4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
31 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
32 * Copyright 2015 Joyent, Inc.
35 #include <sys/flock_impl.h>
37 #include <sys/t_lock.h> /* for <sys/callb.h> */
38 #include <sys/callb.h>
39 #include <sys/nbmlock.h>
41 #include <sys/policy.h>
44 * The following four variables are for statistics purposes and they are
45 * not protected by locks. They may not be accurate but will at least be
46 * close to the actual value.
53 int flk_proc_vertex_allocs
;
54 int flk_proc_edge_allocs
;
55 int flk_proc_vertex_frees
;
56 int flk_proc_edge_frees
;
58 static kmutex_t flock_lock
;
62 #define CHECK_ACTIVE_LOCKS(gp) if (check_debug) \
63 check_active_locks(gp);
64 #define CHECK_SLEEPING_LOCKS(gp) if (check_debug) \
65 check_sleeping_locks(gp);
66 #define CHECK_OWNER_LOCKS(gp, pid, sysid, vp) \
68 check_owner_locks(gp, pid, sysid, vp);
69 #define CHECK_LOCK_TRANSITION(old_state, new_state) \
71 if (check_lock_transition(old_state, new_state)) { \
72 cmn_err(CE_PANIC, "Illegal lock transition \
73 from %d to %d", old_state, new_state); \
78 #define CHECK_ACTIVE_LOCKS(gp)
79 #define CHECK_SLEEPING_LOCKS(gp)
80 #define CHECK_OWNER_LOCKS(gp, pid, sysid, vp)
81 #define CHECK_LOCK_TRANSITION(old_state, new_state)
85 struct kmem_cache
*flk_edge_cache
;
87 graph_t
*lock_graph
[HASH_SIZE
];
93 * NLM REGISTRY TYPE IMPLEMENTATION
96 * 1. Nodes in a cluster are numbered starting at 1; always non-negative
98 * 2. We use this node id to identify the node an NLM server runs on.
102 * NLM registry object keeps track of NLM servers via their
103 * nlmids (which are the node ids of the node in the cluster they run on)
104 * that have requested locks at this LLM with which this registry is
107 * Representation of abstraction:
108 * rep = record[ states: array[nlm_state],
111 * Representation invariants:
112 * 1. index i of rep.states is between 0 and n - 1 where n is number
113 * of elements in the array, which happen to be the maximum number
114 * of nodes in the cluster configuration + 1.
115 * 2. map nlmid to index i of rep.states
119 * 3. This 1-1 mapping is quite convenient and it avoids errors resulting
120 * from forgetting to subtract 1 from the index.
121 * 4. The reason we keep the 0th index is the following. A legitimate
122 * cluster configuration includes making a UFS file system NFS
123 * exportable. The code is structured so that if you're in a cluster
124 * you do one thing; otherwise, you do something else. The problem
125 * is what to do if you think you're in a cluster with PXFS loaded,
126 * but you're using UFS not PXFS? The upper two bytes of the sysid
127 * encode the node id of the node where NLM server runs; these bytes
128 * are zero for UFS. Since the nodeid is used to index into the
129 * registry, we can record the NLM server state information at index
130 * 0 using the same mechanism used for PXFS file locks!
132 static flk_nlm_status_t
*nlm_reg_status
= NULL
; /* state array 0..N-1 */
133 static kmutex_t nlm_reg_lock
; /* lock to protect arrary */
134 static uint_t nlm_status_size
; /* size of state array */
137 * Although we need a global lock dependency graph (and associated data
138 * structures), we also need a per-zone notion of whether the lock manager is
139 * running, and so whether to allow lock manager requests or not.
141 * Thus, on a per-zone basis we maintain a ``global'' variable
142 * (flk_lockmgr_status), protected by flock_lock, and set when the lock
143 * manager is determined to be changing state (starting or stopping).
145 * Each graph/zone pair also has a copy of this variable, which is protected by
148 * The per-graph copies are used to synchronize lock requests with shutdown
149 * requests. The global copy is used to initialize the per-graph field when a
150 * new graph is created.
