Merge commit 'ea01a15a654b9e1c7b37d958f4d1911882ed7781'
[unleashed.git] / kernel / sched / sdc / sysdc.c
blob541ccb74f30fe1f5b9a37f3708ae726badf73265
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
27 * The System Duty Cycle (SDC) scheduling class
28 * --------------------------------------------
30 * Background
32 * Kernel threads in Solaris have traditionally not been large consumers
33 * of CPU time. They typically wake up, perform a small amount of
34 * work, then go back to sleep waiting for either a timeout or another
35 * signal. On the assumption that the small amount of work that they do
36 * is important for the behavior of the whole system, these threads are
37 * treated kindly by the dispatcher and the SYS scheduling class: they run
38 * without preemption from anything other than real-time and interrupt
39 * threads; when preempted, they are put at the front of the queue, so they
40 * generally do not migrate between CPUs; and they are allowed to stay
41 * running until they voluntarily give up the CPU.
43 * As Solaris has evolved, new workloads have emerged which require the
44 * kernel to perform significant amounts of CPU-intensive work. One
45 * example of such a workload is ZFS's transaction group sync processing.
46 * Each sync operation generates a large batch of I/Os, and each I/O
47 * may need to be compressed and/or checksummed before it is written to
48 * storage. The taskq threads which perform the compression and checksums
49 * will run nonstop as long as they have work to do; a large sync operation
50 * on a compression-heavy dataset can keep them busy for seconds on end.
51 * This causes human-time-scale dispatch latency bubbles for any other
52 * threads which have the misfortune to share a CPU with the taskq threads.
54 * The SDC scheduling class is a solution to this problem.
57 * Overview
59 * SDC is centered around the concept of a thread's duty cycle (DC):
61 * ONPROC time
62 * Duty Cycle = ----------------------
63 * ONPROC + Runnable time
65 * This is the ratio of the time that the thread spent running on a CPU
66 * divided by the time it spent running or trying to run. It is unaffected
67 * by any time the thread spent sleeping, stopped, etc.
69 * A thread joining the SDC class specifies a "target" DC that it wants
70 * to run at. To implement this policy, the routine sysdc_update() scans
71 * the list of active SDC threads every few ticks and uses each thread's
72 * microstate data to compute the actual duty cycle that that thread
73 * has experienced recently. If the thread is under its target DC, its
74 * priority is increased to the maximum available (sysdc_maxpri, which is
75 * 99 by default). If the thread is over its target DC, its priority is
76 * reduced to the minimum available (sysdc_minpri, 0 by default). This
77 * is a fairly primitive approach, in that it doesn't use any of the
78 * intermediate priorities, but it's not completely inappropriate. Even
79 * though threads in the SDC class might take a while to do their job, they
80 * are by some definition important if they're running inside the kernel,
81 * so it is reasonable that they should get to run at priority 99.
83 * If a thread is running when sysdc_update() calculates its actual duty
84 * cycle, and there are other threads of equal or greater priority on its
85 * CPU's dispatch queue, sysdc_update() preempts that thread. The thread
86 * acknowledges the preemption by calling sysdc_preempt(), which calls
87 * setbackdq(), which gives other threads with the same priority a chance
88 * to run. This creates a de facto time quantum for threads in the SDC
89 * scheduling class.
91 * An SDC thread which is assigned priority 0 can continue to run if
92 * nothing else needs to use the CPU that it's running on. Similarly, an
93 * SDC thread at priority 99 might not get to run as much as it wants to
94 * if there are other priority-99 or higher threads on its CPU. These
95 * situations would cause the thread to get ahead of or behind its target
96 * DC; the longer the situations lasted, the further ahead or behind the
97 * thread would get. Rather than condemning a thread to a lifetime of
98 * paying for its youthful indiscretions, SDC keeps "base" values for
99 * ONPROC and Runnable times in each thread's sysdc data, and updates these
100 * values periodically. The duty cycle is then computed using the elapsed
101 * amount of ONPROC and Runnable times since those base times.
103 * Since sysdc_update() scans SDC threads fairly frequently, it tries to
104 * keep the list of "active" threads small by pruning out threads which
105 * have been asleep for a brief time. They are not pruned immediately upon
106 * going to sleep, since some threads may bounce back and forth between
107 * sleeping and being runnable.
110 * Interfaces
112 * void sysdc_thread_enter(t, dc, flags)
114 * Moves a kernel thread from the SYS scheduling class to the
115 * SDC class. t must have an associated LWP (created by calling
116 * lwp_kernel_create()). The thread will have a target DC of dc.
117 * Flags should be either 0 or SYSDC_THREAD_BATCH. If
118 * SYSDC_THREAD_BATCH is specified, the thread is expected to be
119 * doing large amounts of processing.
122 * Complications
124 * - Run queue balancing
126 * The Solaris dispatcher is biased towards letting a thread run
127 * on the same CPU which it last ran on, if no more than 3 ticks
128 * (i.e. rechoose_interval) have passed since the thread last ran.
129 * This helps to preserve cache warmth. On the other hand, it also
130 * tries to keep the per-CPU run queues fairly balanced; if the CPU
131 * chosen for a runnable thread has a run queue which is three or
132 * more threads longer than a neighboring CPU's queue, the runnable
133 * thread is dispatched onto the neighboring CPU instead.
135 * These policies work well for some workloads, but not for many SDC
136 * threads. The taskq client of SDC, for example, has many discrete
137 * units of work to do. The work units are largely independent, so
138 * cache warmth is not an important consideration. It is important
139 * that the threads fan out quickly to different CPUs, since the
140 * amount of work these threads have to do (a few seconds worth at a
141 * time) doesn't leave much time to correct thread placement errors
142 * (i.e. two SDC threads being dispatched to the same CPU).
