;
280 uint64_t hv = dbuf_hash(db->db_objset, db->db.db_object,
281 db->db_level, db->db_blkid);
282 uint64_t idx = hv & h->hash_table_mask;
283 dmu_buf_impl_t *dbf, **dbp;
286 * We musn't hold db_mtx to maintain lock ordering:
287 * DBUF_HASH_MUTEX > db_mtx.
289 ASSERT(refcount_is_zero(&db->db_holds));
290 ASSERT(db->db_state == DB_EVICTING);
291 ASSERT(!MUTEX_HELD(&db->db_mtx));
293 mutex_enter(DBUF_HASH_MUTEX(h, idx));
294 dbp = &h->hash_table[idx];
295 while ((dbf = *dbp) != db) {
296 dbp = &dbf->db_hash_next;
297 ASSERT(dbf != NULL);
299 *dbp = db->db_hash_next;
300 db->db_hash_next = NULL;
301 mutex_exit(DBUF_HASH_MUTEX(h, idx));
302 atomic_dec_64(&dbuf_hash_count);
305 typedef enum {
306 DBVU_EVICTING,
307 DBVU_NOT_EVICTING
308 } dbvu_verify_type_t;
310 static void
311 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
313 #ifdef ZFS_DEBUG
314 int64_t holds;
316 if (db->db_user == NULL)
317 return;
319 /* Only data blocks support the attachment of user data. */
320 ASSERT(db->db_level == 0);
322 /* Clients must resolve a dbuf before attaching user data. */
323 ASSERT(db->db.db_data != NULL);
324 ASSERT3U(db->db_state, ==, DB_CACHED);
326 holds = refcount_count(&db->db_holds);
327 if (verify_type == DBVU_EVICTING) {
329 * Immediate eviction occurs when holds == dirtycnt.
330 * For normal eviction buffers, holds is zero on
331 * eviction, except when dbuf_fix_old_data() calls
332 * dbuf_clear_data(). However, the hold count can grow
333 * during eviction even though db_mtx is held (see
334 * dmu_bonus_hold() for an example), so we can only
335 * test the generic invariant that holds >= dirtycnt.
337 ASSERT3U(holds, >=, db->db_dirtycnt);
338 } else {
339 if (db->db_user_immediate_evict == TRUE)
340 ASSERT3U(holds, >=, db->db_dirtycnt);
341 else
342 ASSERT3U(holds, >, 0);
344 #endif
347 static void
348 dbuf_evict_user(dmu_buf_impl_t *db)
350 dmu_buf_user_t *dbu = db->db_user;
352 ASSERT(MUTEX_HELD(&db->db_mtx));
354 if (dbu == NULL)
355 return;
357 dbuf_verify_user(db, DBVU_EVICTING);
358 db->db_user = NULL;
360 #ifdef ZFS_DEBUG
361 if (dbu->dbu_clear_on_evict_dbufp != NULL)
362 *dbu->dbu_clear_on_evict_dbufp = NULL;
363 #endif
366 * There are two eviction callbacks - one that we call synchronously
367 * and one that we invoke via a taskq. The async one is useful for
368 * avoiding lock order reversals and limiting stack depth.
370 * Note that if we have a sync callback but no async callback,
371 * it's likely that the sync callback will free the structure
372 * containing the dbu. In that case we need to take care to not
373 * dereference dbu after calling the sync evict func.
375 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
377 if (dbu->dbu_evict_func_sync != NULL)
378 dbu->dbu_evict_func_sync(dbu);
380 if (has_async) {
381 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
382 dbu, 0, &dbu->dbu_tqent);
386 boolean_t
387 dbuf_is_metadata(dmu_buf_impl_t *db)
389 if (db->db_level > 0) {
390 return (B_TRUE);
391 } else {
392 boolean_t is_metadata;
394 DB_DNODE_ENTER(db);
395 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
396 DB_DNODE_EXIT(db);
398 return (is_metadata);
403 * This function *must* return indices evenly distributed between all
404 * sublists of the multilist. This is needed due to how the dbuf eviction
405 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
406 * distributed between all sublists and uses this assumption when
407 * deciding which sublist to evict from and how much to evict from it.
409 unsigned int
410 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
412 dmu_buf_impl_t *db = obj;
415 * The assumption here, is the hash value for a given
416 * dmu_buf_impl_t will remain constant throughout it's lifetime
417 * (i.e. it's objset, object, level and blkid fields don't change).
418 * Thus, we don't need to store the dbuf's sublist index
419 * on insertion, as this index can be recalculated on removal.
421 * Also, the low order bits of the hash value are thought to be
422 * distributed evenly. Otherwise, in the case that the multilist
423 * has a power of two number of sublists, each sublists' usage
424 * would not be evenly distributed.
426 return (dbuf_hash(db->db_objset, db->db.db_object,
427 db->db_level, db->db_blkid) %
428 multilist_get_num_sublists(ml));
431 static inline boolean_t
432 dbuf_cache_above_hiwater(void)
434 uint64_t dbuf_cache_hiwater_bytes =
435 (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
437 return (refcount_count(&dbuf_cache_size) >
438 dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
441 static inline boolean_t
442 dbuf_cache_above_lowater(void)
444 uint64_t dbuf_cache_lowater_bytes =
445 (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
447 return (refcount_count(&dbuf_cache_size) >
448 dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
452 * Evict the oldest eligible dbuf from the dbuf cache.
454 static void
455 dbuf_evict_one(void)
457 int idx = multilist_get_random_index(dbuf_cache);
458 multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx);
460 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
463 * Set the thread's tsd to indicate that it's processing evictions.
464 * Once a thread stops evicting from the dbuf cache it will
465 * reset its tsd to NULL.
467 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
468 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
470 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
471 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
472 db = multilist_sublist_prev(mls, db);
475 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
476 multilist_sublist_t *, mls);
478 if (db != NULL) {
479 multilist_sublist_remove(mls, db);
480 multilist_sublist_unlock(mls);
481 (void) refcount_remove_many(&dbuf_cache_size,
482 db->db.db_size, db);
483 dbuf_destroy(db);
484 } else {
485 multilist_sublist_unlock(mls);
487 (void) tsd_set(zfs_dbuf_evict_key, NULL);
491 * The dbuf evict thread is responsible for aging out dbufs from the
492 * cache. Once the cache has reached it's maximum size, dbufs are removed
493 * and destroyed. The eviction thread will continue running until the size
494 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
495 * out of the cache it is destroyed and becomes eligible for arc eviction.
497 static void
498 dbuf_evict_thread(void)
500 callb_cpr_t cpr;
502 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
504 mutex_enter(&dbuf_evict_lock);
505 while (!dbuf_evict_thread_exit) {
506 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
507 CALLB_CPR_SAFE_BEGIN(&cpr);
508 (void) cv_timedwait_hires(&dbuf_evict_cv,
509 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
510 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
512 mutex_exit(&dbuf_evict_lock);
515 * Keep evicting as long as we're above the low water mark
516 * for the cache. We do this without holding the locks to
517 * minimize lock contention.
519 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
520 dbuf_evict_one();
523 mutex_enter(&dbuf_evict_lock);
526 dbuf_evict_thread_exit = B_FALSE;
527 cv_broadcast(&dbuf_evict_cv);
528 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
529 thread_exit();
533 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
534 * If the dbuf cache is at its high water mark, then evict a dbuf from the
535 * dbuf cache using the callers context.
537 static void
538 dbuf_evict_notify(void)
542 * We use thread specific data to track when a thread has
543 * started processing evictions. This allows us to avoid deeply
544 * nested stacks that would have a call flow similar to this:
546 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
547 * ^ |
548 * | |
549 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
551 * The dbuf_eviction_thread will always have its tsd set until
552 * that thread exits. All other threads will only set their tsd
553 * if they are participating in the eviction process. This only
554 * happens if the eviction thread is unable to process evictions
555 * fast enough. To keep the dbuf cache size in check, other threads
556 * can evict from the dbuf cache directly. Those threads will set
557 * their tsd values so that we ensure that they only evict one dbuf
558 * from the dbuf cache.
560 if (tsd_get(zfs_dbuf_evict_key) != NULL)
561 return;
563 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
564 boolean_t evict_now = B_FALSE;
566 mutex_enter(&dbuf_evict_lock);
567 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
568 evict_now = dbuf_cache_above_hiwater();
569 cv_signal(&dbuf_evict_cv);
571 mutex_exit(&dbuf_evict_lock);
573 if (evict_now) {
574 dbuf_evict_one();
579 void
580 dbuf_init(void)
582 uint64_t hsize = 1ULL << 16;
583 dbuf_hash_table_t *h = &dbuf_hash_table;
584 int i;
587 * The hash table is big enough to fill all of physical memory
588 * with an average 4K block size. The table will take up
589 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
591 while (hsize * 4096 < physmem * PAGESIZE)
592 hsize <<= 1;
594 retry:
595 h->hash_table_mask = hsize - 1;
596 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
597 if (h->hash_table == NULL) {
598 /* XXX - we should really return an error instead of assert */
599 ASSERT(hsize > (1ULL << 10));
600 hsize >>= 1;
601 goto retry;
604 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
605 sizeof (dmu_buf_impl_t),
606 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
608 for (i = 0; i < DBUF_MUTEXES; i++)
609 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
612 * Setup the parameters for the dbuf cache. We cap the size of the
613 * dbuf cache to 1/32nd (default) of the size of the ARC.
615 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
616 arc_max_bytes() >> dbuf_cache_max_shift);
619 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
620 * configuration is not required.
622 dbu_evict_taskq = taskq_create("dbu_evict", 1, minclsyspri, 0, 0, 0);
624 dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t),
625 offsetof(dmu_buf_impl_t, db_cache_link),
626 dbuf_cache_multilist_index_func);
627 refcount_create(&dbuf_cache_size);
629 tsd_create(&zfs_dbuf_evict_key, NULL);
630 dbuf_evict_thread_exit = B_FALSE;
631 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
632 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
633 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
634 NULL, 0, &p0, TS_RUN, minclsyspri);
637 void
638 dbuf_fini(void)
640 dbuf_hash_table_t *h = &dbuf_hash_table;
641 int i;
643 for (i = 0; i < DBUF_MUTEXES; i++)
644 mutex_destroy(&h->hash_mutexes[i]);
645 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
646 kmem_cache_destroy(dbuf_kmem_cache);
647 taskq_destroy(dbu_evict_taskq);
649 mutex_enter(&dbuf_evict_lock);
650 dbuf_evict_thread_exit = B_TRUE;
651 while (dbuf_evict_thread_exit) {
652 cv_signal(&dbuf_evict_cv);
653 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
655 mutex_exit(&dbuf_evict_lock);
656 tsd_destroy(&zfs_dbuf_evict_key);
658 mutex_destroy(&dbuf_evict_lock);
659 cv_destroy(&dbuf_evict_cv);
661 refcount_destroy(&dbuf_cache_size);
662 multilist_destroy(dbuf_cache);
666 * Other stuff.
669 #ifdef ZFS_DEBUG
670 static void
671 dbuf_verify(dmu_buf_impl_t *db)
673 dnode_t *dn;
674 dbuf_dirty_record_t *dr;
676 ASSERT(MUTEX_HELD(&db->db_mtx));
678 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
679 return;
681 ASSERT(db->db_objset != NULL);
682 DB_DNODE_ENTER(db);
683 dn = DB_DNODE(db);
684 if (dn == NULL) {
685 ASSERT(db->db_parent == NULL);
686 ASSERT(db->db_blkptr == NULL);
687 } else {
688 ASSERT3U(db->db.db_object, ==, dn->dn_object);
689 ASSERT3P(db->db_objset, ==, dn->dn_objset);
690 ASSERT3U(db->db_level, <, dn->dn_nlevels);
691 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
692 db->db_blkid == DMU_SPILL_BLKID ||
693 !avl_is_empty(&dn->dn_dbufs));
695 if (db->db_blkid == DMU_BONUS_BLKID) {
696 ASSERT(dn != NULL);
697 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
698 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
699 } else if (db->db_blkid == DMU_SPILL_BLKID) {
700 ASSERT(dn != NULL);
701 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
702 ASSERT0(db->db.db_offset);
703 } else {
704 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
707 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
708 ASSERT(dr->dr_dbuf == db);
710 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
711 ASSERT(dr->dr_dbuf == db);
714 * We can't assert that db_size matches dn_datablksz because it
715 * can be momentarily different when another thread is doing
716 * dnode_set_blksz().