152 struct flock_globals
{
153 flk_lockmgr_status_t flk_lockmgr_status
;
154 flk_lockmgr_status_t lockmgr_status
[HASH_SIZE
];
157 zone_key_t flock_zone_key
;
159 static void create_flock(lock_descriptor_t
*, flock64_t
*);
160 static lock_descriptor_t
*flk_get_lock(void);
161 static void flk_free_lock(lock_descriptor_t
*lock
);
162 static void flk_get_first_blocking_lock(lock_descriptor_t
*request
);
163 static int flk_process_request(lock_descriptor_t
*);
164 static int flk_add_edge(lock_descriptor_t
*, lock_descriptor_t
*, int, int);
165 static edge_t
*flk_get_edge(void);
166 static int flk_wait_execute_request(lock_descriptor_t
*);
167 static int flk_relation(lock_descriptor_t
*, lock_descriptor_t
*);
168 static void flk_insert_active_lock(lock_descriptor_t
*);
169 static void flk_delete_active_lock(lock_descriptor_t
*, int);
170 static void flk_insert_sleeping_lock(lock_descriptor_t
*);
171 static void flk_graph_uncolor(graph_t
*);
172 static void flk_wakeup(lock_descriptor_t
*, int);
173 static void flk_free_edge(edge_t
*);
174 static void flk_recompute_dependencies(lock_descriptor_t
*,
175 lock_descriptor_t
**, int, int);
176 static int flk_find_barriers(lock_descriptor_t
*);
177 static void flk_update_barriers(lock_descriptor_t
*);
178 static int flk_color_reachables(lock_descriptor_t
*);
179 static int flk_canceled(lock_descriptor_t
*);
180 static void flk_delete_locks_by_sysid(lock_descriptor_t
*);
181 static void report_blocker(lock_descriptor_t
*, lock_descriptor_t
*);
182 static void wait_for_lock(lock_descriptor_t
*);
183 static void unlock_lockmgr_granted(struct flock_globals
*);
184 static void wakeup_sleeping_lockmgr_locks(struct flock_globals
*);
187 static int check_lock_transition(int, int);
188 static void check_sleeping_locks(graph_t
*);
189 static void check_active_locks(graph_t
*);
190 static int no_path(lock_descriptor_t
*, lock_descriptor_t
*);
191 static void path(lock_descriptor_t
*, lock_descriptor_t
*);
192 static void check_owner_locks(graph_t
*, pid_t
, int, vnode_t
*);
193 static int level_one_path(lock_descriptor_t
*, lock_descriptor_t
*);
194 static int level_two_path(lock_descriptor_t
*, lock_descriptor_t
*, int);
197 /* proc_graph function definitions */
198 static int flk_check_deadlock(lock_descriptor_t
*);
199 static void flk_proc_graph_uncolor(void);
200 static proc_vertex_t
*flk_get_proc_vertex(lock_descriptor_t
*);
201 static proc_edge_t
*flk_get_proc_edge(void);
202 static void flk_proc_release(proc_vertex_t
*);
203 static void flk_free_proc_edge(proc_edge_t
*);
204 static void flk_update_proc_graph(edge_t
*, int);
206 /* Non-blocking mandatory locking */
207 static int lock_blocks_io(nbl_op_t
, uoff_t
, ssize_t
, int, uoff_t
,
210 static struct flock_globals
*
211 flk_get_globals(void)
214 * The KLM module had better be loaded if we're attempting to handle
217 ASSERT(flock_zone_key
!= ZONE_KEY_UNINITIALIZED
);
218 return (zone_getspecific(flock_zone_key
, curproc
->p_zone
));
221 static flk_lockmgr_status_t
222 flk_get_lockmgr_status(void)
224 struct flock_globals
*fg
;
226 ASSERT(MUTEX_HELD(&flock_lock
));
228 if (flock_zone_key
== ZONE_KEY_UNINITIALIZED
) {
230 * KLM module not loaded; lock manager definitely not running.
232 return (FLK_LOCKMGR_DOWN
);
234 fg
= flk_get_globals();
235 return (fg
->flk_lockmgr_status
);
239 * This implements Open File Description (not descriptor) style record locking.
240 * These locks can also be thought of as pid-less since they are not tied to a
241 * specific process, thus they're preserved across fork.
243 * Called directly from fcntl.
245 * See reclock() for the implementation of the traditional POSIX style record
246 * locking scheme (pid-ful). This function is derived from reclock() but
247 * simplified and modified to work for OFD style locking.
249 * The two primary advantages of OFD style of locking are:
250 * 1) It is per-file description, so closing a file descriptor that refers to a
251 * different file description for the same file will not drop the lock (i.e.
252 * two open's of the same file get different descriptions but a dup or fork
253 * will refer to the same description).
254 * 2) Locks are preserved across fork(2).
256 * Because these locks are per-description a lock ptr lives at the f_filocks
257 * member of the file_t and the lock_descriptor includes a file_t pointer
258 * to enable unique lock identification and management.
260 * Since these locks are pid-less we cannot do deadlock detection with the
261 * current process-oriented implementation. This is consistent with OFD locking
262 * behavior on other operating systems such as Linux. Since we don't do
263 * deadlock detection we never interact with the process graph that is
264 * maintained for deadlock detection on the traditional POSIX-style locks.
268 * The current implementation does not support record locks. That is,
269 * currently the single lock must cover the entire file. This is validated in
270 * fcntl. To support record locks the f_filock pointer in the file_t needs to
271 * be changed to a list of pointers to the locks. That list needs to be
272 * managed independently of the lock list on the vnode itself and it needs to
273 * be maintained as record locks are created, split, coalesced and deleted.
275 * The current implementation does not support remote file systems (e.g.
276 * NFS or CIFS). This is handled in fs_frlock(). The design of how OFD locks
277 * interact with the NLM is not clear since the NLM protocol/implementation
278 * appears to be oriented around locks associated with a process. A further
279 * problem is that a design is needed for what nlm_send_siglost() should do and
280 * where it will send SIGLOST. More recent versions of Linux apparently try to
281 * emulate OFD locks on NFS by converting them to traditional POSIX style locks
282 * that work with the NLM. It is not clear that this provides the correct
283 * semantics in all cases.
286 ofdlock(file_t
*fp
, int fcmd
, flock64_t
*lckdat
, int flag
, uoff_t offset
)
290 lock_descriptor_t stack_lock_request
;
291 lock_descriptor_t
*lock_request
;
296 if (fcmd
!= F_OFD_GETLK
)
299 if (fcmd
== F_OFD_SETLKW
|| fcmd
== F_FLOCKW
)
302 /* see block comment */
303 VERIFY(lckdat
->l_whence
== 0);
304 VERIFY(lckdat
->l_start
== 0);
305 VERIFY(lckdat
->l_len
== 0);
310 * For reclock fs_frlock() would normally have set these in a few
311 * places but for us it's cleaner to centralize it here. Note that
312 * IGN_PID is -1. We use 0 for our pid-less locks.