144 * To fix this, SDC uses the TS_RUNQMATCH flag introduced for FSS.
145 * This tells the dispatcher to keep neighboring run queues' lengths
146 * more evenly matched, which allows SDC threads to migrate more
147 * easily.
149 * - LWPs and system processes
151 * SDC can only be used for kernel threads. Since SDC uses microstate
152 * accounting data to compute each thread's actual duty cycle, all
153 * threads entering the SDC class must have associated LWPs (which
154 * store the microstate data). This means that the threads have to
155 * be associated with an SSYS process, i.e. one created by newproc().
156 * If the microstate accounting information is ever moved into the
157 * kthread_t, this restriction could be lifted.
159 * - Dealing with oversubscription
161 * Since SDC duty cycles are per-thread, it is possible that the
162 * aggregate requested duty cycle of all SDC threads in a processor
163 * set could be greater than the total CPU time available in that set.
164 * The FSS scheduling class has an analogous situation, which it deals
165 * with by reducing each thread's allotted CPU time proportionally.
166 * Since SDC doesn't need to be as precise as FSS, it uses a simpler
167 * solution to the oversubscription problem.
169 * sysdc_update() accumulates the amount of time that max-priority SDC
170 * threads have spent on-CPU in each processor set, and uses that sum
171 * to create an implied duty cycle for that processor set:
173 * accumulated CPU time
174 * pset DC = -----------------------------------
175 * (# CPUs) * time since last update
177 * If this implied duty cycle is above a maximum pset duty cycle (90%
178 * by default), sysdc_update() sets the priority of all SDC threads
179 * in that processor set to sysdc_minpri for a "break" period. After
180 * the break period, it waits for a "nobreak" period before trying to
181 * enforce the pset duty cycle limit again.
183 * - Processor sets
185 * As the above implies, SDC is processor set aware, but it does not
186 * currently allow threads to change processor sets while in the SDC
187 * class. Instead, those threads must join the desired processor set
188 * before entering SDC. [1]
190 * - Batch threads
192 * A thread joining the SDC class can specify the SDC_THREAD_BATCH
193 * flag. This flag currently has no effect, but marks threads which
194 * do bulk processing.
196 * - t_kpri_req
198 * The TS and FSS scheduling classes pay attention to t_kpri_req,
199 * which provides a simple form of priority inheritance for
200 * synchronization primitives (such as rwlocks held as READER) which
201 * cannot be traced to a unique thread. The SDC class does not honor
202 * t_kpri_req, for a few reasons:
204 * 1. t_kpri_req is notoriously inaccurate. A measure of its
205 * inaccuracy is that it needs to be cleared every time a thread
206 * returns to user mode, because it is frequently non-zero at that
207 * point. This can happen because "ownership" of synchronization
208 * primitives that use t_kpri_req can be silently handed off,
209 * leaving no opportunity to will the t_kpri_req inheritance.
211 * 2. Unlike in TS and FSS, threads in SDC *will* eventually run at
212 * kernel priority. This means that even if an SDC thread
213 * is holding a synchronization primitive and running at low
214 * priority, its priority will eventually be raised above 60,
215 * allowing it to drive on and release the resource.
217 * 3. The first consumer of SDC uses the taskq subsystem, which holds
218 * a reader lock for the duration of the task's execution. This
219 * would mean that SDC threads would never drop below kernel
220 * priority in practice, which defeats one of the purposes of SDC.
222 * - Why not FSS?
224 * It might seem that the existing FSS scheduling class could solve
225 * the problems that SDC is attempting to solve. FSS's more precise
226 * solution to the oversubscription problem would hardly cause
227 * trouble, as long as it performed well. SDC is implemented as
228 * a separate scheduling class for two main reasons: the initial
229 * consumer of SDC does not map well onto the "project" abstraction
230 * that is central to FSS, and FSS does not expect to run at kernel
231 * priorities.
234 * Tunables
236 * - sysdc_update_interval_msec: Number of milliseconds between
237 * consecutive thread priority updates.
239 * - sysdc_reset_interval_msec: Number of milliseconds between
240 * consecutive resets of a thread's base ONPROC and Runnable
241 * times.
243 * - sysdc_prune_interval_msec: Number of milliseconds of sleeping
244 * before a thread is pruned from the active list.
246 * - sysdc_max_pset_DC: Allowable percentage of a processor set's
247 * CPU time which SDC can give to its high-priority threads.
249 * - sysdc_break_msec: Number of milliseconds of "break" taken when
250 * sysdc_max_pset_DC is exceeded.
253 * Future work (in SDC and related subsystems)
255 * - Per-thread rechoose interval (0 for SDC)
257 * Allow each thread to specify its own rechoose interval. SDC
258 * threads would specify an interval of zero, which would rechoose
259 * the CPU with the lowest priority once per update.
261 * - Allow threads to change processor sets after joining the SDC class
263 * - Thread groups and per-group DC
265 * It might be nice to be able to specify a duty cycle which applies
266 * to a group of threads in aggregate.
268 * - Per-group DC callback to allow dynamic DC tuning
270 * Currently, DCs are assigned when the thread joins SDC. Some
271 * workloads could benefit from being able to tune their DC using
272 * subsystem-specific knowledge about the workload.
274 * - Finer-grained priority updates
276 * - More nuanced management of oversubscription
278 * - Moving other CPU-intensive threads into SDC
280 * - Move msacct data into kthread_t
282 * This would allow kernel threads without LWPs to join SDC.
285 * Footnotes
287 * [1] The details of doing so are left as an exercise for the reader.