718 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
719 dr = db->db_data_pending;
721 * It should only be modified in syncing context, so
722 * make sure we only have one copy of the data.
724 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
727 /* verify db->db_blkptr */
728 if (db->db_blkptr) {
729 if (db->db_parent == dn->dn_dbuf) {
730 /* db is pointed to by the dnode */
731 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
732 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
733 ASSERT(db->db_parent == NULL);
734 else
735 ASSERT(db->db_parent != NULL);
736 if (db->db_blkid != DMU_SPILL_BLKID)
737 ASSERT3P(db->db_blkptr, ==,
738 &dn->dn_phys->dn_blkptr[db->db_blkid]);
739 } else {
740 /* db is pointed to by an indirect block */
741 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
742 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
743 ASSERT3U(db->db_parent->db.db_object, ==,
744 db->db.db_object);
746 * dnode_grow_indblksz() can make this fail if we don't
747 * have the struct_rwlock. XXX indblksz no longer
748 * grows. safe to do this now?
750 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
751 ASSERT3P(db->db_blkptr, ==,
752 ((blkptr_t *)db->db_parent->db.db_data +
753 db->db_blkid % epb));
757 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
758 (db->db_buf == NULL || db->db_buf->b_data) &&
759 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
760 db->db_state != DB_FILL && !dn->dn_free_txg) {
762 * If the blkptr isn't set but they have nonzero data,
763 * it had better be dirty, otherwise we'll lose that
764 * data when we evict this buffer.
766 * There is an exception to this rule for indirect blocks; in
767 * this case, if the indirect block is a hole, we fill in a few
768 * fields on each of the child blocks (importantly, birth time)
769 * to prevent hole birth times from being lost when you
770 * partially fill in a hole.
772 if (db->db_dirtycnt == 0) {
773 if (db->db_level == 0) {
774 uint64_t *buf = db->db.db_data;
775 int i;
777 for (i = 0; i < db->db.db_size >> 3; i++) {
778 ASSERT(buf[i] == 0);
780 } else {
781 blkptr_t *bps = db->db.db_data;
782 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
783 db->db.db_size);
785 * We want to verify that all the blkptrs in the
786 * indirect block are holes, but we may have
787 * automatically set up a few fields for them.
788 * We iterate through each blkptr and verify
789 * they only have those fields set.
791 for (int i = 0;
792 i < db->db.db_size / sizeof (blkptr_t);
793 i++) {
794 blkptr_t *bp = &bps[i];
795 ASSERT(ZIO_CHECKSUM_IS_ZERO(
796 &bp->blk_cksum));
797 ASSERT(
798 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
799 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
800 DVA_IS_EMPTY(&bp->blk_dva[2]));
801 ASSERT0(bp->blk_fill);
802 ASSERT0(bp->blk_pad[0]);
803 ASSERT0(bp->blk_pad[1]);
804 ASSERT(!BP_IS_EMBEDDED(bp));
805 ASSERT(BP_IS_HOLE(bp));
806 ASSERT0(bp->blk_phys_birth);
811 DB_DNODE_EXIT(db);
813 #endif
815 static void
816 dbuf_clear_data(dmu_buf_impl_t *db)
818 ASSERT(MUTEX_HELD(&db->db_mtx));
819 dbuf_evict_user(db);
820 ASSERT3P(db->db_buf, ==, NULL);
821 db->db.db_data = NULL;
822 if (db->db_state != DB_NOFILL)
823 db->db_state = DB_UNCACHED;
826 static void
827 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
829 ASSERT(MUTEX_HELD(&db->db_mtx));
830 ASSERT(buf != NULL);
832 db->db_buf = buf;
833 ASSERT(buf->b_data != NULL);
834 db->db.db_data = buf->b_data;
838 * Loan out an arc_buf for read. Return the loaned arc_buf.
840 arc_buf_t *
841 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
843 arc_buf_t *abuf;
845 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
846 mutex_enter(&db->db_mtx);
847 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
848 int blksz = db->db.db_size;
849 spa_t *spa = db->db_objset->os_spa;
851 mutex_exit(&db->db_mtx);
852 abuf = arc_loan_buf(spa, B_FALSE, blksz);
853 bcopy(db->db.db_data, abuf->b_data, blksz);
854 } else {
855 abuf = db->db_buf;
856 arc_loan_inuse_buf(abuf, db);
857 db->db_buf = NULL;
858 dbuf_clear_data(db);
859 mutex_exit(&db->db_mtx);
861 return (abuf);
865 * Calculate which level n block references the data at the level 0 offset
866 * provided.
868 uint64_t
869 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
871 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
873 * The level n blkid is equal to the level 0 blkid divided by
874 * the number of level 0s in a level n block.
876 * The level 0 blkid is offset >> datablkshift =
877 * offset / 2^datablkshift.
879 * The number of level 0s in a level n is the number of block
880 * pointers in an indirect block, raised to the power of level.
881 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
882 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
884 * Thus, the level n blkid is: offset /
885 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
886 * = offset / 2^(datablkshift + level *
887 * (indblkshift - SPA_BLKPTRSHIFT))
888 * = offset >> (datablkshift + level *
889 * (indblkshift - SPA_BLKPTRSHIFT))
891 return (offset >> (dn->dn_datablkshift + level *
892 (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
893 } else {
894 ASSERT3U(offset, <, dn->dn_datablksz);
895 return (0);
899 static void
900 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
902 dmu_buf_impl_t *db = vdb;
904 mutex_enter(&db->db_mtx);
905 ASSERT3U(db->db_state, ==, DB_READ);
907 * All reads are synchronous, so we must have a hold on the dbuf
909 ASSERT(refcount_count(&db->db_holds) > 0);
910 ASSERT(db->db_buf == NULL);
911 ASSERT(db->db.db_data == NULL);
912 if (db->db_level == 0 && db->db_freed_in_flight) {
913 /* we were freed in flight; disregard any error */
914 arc_release(buf, db);
915 bzero(buf->b_data, db->db.db_size);
916 arc_buf_freeze(buf);
917 db->db_freed_in_flight = FALSE;
918 dbuf_set_data(db, buf);
919 db->db_state = DB_CACHED;
920 } else if (zio == NULL || zio->io_error == 0) {
921 dbuf_set_data(db, buf);
922 db->db_state = DB_CACHED;
923 } else {
924 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
925 ASSERT3P(db->db_buf, ==, NULL);
926 arc_buf_destroy(buf, db);
927 db->db_state = DB_UNCACHED;
929 cv_broadcast(&db->db_changed);
930 dbuf_rele_and_unlock(db, NULL);
933 static void
934 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
936 dnode_t *dn;
937 zbookmark_phys_t zb;
938 arc_flags_t aflags = ARC_FLAG_NOWAIT;
940 DB_DNODE_ENTER(db);
941 dn = DB_DNODE(db);
942 ASSERT(!refcount_is_zero(&db->db_holds));
943 /* We need the struct_rwlock to prevent db_blkptr from changing. */
944 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
945 ASSERT(MUTEX_HELD(&db->db_mtx));
946 ASSERT(db->db_state == DB_UNCACHED);
947 ASSERT(db->db_buf == NULL);
949 if (db->db_blkid == DMU_BONUS_BLKID) {
950 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
952 ASSERT3U(bonuslen, <=, db->db.db_size);
953 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
954 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
955 if (bonuslen < DN_MAX_BONUSLEN)
956 bzero(db->db.db_data, DN_MAX_BONUSLEN);
957 if (bonuslen)
958 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
959 DB_DNODE_EXIT(db);
960 db->db_state = DB_CACHED;
961 mutex_exit(&db->db_mtx);
962 return;
966 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
967 * processes the delete record and clears the bp while we are waiting
968 * for the dn_mtx (resulting in a "no" from block_freed).
970 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
971 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
972 BP_IS_HOLE(db->db_blkptr)))) {
973 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
975 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
976 db->db.db_size));
977 bzero(db->db.db_data, db->db.db_size);
979 if (db->db_blkptr != NULL && db->db_level > 0 &&
980 BP_IS_HOLE(db->db_blkptr) &&
981 db->db_blkptr->blk_birth != 0) {
982 blkptr_t *bps = db->db.db_data;
983 for (int i = 0; i < ((1 <<
984 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
985 i++) {
986 blkptr_t *bp = &bps[i];
987 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
988 1 << dn->dn_indblkshift);
989 BP_SET_LSIZE(bp,
990 BP_GET_LEVEL(db->db_blkptr) == 1 ?
991 dn->dn_datablksz :
992 BP_GET_LSIZE(db->db_blkptr));
993 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
994 BP_SET_LEVEL(bp,
995 BP_GET_LEVEL(db->db_blkptr) - 1);
996 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
999 DB_DNODE_EXIT(db);
1000 db->db_state = DB_CACHED;
1001 mutex_exit(&db->db_mtx);
1002 return;
1005 DB_DNODE_EXIT(db);
1007 db->db_state = DB_READ;
1008 mutex_exit(&db->db_mtx);
1010 if (DBUF_IS_L2CACHEABLE(db))
1011 aflags |= ARC_FLAG_L2CACHE;
1013 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1014 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1015 db->db.db_object, db->db_level, db->db_blkid);
1017 dbuf_add_ref(db, NULL);
1019 (void) arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1020 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
1021 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
1022 &aflags, &zb);
1026 * This is our just-in-time copy function. It makes a copy of buffers that
1027 * have been modified in a previous transaction group before we access them in
1028 * the current active group.
1030 * This function is used in three places: when we are dirtying a buffer for the
1031 * first time in a txg, when we are freeing a range in a dnode that includes
1032 * this buffer, and when we are accessing a buffer which was received compressed
1033 * and later referenced in a WRITE_BYREF record.
1035 * Note that when we are called from dbuf_free_range() we do not put a hold on
1036 * the buffer, we just traverse the active dbuf list for the dnode.
1038 static void
1039 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1041 dbuf_dirty_record_t *dr = db->db_last_dirty;
1043 ASSERT(MUTEX_HELD(&db->db_mtx));
1044 ASSERT(db->db.db_data != NULL);
1045 ASSERT(db->db_level == 0);
1046 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1048 if (dr == NULL ||
1049 (dr->dt.dl.dr_data !=
1050 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1051 return;
1054 * If the last dirty record for this dbuf has not yet synced
1055 * and its referencing the dbuf data, either:
1056 * reset the reference to point to a new copy,
1057 * or (if there a no active holders)
1058 * just null out the current db_data pointer.
1060 ASSERT(dr->dr_txg >= txg - 2);
1061 if (db->db_blkid == DMU_BONUS_BLKID) {
1062 /* Note that the data bufs here are zio_bufs */
1063 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
1064 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1065 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
1066 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1067 int size = arc_buf_size(db->db_buf);
1068 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1069 spa_t *spa = db->db_objset->os_spa;
1070 enum zio_compress compress_type =
1071 arc_get_compression(db->db_buf);
1073 if (compress_type == ZIO_COMPRESS_OFF) {
1074 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1075 } else {
1076 ASSERT3U(type, ==, ARC_BUFC_DATA);
1077 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1078 size, arc_buf_lsize(db->db_buf), compress_type);
1080 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1081 } else {
1082 db->db_buf = NULL;
1083 dbuf_clear_data(db);
1088 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1090 int err = 0;
1091 boolean_t havepzio = (zio != NULL);
1092 boolean_t prefetch;
1093 dnode_t *dn;
1096 * We don't have to hold the mutex to check db_state because it
1097 * can't be freed while we have a hold on the buffer.