318 * Check access permissions
320 if ((fcmd
== F_OFD_SETLK
|| fcmd
== F_OFD_SETLKW
) &&
321 ((lckdat
->l_type
== F_RDLCK
&& (flag
& FREAD
) == 0) ||
322 (lckdat
->l_type
== F_WRLCK
&& (flag
& FWRITE
) == 0)))
326 * for query and unlock we use the stack_lock_request
328 if (lckdat
->l_type
== F_UNLCK
|| !(cmd
& SETFLCK
)) {
329 lock_request
= &stack_lock_request
;
330 (void) bzero((caddr_t
)lock_request
,
331 sizeof (lock_descriptor_t
));
334 * following is added to make the assertions in
335 * flk_execute_request() pass
337 lock_request
->l_edge
.edge_in_next
= &lock_request
->l_edge
;
338 lock_request
->l_edge
.edge_in_prev
= &lock_request
->l_edge
;
339 lock_request
->l_edge
.edge_adj_next
= &lock_request
->l_edge
;
340 lock_request
->l_edge
.edge_adj_prev
= &lock_request
->l_edge
;
341 lock_request
->l_status
= FLK_INITIAL_STATE
;
343 lock_request
= flk_get_lock();
344 fp
->f_filock
= (struct filock
*)lock_request
;
346 lock_request
->l_state
= 0;
347 lock_request
->l_vnode
= vp
;
348 lock_request
->l_zoneid
= getzoneid();
349 lock_request
->l_ofd
= fp
;
352 * Convert the request range into the canonical start and end
353 * values then check the validity of the lock range.
355 error
= flk_convert_lock_data(vp
, lckdat
, &lock_request
->l_start
,
356 &lock_request
->l_end
, offset
);
360 error
= flk_check_lock_data(lock_request
->l_start
, lock_request
->l_end
,
365 ASSERT(lock_request
->l_end
>= lock_request
->l_start
);
367 lock_request
->l_type
= lckdat
->l_type
;
369 lock_request
->l_state
|= WILLING_TO_SLEEP_LOCK
;
371 if (!(cmd
& SETFLCK
)) {
372 if (lock_request
->l_type
== F_RDLCK
||
373 lock_request
->l_type
== F_WRLCK
)
374 lock_request
->l_state
|= QUERY_LOCK
;
376 lock_request
->l_flock
= (*lckdat
);
379 * We are ready for processing the request
382 if (fcmd
!= F_OFD_GETLK
&& lock_request
->l_type
!= F_UNLCK
&&
383 nbl_need_check(vp
)) {
384 nbl_start_crit(vp
, RW_WRITER
);
388 /* Get the lock graph for a particular vnode */
389 gp
= flk_get_lock_graph(vp
, FLK_INIT_GRAPH
);
391 mutex_enter(&gp
->gp_mutex
);
393 lock_request
->l_state
|= REFERENCED_LOCK
;
394 lock_request
->l_graph
= gp
;
396 switch (lock_request
->l_type
) {
399 if (IS_QUERY_LOCK(lock_request
)) {
400 flk_get_first_blocking_lock(lock_request
);
401 if (lock_request
->l_ofd
!= NULL
)
402 lock_request
->l_flock
.l_pid
= -1;
403 (*lckdat
) = lock_request
->l_flock
;
405 /* process the request now */
406 error
= flk_process_request(lock_request
);
411 /* unlock request will not block so execute it immediately */
412 error
= flk_execute_request(lock_request
);
420 if (lock_request
== &stack_lock_request
) {
421 flk_set_state(lock_request
, FLK_DEAD_STATE
);
423 lock_request
->l_state
&= ~REFERENCED_LOCK
;
424 if ((error
!= 0) || IS_DELETED(lock_request
)) {
425 flk_set_state(lock_request
, FLK_DEAD_STATE
);
426 flk_free_lock(lock_request
);
430 mutex_exit(&gp
->gp_mutex
);
437 flk_set_state(lock_request
, FLK_DEAD_STATE
);
438 if (lock_request
!= &stack_lock_request
)
439 flk_free_lock(lock_request
);
444 * Remove any lock on the vnode belonging to the given file_t.
445 * Called from closef on last close, file_t is locked.
447 * This is modeled on the cleanlocks() function but only removes the single
448 * lock associated with fp.
451 ofdcleanlock(file_t
*fp
)
453 lock_descriptor_t
*fplock
, *lock
, *nlock
;
457 ASSERT(MUTEX_HELD(&fp
->f_tlock
));
459 if ((fplock
= (lock_descriptor_t
*)fp
->f_filock
) == NULL
)
465 gp
= flk_get_lock_graph(vp
, FLK_USE_GRAPH
);
469 mutex_enter(&gp
->gp_mutex
);
471 CHECK_SLEEPING_LOCKS(gp
);
472 CHECK_ACTIVE_LOCKS(gp
);
474 SET_LOCK_TO_FIRST_SLEEP_VP(gp
, lock
, vp
);
478 nlock
= lock
->l_next
;
479 if (fplock
== lock
) {
484 } while (lock
->l_vnode
== vp
);
487 SET_LOCK_TO_FIRST_ACTIVE_VP(gp
, lock
, vp
);
491 nlock
= lock
->l_next
;
492 if (fplock
== lock
) {
493 flk_delete_active_lock(lock
, 0);
499 } while (lock
->l_vnode
== vp
);
502 CHECK_SLEEPING_LOCKS(gp
);
503 CHECK_ACTIVE_LOCKS(gp
);
504 mutex_exit(&gp
->gp_mutex
);
508 * Routine called from fs_frlock in fs/fs_subr.c
510 * This implements traditional POSIX style record locking. The two primary
511 * drawbacks to this style of locking are:
512 * 1) It is per-process, so any close of a file descriptor that refers to the
513 * file will drop the lock (e.g. lock /etc/passwd, call a library function
514 * which opens /etc/passwd to read the file, when the library closes it's
515 * file descriptor the application loses its lock and does not know).