290 #include <sys/types.h>
291 #include <sys/sysdc.h>
292 #include <sys/sysdc_impl.h>
294 #include <sys/class.h>
295 #include <sys/cmn_err.h>
296 #include <sys/cpuvar.h>
297 #include <sys/cpupart.h>
298 #include <sys/debug.h>
299 #include <sys/disp.h>
300 #include <sys/errno.h>
301 #include <sys/inline.h>
302 #include <sys/kmem.h>
303 #include <sys/modctl.h>
304 #include <sys/schedctl.h>
305 #include <sys/sdt.h>
306 #include <sys/sunddi.h>
307 #include <sys/sysmacros.h>
308 #include <sys/systm.h>
309 #include <sys/var.h>
312 * Tunables - loaded into the internal state at module load time
314 uint_t sysdc_update_interval_msec = 20;
315 uint_t sysdc_reset_interval_msec = 400;
316 uint_t sysdc_prune_interval_msec = 100;
317 uint_t sysdc_max_pset_DC = 90;
318 uint_t sysdc_break_msec = 80;
321 * Internal state - constants set up by sysdc_initparam()
323 static clock_t sysdc_update_ticks; /* ticks between updates */
324 static uint_t sysdc_prune_updates; /* updates asleep before pruning */
325 static uint_t sysdc_reset_updates; /* # of updates before reset */
326 static uint_t sysdc_break_updates; /* updates to break */
327 static uint_t sysdc_nobreak_updates; /* updates to not check */
328 static uint_t sysdc_minDC; /* minimum allowed DC */
329 static uint_t sysdc_maxDC; /* maximum allowed DC */
330 static pri_t sysdc_minpri; /* minimum allowed priority */
331 static pri_t sysdc_maxpri; /* maximum allowed priority */
334 * Internal state
336 static kmutex_t sysdc_pset_lock; /* lock protecting pset data */
337 static list_t sysdc_psets; /* list of psets with SDC threads */
338 static uint_t sysdc_param_init; /* sysdc_initparam() has been called */
339 static uint_t sysdc_update_timeout_started; /* update timeout is active */
340 static hrtime_t sysdc_last_update; /* time of last sysdc_update() */
341 static sysdc_t sysdc_dummy; /* used to terminate active lists */
344 * Internal state - active hash table
346 #define SYSDC_NLISTS 8
347 #define SYSDC_HASH(sdc) (((uintptr_t)(sdc) >> 6) & (SYSDC_NLISTS - 1))
348 static sysdc_list_t sysdc_active[SYSDC_NLISTS];
349 #define SYSDC_LIST(sdc) (&sysdc_active[SYSDC_HASH(sdc)])
351 #ifdef DEBUG
352 static struct {
353 uint64_t sysdc_update_times_asleep;
354 uint64_t sysdc_update_times_base_ran_backwards;
355 uint64_t sysdc_update_times_already_done;
356 uint64_t sysdc_update_times_cur_ran_backwards;
357 uint64_t sysdc_compute_pri_breaking;
358 uint64_t sysdc_activate_enter;
359 uint64_t sysdc_update_enter;
360 uint64_t sysdc_update_exited;
361 uint64_t sysdc_update_not_sdc;
362 uint64_t sysdc_update_idle;
363 uint64_t sysdc_update_take_break;
364 uint64_t sysdc_update_no_psets;
365 uint64_t sysdc_tick_not_sdc;
366 uint64_t sysdc_tick_quantum_expired;
367 uint64_t sysdc_thread_enter_enter;
368 } sysdc_stats;
370 #define SYSDC_INC_STAT(x) (sysdc_stats.x++)
371 #else
372 #define SYSDC_INC_STAT(x) ((void)0)
373 #endif
375 /* macros are UPPER CASE */
376 #define HOWMANY(a, b) howmany((a), (b))
377 #define MSECTOTICKS(a) HOWMANY((a) * 1000, usec_per_tick)
379 static void
380 sysdc_initparam(void)
382 uint_t sysdc_break_ticks;
384 /* update / prune intervals */
385 sysdc_update_ticks = MSECTOTICKS(sysdc_update_interval_msec);
387 sysdc_prune_updates = HOWMANY(sysdc_prune_interval_msec,
388 sysdc_update_interval_msec);
389 sysdc_reset_updates = HOWMANY(sysdc_reset_interval_msec,
390 sysdc_update_interval_msec);
392 /* We must get at least a little time on CPU. */
393 sysdc_minDC = 1;
394 sysdc_maxDC = SYSDC_DC_MAX;
395 sysdc_minpri = 0;
396 sysdc_maxpri = maxclsyspri - 1;
398 /* break parameters */
399 if (sysdc_max_pset_DC > SYSDC_DC_MAX) {
400 sysdc_max_pset_DC = SYSDC_DC_MAX;
402 sysdc_break_ticks = MSECTOTICKS(sysdc_break_msec);
403 sysdc_break_updates = HOWMANY(sysdc_break_ticks, sysdc_update_ticks);
406 * We want:
408 * sysdc_max_pset_DC = (nobreak / (break + nobreak))
410 * ==> nobreak = sysdc_max_pset_DC * (break + nobreak)
412 * sysdc_max_pset_DC * break
413 * ==> nobreak = -------------------------
414 * 1 - sysdc_max_pset_DC
416 sysdc_nobreak_updates =
417 HOWMANY((uint64_t)sysdc_break_updates * sysdc_max_pset_DC,
418 (SYSDC_DC_MAX - sysdc_max_pset_DC));
420 sysdc_param_init = 1;
423 #undef HOWMANY
424 #undef MSECTOTICKS
426 #define SDC_UPDATE_INITIAL 0x1 /* for the initial update */
427 #define SDC_UPDATE_TIMEOUT 0x2 /* from sysdc_update() */
428 #define SDC_UPDATE_TICK 0x4 /* from sysdc_tick(), on expiry */
431 * Updates the recorded times in the sdc, and returns the elapsed ONPROC
432 * and Runnable times since the last reset.