1099 ASSERT(!refcount_is_zero(&db->db_holds));
1101 if (db->db_state == DB_NOFILL)
1102 return (SET_ERROR(EIO));
1104 DB_DNODE_ENTER(db);
1105 dn = DB_DNODE(db);
1106 if ((flags & DB_RF_HAVESTRUCT) == 0)
1107 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1109 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1110 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1111 DBUF_IS_CACHEABLE(db);
1113 mutex_enter(&db->db_mtx);
1114 if (db->db_state == DB_CACHED) {
1116 * If the arc buf is compressed, we need to decompress it to
1117 * read the data. This could happen during the "zfs receive" of
1118 * a stream which is compressed and deduplicated.
1120 if (db->db_buf != NULL &&
1121 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) {
1122 dbuf_fix_old_data(db,
1123 spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1124 err = arc_decompress(db->db_buf);
1125 dbuf_set_data(db, db->db_buf);
1127 mutex_exit(&db->db_mtx);
1128 if (prefetch)
1129 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1130 if ((flags & DB_RF_HAVESTRUCT) == 0)
1131 rw_exit(&dn->dn_struct_rwlock);
1132 DB_DNODE_EXIT(db);
1133 } else if (db->db_state == DB_UNCACHED) {
1134 spa_t *spa = dn->dn_objset->os_spa;
1136 if (zio == NULL)
1137 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1138 dbuf_read_impl(db, zio, flags);
1140 /* dbuf_read_impl has dropped db_mtx for us */
1142 if (prefetch)
1143 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1145 if ((flags & DB_RF_HAVESTRUCT) == 0)
1146 rw_exit(&dn->dn_struct_rwlock);
1147 DB_DNODE_EXIT(db);
1149 if (!havepzio)
1150 err = zio_wait(zio);
1151 } else {
1153 * Another reader came in while the dbuf was in flight
1154 * between UNCACHED and CACHED. Either a writer will finish
1155 * writing the buffer (sending the dbuf to CACHED) or the
1156 * first reader's request will reach the read_done callback
1157 * and send the dbuf to CACHED. Otherwise, a failure
1158 * occurred and the dbuf went to UNCACHED.
1160 mutex_exit(&db->db_mtx);
1161 if (prefetch)
1162 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1163 if ((flags & DB_RF_HAVESTRUCT) == 0)
1164 rw_exit(&dn->dn_struct_rwlock);
1165 DB_DNODE_EXIT(db);
1167 /* Skip the wait per the caller's request. */
1168 mutex_enter(&db->db_mtx);
1169 if ((flags & DB_RF_NEVERWAIT) == 0) {
1170 while (db->db_state == DB_READ ||
1171 db->db_state == DB_FILL) {
1172 ASSERT(db->db_state == DB_READ ||
1173 (flags & DB_RF_HAVESTRUCT) == 0);
1174 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1175 db, zio_t *, zio);
1176 cv_wait(&db->db_changed, &db->db_mtx);
1178 if (db->db_state == DB_UNCACHED)
1179 err = SET_ERROR(EIO);
1181 mutex_exit(&db->db_mtx);
1184 ASSERT(err || havepzio || db->db_state == DB_CACHED);
1185 return (err);
1188 static void
1189 dbuf_noread(dmu_buf_impl_t *db)
1191 ASSERT(!refcount_is_zero(&db->db_holds));
1192 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1193 mutex_enter(&db->db_mtx);
1194 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1195 cv_wait(&db->db_changed, &db->db_mtx);
1196 if (db->db_state == DB_UNCACHED) {
1197 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1198 spa_t *spa = db->db_objset->os_spa;
1200 ASSERT(db->db_buf == NULL);
1201 ASSERT(db->db.db_data == NULL);
1202 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1203 db->db_state = DB_FILL;
1204 } else if (db->db_state == DB_NOFILL) {
1205 dbuf_clear_data(db);
1206 } else {
1207 ASSERT3U(db->db_state, ==, DB_CACHED);
1209 mutex_exit(&db->db_mtx);
1212 void
1213 dbuf_unoverride(dbuf_dirty_record_t *dr)
1215 dmu_buf_impl_t *db = dr->dr_dbuf;
1216 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1217 uint64_t txg = dr->dr_txg;
1219 ASSERT(MUTEX_HELD(&db->db_mtx));
1220 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1221 ASSERT(db->db_level == 0);
1223 if (db->db_blkid == DMU_BONUS_BLKID ||
1224 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1225 return;
1227 ASSERT(db->db_data_pending != dr);
1229 /* free this block */
1230 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1231 zio_free(db->db_objset->os_spa, txg, bp);
1233 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1234 dr->dt.dl.dr_nopwrite = B_FALSE;
1237 * Release the already-written buffer, so we leave it in
1238 * a consistent dirty state. Note that all callers are
1239 * modifying the buffer, so they will immediately do
1240 * another (redundant) arc_release(). Therefore, leave
1241 * the buf thawed to save the effort of freezing &
1242 * immediately re-thawing it.
1244 arc_release(dr->dt.dl.dr_data, db);
1248 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1249 * data blocks in the free range, so that any future readers will find
1250 * empty blocks.
1252 void
1253 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1254 dmu_tx_t *tx)
1256 dmu_buf_impl_t db_search;
1257 dmu_buf_impl_t *db, *db_next;
1258 uint64_t txg = tx->tx_txg;
1259 avl_index_t where;
1261 if (end_blkid > dn->dn_maxblkid &&
1262 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1263 end_blkid = dn->dn_maxblkid;
1264 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1266 db_search.db_level = 0;
1267 db_search.db_blkid = start_blkid;
1268 db_search.db_state = DB_SEARCH;
1270 mutex_enter(&dn->dn_dbufs_mtx);
1271 db = avl_find(&dn->dn_dbufs, &db_search, &where);
1272 ASSERT3P(db, ==, NULL);
1274 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1276 for (; db != NULL; db = db_next) {
1277 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1278 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1280 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1281 break;
1283 ASSERT3U(db->db_blkid, >=, start_blkid);
1285 /* found a level 0 buffer in the range */
1286 mutex_enter(&db->db_mtx);
1287 if (dbuf_undirty(db, tx)) {
1288 /* mutex has been dropped and dbuf destroyed */
1289 continue;
1292 if (db->db_state == DB_UNCACHED ||
1293 db->db_state == DB_NOFILL ||
1294 db->db_state == DB_EVICTING) {
1295 ASSERT(db->db.db_data == NULL);
1296 mutex_exit(&db->db_mtx);
1297 continue;
1299 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1300 /* will be handled in dbuf_read_done or dbuf_rele */
1301 db->db_freed_in_flight = TRUE;
1302 mutex_exit(&db->db_mtx);
1303 continue;
1305 if (refcount_count(&db->db_holds) == 0) {
1306 ASSERT(db->db_buf);
1307 dbuf_destroy(db);
1308 continue;
1310 /* The dbuf is referenced */
1312 if (db->db_last_dirty != NULL) {
1313 dbuf_dirty_record_t *dr = db->db_last_dirty;
1315 if (dr->dr_txg == txg) {
1317 * This buffer is "in-use", re-adjust the file
1318 * size to reflect that this buffer may
1319 * contain new data when we sync.
1321 if (db->db_blkid != DMU_SPILL_BLKID &&
1322 db->db_blkid > dn->dn_maxblkid)
1323 dn->dn_maxblkid = db->db_blkid;
1324 dbuf_unoverride(dr);
1325 } else {
1327 * This dbuf is not dirty in the open context.
1328 * Either uncache it (if its not referenced in
1329 * the open context) or reset its contents to
1330 * empty.
1332 dbuf_fix_old_data(db, txg);
1335 /* clear the contents if its cached */
1336 if (db->db_state == DB_CACHED) {
1337 ASSERT(db->db.db_data != NULL);
1338 arc_release(db->db_buf, db);
1339 bzero(db->db.db_data, db->db.db_size);
1340 arc_buf_freeze(db->db_buf);
1343 mutex_exit(&db->db_mtx);
1345 mutex_exit(&dn->dn_dbufs_mtx);
1348 void
1349 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1351 arc_buf_t *buf, *obuf;
1352 int osize = db->db.db_size;
1353 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1354 dnode_t *dn;
1356 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1358 DB_DNODE_ENTER(db);
1359 dn = DB_DNODE(db);
1361 /* XXX does *this* func really need the lock? */
1362 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1365 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1366 * is OK, because there can be no other references to the db
1367 * when we are changing its size, so no concurrent DB_FILL can
1368 * be happening.
1371 * XXX we should be doing a dbuf_read, checking the return
1372 * value and returning that up to our callers
1374 dmu_buf_will_dirty(&db->db, tx);
1376 /* create the data buffer for the new block */
1377 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1379 /* copy old block data to the new block */
1380 obuf = db->db_buf;
1381 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1382 /* zero the remainder */
1383 if (size > osize)
1384 bzero((uint8_t *)buf->b_data + osize, size - osize);
1386 mutex_enter(&db->db_mtx);
1387 dbuf_set_data(db, buf);
1388 arc_buf_destroy(obuf, db);
1389 db->db.db_size = size;
1391 if (db->db_level == 0) {
1392 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1393 db->db_last_dirty->dt.dl.dr_data = buf;
1395 mutex_exit(&db->db_mtx);
1397 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1398 DB_DNODE_EXIT(db);
1401 void
1402 dbuf_release_bp(dmu_buf_impl_t *db)
1404 objset_t *os = db->db_objset;
1406 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1407 ASSERT(arc_released(os->os_phys_buf) ||
1408 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1409 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1411 (void) arc_release(db->db_buf, db);
1415 * We already have a dirty record for this TXG, and we are being
1416 * dirtied again.
1418 static void
1419 dbuf_redirty(dbuf_dirty_record_t *dr)
1421 dmu_buf_impl_t *db = dr->dr_dbuf;
1423 ASSERT(MUTEX_HELD(&db->db_mtx));
1425 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1427 * If this buffer has already been written out,
1428 * we now need to reset its state.
1430 dbuf_unoverride(dr);
1431 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1432 db->db_state != DB_NOFILL) {
1433 /* Already released on initial dirty, so just thaw. */
1434 ASSERT(arc_released(db->db_buf));
1435 arc_buf_thaw(db->db_buf);
1440 dbuf_dirty_record_t *
1441 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1443 dnode_t *dn;
1444 objset_t *os;
1445 dbuf_dirty_record_t **drp, *dr;
1446 int drop_struct_lock = FALSE;
1447 int txgoff = tx->tx_txg & TXG_MASK;
1449 ASSERT(tx->tx_txg != 0);
1450 ASSERT(!refcount_is_zero(&db->db_holds));
1451 DMU_TX_DIRTY_BUF(tx, db);
1453 DB_DNODE_ENTER(db);
1454 dn = DB_DNODE(db);
1456 * Shouldn't dirty a regular buffer in syncing context. Private
1457 * objects may be dirtied in syncing context, but only if they
1458 * were already pre-dirtied in open context.
1460 #ifdef DEBUG
1461 if (dn->dn_objset->os_dsl_dataset != NULL) {
1462 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1463 RW_READER, FTAG);
1465 ASSERT(!dmu_tx_is_syncing(tx) ||
1466 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1467 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1468 dn->dn_objset->os_dsl_dataset == NULL);
1469 if (dn->dn_objset->os_dsl_dataset != NULL)
1470 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1471 #endif
1473 * We make this assert for private objects as well, but after we
1474 * check if we're already dirty. They are allowed to re-dirty
1475 * in syncing context.
1477 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1478 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1479 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1481 mutex_enter(&db->db_mtx);
1483 * XXX make this true for indirects too? The problem is that
1484 * transactions created with dmu_tx_create_assigned() from
1485 * syncing context don't bother holding ahead.
1487 ASSERT(db->db_level != 0 ||
1488 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1489 db->db_state == DB_NOFILL);
1491 mutex_enter(&dn->dn_mtx);
1493 * Don't set dirtyctx to SYNC if we're just modifying this as we
1494 * initialize the objset.
1496 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1497 if (dn->dn_objset->os_dsl_dataset != NULL) {
1498 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1499 RW_READER, FTAG);
1501 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1502 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1503 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1504 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1505 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1507 if (dn->dn_objset->os_dsl_dataset != NULL) {
1508 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1509 FTAG);
1512 mutex_exit(&dn->dn_mtx);
1514 if (db->db_blkid == DMU_SPILL_BLKID)
1515 dn->dn_have_spill = B_TRUE;
1518 * If this buffer is already dirty, we're done.