516 * 2) Locks are not preserved across fork(2).
518 * Because these locks are only associated with a PID, they are per-process.
519 * This is why any close will drop the lock and is also why, once the process
520 * forks, the lock is no longer related to the new process. These locks can
521 * be considered as PID-ful.
523 * See ofdlock() for the implementation of a similar but improved locking
527 reclock(vnode_t
*vp
, flock64_t
*lckdat
, int cmd
, int flag
, uoff_t offset
,
528 flk_callback_t
*flk_cbp
)
530 lock_descriptor_t stack_lock_request
;
531 lock_descriptor_t
*lock_request
;
537 * Check access permissions
539 if ((cmd
& SETFLCK
) &&
540 ((lckdat
->l_type
== F_RDLCK
&& (flag
& FREAD
) == 0) ||
541 (lckdat
->l_type
== F_WRLCK
&& (flag
& FWRITE
) == 0)))
545 * for query and unlock we use the stack_lock_request
548 if ((lckdat
->l_type
== F_UNLCK
) ||
549 !((cmd
& INOFLCK
) || (cmd
& SETFLCK
))) {
550 lock_request
= &stack_lock_request
;
551 (void) bzero((caddr_t
)lock_request
,
552 sizeof (lock_descriptor_t
));
555 * following is added to make the assertions in
556 * flk_execute_request() to pass through
559 lock_request
->l_edge
.edge_in_next
= &lock_request
->l_edge
;
560 lock_request
->l_edge
.edge_in_prev
= &lock_request
->l_edge
;
561 lock_request
->l_edge
.edge_adj_next
= &lock_request
->l_edge
;
562 lock_request
->l_edge
.edge_adj_prev
= &lock_request
->l_edge
;
563 lock_request
->l_status
= FLK_INITIAL_STATE
;
565 lock_request
= flk_get_lock();
567 lock_request
->l_state
= 0;
568 lock_request
->l_vnode
= vp
;
569 lock_request
->l_zoneid
= getzoneid();
572 * Convert the request range into the canonical start and end
573 * values. The NLM protocol supports locking over the entire
574 * 32-bit range, so there's no range checking for remote requests,
575 * but we still need to verify that local requests obey the rules.
577 if ((cmd
& RCMDLCK
) != 0) {
578 ASSERT(lckdat
->l_whence
== 0);
579 lock_request
->l_start
= lckdat
->l_start
;
580 lock_request
->l_end
= (lckdat
->l_len
== 0) ? MAX_U_OFFSET_T
:
581 lckdat
->l_start
+ (lckdat
->l_len
- 1);
583 /* check the validity of the lock range */
584 error
= flk_convert_lock_data(vp
, lckdat
,
585 &lock_request
->l_start
, &lock_request
->l_end
,
590 error
= flk_check_lock_data(lock_request
->l_start
,
591 lock_request
->l_end
, MAXEND
);
597 ASSERT(lock_request
->l_end
>= lock_request
->l_start
);
599 lock_request
->l_type
= lckdat
->l_type
;
601 lock_request
->l_state
|= IO_LOCK
;
603 lock_request
->l_state
|= WILLING_TO_SLEEP_LOCK
;
605 lock_request
->l_state
|= LOCKMGR_LOCK
;
607 lock_request
->l_state
|= NBMAND_LOCK
;
609 if (!((cmd
& SETFLCK
) || (cmd
& INOFLCK
))) {
610 if (lock_request
->l_type
== F_RDLCK
||
611 lock_request
->l_type
== F_WRLCK
)
612 lock_request
->l_state
|= QUERY_LOCK
;
614 lock_request
->l_flock
= (*lckdat
);
615 lock_request
->l_callbacks
= flk_cbp
;
618 * We are ready for processing the request
620 if (IS_LOCKMGR(lock_request
)) {
622 * If the lock request is an NLM server request ....
624 if (nlm_status_size
== 0) { /* not booted as cluster */
625 mutex_enter(&flock_lock
);
627 * Bail out if this is a lock manager request and the
628 * lock manager is not supposed to be running.
630 if (flk_get_lockmgr_status() != FLK_LOCKMGR_UP
) {
631 mutex_exit(&flock_lock
);
635 mutex_exit(&flock_lock
);
636 } else { /* booted as a cluster */
637 nlmid
= GETNLMID(lock_request
->l_flock
.l_sysid
);
638 ASSERT(nlmid
<= nlm_status_size
&& nlmid
>= 0);
640 mutex_enter(&nlm_reg_lock
);
642 * If the NLM registry does not know about this
643 * NLM server making the request, add its nlmid
646 if (FLK_REGISTRY_IS_NLM_UNKNOWN(nlm_reg_status
,
648 FLK_REGISTRY_ADD_NLMID(nlm_reg_status
, nlmid
);
649 } else if (!FLK_REGISTRY_IS_NLM_UP(nlm_reg_status
,
652 * If the NLM server is already known (has made
653 * previous lock requests) and its state is
654 * not NLM_UP (means that NLM server is
655 * shutting down), then bail out with an
656 * error to deny the lock request.