434 * newO is the thread's actual ONPROC time; it's used during sysdc_update()
435 * to track processor set usage.
437 static void
438 sysdc_update_times(sysdc_t *sdc, uint_t flags,
439 hrtime_t *O, hrtime_t *R, hrtime_t *newO)
441 kthread_t *const t = sdc->sdc_thread;
442 const uint_t initial = (flags & SDC_UPDATE_INITIAL);
443 const uint_t update = (flags & SDC_UPDATE_TIMEOUT);
444 const clock_t now = ddi_get_lbolt();
445 uint_t do_reset;
447 ASSERT(THREAD_LOCK_HELD(t));
449 *O = *R = 0;
451 /* If we've been sleeping, we know we haven't had any ONPROC time. */
452 if (sdc->sdc_sleep_updates != 0 &&
453 sdc->sdc_sleep_updates != sdc->sdc_nupdates) {
454 *newO = sdc->sdc_last_base_O;
455 SYSDC_INC_STAT(sysdc_update_times_asleep);
456 return;
460 * If this is our first update, or we've hit the reset point,
461 * we need to reset our base_{O,R}. Once we've updated them, we
462 * report O and R for the entire prior interval.
464 do_reset = initial;
465 if (update) {
466 ++sdc->sdc_nupdates;
467 if ((sdc->sdc_nupdates % sysdc_reset_updates) == 0)
468 do_reset = 1;
470 if (do_reset) {
471 hrtime_t baseO, baseR;
472 if (initial) {
474 * Start off our cycle count somewhere in the middle,
475 * to keep the resets from all happening at once.
477 * 4999 is a handy prime much larger than
478 * sysdc_reset_updates, so that we don't run into
479 * trouble if the resolution is a multiple of
480 * sysdc_reset_updates.
482 sdc->sdc_nupdates = (uint_t)((gethrtime() % 4999) %
483 sysdc_reset_updates);
484 baseO = baseR = 0;
485 } else {
486 baseO = sdc->sdc_base_O;
487 baseR = sdc->sdc_base_R;
490 mstate_systhread_times(t, &sdc->sdc_base_O, &sdc->sdc_base_R);
491 *newO = sdc->sdc_base_O;
493 sdc->sdc_reset = now;
494 sdc->sdc_pri_check = -1; /* force mismatch below */
497 * See below for rationale.
499 if (baseO > sdc->sdc_base_O || baseR > sdc->sdc_base_R) {
500 SYSDC_INC_STAT(sysdc_update_times_base_ran_backwards);
501 baseO = sdc->sdc_base_O;
502 baseR = sdc->sdc_base_R;
505 /* compute based on the entire interval */
506 *O = (sdc->sdc_base_O - baseO);
507 *R = (sdc->sdc_base_R - baseR);
508 return;
512 * If we're called from sysdc_update(), we *must* return a value
513 * for newO, so we always call mstate_systhread_times().
515 * Otherwise, if we've already done a pri check this tick,
516 * we can skip it.
518 if (!update && sdc->sdc_pri_check == now) {
519 SYSDC_INC_STAT(sysdc_update_times_already_done);
520 return;
523 /* Get the current times from the thread */
524 sdc->sdc_pri_check = now;
525 mstate_systhread_times(t, &sdc->sdc_cur_O, &sdc->sdc_cur_R);
526 *newO = sdc->sdc_cur_O;
529 * The updating of microstate accounting is not done under a
530 * consistent set of locks, particularly the t_waitrq field. This
531 * can lead to narrow windows in which we account for time in the
532 * wrong bucket, which on the next read will be accounted for
533 * correctly.
535 * If our sdc_base_* fields were affected by one of these blips, we
536 * throw away the old data, and pretend this tick didn't happen.
538 if (sdc->sdc_cur_O < sdc->sdc_base_O ||
539 sdc->sdc_cur_R < sdc->sdc_base_R) {
541 sdc->sdc_base_O = sdc->sdc_cur_O;
542 sdc->sdc_base_R = sdc->sdc_cur_R;
544 SYSDC_INC_STAT(sysdc_update_times_cur_ran_backwards);
545 return;
548 *O = sdc->sdc_cur_O - sdc->sdc_base_O;
549 *R = sdc->sdc_cur_R - sdc->sdc_base_R;
553 * sysdc_compute_pri()
555 * Recomputes the priority of the thread, leaving the result in
556 * sdc->sdc_epri. Returns 1 if a priority update should occur
557 * (which will also trigger a cpu_surrender()), otherwise
558 * returns 0.
560 static uint_t
561 sysdc_compute_pri(sysdc_t *sdc, uint_t flags)
563 kthread_t *const t = sdc->sdc_thread;
564 const uint_t update = (flags & SDC_UPDATE_TIMEOUT);
565 const uint_t tick = (flags & SDC_UPDATE_TICK);
567 hrtime_t O, R;
568 hrtime_t newO = -1;
570 ASSERT(THREAD_LOCK_HELD(t));
572 sysdc_update_times(sdc, flags, &O, &R, &newO);
573 ASSERT(!update || newO != -1);
575 /* If we have new data, recompute our priority. */
576 if ((O + R) != 0) {
577 sdc->sdc_cur_DC = (O * SYSDC_DC_MAX) / (O + R);
579 /* Adjust our priority to move our DC closer to the target. */
580 if (sdc->sdc_cur_DC < sdc->sdc_target_DC)
581 sdc->sdc_pri = sdc->sdc_maxpri;
582 else
583 sdc->sdc_pri = sdc->sdc_minpri;
587 * If our per-pset duty cycle goes over the max, we will take a break.
588 * This forces all sysdc threads in the pset to minimum priority, in
589 * order to let everyone else have a chance at the CPU.