1520 drp = &db->db_last_dirty;
1521 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1522 db->db.db_object == DMU_META_DNODE_OBJECT);
1523 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1524 drp = &dr->dr_next;
1525 if (dr && dr->dr_txg == tx->tx_txg) {
1526 DB_DNODE_EXIT(db);
1528 dbuf_redirty(dr);
1529 mutex_exit(&db->db_mtx);
1530 return (dr);
1534 * Only valid if not already dirty.
1536 ASSERT(dn->dn_object == 0 ||
1537 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1538 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1540 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1541 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1542 dn->dn_phys->dn_nlevels > db->db_level ||
1543 dn->dn_next_nlevels[txgoff] > db->db_level ||
1544 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1545 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1548 * We should only be dirtying in syncing context if it's the
1549 * mos or we're initializing the os or it's a special object.
1550 * However, we are allowed to dirty in syncing context provided
1551 * we already dirtied it in open context. Hence we must make
1552 * this assertion only if we're not already dirty.
1554 os = dn->dn_objset;
1555 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1556 #ifdef DEBUG
1557 if (dn->dn_objset->os_dsl_dataset != NULL)
1558 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1559 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1560 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1561 if (dn->dn_objset->os_dsl_dataset != NULL)
1562 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1563 #endif
1564 ASSERT(db->db.db_size != 0);
1566 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1568 if (db->db_blkid != DMU_BONUS_BLKID) {
1569 dmu_objset_willuse_space(os, db->db.db_size, tx);
1573 * If this buffer is dirty in an old transaction group we need
1574 * to make a copy of it so that the changes we make in this
1575 * transaction group won't leak out when we sync the older txg.
1577 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1578 if (db->db_level == 0) {
1579 void *data_old = db->db_buf;
1581 if (db->db_state != DB_NOFILL) {
1582 if (db->db_blkid == DMU_BONUS_BLKID) {
1583 dbuf_fix_old_data(db, tx->tx_txg);
1584 data_old = db->db.db_data;
1585 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1587 * Release the data buffer from the cache so
1588 * that we can modify it without impacting
1589 * possible other users of this cached data
1590 * block. Note that indirect blocks and
1591 * private objects are not released until the
1592 * syncing state (since they are only modified
1593 * then).
1595 arc_release(db->db_buf, db);
1596 dbuf_fix_old_data(db, tx->tx_txg);
1597 data_old = db->db_buf;
1599 ASSERT(data_old != NULL);
1601 dr->dt.dl.dr_data = data_old;
1602 } else {
1603 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_DEFAULT, NULL);
1604 list_create(&dr->dt.di.dr_children,
1605 sizeof (dbuf_dirty_record_t),
1606 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1608 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1609 dr->dr_accounted = db->db.db_size;
1610 dr->dr_dbuf = db;
1611 dr->dr_txg = tx->tx_txg;
1612 dr->dr_next = *drp;
1613 *drp = dr;
1616 * We could have been freed_in_flight between the dbuf_noread
1617 * and dbuf_dirty. We win, as though the dbuf_noread() had
1618 * happened after the free.
1620 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1621 db->db_blkid != DMU_SPILL_BLKID) {
1622 mutex_enter(&dn->dn_mtx);
1623 if (dn->dn_free_ranges[txgoff] != NULL) {
1624 range_tree_clear(dn->dn_free_ranges[txgoff],
1625 db->db_blkid, 1);
1627 mutex_exit(&dn->dn_mtx);
1628 db->db_freed_in_flight = FALSE;
1632 * This buffer is now part of this txg
1634 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1635 db->db_dirtycnt += 1;
1636 ASSERT3U(db->db_dirtycnt, <=, 3);
1638 mutex_exit(&db->db_mtx);
1640 if (db->db_blkid == DMU_BONUS_BLKID ||
1641 db->db_blkid == DMU_SPILL_BLKID) {
1642 mutex_enter(&dn->dn_mtx);
1643 ASSERT(!list_link_active(&dr->dr_dirty_node));
1644 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1645 mutex_exit(&dn->dn_mtx);
1646 dnode_setdirty(dn, tx);
1647 DB_DNODE_EXIT(db);
1648 return (dr);
1652 * The dn_struct_rwlock prevents db_blkptr from changing
1653 * due to a write from syncing context completing
1654 * while we are running, so we want to acquire it before
1655 * looking at db_blkptr.
1657 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1658 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1659 drop_struct_lock = TRUE;
1663 * If we are overwriting a dedup BP, then unless it is snapshotted,
1664 * when we get to syncing context we will need to decrement its
1665 * refcount in the DDT. Prefetch the relevant DDT block so that
1666 * syncing context won't have to wait for the i/o.
1668 ddt_prefetch(os->os_spa, db->db_blkptr);
1670 if (db->db_level == 0) {
1671 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1672 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1675 if (db->db_level+1 < dn->dn_nlevels) {
1676 dmu_buf_impl_t *parent = db->db_parent;
1677 dbuf_dirty_record_t *di;
1678 int parent_held = FALSE;
1680 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1681 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1683 parent = dbuf_hold_level(dn, db->db_level+1,
1684 db->db_blkid >> epbs, FTAG);
1685 ASSERT(parent != NULL);
1686 parent_held = TRUE;
1688 if (drop_struct_lock)
1689 rw_exit(&dn->dn_struct_rwlock);
1690 ASSERT3U(db->db_level+1, ==, parent->db_level);
1691 di = dbuf_dirty(parent, tx);
1692 if (parent_held)
1693 dbuf_rele(parent, FTAG);
1695 mutex_enter(&db->db_mtx);
1697 * Since we've dropped the mutex, it's possible that
1698 * dbuf_undirty() might have changed this out from under us.
1700 if (db->db_last_dirty == dr ||
1701 dn->dn_object == DMU_META_DNODE_OBJECT) {
1702 mutex_enter(&di->dt.di.dr_mtx);
1703 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1704 ASSERT(!list_link_active(&dr->dr_dirty_node));
1705 list_insert_tail(&di->dt.di.dr_children, dr);
1706 mutex_exit(&di->dt.di.dr_mtx);
1707 dr->dr_parent = di;
1709 mutex_exit(&db->db_mtx);
1710 } else {
1711 ASSERT(db->db_level+1 == dn->dn_nlevels);
1712 ASSERT(db->db_blkid < dn->dn_nblkptr);
1713 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1714 mutex_enter(&dn->dn_mtx);
1715 ASSERT(!list_link_active(&dr->dr_dirty_node));
1716 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1717 mutex_exit(&dn->dn_mtx);
1718 if (drop_struct_lock)
1719 rw_exit(&dn->dn_struct_rwlock);
1722 dnode_setdirty(dn, tx);
1723 DB_DNODE_EXIT(db);
1724 return (dr);
1728 * Undirty a buffer in the transaction group referenced by the given
1729 * transaction. Return whether this evicted the dbuf.
1731 static boolean_t
1732 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1734 dnode_t *dn;
1735 uint64_t txg = tx->tx_txg;
1736 dbuf_dirty_record_t *dr, **drp;
1738 ASSERT(txg != 0);
1741 * Due to our use of dn_nlevels below, this can only be called
1742 * in open context, unless we are operating on the MOS.
1743 * From syncing context, dn_nlevels may be different from the
1744 * dn_nlevels used when dbuf was dirtied.
1746 ASSERT(db->db_objset ==
1747 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1748 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1749 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1750 ASSERT0(db->db_level);
1751 ASSERT(MUTEX_HELD(&db->db_mtx));
1754 * If this buffer is not dirty, we're done.
1756 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1757 if (dr->dr_txg <= txg)
1758 break;
1759 if (dr == NULL || dr->dr_txg < txg)
1760 return (B_FALSE);
1761 ASSERT(dr->dr_txg == txg);
1762 ASSERT(dr->dr_dbuf == db);
1764 DB_DNODE_ENTER(db);
1765 dn = DB_DNODE(db);
1767 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1769 ASSERT(db->db.db_size != 0);
1771 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1772 dr->dr_accounted, txg);
1774 *drp = dr->dr_next;
1777 * Note that there are three places in dbuf_dirty()
1778 * where this dirty record may be put on a list.
1779 * Make sure to do a list_remove corresponding to
1780 * every one of those list_insert calls.
1782 if (dr->dr_parent) {
1783 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1784 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1785 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1786 } else if (db->db_blkid == DMU_SPILL_BLKID ||
1787 db->db_level + 1 == dn->dn_nlevels) {
1788 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1789 mutex_enter(&dn->dn_mtx);
1790 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1791 mutex_exit(&dn->dn_mtx);
1793 DB_DNODE_EXIT(db);
1795 if (db->db_state != DB_NOFILL) {
1796 dbuf_unoverride(dr);
1798 ASSERT(db->db_buf != NULL);
1799 ASSERT(dr->dt.dl.dr_data != NULL);
1800 if (dr->dt.dl.dr_data != db->db_buf)
1801 arc_buf_destroy(dr->dt.dl.dr_data, db);
1804 kmem_free(dr, sizeof (dbuf_dirty_record_t));
1806 ASSERT(db->db_dirtycnt > 0);
1807 db->db_dirtycnt -= 1;
1809 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1810 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1811 dbuf_destroy(db);
1812 return (B_TRUE);
1815 return (B_FALSE);
1818 void
1819 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1821 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1822 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1824 ASSERT(tx->tx_txg != 0);
1825 ASSERT(!refcount_is_zero(&db->db_holds));
1828 * Quick check for dirtyness. For already dirty blocks, this
1829 * reduces runtime of this function by >90%, and overall performance
1830 * by 50% for some workloads (e.g. file deletion with indirect blocks
1831 * cached).
1833 mutex_enter(&db->db_mtx);
1834 dbuf_dirty_record_t *dr;
1835 for (dr = db->db_last_dirty;
1836 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1838 * It's possible that it is already dirty but not cached,
1839 * because there are some calls to dbuf_dirty() that don't
1840 * go through dmu_buf_will_dirty().