658 mutex_exit(&nlm_reg_lock
);
662 mutex_exit(&nlm_reg_lock
);
666 /* Now get the lock graph for a particular vnode */
667 gp
= flk_get_lock_graph(vp
, FLK_INIT_GRAPH
);
670 * We drop rwlock here otherwise this might end up causing a
671 * deadlock if this IOLOCK sleeps. (bugid # 1183392).
674 if (IS_IO_LOCK(lock_request
)) {
676 (lock_request
->l_type
== F_RDLCK
) ?
677 V_WRITELOCK_FALSE
: V_WRITELOCK_TRUE
, NULL
);
679 mutex_enter(&gp
->gp_mutex
);
681 lock_request
->l_state
|= REFERENCED_LOCK
;
682 lock_request
->l_graph
= gp
;
684 switch (lock_request
->l_type
) {
687 if (IS_QUERY_LOCK(lock_request
)) {
688 flk_get_first_blocking_lock(lock_request
);
689 if (lock_request
->l_ofd
!= NULL
)
690 lock_request
->l_flock
.l_pid
= -1;
691 (*lckdat
) = lock_request
->l_flock
;
695 /* process the request now */
697 error
= flk_process_request(lock_request
);
701 /* unlock request will not block so execute it immediately */
703 if (IS_LOCKMGR(lock_request
) &&
704 flk_canceled(lock_request
)) {
707 error
= flk_execute_request(lock_request
);
713 * Recovery mechanism to release lock manager locks when
714 * NFS client crashes and restart. NFS server will clear
715 * old locks and grant new locks.
718 if (lock_request
->l_flock
.l_sysid
== 0) {
719 mutex_exit(&gp
->gp_mutex
);
722 if (secpolicy_nfs(CRED()) != 0) {
723 mutex_exit(&gp
->gp_mutex
);
726 flk_delete_locks_by_sysid(lock_request
);
727 lock_request
->l_state
&= ~REFERENCED_LOCK
;
728 flk_set_state(lock_request
, FLK_DEAD_STATE
);
729 flk_free_lock(lock_request
);
730 mutex_exit(&gp
->gp_mutex
);
739 * Now that we have seen the status of locks in the system for
740 * this vnode we acquire the rwlock if it is an IO_LOCK.
743 if (IS_IO_LOCK(lock_request
)) {
744 (void) fop_rwlock(vp
,
745 (lock_request
->l_type
== F_RDLCK
) ?
746 V_WRITELOCK_FALSE
: V_WRITELOCK_TRUE
, NULL
);
748 lckdat
->l_type
= F_UNLCK
;
751 * This wake up is needed otherwise
752 * if IO_LOCK has slept the dependents on this
753 * will not be woken up at all. (bugid # 1185482).
756 flk_wakeup(lock_request
, 1);
757 flk_set_state(lock_request
, FLK_DEAD_STATE
);
758 flk_free_lock(lock_request
);
761 * else if error had occurred either flk_process_request()
762 * has returned EDEADLK in which case there will be no
763 * dependents for this lock or EINTR from flk_wait_execute_
764 * request() in which case flk_cancel_sleeping_lock()
765 * would have been done. same is true with EBADF.
769 if (lock_request
== &stack_lock_request
) {
770 flk_set_state(lock_request
, FLK_DEAD_STATE
);
772 lock_request
->l_state
&= ~REFERENCED_LOCK
;
773 if ((error
!= 0) || IS_DELETED(lock_request
)) {
774 flk_set_state(lock_request
, FLK_DEAD_STATE
);
775 flk_free_lock(lock_request
);
779 mutex_exit(&gp
->gp_mutex
);
783 flk_set_state(lock_request
, FLK_DEAD_STATE
);
784 if (lock_request
!= &stack_lock_request
)
785 flk_free_lock(lock_request
);
790 * Invoke the callbacks in the given list. If before sleeping, invoke in
791 * list order. If after sleeping, invoke in reverse order.
793 * CPR (suspend/resume) support: if one of the callbacks returns a
794 * callb_cpr_t, return it. This will be used to make the thread CPR-safe
795 * while it is sleeping. There should be at most one callb_cpr_t for the
797 * XXX This is unnecessarily complicated. The CPR information should just
798 * get passed in directly through fop_frlock and reclock, rather than
799 * sneaking it in via a callback.
803 flk_invoke_callbacks(flk_callback_t
*cblist
, flk_cb_when_t when
)
805 callb_cpr_t
*cpr_callbackp
= NULL
;
806 callb_cpr_t
*one_result
;
812 if (when
== FLK_BEFORE_SLEEP
) {
815 one_result
= (*cb
->cb_callback
)(when
, cb
->cb_data
);
816 if (one_result
!= NULL
) {
817 ASSERT(cpr_callbackp
== NULL
);
818 cpr_callbackp
= one_result
;
821 } while (cb
!= cblist
);
823 cb
= cblist
->cb_prev
;
825 one_result
= (*cb
->cb_callback
)(when
, cb
->cb_data
);
826 if (one_result
!= NULL
) {
827 cpr_callbackp
= one_result
;
830 } while (cb
!= cblist
->cb_prev
);
833 return (cpr_callbackp
);
837 * Initialize a flk_callback_t to hold the given callback.