591 if (sdc->sdc_pset->sdp_need_break) {
592 SYSDC_INC_STAT(sysdc_compute_pri_breaking);
593 sdc->sdc_epri = sdc->sdc_minpri;
594 } else {
595 sdc->sdc_epri = sdc->sdc_pri;
598 DTRACE_PROBE4(sysdc__compute__pri,
599 kthread_t *, t, pri_t, sdc->sdc_epri, uint_t, sdc->sdc_cur_DC,
600 uint_t, sdc->sdc_target_DC);
603 * For sysdc_update(), we compute the ONPROC time for high-priority
604 * threads, which is used to calculate the per-pset duty cycle. We
605 * will always tell our callers to update the thread's priority,
606 * since we want to force a cpu_surrender().
608 * We reset sdc_update_ticks so that sysdc_tick() will only update
609 * the thread's priority if our timeout is delayed by a tick or
610 * more.
612 if (update) {
613 /* SDC threads are not allowed to change cpupart bindings. */
614 ASSERT(t->t_cpupart == sdc->sdc_pset->sdp_cpupart);
616 /* If we were at MAXPRI, account for our onproc time. */
617 if (t->t_pri == sdc->sdc_maxpri &&
618 sdc->sdc_last_base_O != 0 &&
619 sdc->sdc_last_base_O < newO) {
620 sdc->sdc_last_O = newO - sdc->sdc_last_base_O;
621 sdc->sdc_pset->sdp_onproc_time +=
622 (uint64_t)sdc->sdc_last_O;
623 sdc->sdc_pset->sdp_onproc_threads++;
624 } else {
625 sdc->sdc_last_O = 0;
627 sdc->sdc_last_base_O = newO;
629 sdc->sdc_update_ticks = sdc->sdc_ticks + sysdc_update_ticks + 1;
630 return (1);
634 * Like sysdc_update(), sysdc_tick() always wants to update the
635 * thread's priority, so that the CPU is surrendered if necessary.
636 * We reset sdc_update_ticks so that if the timeout continues to be
637 * delayed, we'll update at the regular interval.
639 if (tick) {
640 ASSERT(sdc->sdc_ticks == sdc->sdc_update_ticks);
641 sdc->sdc_update_ticks = sdc->sdc_ticks + sysdc_update_ticks;
642 return (1);
646 * Otherwise, only tell our callers to update the priority if it has
647 * changed.
649 return (sdc->sdc_epri != t->t_pri);
652 static void
653 sysdc_update_pri(sysdc_t *sdc, uint_t flags)
655 kthread_t *t = sdc->sdc_thread;
657 ASSERT(THREAD_LOCK_HELD(t));
659 if (sysdc_compute_pri(sdc, flags)) {
660 if (!thread_change_pri(t, sdc->sdc_epri, 0)) {
661 cpu_surrender(t);
667 * Add a thread onto the active list. It will only be removed by
668 * sysdc_update().
670 static void
671 sysdc_activate(sysdc_t *sdc)
673 sysdc_t *volatile *headp = &SYSDC_LIST(sdc)->sdl_list;
674 sysdc_t *head;
675 kthread_t *t = sdc->sdc_thread;
677 SYSDC_INC_STAT(sysdc_activate_enter);
679 ASSERT(sdc->sdc_next == NULL);
680 ASSERT(THREAD_LOCK_HELD(t));
682 do {
683 head = *headp;
684 sdc->sdc_next = head;
685 } while (atomic_cas_ptr(headp, head, sdc) != head);
689 * sysdc_update() has two jobs:
691 * 1. It updates the priorities of all active SDC threads on the system.
692 * 2. It measures pset CPU usage and enforces sysdc_max_pset_DC.
694 static void
695 sysdc_update(void *arg)
697 int idx;
698 sysdc_t *freelist = NULL;
699 sysdc_pset_t *cur;
700 hrtime_t now, diff;
701 uint_t redeploy = 1;
703 SYSDC_INC_STAT(sysdc_update_enter);
705 ASSERT(sysdc_update_timeout_started);
708 * If this is our first time through, diff will be gigantic, and
709 * no breaks will be necessary.
711 now = gethrtime();
712 diff = now - sysdc_last_update;
713 sysdc_last_update = now;
715 mutex_enter(&sysdc_pset_lock);
716 for (cur = list_head(&sysdc_psets); cur != NULL;
717 cur = list_next(&sysdc_psets, cur)) {
718 bool breaking = (cur->sdp_should_break != 0);
720 if (cur->sdp_need_break != breaking) {
721 DTRACE_PROBE2(sdc__pset__break, sysdc_pset_t *, cur,
722 bool, breaking);
724 cur->sdp_onproc_time = 0;
725 cur->sdp_onproc_threads = 0;
726 cur->sdp_need_break = breaking;
728 mutex_exit(&sysdc_pset_lock);
730 for (idx = 0; idx < SYSDC_NLISTS; idx++) {
731 sysdc_list_t *sdl = &sysdc_active[idx];
732 sysdc_t *volatile *headp = &sdl->sdl_list;
733 sysdc_t *head, *tail;
734 sysdc_t **prevptr;
736 if (*headp == &sysdc_dummy)
737 continue;
739 /* Prevent any threads from exiting while we're poking them. */
740 mutex_enter(&sdl->sdl_lock);
743 * Each sdl_list contains a singly-linked list of active
744 * threads. Threads which become active while we are
745 * processing the list will be added to sdl_list. Since we
746 * don't want that to interfere with our own processing, we
747 * swap in an empty list. Any newly active threads will
748 * go on to this empty list. When finished, we'll put any
749 * such threads at the end of the processed list.
751 head = atomic_swap_ptr(headp, &sysdc_dummy);
752 prevptr = &head;
753 while (*prevptr != &sysdc_dummy) {
754 sysdc_t *const sdc = *prevptr;
755 kthread_t *const t = sdc->sdc_thread;
758 * If the thread has exited, move its sysdc_t onto
759 * freelist, to be freed later.