1842 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1843 /* This dbuf is already dirty and cached. */
1844 dbuf_redirty(dr);
1845 mutex_exit(&db->db_mtx);
1846 return;
1849 mutex_exit(&db->db_mtx);
1851 DB_DNODE_ENTER(db);
1852 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1853 rf |= DB_RF_HAVESTRUCT;
1854 DB_DNODE_EXIT(db);
1855 (void) dbuf_read(db, NULL, rf);
1856 (void) dbuf_dirty(db, tx);
1859 void
1860 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1862 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1864 db->db_state = DB_NOFILL;
1866 dmu_buf_will_fill(db_fake, tx);
1869 void
1870 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1872 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1874 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1875 ASSERT(tx->tx_txg != 0);
1876 ASSERT(db->db_level == 0);
1877 ASSERT(!refcount_is_zero(&db->db_holds));
1879 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1880 dmu_tx_private_ok(tx));
1882 dbuf_noread(db);
1883 (void) dbuf_dirty(db, tx);
1886 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1887 /* ARGSUSED */
1888 void
1889 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1891 mutex_enter(&db->db_mtx);
1892 DBUF_VERIFY(db);
1894 if (db->db_state == DB_FILL) {
1895 if (db->db_level == 0 && db->db_freed_in_flight) {
1896 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1897 /* we were freed while filling */
1898 /* XXX dbuf_undirty? */
1899 bzero(db->db.db_data, db->db.db_size);
1900 db->db_freed_in_flight = FALSE;
1902 db->db_state = DB_CACHED;
1903 cv_broadcast(&db->db_changed);
1905 mutex_exit(&db->db_mtx);
1908 void
1909 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1910 bp_embedded_type_t etype, enum zio_compress comp,
1911 int uncompressed_size, int compressed_size, int byteorder,
1912 dmu_tx_t *tx)
1914 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1915 struct dirty_leaf *dl;
1916 dmu_object_type_t type;
1918 if (etype == BP_EMBEDDED_TYPE_DATA) {
1919 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1920 SPA_FEATURE_EMBEDDED_DATA));
1923 DB_DNODE_ENTER(db);
1924 type = DB_DNODE(db)->dn_type;
1925 DB_DNODE_EXIT(db);
1927 ASSERT0(db->db_level);
1928 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1930 dmu_buf_will_not_fill(dbuf, tx);
1932 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1933 dl = &db->db_last_dirty->dt.dl;
1934 encode_embedded_bp_compressed(&dl->dr_overridden_by,
1935 data, comp, uncompressed_size, compressed_size);
1936 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1937 BP_SET_TYPE(&dl->dr_overridden_by, type);
1938 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1939 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1941 dl->dr_override_state = DR_OVERRIDDEN;
1942 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1946 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1947 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1949 void
1950 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1952 ASSERT(!refcount_is_zero(&db->db_holds));
1953 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1954 ASSERT(db->db_level == 0);
1955 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
1956 ASSERT(buf != NULL);
1957 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
1958 ASSERT(tx->tx_txg != 0);
1960 arc_return_buf(buf, db);
1961 ASSERT(arc_released(buf));
1963 mutex_enter(&db->db_mtx);
1965 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1966 cv_wait(&db->db_changed, &db->db_mtx);
1968 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1970 if (db->db_state == DB_CACHED &&
1971 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1972 mutex_exit(&db->db_mtx);
1973 (void) dbuf_dirty(db, tx);
1974 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1975 arc_buf_destroy(buf, db);
1976 xuio_stat_wbuf_copied();
1977 return;
1980 xuio_stat_wbuf_nocopy();
1981 if (db->db_state == DB_CACHED) {
1982 dbuf_dirty_record_t *dr = db->db_last_dirty;
1984 ASSERT(db->db_buf != NULL);
1985 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1986 ASSERT(dr->dt.dl.dr_data == db->db_buf);
1987 if (!arc_released(db->db_buf)) {
1988 ASSERT(dr->dt.dl.dr_override_state ==
1989 DR_OVERRIDDEN);
1990 arc_release(db->db_buf, db);
1992 dr->dt.dl.dr_data = buf;
1993 arc_buf_destroy(db->db_buf, db);
1994 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1995 arc_release(db->db_buf, db);
1996 arc_buf_destroy(db->db_buf, db);
1998 db->db_buf = NULL;
2000 ASSERT(db->db_buf == NULL);
2001 dbuf_set_data(db, buf);
2002 db->db_state = DB_FILL;
2003 mutex_exit(&db->db_mtx);
2004 (void) dbuf_dirty(db, tx);
2005 dmu_buf_fill_done(&db->db, tx);
2008 void
2009 dbuf_destroy(dmu_buf_impl_t *db)
2011 dnode_t *dn;
2012 dmu_buf_impl_t *parent = db->db_parent;
2013 dmu_buf_impl_t *dndb;
2015 ASSERT(MUTEX_HELD(&db->db_mtx));
2016 ASSERT(refcount_is_zero(&db->db_holds));
2018 if (db->db_buf != NULL) {
2019 arc_buf_destroy(db->db_buf, db);
2020 db->db_buf = NULL;
2023 if (db->db_blkid == DMU_BONUS_BLKID) {
2024 ASSERT(db->db.db_data != NULL);
2025 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
2026 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2027 db->db_state = DB_UNCACHED;
2030 dbuf_clear_data(db);
2032 if (multilist_link_active(&db->db_cache_link)) {
2033 multilist_remove(dbuf_cache, db);
2034 (void) refcount_remove_many(&dbuf_cache_size,
2035 db->db.db_size, db);
2038 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2039 ASSERT(db->db_data_pending == NULL);
2041 db->db_state = DB_EVICTING;
2042 db->db_blkptr = NULL;
2045 * Now that db_state is DB_EVICTING, nobody else can find this via
2046 * the hash table. We can now drop db_mtx, which allows us to
2047 * acquire the dn_dbufs_mtx.
2049 mutex_exit(&db->db_mtx);
2051 DB_DNODE_ENTER(db);
2052 dn = DB_DNODE(db);
2053 dndb = dn->dn_dbuf;
2054 if (db->db_blkid != DMU_BONUS_BLKID) {
2055 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2056 if (needlock)
2057 mutex_enter(&dn->dn_dbufs_mtx);
2058 avl_remove(&dn->dn_dbufs, db);
2059 atomic_dec_32(&dn->dn_dbufs_count);
2060 membar_producer();
2061 DB_DNODE_EXIT(db);
2062 if (needlock)
2063 mutex_exit(&dn->dn_dbufs_mtx);
2065 * Decrementing the dbuf count means that the hold corresponding
2066 * to the removed dbuf is no longer discounted in dnode_move(),
2067 * so the dnode cannot be moved until after we release the hold.
2068 * The membar_producer() ensures visibility of the decremented
2069 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2070 * release any lock.
2072 dnode_rele(dn, db);
2073 db->db_dnode_handle = NULL;
2075 dbuf_hash_remove(db);
2076 } else {
2077 DB_DNODE_EXIT(db);
2080 ASSERT(refcount_is_zero(&db->db_holds));
2082 db->db_parent = NULL;
2084 ASSERT(db->db_buf == NULL);
2085 ASSERT(db->db.db_data == NULL);
2086 ASSERT(db->db_hash_next == NULL);
2087 ASSERT(db->db_blkptr == NULL);
2088 ASSERT(db->db_data_pending == NULL);
2089 ASSERT(!multilist_link_active(&db->db_cache_link));
2091 kmem_cache_free(dbuf_kmem_cache, db);
2092 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2095 * If this dbuf is referenced from an indirect dbuf,
2096 * decrement the ref count on the indirect dbuf.
2098 if (parent && parent != dndb)
2099 dbuf_rele(parent, db);
2103 * Note: While bpp will always be updated if the function returns success,
2104 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2105 * this happens when the dnode is the meta-dnode, or a userused or groupused
2106 * object.
2108 static int
2109 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2110 dmu_buf_impl_t **parentp, blkptr_t **bpp)
2112 *parentp = NULL;
2113 *bpp = NULL;
2115 ASSERT(blkid != DMU_BONUS_BLKID);
2117 if (blkid == DMU_SPILL_BLKID) {
2118 mutex_enter(&dn->dn_mtx);
2119 if (dn->dn_have_spill &&
2120 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2121 *bpp = &dn->dn_phys->dn_spill;
2122 else
2123 *bpp = NULL;
2124 dbuf_add_ref(dn->dn_dbuf, NULL);
2125 *parentp = dn->dn_dbuf;
2126 mutex_exit(&dn->dn_mtx);
2127 return (0);
2130 int nlevels =
2131 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2132 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2134 ASSERT3U(level * epbs, <, 64);
2135 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2137 * This assertion shouldn't trip as long as the max indirect block size
2138 * is less than 1M. The reason for this is that up to that point,
2139 * the number of levels required to address an entire object with blocks
2140 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2141 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2142 * (i.e. we can address the entire object), objects will all use at most
2143 * N-1 levels and the assertion won't overflow. However, once epbs is
2144 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2145 * enough to address an entire object, so objects will have 5 levels,
2146 * but then this assertion will overflow.
2148 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2149 * need to redo this logic to handle overflows.
2151 ASSERT(level >= nlevels ||
2152 ((nlevels - level - 1) * epbs) +
2153 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2154 if (level >= nlevels ||
2155 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2156 ((nlevels - level - 1) * epbs)) ||
2157 (fail_sparse &&
2158 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2159 /* the buffer has no parent yet */
2160 return (SET_ERROR(ENOENT));
2161 } else if (level < nlevels-1) {
2162 /* this block is referenced from an indirect block */
2163 int err = dbuf_hold_impl(dn, level+1,
2164 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2165 if (err)
2166 return (err);
2167 err = dbuf_read(*parentp, NULL,
2168 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2169 if (err) {
2170 dbuf_rele(*parentp, NULL);
2171 *parentp = NULL;
2172 return (err);
2174 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2175 (blkid & ((1ULL << epbs) - 1));
2176 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2177 ASSERT(BP_IS_HOLE(*bpp));
2178 return (0);
2179 } else {
2180 /* the block is referenced from the dnode */
2181 ASSERT3U(level, ==, nlevels-1);
2182 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2183 blkid < dn->dn_phys->dn_nblkptr);
2184 if (dn->dn_dbuf) {
2185 dbuf_add_ref(dn->dn_dbuf, NULL);
2186 *parentp = dn->dn_dbuf;
2188 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2189 return (0);
2193 static dmu_buf_impl_t *
2194 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2195 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2197 objset_t *os = dn->dn_objset;
2198 dmu_buf_impl_t *db, *odb;
2200 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2201 ASSERT(dn->dn_type != DMU_OT_NONE);
2203 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2205 db->db_objset = os;
2206 db->db.db_object = dn->dn_object;
2207 db->db_level = level;
2208 db->db_blkid = blkid;
2209 db->db_last_dirty = NULL;
2210 db->db_dirtycnt = 0;
2211 db->db_dnode_handle = dn->dn_handle;
2212 db->db_parent = parent;
2213 db->db_blkptr = blkptr;
2215 db->db_user = NULL;
2216 db->db_user_immediate_evict = FALSE;
2217 db->db_freed_in_flight = FALSE;
2218 db->db_pending_evict = FALSE;
2220 if (blkid == DMU_BONUS_BLKID) {
2221 ASSERT3P(parent, ==, dn->dn_dbuf);
2222 db->db.db_size = DN_MAX_BONUSLEN -
2223 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2224 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2225 db->db.db_offset = DMU_BONUS_BLKID;
2226 db->db_state = DB_UNCACHED;
2227 /* the bonus dbuf is not placed in the hash table */
2228 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2229 return (db);
2230 } else if (blkid == DMU_SPILL_BLKID) {
2231 db->db.db_size = (blkptr != NULL) ?
2232 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2233 db->db.db_offset = 0;
2234 } else {
2235 int blocksize =
2236 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2237 db->db.db_size = blocksize;
2238 db->db.db_offset = db->db_blkid * blocksize;
2242 * Hold the dn_dbufs_mtx while we get the new dbuf
2243 * in the hash table *and* added to the dbufs list.
2244 * This prevents a possible deadlock with someone
2245 * trying to look up this dbuf before its added to the
2246 * dn_dbufs list.
2248 mutex_enter(&dn->dn_dbufs_mtx);
2249 db->db_state = DB_EVICTING;
2250 if ((odb = dbuf_hash_insert(db)) != NULL) {
2251 /* someone else inserted it first */
2252 kmem_cache_free(dbuf_kmem_cache, db);
2253 mutex_exit(&dn->dn_dbufs_mtx);
2254 return (odb);
2256 avl_add(&dn->dn_dbufs, db);
2258 db->db_state = DB_UNCACHED;
2259 mutex_exit(&dn->dn_dbufs_mtx);
2260 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2262 if (parent && parent != dn->dn_dbuf)
2263 dbuf_add_ref(parent, db);
2265 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2266 refcount_count(&dn->dn_holds) > 0);
2267 (void) refcount_add(&dn->dn_holds, db);
2268 atomic_inc_32(&dn->dn_dbufs_count);
2270 dprintf_dbuf(db, "db=%p\n", db);
2272 return (db);
2275 typedef struct dbuf_prefetch_arg {
2276 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2277 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2278 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2279 int dpa_curlevel; /* The current level that we're reading */
2280 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2281 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2282 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2283 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2284 } dbuf_prefetch_arg_t;
2287 * Actually issue the prefetch read for the block given.
2289 static void
2290 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2292 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2293 return;
2295 arc_flags_t aflags =
2296 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2298 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2299 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2300 ASSERT(dpa->dpa_zio != NULL);
2301 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2302 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2303 &aflags, &dpa->dpa_zb);
2307 * Called when an indirect block above our prefetch target is read in. This
2308 * will either read in the next indirect block down the tree or issue the actual
2309 * prefetch if the next block down is our target.