841 flk_init_callback(flk_callback_t
*flk_cb
,
842 callb_cpr_t
*(*cb_fcn
)(flk_cb_when_t
, void *), void *cbdata
)
844 flk_cb
->cb_next
= flk_cb
;
845 flk_cb
->cb_prev
= flk_cb
;
846 flk_cb
->cb_callback
= cb_fcn
;
847 flk_cb
->cb_data
= cbdata
;
851 * Initialize an flk_callback_t and then link it into the head of an
852 * existing list (which may be NULL).
856 flk_add_callback(flk_callback_t
*newcb
,
857 callb_cpr_t
*(*cb_fcn
)(flk_cb_when_t
, void *),
858 void *cbdata
, flk_callback_t
*cblist
)
860 flk_init_callback(newcb
, cb_fcn
, cbdata
);
865 newcb
->cb_prev
= cblist
->cb_prev
;
866 newcb
->cb_next
= cblist
;
867 cblist
->cb_prev
->cb_next
= newcb
;
868 cblist
->cb_prev
= newcb
;
872 * Remove the callback from a list.
876 flk_del_callback(flk_callback_t
*flk_cb
)
878 flk_cb
->cb_next
->cb_prev
= flk_cb
->cb_prev
;
879 flk_cb
->cb_prev
->cb_next
= flk_cb
->cb_next
;
881 flk_cb
->cb_prev
= flk_cb
;
882 flk_cb
->cb_next
= flk_cb
;
886 * Initialize the flk_edge_cache data structure and create the
887 * nlm_reg_status array.
895 flk_edge_cache
= kmem_cache_create("flk_edges",
896 sizeof (struct edge
), 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
897 if (flk_edge_cache
== NULL
) {
898 cmn_err(CE_PANIC
, "Couldn't create flk_edge_cache\n");
901 * Create the NLM registry object.
908 * Zone constructor/destructor callbacks to be executed when a zone is
913 flk_zone_init(zoneid_t zoneid
)
915 struct flock_globals
*fg
;
918 fg
= kmem_alloc(sizeof (*fg
), KM_SLEEP
);
919 fg
->flk_lockmgr_status
= FLK_LOCKMGR_UP
;
920 for (i
= 0; i
< HASH_SIZE
; i
++)
921 fg
->lockmgr_status
[i
] = FLK_LOCKMGR_UP
;
927 flk_zone_fini(zoneid_t zoneid
, void *data
)
929 struct flock_globals
*fg
= data
;
931 kmem_free(fg
, sizeof (*fg
));
935 * Get a lock_descriptor structure with initialization of edge lists.
938 static lock_descriptor_t
*
941 lock_descriptor_t
*l
;
943 l
= kmem_zalloc(sizeof (lock_descriptor_t
), KM_SLEEP
);
945 cv_init(&l
->l_cv
, NULL
, CV_DRIVER
, NULL
);
946 l
->l_edge
.edge_in_next
= &l
->l_edge
;
947 l
->l_edge
.edge_in_prev
= &l
->l_edge
;
948 l
->l_edge
.edge_adj_next
= &l
->l_edge
;
949 l
->l_edge
.edge_adj_prev
= &l
->l_edge
;
951 l
->l_status
= FLK_INITIAL_STATE
;
957 * Free a lock_descriptor structure. Just sets the DELETED_LOCK flag
958 * when some thread has a reference to it as in reclock().
962 flk_free_lock(lock_descriptor_t
*lock
)
966 ASSERT(IS_DEAD(lock
));
968 if ((fp
= lock
->l_ofd
) != NULL
&& fp
->f_filock
== (struct filock
*)lock
)
971 if (IS_REFERENCED(lock
)) {
972 lock
->l_state
|= DELETED_LOCK
;
976 kmem_free((void *)lock
, sizeof (lock_descriptor_t
));
980 flk_set_state(lock_descriptor_t
*lock
, int new_state
)
983 * Locks in the sleeping list may be woken up in a number of ways,
984 * and more than once. If a sleeping lock is signaled awake more
985 * than once, then it may or may not change state depending on its
987 * Also note that NLM locks that are sleeping could be moved to an
988 * interrupted state more than once if the unlock request is
989 * retransmitted by the NLM client - the second time around, this is
991 * The ordering of being signaled awake is:
992 * INTERRUPTED_STATE > CANCELLED_STATE > GRANTED_STATE.
993 * The checks below implement this ordering.
995 if (IS_INTERRUPTED(lock
)) {
996 if ((new_state
== FLK_CANCELLED_STATE
) ||
997 (new_state
== FLK_GRANTED_STATE
) ||
998 (new_state
== FLK_INTERRUPTED_STATE
)) {
1002 if (IS_CANCELLED(lock
)) {
1003 if ((new_state
== FLK_GRANTED_STATE
) ||
1004 (new_state
== FLK_CANCELLED_STATE
)) {
1008 CHECK_LOCK_TRANSITION(lock
->l_status
, new_state
);
1009 lock
->l_status
= new_state
;
1013 * Routine that checks whether there are any blocking locks in the system.
1015 * The policy followed is if a write lock is sleeping we don't allow read
1016 * locks before this write lock even though there may not be any active
1017 * locks corresponding to the read locks' region.
1019 * flk_add_edge() function adds an edge between l1 and l2 iff there
1020 * is no path between l1 and l2. This is done to have a "minimum
1021 * storage representation" of the dependency graph.