761 if (t == NULL) {
762 *prevptr = sdc->sdc_next;
763 SYSDC_INC_STAT(sysdc_update_exited);
764 sdc->sdc_next = freelist;
765 freelist = sdc;
766 continue;
769 thread_lock(t);
770 if (t->t_cid != sysdccid) {
771 thread_unlock(t);
772 prevptr = &sdc->sdc_next;
773 SYSDC_INC_STAT(sysdc_update_not_sdc);
774 continue;
776 ASSERT(t->t_cldata == sdc);
779 * If the thread has been sleeping for longer
780 * than sysdc_prune_interval, make it inactive by
781 * removing it from the list.
783 if (!(t->t_state & (TS_RUN | TS_ONPROC)) &&
784 sdc->sdc_sleep_updates != 0 &&
785 (sdc->sdc_sleep_updates - sdc->sdc_nupdates) >
786 sysdc_prune_updates) {
787 *prevptr = sdc->sdc_next;
788 SYSDC_INC_STAT(sysdc_update_idle);
789 sdc->sdc_next = NULL;
790 thread_unlock(t);
791 continue;
793 sysdc_update_pri(sdc, SDC_UPDATE_TIMEOUT);
794 thread_unlock(t);
796 prevptr = &sdc->sdc_next;
800 * Add our list to the bucket, putting any new entries
801 * added while we were working at the tail of the list.
803 do {
804 tail = *headp;
805 *prevptr = tail;
806 } while (atomic_cas_ptr(headp, tail, head) != tail);
808 mutex_exit(&sdl->sdl_lock);
811 mutex_enter(&sysdc_pset_lock);
812 for (cur = list_head(&sysdc_psets); cur != NULL;
813 cur = list_next(&sysdc_psets, cur)) {
815 cur->sdp_vtime_last_interval =
816 diff * cur->sdp_cpupart->cp_ncpus;
817 cur->sdp_DC_last_interval =
818 (cur->sdp_onproc_time * SYSDC_DC_MAX) /
819 cur->sdp_vtime_last_interval;
821 if (cur->sdp_should_break > 0) {
822 cur->sdp_should_break--; /* breaking */
823 continue;
825 if (cur->sdp_dont_break > 0) {
826 cur->sdp_dont_break--; /* waiting before checking */
827 continue;
829 if (cur->sdp_DC_last_interval > sysdc_max_pset_DC) {
830 cur->sdp_should_break = sysdc_break_updates;
831 cur->sdp_dont_break = sysdc_nobreak_updates;
832 SYSDC_INC_STAT(sysdc_update_take_break);
837 * If there are no sysdc_psets, there can be no threads, so
838 * we can stop doing our timeout. Since we're holding the
839 * sysdc_pset_lock, no new sysdc_psets can come in, which will
840 * prevent anyone from racing with this and dropping our timeout
841 * on the floor.
843 if (list_is_empty(&sysdc_psets)) {
844 SYSDC_INC_STAT(sysdc_update_no_psets);
845 ASSERT(sysdc_update_timeout_started);
846 sysdc_update_timeout_started = 0;
848 redeploy = 0;
850 mutex_exit(&sysdc_pset_lock);
852 while (freelist != NULL) {
853 sysdc_t *cur = freelist;
854 freelist = cur->sdc_next;
855 kmem_free(cur, sizeof (*cur));
858 if (redeploy) {
859 (void) timeout(sysdc_update, arg, sysdc_update_ticks);
863 static void
864 sysdc_preempt(kthread_t *t)
866 ASSERT(t == curthread);
867 ASSERT(THREAD_LOCK_HELD(t));
869 setbackdq(t); /* give others a chance to run */
872 static void
873 sysdc_tick(kthread_t *t)
875 sysdc_t *sdc;
877 thread_lock(t);
878 if (t->t_cid != sysdccid) {
879 SYSDC_INC_STAT(sysdc_tick_not_sdc);
880 thread_unlock(t);
881 return;
883 sdc = t->t_cldata;
884 if (t->t_state == TS_ONPROC &&
885 t->t_pri < t->t_disp_queue->disp_maxrunpri) {
886 cpu_surrender(t);
889 if (t->t_state == TS_ONPROC || t->t_state == TS_RUN) {
890 ASSERT(sdc->sdc_sleep_updates == 0);
893 ASSERT(sdc->sdc_ticks != sdc->sdc_update_ticks);
894 sdc->sdc_ticks++;
895 if (sdc->sdc_ticks == sdc->sdc_update_ticks) {
896 SYSDC_INC_STAT(sysdc_tick_quantum_expired);
897 sysdc_update_pri(sdc, SDC_UPDATE_TICK);
898 ASSERT(sdc->sdc_ticks != sdc->sdc_update_ticks);
900 thread_unlock(t);
903 static void
904 sysdc_setrun(kthread_t *t)
906 sysdc_t *sdc = t->t_cldata;
908 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */
910 sdc->sdc_sleep_updates = 0;
912 if (sdc->sdc_next == NULL) {
914 * Since we're in transition, we don't want to use the
915 * full thread_update_pri().