2311 static void
2312 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2314 dbuf_prefetch_arg_t *dpa = private;
2316 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2317 ASSERT3S(dpa->dpa_curlevel, >, 0);
2320 * The dpa_dnode is only valid if we are called with a NULL
2321 * zio. This indicates that the arc_read() returned without
2322 * first calling zio_read() to issue a physical read. Once
2323 * a physical read is made the dpa_dnode must be invalidated
2324 * as the locks guarding it may have been dropped. If the
2325 * dpa_dnode is still valid, then we want to add it to the dbuf
2326 * cache. To do so, we must hold the dbuf associated with the block
2327 * we just prefetched, read its contents so that we associate it
2328 * with an arc_buf_t, and then release it.
2330 if (zio != NULL) {
2331 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2332 if (zio->io_flags & ZIO_FLAG_RAW) {
2333 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2334 } else {
2335 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2337 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2339 dpa->dpa_dnode = NULL;
2340 } else if (dpa->dpa_dnode != NULL) {
2341 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2342 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2343 dpa->dpa_zb.zb_level));
2344 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2345 dpa->dpa_curlevel, curblkid, FTAG);
2346 (void) dbuf_read(db, NULL,
2347 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2348 dbuf_rele(db, FTAG);
2351 dpa->dpa_curlevel--;
2353 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2354 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2355 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2356 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2357 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2358 kmem_free(dpa, sizeof (*dpa));
2359 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2360 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2361 dbuf_issue_final_prefetch(dpa, bp);
2362 kmem_free(dpa, sizeof (*dpa));
2363 } else {
2364 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2365 zbookmark_phys_t zb;
2367 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2369 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2370 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2372 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2373 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2374 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2375 &iter_aflags, &zb);
2378 arc_buf_destroy(abuf, private);
2382 * Issue prefetch reads for the given block on the given level. If the indirect
2383 * blocks above that block are not in memory, we will read them in
2384 * asynchronously. As a result, this call never blocks waiting for a read to
2385 * complete.
2387 void
2388 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2389 arc_flags_t aflags)
2391 blkptr_t bp;
2392 int epbs, nlevels, curlevel;
2393 uint64_t curblkid;
2395 ASSERT(blkid != DMU_BONUS_BLKID);
2396 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2398 if (blkid > dn->dn_maxblkid)
2399 return;
2401 if (dnode_block_freed(dn, blkid))
2402 return;
2405 * This dnode hasn't been written to disk yet, so there's nothing to
2406 * prefetch.
2408 nlevels = dn->dn_phys->dn_nlevels;
2409 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2410 return;
2412 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2413 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2414 return;
2416 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2417 level, blkid);
2418 if (db != NULL) {
2419 mutex_exit(&db->db_mtx);
2421 * This dbuf already exists. It is either CACHED, or
2422 * (we assume) about to be read or filled.
2424 return;
2428 * Find the closest ancestor (indirect block) of the target block
2429 * that is present in the cache. In this indirect block, we will
2430 * find the bp that is at curlevel, curblkid.
2432 curlevel = level;
2433 curblkid = blkid;
2434 while (curlevel < nlevels - 1) {
2435 int parent_level = curlevel + 1;
2436 uint64_t parent_blkid = curblkid >> epbs;
2437 dmu_buf_impl_t *db;
2439 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2440 FALSE, TRUE, FTAG, &db) == 0) {
2441 blkptr_t *bpp = db->db_buf->b_data;
2442 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2443 dbuf_rele(db, FTAG);
2444 break;
2447 curlevel = parent_level;
2448 curblkid = parent_blkid;
2451 if (curlevel == nlevels - 1) {
2452 /* No cached indirect blocks found. */
2453 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2454 bp = dn->dn_phys->dn_blkptr[curblkid];
2456 if (BP_IS_HOLE(&bp))
2457 return;
2459 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2461 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2462 ZIO_FLAG_CANFAIL);
2464 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2465 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2466 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2467 dn->dn_object, level, blkid);
2468 dpa->dpa_curlevel = curlevel;
2469 dpa->dpa_prio = prio;
2470 dpa->dpa_aflags = aflags;
2471 dpa->dpa_spa = dn->dn_objset->os_spa;
2472 dpa->dpa_dnode = dn;
2473 dpa->dpa_epbs = epbs;
2474 dpa->dpa_zio = pio;
2477 * If we have the indirect just above us, no need to do the asynchronous
2478 * prefetch chain; we'll just run the last step ourselves. If we're at
2479 * a higher level, though, we want to issue the prefetches for all the
2480 * indirect blocks asynchronously, so we can go on with whatever we were
2481 * doing.
2483 if (curlevel == level) {
2484 ASSERT3U(curblkid, ==, blkid);
2485 dbuf_issue_final_prefetch(dpa, &bp);
2486 kmem_free(dpa, sizeof (*dpa));
2487 } else {
2488 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2489 zbookmark_phys_t zb;
2491 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2492 dn->dn_object, curlevel, curblkid);
2493 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2494 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2495 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2496 &iter_aflags, &zb);
2499 * We use pio here instead of dpa_zio since it's possible that
2500 * dpa may have already been freed.
2502 zio_nowait(pio);
2506 * Returns with db_holds incremented, and db_mtx not held.
2507 * Note: dn_struct_rwlock must be held.
2510 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2511 boolean_t fail_sparse, boolean_t fail_uncached,
2512 void *tag, dmu_buf_impl_t **dbp)
2514 dmu_buf_impl_t *db, *parent = NULL;
2516 ASSERT(blkid != DMU_BONUS_BLKID);
2517 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2518 ASSERT3U(dn->dn_nlevels, >, level);
2520 *dbp = NULL;
2521 top:
2522 /* dbuf_find() returns with db_mtx held */
2523 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
2525 if (db == NULL) {
2526 blkptr_t *bp = NULL;
2527 int err;
2529 if (fail_uncached)
2530 return (SET_ERROR(ENOENT));
2532 ASSERT3P(parent, ==, NULL);
2533 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
2534 if (fail_sparse) {
2535 if (err == 0 && bp && BP_IS_HOLE(bp))
2536 err = SET_ERROR(ENOENT);
2537 if (err) {
2538 if (parent)
2539 dbuf_rele(parent, NULL);
2540 return (err);
2543 if (err && err != ENOENT)
2544 return (err);
2545 db = dbuf_create(dn, level, blkid, parent, bp);
2548 if (fail_uncached && db->db_state != DB_CACHED) {
2549 mutex_exit(&db->db_mtx);
2550 return (SET_ERROR(ENOENT));
2553 if (db->db_buf != NULL)
2554 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
2556 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
2559 * If this buffer is currently syncing out, and we are are
2560 * still referencing it from db_data, we need to make a copy
2561 * of it in case we decide we want to dirty it again in this txg.
2563 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2564 dn->dn_object != DMU_META_DNODE_OBJECT &&
2565 db->db_state == DB_CACHED && db->db_data_pending) {
2566 dbuf_dirty_record_t *dr = db->db_data_pending;
2568 if (dr->dt.dl.dr_data == db->db_buf) {
2569 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2571 dbuf_set_data(db,
2572 arc_alloc_buf(dn->dn_objset->os_spa, db, type,
2573 db->db.db_size));
2574 bcopy(dr->dt.dl.dr_data->b_data, db->db.db_data,
2575 db->db.db_size);
2579 if (multilist_link_active(&db->db_cache_link)) {
2580 ASSERT(refcount_is_zero(&db->db_holds));
2581 multilist_remove(dbuf_cache, db);
2582 (void) refcount_remove_many(&dbuf_cache_size,
2583 db->db.db_size, db);
2585 (void) refcount_add(&db->db_holds, tag);
2586 DBUF_VERIFY(db);
2587 mutex_exit(&db->db_mtx);
2589 /* NOTE: we can't rele the parent until after we drop the db_mtx */
2590 if (parent)
2591 dbuf_rele(parent, NULL);
2593 ASSERT3P(DB_DNODE(db), ==, dn);
2594 ASSERT3U(db->db_blkid, ==, blkid);
2595 ASSERT3U(db->db_level, ==, level);
2596 *dbp = db;
2598 return (0);
2601 dmu_buf_impl_t *
2602 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2604 return (dbuf_hold_level(dn, 0, blkid, tag));
2607 dmu_buf_impl_t *
2608 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2610 dmu_buf_impl_t *db;
2611 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2612 return (err ? NULL : db);
2615 void
2616 dbuf_create_bonus(dnode_t *dn)
2618 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2620 ASSERT(dn->dn_bonus == NULL);
2621 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2625 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2627 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2628 dnode_t *dn;
2630 if (db->db_blkid != DMU_SPILL_BLKID)
2631 return (SET_ERROR(ENOTSUP));
2632 if (blksz == 0)
2633 blksz = SPA_MINBLOCKSIZE;
2634 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2635 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2637 DB_DNODE_ENTER(db);
2638 dn = DB_DNODE(db);
2639 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2640 dbuf_new_size(db, blksz, tx);
2641 rw_exit(&dn->dn_struct_rwlock);
2642 DB_DNODE_EXIT(db);
2644 return (0);
2647 void
2648 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2650 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2653 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2654 void
2655 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2657 int64_t holds = refcount_add(&db->db_holds, tag);
2658 ASSERT3S(holds, >, 1);
2661 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2662 boolean_t
2663 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2664 void *tag)
2666 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2667 dmu_buf_impl_t *found_db;
2668 boolean_t result = B_FALSE;
2670 if (db->db_blkid == DMU_BONUS_BLKID)
2671 found_db = dbuf_find_bonus(os, obj);
2672 else
2673 found_db = dbuf_find(os, obj, 0, blkid);
2675 if (found_db != NULL) {
2676 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2677 (void) refcount_add(&db->db_holds, tag);
2678 result = B_TRUE;
2680 mutex_exit(&db->db_mtx);
2682 return (result);
2686 * If you call dbuf_rele() you had better not be referencing the dnode handle
2687 * unless you have some other direct or indirect hold on the dnode. (An indirect
2688 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2689 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2690 * dnode's parent dbuf evicting its dnode handles.
2692 void
2693 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2695 mutex_enter(&db->db_mtx);
2696 dbuf_rele_and_unlock(db, tag);
2699 void
2700 dmu_buf_rele(dmu_buf_t *db, void *tag)
2702 dbuf_rele((dmu_buf_impl_t *)db, tag);
2706 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
2707 * db_dirtycnt and db_holds to be updated atomically.
2709 void
2710 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2712 int64_t holds;
2714 ASSERT(MUTEX_HELD(&db->db_mtx));
2715 DBUF_VERIFY(db);
2718 * Remove the reference to the dbuf before removing its hold on the
2719 * dnode so we can guarantee in dnode_move() that a referenced bonus
2720 * buffer has a corresponding dnode hold.
2722 holds = refcount_remove(&db->db_holds, tag);
2723 ASSERT(holds >= 0);
2726 * We can't freeze indirects if there is a possibility that they
2727 * may be modified in the current syncing context.
2729 if (db->db_buf != NULL &&
2730 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
2731 arc_buf_freeze(db->db_buf);
2734 if (holds == db->db_dirtycnt &&
2735 db->db_level == 0 && db->db_user_immediate_evict)
2736 dbuf_evict_user(db);
2738 if (holds == 0) {
2739 if (db->db_blkid == DMU_BONUS_BLKID) {
2740 dnode_t *dn;
2741 boolean_t evict_dbuf = db->db_pending_evict;
2744 * If the dnode moves here, we cannot cross this
2745 * barrier until the move completes.
2747 DB_DNODE_ENTER(db);
2749 dn = DB_DNODE(db);
2750 atomic_dec_32(&dn->dn_dbufs_count);
2753 * Decrementing the dbuf count means that the bonus
2754 * buffer's dnode hold is no longer discounted in
2755 * dnode_move(). The dnode cannot move until after
2756 * the dnode_rele() below.
2758 DB_DNODE_EXIT(db);
2761 * Do not reference db after its lock is dropped.
2762 * Another thread may evict it.
2764 mutex_exit(&db->db_mtx);
2766 if (evict_dbuf)
2767 dnode_evict_bonus(dn);
2769 dnode_rele(dn, db);
2770 } else if (db->db_buf == NULL) {
2772 * This is a special case: we never associated this
2773 * dbuf with any data allocated from the ARC.