1023 * Another property of the graph is since only the new request throws
1024 * edges to the existing locks in the graph, the graph is always topologically
1029 flk_process_request(lock_descriptor_t
*request
)
1031 graph_t
*gp
= request
->l_graph
;
1032 lock_descriptor_t
*lock
;
1033 int request_blocked_by_active
= 0;
1034 int request_blocked_by_granted
= 0;
1035 int request_blocked_by_sleeping
= 0;
1036 vnode_t
*vp
= request
->l_vnode
;
1038 int request_will_wait
= 0;
1039 int found_covering_lock
= 0;
1040 lock_descriptor_t
*covered_by
= NULL
;
1042 ASSERT(MUTEX_HELD(&gp
->gp_mutex
));
1043 request_will_wait
= IS_WILLING_TO_SLEEP(request
);
1046 * check active locks
1049 SET_LOCK_TO_FIRST_ACTIVE_VP(gp
, lock
, vp
);
1054 if (BLOCKS(lock
, request
)) {
1055 if (!request_will_wait
)
1057 request_blocked_by_active
= 1;
1061 * Grant lock if it is for the same owner holding active
1062 * lock that covers the request.
1065 if (SAME_OWNER(lock
, request
) &&
1066 COVERS(lock
, request
) &&
1067 (request
->l_type
== F_RDLCK
))
1068 return (flk_execute_request(request
));
1069 lock
= lock
->l_next
;
1070 } while (lock
->l_vnode
== vp
);
1073 if (!request_blocked_by_active
) {
1074 lock_descriptor_t
*lk
[1];
1075 lock_descriptor_t
*first_glock
= NULL
;
1077 * Shall we grant this?! NO!!
1078 * What about those locks that were just granted and still
1079 * in sleep queue. Those threads are woken up and so locks
1080 * are almost active.
1082 SET_LOCK_TO_FIRST_SLEEP_VP(gp
, lock
, vp
);
1085 if (BLOCKS(lock
, request
)) {
1086 if (IS_GRANTED(lock
)) {
1087 request_blocked_by_granted
= 1;
1089 request_blocked_by_sleeping
= 1;
1093 lock
= lock
->l_next
;
1094 } while ((lock
->l_vnode
== vp
));
1095 first_glock
= lock
->l_prev
;
1096 ASSERT(first_glock
->l_vnode
== vp
);
1099 if (request_blocked_by_granted
)
1102 if (!request_blocked_by_sleeping
) {
1104 * If the request isn't going to be blocked by a
1105 * sleeping request, we know that it isn't going to
1106 * be blocked; we can just execute the request --
1107 * without performing costly deadlock detection.
1109 ASSERT(!request_blocked_by_active
);
1110 return (flk_execute_request(request
));
1111 } else if (request
->l_type
== F_RDLCK
) {
1113 * If we have a sleeping writer in the requested
1114 * lock's range, block.
1120 request
->l_state
|= RECOMPUTE_LOCK
;
1121 SET_LOCK_TO_FIRST_ACTIVE_VP(gp
, lock
, vp
);
1124 flk_recompute_dependencies(lock
, lk
, 1, 0);
1125 lock
= lock
->l_next
;
1126 } while (lock
->l_vnode
== vp
);
1131 if (IS_GRANTED(lock
)) {
1132 flk_recompute_dependencies(lock
, lk
, 1, 0);
1134 lock
= lock
->l_prev
;
1135 } while ((lock
->l_vnode
== vp
));
1137 request
->l_state
&= ~RECOMPUTE_LOCK
;
1138 if (!NO_DEPENDENTS(request
) && flk_check_deadlock(request
))
1140 return (flk_execute_request(request
));
1144 if (request_will_wait
)
1145 flk_graph_uncolor(gp
);
1147 /* check sleeping locks */
1149 SET_LOCK_TO_FIRST_SLEEP_VP(gp
, lock
, vp
);
1152 * If we find a sleeping write lock that is a superset of the
1153 * region wanted by request we can be assured that by adding an
1154 * edge to this write lock we have paths to all locks in the
1155 * graph that blocks the request except in one case and that is why
1156 * another check for SAME_OWNER in the loop below. The exception
1157 * case is when this process that owns the sleeping write lock 'l1'
1158 * has other locks l2, l3, l4 that are in the system and arrived
1159 * before l1. l1 does not have path to these locks as they are from
1160 * same process. We break when we find a second covering sleeping
1161 * lock l5 owned by a process different from that owning l1, because
1162 * there cannot be any of l2, l3, l4, etc., arrived before l5, and if
1163 * it has l1 would have produced a deadlock already.
1168 if (BLOCKS(lock
, request
)) {
1169 if (!request_will_wait
)
1171 if (COVERS(lock
, request
) &&
1172 lock
->l_type
== F_WRLCK
) {
1173 if (found_covering_lock
&&
1174 !SAME_OWNER(lock
, covered_by
)) {
1175 found_covering_lock
++;
1178 found_covering_lock
= 1;
1181 if (found_covering_lock
&&
1182 !SAME_OWNER(lock
, covered_by
)) {
1183 lock
= lock
->l_next
;
1186 if ((error
= flk_add_edge(request
, lock
,
1187 !found_covering_lock
, 0)))
1190 lock
= lock
->l_next
;
1191 } while (lock
->l_vnode
== vp
);
1195 * found_covering_lock == 2 iff at this point 'request' has paths
1196 * to all locks that blocks 'request'. found_covering_lock == 1 iff at this
1197 * point 'request' has paths to all locks that blocks 'request' whose owners
1198 * are not same as the one that covers 'request' (covered_by above) and
1199 * we can have locks whose owner is same as covered_by in the active list.