917 if (sysdc_compute_pri(sdc, 0)) {
918 THREAD_CHANGE_PRI(t, sdc->sdc_epri);
920 sysdc_activate(sdc);
922 ASSERT(sdc->sdc_next != NULL);
925 setbackdq(t);
928 static void
929 sysdc_wakeup(kthread_t *t)
931 sysdc_setrun(t);
934 static void
935 sysdc_sleep(kthread_t *t)
937 sysdc_t *sdc = t->t_cldata;
939 ASSERT(THREAD_LOCK_HELD(t)); /* t should be in transition */
941 sdc->sdc_sleep_updates = sdc->sdc_nupdates;
944 /*ARGSUSED*/
945 static int
946 sysdc_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
947 void *bufp)
949 cpupart_t *const cpupart = t->t_cpupart;
950 sysdc_t *sdc = bufp;
951 sysdc_params_t *sdpp = parmsp;
952 sysdc_pset_t *newpset = sdc->sdc_pset;
953 sysdc_pset_t *pset;
954 int start_timeout;
956 if (t->t_cid != syscid)
957 return (EPERM);
959 ASSERT(ttolwp(t) != NULL);
960 ASSERT(sdpp != NULL);
961 ASSERT(newpset != NULL);
962 ASSERT(sysdc_param_init);
964 ASSERT(sdpp->sdp_minpri >= sysdc_minpri);
965 ASSERT(sdpp->sdp_maxpri <= sysdc_maxpri);
966 ASSERT(sdpp->sdp_DC >= sysdc_minDC);
967 ASSERT(sdpp->sdp_DC <= sysdc_maxDC);
969 sdc->sdc_thread = t;
970 sdc->sdc_pri = sdpp->sdp_maxpri; /* start off maximally */
971 sdc->sdc_minpri = sdpp->sdp_minpri;
972 sdc->sdc_maxpri = sdpp->sdp_maxpri;
973 sdc->sdc_target_DC = sdpp->sdp_DC;
974 sdc->sdc_ticks = 0;
975 sdc->sdc_update_ticks = sysdc_update_ticks + 1;
977 /* Assign ourselves to the appropriate pset. */
978 sdc->sdc_pset = NULL;
979 mutex_enter(&sysdc_pset_lock);
980 for (pset = list_head(&sysdc_psets); pset != NULL;
981 pset = list_next(&sysdc_psets, pset)) {
982 if (pset->sdp_cpupart == cpupart) {
983 break;
986 if (pset == NULL) {
987 pset = newpset;
988 newpset = NULL;
989 pset->sdp_cpupart = cpupart;
990 list_insert_tail(&sysdc_psets, pset);
992 pset->sdp_nthreads++;
993 ASSERT(pset->sdp_nthreads > 0);
995 sdc->sdc_pset = pset;
997 start_timeout = (sysdc_update_timeout_started == 0);
998 sysdc_update_timeout_started = 1;
999 mutex_exit(&sysdc_pset_lock);
1001 if (newpset != NULL)
1002 kmem_free(newpset, sizeof (*newpset));
1004 /* Update t's scheduling class and priority. */
1005 thread_lock(t);
1006 t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
1007 t->t_cid = cid;
1008 t->t_cldata = sdc;
1009 t->t_schedflag |= TS_RUNQMATCH;
1011 sysdc_update_pri(sdc, SDC_UPDATE_INITIAL);
1012 thread_unlock(t);
1014 /* Kick off the thread timeout if we're the first one in. */
1015 if (start_timeout) {
1016 (void) timeout(sysdc_update, NULL, sysdc_update_ticks);
1019 return (0);
1022 static void
1023 sysdc_leave(sysdc_t *sdc)
1025 sysdc_pset_t *sdp = sdc->sdc_pset;
1026 sysdc_list_t *sdl = SYSDC_LIST(sdc);
1027 uint_t freedc;
1029 mutex_enter(&sdl->sdl_lock); /* block sysdc_update() */
1030 sdc->sdc_thread = NULL;
1031 freedc = (sdc->sdc_next == NULL);
1032 mutex_exit(&sdl->sdl_lock);
1034 mutex_enter(&sysdc_pset_lock);
1035 ASSERT(sdp != NULL);
1036 ASSERT(sdp->sdp_nthreads > 0);
1037 --sdp->sdp_nthreads;
1038 if (sdp->sdp_nthreads == 0) {
1039 list_remove(&sysdc_psets, sdp);
1040 } else {
1041 sdp = NULL;
1043 mutex_exit(&sysdc_pset_lock);
1045 if (freedc)
1046 kmem_free(sdc, sizeof (*sdc));
1047 if (sdp != NULL)
1048 kmem_free(sdp, sizeof (*sdp));
1051 static void
1052 sysdc_exitclass(void *buf)
1054 sysdc_leave((sysdc_t *)buf);
1057 /*ARGSUSED*/
1058 static int
1059 sysdc_canexit(kthread_t *t, cred_t *reqpcredp)
1061 /* Threads cannot exit SDC once joined, except in a body bag. */
1062 return (EPERM);
1065 static void
1066 sysdc_exit(kthread_t *t)
1068 sysdc_t *sdc;
1070 /* We're exiting, so we just rejoin the SYS class. */
1071 thread_lock(t);
1072 ASSERT(t->t_cid == sysdccid);
1073 sdc = t->t_cldata;
1074 t->t_cid = syscid;
1075 t->t_cldata = NULL;
1076 t->t_clfuncs = &(sclass[syscid].cl_funcs->thread);
1077 (void) thread_change_pri(t, maxclsyspri, 0);
1078 t->t_schedflag &= ~TS_RUNQMATCH;
1079 thread_unlock_nopreempt(t);
1081 /* Unlink the sdc from everything. */
1082 sysdc_leave(sdc);
1085 /*ARGSUSED*/
1086 static int
1087 sysdc_fork(kthread_t *t, kthread_t *ct, void *bufp)
1090 * Threads cannot be created with SDC as their class; they must
1091 * be created as SYS and then added with sysdc_thread_enter().
1092 * Because of this restriction, sysdc_fork() should never be called.
1094 panic("sysdc cannot be forked");
1096 return (ENOSYS);
1099 /*ARGSUSED*/
1100 static void
1101 sysdc_forkret(kthread_t *t, kthread_t *ct)
1103 /* SDC threads are part of system processes, which never fork. */
1104 panic("sysdc cannot be forked");
1107 static pri_t
1108 sysdc_globpri(kthread_t *t)
1110 return (t->t_epri);
1114 * Get maximum and minimum priorities enjoyed by SDC threads.