2775 ASSERT(db->db_state == DB_UNCACHED ||
2776 db->db_state == DB_NOFILL);
2777 dbuf_destroy(db);
2778 } else if (arc_released(db->db_buf)) {
2780 * This dbuf has anonymous data associated with it.
2782 dbuf_destroy(db);
2783 } else {
2784 boolean_t do_arc_evict = B_FALSE;
2785 blkptr_t bp;
2786 spa_t *spa = dmu_objset_spa(db->db_objset);
2788 if (!DBUF_IS_CACHEABLE(db) &&
2789 db->db_blkptr != NULL &&
2790 !BP_IS_HOLE(db->db_blkptr) &&
2791 !BP_IS_EMBEDDED(db->db_blkptr)) {
2792 do_arc_evict = B_TRUE;
2793 bp = *db->db_blkptr;
2796 if (!DBUF_IS_CACHEABLE(db) ||
2797 db->db_pending_evict) {
2798 dbuf_destroy(db);
2799 } else if (!multilist_link_active(&db->db_cache_link)) {
2800 multilist_insert(dbuf_cache, db);
2801 (void) refcount_add_many(&dbuf_cache_size,
2802 db->db.db_size, db);
2803 mutex_exit(&db->db_mtx);
2805 dbuf_evict_notify();
2808 if (do_arc_evict)
2809 arc_freed(spa, &bp);
2811 } else {
2812 mutex_exit(&db->db_mtx);
2817 #pragma weak dmu_buf_refcount = dbuf_refcount
2818 uint64_t
2819 dbuf_refcount(dmu_buf_impl_t *db)
2821 return (refcount_count(&db->db_holds));
2824 void *
2825 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2826 dmu_buf_user_t *new_user)
2828 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2830 mutex_enter(&db->db_mtx);
2831 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2832 if (db->db_user == old_user)
2833 db->db_user = new_user;
2834 else
2835 old_user = db->db_user;
2836 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2837 mutex_exit(&db->db_mtx);
2839 return (old_user);
2842 void *
2843 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2845 return (dmu_buf_replace_user(db_fake, NULL, user));
2848 void *
2849 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2851 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2853 db->db_user_immediate_evict = TRUE;
2854 return (dmu_buf_set_user(db_fake, user));
2857 void *
2858 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2860 return (dmu_buf_replace_user(db_fake, user, NULL));
2863 void *
2864 dmu_buf_get_user(dmu_buf_t *db_fake)
2866 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2868 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2869 return (db->db_user);
2872 void
2873 dmu_buf_user_evict_wait()
2875 taskq_wait(dbu_evict_taskq);
2878 blkptr_t *
2879 dmu_buf_get_blkptr(dmu_buf_t *db)
2881 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2882 return (dbi->db_blkptr);
2885 objset_t *
2886 dmu_buf_get_objset(dmu_buf_t *db)
2888 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2889 return (dbi->db_objset);
2892 dnode_t *
2893 dmu_buf_dnode_enter(dmu_buf_t *db)
2895 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2896 DB_DNODE_ENTER(dbi);
2897 return (DB_DNODE(dbi));
2900 void
2901 dmu_buf_dnode_exit(dmu_buf_t *db)
2903 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2904 DB_DNODE_EXIT(dbi);
2907 static void
2908 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2910 /* ASSERT(dmu_tx_is_syncing(tx) */
2911 ASSERT(MUTEX_HELD(&db->db_mtx));
2913 if (db->db_blkptr != NULL)
2914 return;
2916 if (db->db_blkid == DMU_SPILL_BLKID) {
2917 db->db_blkptr = &dn->dn_phys->dn_spill;
2918 BP_ZERO(db->db_blkptr);
2919 return;
2921 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2923 * This buffer was allocated at a time when there was
2924 * no available blkptrs from the dnode, or it was
2925 * inappropriate to hook it in (i.e., nlevels mis-match).
2927 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2928 ASSERT(db->db_parent == NULL);
2929 db->db_parent = dn->dn_dbuf;
2930 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2931 DBUF_VERIFY(db);
2932 } else {
2933 dmu_buf_impl_t *parent = db->db_parent;
2934 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2936 ASSERT(dn->dn_phys->dn_nlevels > 1);
2937 if (parent == NULL) {
2938 mutex_exit(&db->db_mtx);
2939 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2940 parent = dbuf_hold_level(dn, db->db_level + 1,
2941 db->db_blkid >> epbs, db);
2942 rw_exit(&dn->dn_struct_rwlock);
2943 mutex_enter(&db->db_mtx);
2944 db->db_parent = parent;
2946 db->db_blkptr = (blkptr_t *)parent->db.db_data +
2947 (db->db_blkid & ((1ULL << epbs) - 1));
2948 DBUF_VERIFY(db);
2952 static void
2953 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2955 dmu_buf_impl_t *db = dr->dr_dbuf;
2956 dnode_t *dn;
2957 zio_t *zio;
2959 ASSERT(dmu_tx_is_syncing(tx));
2961 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2963 mutex_enter(&db->db_mtx);
2965 ASSERT(db->db_level > 0);
2966 DBUF_VERIFY(db);
2968 /* Read the block if it hasn't been read yet. */
2969 if (db->db_buf == NULL) {
2970 mutex_exit(&db->db_mtx);
2971 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2972 mutex_enter(&db->db_mtx);
2974 ASSERT3U(db->db_state, ==, DB_CACHED);
2975 ASSERT(db->db_buf != NULL);
2977 DB_DNODE_ENTER(db);
2978 dn = DB_DNODE(db);
2979 /* Indirect block size must match what the dnode thinks it is. */
2980 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2981 dbuf_check_blkptr(dn, db);
2982 DB_DNODE_EXIT(db);
2984 /* Provide the pending dirty record to child dbufs */
2985 db->db_data_pending = dr;
2987 mutex_exit(&db->db_mtx);
2988 dbuf_write(dr, db->db_buf, tx);
2990 zio = dr->dr_zio;
2991 mutex_enter(&dr->dt.di.dr_mtx);
2992 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
2993 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2994 mutex_exit(&dr->dt.di.dr_mtx);
2995 zio_nowait(zio);
2998 static void
2999 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3001 arc_buf_t **datap = &dr->dt.dl.dr_data;
3002 dmu_buf_impl_t *db = dr->dr_dbuf;
3003 dnode_t *dn;
3004 objset_t *os;
3005 uint64_t txg = tx->tx_txg;
3007 ASSERT(dmu_tx_is_syncing(tx));
3009 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3011 mutex_enter(&db->db_mtx);
3013 * To be synced, we must be dirtied. But we
3014 * might have been freed after the dirty.
3016 if (db->db_state == DB_UNCACHED) {
3017 /* This buffer has been freed since it was dirtied */
3018 ASSERT(db->db.db_data == NULL);
3019 } else if (db->db_state == DB_FILL) {
3020 /* This buffer was freed and is now being re-filled */
3021 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3022 } else {
3023 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3025 DBUF_VERIFY(db);
3027 DB_DNODE_ENTER(db);
3028 dn = DB_DNODE(db);
3030 if (db->db_blkid == DMU_SPILL_BLKID) {
3031 mutex_enter(&dn->dn_mtx);
3032 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3033 mutex_exit(&dn->dn_mtx);
3037 * If this is a bonus buffer, simply copy the bonus data into the
3038 * dnode. It will be written out when the dnode is synced (and it
3039 * will be synced, since it must have been dirty for dbuf_sync to
3040 * be called).
3042 if (db->db_blkid == DMU_BONUS_BLKID) {
3043 dbuf_dirty_record_t **drp;
3045 ASSERT(*datap != NULL);
3046 ASSERT0(db->db_level);
3047 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
3048 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
3049 DB_DNODE_EXIT(db);
3051 if (*datap != db->db.db_data) {
3052 zio_buf_free(*datap, DN_MAX_BONUSLEN);
3053 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
3055 db->db_data_pending = NULL;
3056 drp = &db->db_last_dirty;
3057 while (*drp != dr)
3058 drp = &(*drp)->dr_next;
3059 ASSERT(dr->dr_next == NULL);
3060 ASSERT(dr->dr_dbuf == db);
3061 *drp = dr->dr_next;
3062 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3063 ASSERT(db->db_dirtycnt > 0);
3064 db->db_dirtycnt -= 1;
3065 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3066 return;
3069 os = dn->dn_objset;
3072 * This function may have dropped the db_mtx lock allowing a dmu_sync
3073 * operation to sneak in. As a result, we need to ensure that we
3074 * don't check the dr_override_state until we have returned from
3075 * dbuf_check_blkptr.
3077 dbuf_check_blkptr(dn, db);
3080 * If this buffer is in the middle of an immediate write,
3081 * wait for the synchronous IO to complete.
3083 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3084 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3085 cv_wait(&db->db_changed, &db->db_mtx);
3086 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3089 if (db->db_state != DB_NOFILL &&
3090 dn->dn_object != DMU_META_DNODE_OBJECT &&
3091 refcount_count(&db->db_holds) > 1 &&
3092 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3093 *datap == db->db_buf) {
3095 * If this buffer is currently "in use" (i.e., there
3096 * are active holds and db_data still references it),
3097 * then make a copy before we start the write so that
3098 * any modifications from the open txg will not leak
3099 * into this write.
3101 * NOTE: this copy does not need to be made for
3102 * objects only modified in the syncing context (e.g.
3103 * DNONE_DNODE blocks).
3105 int psize = arc_buf_size(*datap);
3106 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3107 enum zio_compress compress_type = arc_get_compression(*datap);
3109 if (compress_type == ZIO_COMPRESS_OFF) {
3110 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3111 } else {
3112 ASSERT3U(type, ==, ARC_BUFC_DATA);
3113 int lsize = arc_buf_lsize(*datap);
3114 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3115 psize, lsize, compress_type);
3117 bcopy(db->db.db_data, (*datap)->b_data, psize);
3119 db->db_data_pending = dr;
3121 mutex_exit(&db->db_mtx);
3123 dbuf_write(dr, *datap, tx);
3125 ASSERT(!list_link_active(&dr->dr_dirty_node));
3126 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3127 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3128 DB_DNODE_EXIT(db);
3129 } else {
3131 * Although zio_nowait() does not "wait for an IO", it does
3132 * initiate the IO. If this is an empty write it seems plausible
3133 * that the IO could actually be completed before the nowait
3134 * returns. We need to DB_DNODE_EXIT() first in case
3135 * zio_nowait() invalidates the dbuf.
3137 DB_DNODE_EXIT(db);
3138 zio_nowait(dr->dr_zio);
3142 void
3143 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3145 dbuf_dirty_record_t *dr;
3147 while (dr = list_head(list)) {
3148 if (dr->dr_zio != NULL) {
3150 * If we find an already initialized zio then we
3151 * are processing the meta-dnode, and we have finished.
3152 * The dbufs for all dnodes are put back on the list
3153 * during processing, so that we can zio_wait()
3154 * these IOs after initiating all child IOs.
3156 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3157 DMU_META_DNODE_OBJECT);
3158 break;
3160 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3161 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3162 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3164 list_remove(list, dr);
3165 if (dr->dr_dbuf->db_level > 0)
3166 dbuf_sync_indirect(dr, tx);
3167 else
3168 dbuf_sync_leaf(dr, tx);
3172 /* ARGSUSED */
3173 static void
3174 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3176 dmu_buf_impl_t *db = vdb;
3177 dnode_t *dn;
3178 blkptr_t *bp = zio->io_bp;
3179 blkptr_t *bp_orig = &zio->io_bp_orig;
3180 spa_t *spa = zio->io_spa;
3181 int64_t delta;
3182 uint64_t fill = 0;
3183 int i;
3185 ASSERT3P(db->db_blkptr, !=, NULL);
3186 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3188 DB_DNODE_ENTER(db);
3189 dn = DB_DNODE(db);
3190 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3191 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3192 zio->io_prev_space_delta = delta;
3194 if (bp->blk_birth != 0) {
3195 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3196 BP_GET_TYPE(bp) == dn->dn_type) ||
3197 (db->db_blkid == DMU_SPILL_BLKID &&
3198 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3199 BP_IS_EMBEDDED(bp));
3200 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3203 mutex_enter(&db->db_mtx);
3205 #ifdef ZFS_DEBUG
3206 if (db->db_blkid == DMU_SPILL_BLKID) {
3207 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3208 ASSERT(!(BP_IS_HOLE(bp)) &&
3209 db->db_blkptr == &dn->dn_phys->dn_spill);
3211 #endif
3213 if (db->db_level == 0) {
3214 mutex_enter(&dn->dn_mtx);
3215 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3216 db->db_blkid != DMU_SPILL_BLKID)
3217 dn->dn_phys->dn_maxblkid = db->db_blkid;
3218 mutex_exit(&dn->dn_mtx);
3220 if (dn->dn_type == DMU_OT_DNODE) {
3221 dnode_phys_t *dnp = db->db.db_data;
3222 for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
3223 i--, dnp++) {
3224 if (dnp->dn_type != DMU_OT_NONE)
3225 fill++;
3227 } else {
3228 if (BP_IS_HOLE(bp)) {
3229 fill = 0;
3230 } else {
3231 fill = 1;
3234 } else {
3235 blkptr_t *ibp = db->db.db_data;
3236 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3237 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3238 if (BP_IS_HOLE(ibp))
3239 continue;
3240 fill += BP_GET_FILL(ibp);
3243 DB_DNODE_EXIT(db);
3245 if (!BP_IS_EMBEDDED(bp))
3246 bp->blk_fill = fill;
3248 mutex_exit(&db->db_mtx);
3250 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3251 *db->db_blkptr = *bp;
3252 rw_exit(&dn->dn_struct_rwlock);
3255 /* ARGSUSED */
3257 * This function gets called just prior to running through the compression
3258 * stage of the zio pipeline. If we're an indirect block comprised of only
3259 * holes, then we want this indirect to be compressed away to a hole. In
3260 * order to do that we must zero out any information about the holes that
3261 * this indirect points to prior to before we try to compress it.
3263 static void
3264 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3266 dmu_buf_impl_t *db = vdb;
3267 dnode_t *dn;
3268 blkptr_t *bp;
3269 unsigned int epbs, i;
3271 ASSERT3U(db->db_level, >, 0);
3272 DB_DNODE_ENTER(db);
3273 dn = DB_DNODE(db);
3274 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3275 ASSERT3U(epbs, <, 31);
3277 /* Determine if all our children are holes */
3278 for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++) {
3279 if (!BP_IS_HOLE(bp))
3280 break;
3284 * If all the children are holes, then zero them all out so that
3285 * we may get compressed away.
3287 if (i == 1 << epbs) {
3289 * We only found holes. Grab the rwlock to prevent
3290 * anybody from reading the blocks we're about to
3291 * zero out.
3293 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3294 bzero(db->db.db_data, db->db.db_size);
3295 rw_exit(&dn->dn_struct_rwlock);
3297 DB_DNODE_EXIT(db);
3301 * The SPA will call this callback several times for each zio - once
3302 * for every physical child i/o (zio->io_phys_children times). This
3303 * allows the DMU to monitor the progress of each logical i/o. For example,
3304 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3305 * block. There may be a long delay before all copies/fragments are completed,
3306 * so this callback allows us to retire dirty space gradually, as the physical
3307 * i/os complete.
3309 /* ARGSUSED */
3310 static void
3311 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3313 dmu_buf_impl_t *db = arg;
3314 objset_t *os = db->db_objset;
3315 dsl_pool_t *dp = dmu_objset_pool(os);
3316 dbuf_dirty_record_t *dr;
3317 int delta = 0;
3319 dr = db->db_data_pending;
3320 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3323 * The callback will be called io_phys_children times. Retire one
3324 * portion of our dirty space each time we are called. Any rounding
3325 * error will be cleaned up by dsl_pool_sync()'s call to
3326 * dsl_pool_undirty_space().
3328 delta = dr->dr_accounted / zio->io_phys_children;
3329 dsl_pool_undirty_space(dp, delta, zio->io_txg);
3332 /* ARGSUSED */
3333 static void
3334 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3336 dmu_buf_impl_t *db = vdb;
3337 blkptr_t *bp_orig = &zio->io_bp_orig;
3338 blkptr_t *bp = db->db_blkptr;
3339 objset_t *os = db->db_objset;
3340 dmu_tx_t *tx = os->os_synctx;
3341 dbuf_dirty_record_t **drp, *dr;
3343 ASSERT0(zio->io_error);
3344 ASSERT(db->db_blkptr == bp);
3347 * For nopwrites and rewrites we ensure that the bp matches our
3348 * original and bypass all the accounting.
3350 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3351 ASSERT(BP_EQUAL(bp, bp_orig));
3352 } else {
3353 dsl_dataset_t *ds = os->os_dsl_dataset;
3354 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3355 dsl_dataset_block_born(ds, bp, tx);
3358 mutex_enter(&db->db_mtx);
3360 DBUF_VERIFY(db);
3362 drp = &db->db_last_dirty;
3363 while ((dr = *drp) != db->db_data_pending)
3364 drp = &dr->dr_next;
3365 ASSERT(!list_link_active(&dr->dr_dirty_node));
3366 ASSERT(dr->dr_dbuf == db);
3367 ASSERT(dr->dr_next == NULL);
3368 *drp = dr->dr_next;
3370 #ifdef ZFS_DEBUG
3371 if (db->db_blkid == DMU_SPILL_BLKID) {
3372 dnode_t *dn;
3374 DB_DNODE_ENTER(db);
3375 dn = DB_DNODE(db);
3376 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3377 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3378 db->db_blkptr == &dn->dn_phys->dn_spill);
3379 DB_DNODE_EXIT(db);
3381 #endif
3383 if (db->db_level == 0) {
3384 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3385 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3386 if (db->db_state != DB_NOFILL) {
3387 if (dr->dt.dl.dr_data != db->db_buf)
3388 arc_buf_destroy(dr->dt.dl.dr_data, db);
3390 } else {
3391 dnode_t *dn;
3393 DB_DNODE_ENTER(db);
3394 dn = DB_DNODE(db);
3395 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3396 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3397 if (!BP_IS_HOLE(db->db_blkptr)) {
3398 int epbs =
3399 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3400 ASSERT3U(db->db_blkid, <=,
3401 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3402 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3403 db->db.db_size);
3405 DB_DNODE_EXIT(db);
3406 mutex_destroy(&dr->dt.di.dr_mtx);
3407 list_destroy(&dr->dt.di.dr_children);
3409 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3411 cv_broadcast(&db->db_changed);
3412 ASSERT(db->db_dirtycnt > 0);
3413 db->db_dirtycnt -= 1;
3414 db->db_data_pending = NULL;
3415 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3418 static void
3419 dbuf_write_nofill_ready(zio_t *zio)
3421 dbuf_write_ready(zio, NULL, zio->io_private);
3424 static void
3425 dbuf_write_nofill_done(zio_t *zio)
3427 dbuf_write_done(zio, NULL, zio->io_private);
3430 static void
3431 dbuf_write_override_ready(zio_t *zio)
3433 dbuf_dirty_record_t *dr = zio->io_private;
3434 dmu_buf_impl_t *db = dr->dr_dbuf;
3436 dbuf_write_ready(zio, NULL, db);
3439 static void
3440 dbuf_write_override_done(zio_t *zio)
3442 dbuf_dirty_record_t *dr = zio->io_private;
3443 dmu_buf_impl_t *db = dr->dr_dbuf;
3444 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3446 mutex_enter(&db->db_mtx);
3447 if (!BP_EQUAL(zio->io_bp, obp)) {
3448 if (!BP_IS_HOLE(obp))
3449 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3450 arc_release(dr->dt.dl.dr_data, db);
3452 mutex_exit(&db->db_mtx);
3454 dbuf_write_done(zio, NULL, db);
3457 /* Issue I/O to commit a dirty buffer to disk. */
3458 static void
3459 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3461 dmu_buf_impl_t *db = dr->dr_dbuf;
3462 dnode_t *dn;
3463 objset_t *os;
3464 dmu_buf_impl_t *parent = db->db_parent;
3465 uint64_t txg = tx->tx_txg;
3466 zbookmark_phys_t zb;
3467 zio_prop_t zp;
3468 zio_t *zio;
3469 int wp_flag = 0;
3471 ASSERT(dmu_tx_is_syncing(tx));
3473 DB_DNODE_ENTER(db);
3474 dn = DB_DNODE(db);
3475 os = dn->dn_objset;
3477 if (db->db_state != DB_NOFILL) {
3478 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3480 * Private object buffers are released here rather
3481 * than in dbuf_dirty() since they are only modified
3482 * in the syncing context and we don't want the
3483 * overhead of making multiple copies of the data.
3485 if (BP_IS_HOLE(db->db_blkptr)) {
3486 arc_buf_thaw(data);
3487 } else {
3488 dbuf_release_bp(db);
3493 if (parent != dn->dn_dbuf) {
3494 /* Our parent is an indirect block. */
3495 /* We have a dirty parent that has been scheduled for write. */
3496 ASSERT(parent && parent->db_data_pending);
3497 /* Our parent's buffer is one level closer to the dnode. */
3498 ASSERT(db->db_level == parent->db_level-1);
3500 * We're about to modify our parent's db_data by modifying
3501 * our block pointer, so the parent must be released.
3503 ASSERT(arc_released(parent->db_buf));
3504 zio = parent->db_data_pending->dr_zio;
3505 } else {
3506 /* Our parent is the dnode itself. */
3507 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3508 db->db_blkid != DMU_SPILL_BLKID) ||
3509 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3510 if (db->db_blkid != DMU_SPILL_BLKID)
3511 ASSERT3P(db->db_blkptr, ==,
3512 &dn->dn_phys->dn_blkptr[db->db_blkid]);
3513 zio = dn->dn_zio;
3516 ASSERT(db->db_level == 0 || data == db->db_buf);
3517 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3518 ASSERT(zio);
3520 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3521 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3522 db->db.db_object, db->db_level, db->db_blkid);
3524 if (db->db_blkid == DMU_SPILL_BLKID)
3525 wp_flag = WP_SPILL;
3526 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3528 dmu_write_policy(os, dn, db->db_level, wp_flag,
3529 (data != NULL && arc_get_compression(data) != ZIO_COMPRESS_OFF) ?
3530 arc_get_compression(data) : ZIO_COMPRESS_INHERIT, &zp);
3531 DB_DNODE_EXIT(db);
3534 * We copy the blkptr now (rather than when we instantiate the dirty
3535 * record), because its value can change between open context and
3536 * syncing context. We do not need to hold dn_struct_rwlock to read
3537 * db_blkptr because we are in syncing context.
3539 dr->dr_bp_copy = *db->db_blkptr;
3541 if (db->db_level == 0 &&
3542 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3544 * The BP for this block has been provided by open context
3545 * (by dmu_sync() or dmu_buf_write_embedded()).
3547 void *contents = (data != NULL) ? data->b_data : NULL;
3549 dr->dr_zio = zio_write(zio, os->os_spa, txg, &dr->dr_bp_copy,
3550 contents, db->db.db_size, db->db.db_size, &zp,
3551 dbuf_write_override_ready, NULL, NULL,
3552 dbuf_write_override_done,
3553 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3554 mutex_enter(&db->db_mtx);
3555 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3556 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3557 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3558 mutex_exit(&db->db_mtx);
3559 } else if (db->db_state == DB_NOFILL) {
3560 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3561 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3562 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3563 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
3564 dbuf_write_nofill_ready, NULL, NULL,
3565 dbuf_write_nofill_done, db,
3566 ZIO_PRIORITY_ASYNC_WRITE,
3567 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3568 } else {
3569 ASSERT(arc_released(data));
3572 * For indirect blocks, we want to setup the children
3573 * ready callback so that we can properly handle an indirect
3574 * block that only contains holes.
3576 arc_done_func_t *children_ready_cb = NULL;
3577 if (db->db_level != 0)
3578 children_ready_cb = dbuf_write_children_ready;
3580 dr->dr_zio = arc_write(zio, os->os_spa, txg,
3581 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3582 &zp, dbuf_write_ready, children_ready_cb,
3583 dbuf_write_physdone, dbuf_write_done, db,
3584 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);