1116 static int
1117 sysdc_getclpri(pcpri_t *pcprip)
1119 pcprip->pc_clpmax = sysdc_maxpri;
1120 pcprip->pc_clpmin = sysdc_minpri;
1121 return (0);
1124 /*ARGSUSED*/
1125 static int
1126 sysdc_getclinfo(void *arg)
1128 return (0); /* no class-specific info */
1131 /*ARGSUSED*/
1132 static int
1133 sysdc_alloc(void **p, int flag)
1135 sysdc_t *new;
1137 *p = NULL;
1138 if ((new = kmem_zalloc(sizeof (*new), flag)) == NULL) {
1139 return (ENOMEM);
1141 if ((new->sdc_pset = kmem_zalloc(sizeof (*new->sdc_pset), flag)) ==
1142 NULL) {
1143 kmem_free(new, sizeof (*new));
1144 return (ENOMEM);
1146 *p = new;
1147 return (0);
1150 static void
1151 sysdc_free(void *p)
1153 sysdc_t *sdc = p;
1155 if (sdc != NULL) {
1157 * We must have failed CL_ENTERCLASS(), so our pset should be
1158 * there and unused.
1160 ASSERT(sdc->sdc_pset != NULL);
1161 ASSERT(sdc->sdc_pset->sdp_cpupart == NULL);
1162 kmem_free(sdc->sdc_pset, sizeof (*sdc->sdc_pset));
1163 kmem_free(sdc, sizeof (*sdc));
1167 static int sysdc_enosys(); /* Boy, ANSI-C's K&R compatibility is weird. */
1168 static int sysdc_einval();
1169 static void sysdc_nullsys();
1171 static struct classfuncs sysdc_classfuncs = {
1172 /* messages to class manager */
1174 sysdc_enosys, /* admin */
1175 sysdc_getclinfo,
1176 sysdc_enosys, /* parmsin */
1177 sysdc_enosys, /* parmsout */
1178 sysdc_enosys, /* vaparmsin */
1179 sysdc_enosys, /* vaparmsout */
1180 sysdc_getclpri,
1181 sysdc_alloc,
1182 sysdc_free,
1184 /* operations on threads */
1186 sysdc_enterclass,
1187 sysdc_exitclass,
1188 sysdc_canexit,
1189 sysdc_fork,
1190 sysdc_forkret,
1191 sysdc_nullsys, /* parmsget */
1192 sysdc_enosys, /* parmsset */
1193 sysdc_nullsys, /* stop */
1194 sysdc_exit,
1195 sysdc_nullsys, /* active */
1196 sysdc_nullsys, /* inactive */
1197 sysdc_nullsys, /* trapret */
1198 sysdc_preempt,
1199 sysdc_setrun,
1200 sysdc_sleep,
1201 sysdc_tick,
1202 sysdc_wakeup,
1203 sysdc_einval, /* donice */
1204 sysdc_globpri,
1205 sysdc_nullsys, /* set_process_group */
1206 sysdc_nullsys, /* yield */
1207 sysdc_einval, /* doprio */
1211 static int
1212 sysdc_enosys()
1214 return (ENOSYS);
1217 static int
1218 sysdc_einval()
1220 return (EINVAL);
1223 static void
1224 sysdc_nullsys()
1228 /*ARGSUSED*/
1229 static pri_t
1230 sysdc_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
1232 int idx;
1234 list_create(&sysdc_psets, sizeof (sysdc_pset_t),
1235 offsetof(sysdc_pset_t, sdp_node));
1237 for (idx = 0; idx < SYSDC_NLISTS; idx++) {
1238 sysdc_active[idx].sdl_list = &sysdc_dummy;
1241 sysdc_initparam();
1243 sysdccid = cid;
1244 *clfuncspp = &sysdc_classfuncs;
1246 return ((pri_t)v.v_maxsyspri);
1249 static struct sclass csw = {
1250 "SDC",
1251 sysdc_init,
1255 static struct modlsched modlsched = {
1256 &mod_schedops, "system duty cycle scheduling class", &csw
1259 static struct modlinkage modlinkage = {
1260 MODREV_1, (void *)&modlsched, NULL
1264 _init()
1266 return (mod_install(&modlinkage));
1270 _fini()
1272 return (EBUSY); /* can't unload for now */
1276 _info(struct modinfo *modinfop)
1278 return (mod_info(&modlinkage, modinfop));
1281 /* --- consolidation-private interfaces --- */
1282 void
1283 sysdc_thread_enter(kthread_t *t, uint_t dc, uint_t flags)
1285 void *buf = NULL;
1286 sysdc_params_t sdp;
1288 SYSDC_INC_STAT(sysdc_thread_enter_enter);
1290 ASSERT(sysdc_param_init);
1291 ASSERT(sysdccid >= 0);
1293 ASSERT((flags & ~SYSDC_THREAD_BATCH) == 0);
1295 sdp.sdp_minpri = sysdc_minpri;
1296 sdp.sdp_maxpri = sysdc_maxpri;
1297 sdp.sdp_DC = MAX(MIN(dc, sysdc_maxDC), sysdc_minDC);
1299 VERIFY0(CL_ALLOC(&buf, sysdccid, KM_SLEEP));
1301 ASSERT(t->t_lwp != NULL);
1302 ASSERT(t->t_cid == syscid);
1303 ASSERT(t->t_cldata == NULL);
1304 VERIFY0(CL_CANEXIT(t, NULL));
1305 VERIFY0(CL_ENTERCLASS(t, sysdccid, &sdp, kcred, buf));
1306 CL_EXITCLASS(syscid, NULL);