1202 if (request_blocked_by_active
&& found_covering_lock
!= 2) {
1203 SET_LOCK_TO_FIRST_ACTIVE_VP(gp
, lock
, vp
);
1204 ASSERT(lock
!= NULL
);
1206 if (BLOCKS(lock
, request
)) {
1207 if (found_covering_lock
&&
1208 !SAME_OWNER(lock
, covered_by
)) {
1209 lock
= lock
->l_next
;
1212 if ((error
= flk_add_edge(request
, lock
,
1216 lock
= lock
->l_next
;
1217 } while (lock
->l_vnode
== vp
);
1220 if (NOT_BLOCKED(request
)) {
1222 * request not dependent on any other locks
1223 * so execute this request
1225 return (flk_execute_request(request
));
1228 * check for deadlock
1230 if (flk_check_deadlock(request
))
1233 * this thread has to sleep
1235 return (flk_wait_execute_request(request
));
1240 * The actual execution of the request in the simple case is only to
1241 * insert the 'request' in the list of active locks if it is not an
1243 * We have to consider the existing active locks' relation to
1244 * this 'request' if they are owned by same process. flk_relation() does
1245 * this job and sees to that the dependency graph information is maintained
1250 flk_execute_request(lock_descriptor_t
*request
)
1252 graph_t
*gp
= request
->l_graph
;
1253 vnode_t
*vp
= request
->l_vnode
;
1254 lock_descriptor_t
*lock
, *lock1
;
1255 int done_searching
= 0;
1257 CHECK_SLEEPING_LOCKS(gp
);
1258 CHECK_ACTIVE_LOCKS(gp
);
1260 ASSERT(MUTEX_HELD(&gp
->gp_mutex
));
1262 flk_set_state(request
, FLK_START_STATE
);
1264 ASSERT(NOT_BLOCKED(request
));
1266 /* IO_LOCK requests are only to check status */
1268 if (IS_IO_LOCK(request
))
1271 SET_LOCK_TO_FIRST_ACTIVE_VP(gp
, lock
, vp
);
1273 if (lock
== NULL
&& request
->l_type
== F_UNLCK
)
1276 flk_insert_active_lock(request
);
1281 lock1
= lock
->l_next
;
1282 if (SAME_OWNER(request
, lock
)) {
1283 done_searching
= flk_relation(lock
, request
);
1286 } while (lock
->l_vnode
== vp
&& !done_searching
);
1289 * insert in active queue
1292 if (request
->l_type
!= F_UNLCK
)
1293 flk_insert_active_lock(request
);
1299 * 'request' is blocked by some one therefore we put it into sleep queue.
1302 flk_wait_execute_request(lock_descriptor_t
*request
)
1304 graph_t
*gp
= request
->l_graph
;
1305 callb_cpr_t
*cprp
; /* CPR info from callback */
1306 struct flock_globals
*fg
;
1309 ASSERT(MUTEX_HELD(&gp
->gp_mutex
));
1310 ASSERT(IS_WILLING_TO_SLEEP(request
));
1312 flk_insert_sleeping_lock(request
);
1314 if (IS_LOCKMGR(request
)) {
1315 index
= HASH_INDEX(request
->l_vnode
);
1316 fg
= flk_get_globals();
1318 if (nlm_status_size
== 0) { /* not booted as a cluster */
1319 if (fg
->lockmgr_status
[index
] != FLK_LOCKMGR_UP
) {
1320 flk_cancel_sleeping_lock(request
, 1);
1323 } else { /* booted as a cluster */
1325 * If the request is an NLM server lock request,
1326 * and the NLM state of the lock request is not
1327 * NLM_UP (because the NLM server is shutting
1328 * down), then cancel the sleeping lock and
1329 * return error ENOLCK that will encourage the
1330 * client to retransmit.
1332 if (!IS_NLM_UP(request
)) {
1333 flk_cancel_sleeping_lock(request
, 1);
1339 if (request
->l_callbacks
!= NULL
) {
1341 * To make sure the shutdown code works correctly, either
1342 * the callback must happen after putting the lock on the
1343 * sleep list, or we must check the shutdown status after
1344 * returning from the callback (and before sleeping). At
1345 * least for now, we'll use the first option. If a
1346 * shutdown or signal or whatever happened while the graph
1347 * mutex was dropped, that will be detected by
1350 mutex_exit(&gp
->gp_mutex
);
1352 cprp
= flk_invoke_callbacks(request
->l_callbacks
,
1355 mutex_enter(&gp
->gp_mutex
);
1358 wait_for_lock(request
);
1360 mutex_enter(cprp
->cc_lockp
);
1361 CALLB_CPR_SAFE_BEGIN(cprp
);
1362 mutex_exit(cprp
->cc_lockp
);
1363 wait_for_lock(request
);
1364 mutex_enter(cprp
->cc_lockp
);
1365 CALLB_CPR_SAFE_END(cprp
, cprp
->cc_lockp
);
1366 mutex_exit(cprp
->cc_lockp
);
1369 mutex_exit(&gp
->gp_mutex
);
1370 (void) flk_invoke_callbacks(request
->l_callbacks
,
1372 mutex_enter(&gp
->gp_mutex
);
1374 wait_for_lock(request
);
1377 if (IS_LOCKMGR(request
)) {
1379 * If the lock manager is shutting down, return an
1380 * error that will encourage the client to retransmit.
1382 if (fg
->lockmgr_status
[index
] != FLK_LOCKMGR_UP
&&
1383 !IS_GRANTED(request
)) {
1384 flk_cancel_sleeping_lock(request
, 1);
1389 if (IS_INTERRUPTED(request
)) {
1390 /* we got a signal, or act like we did */
1391 flk_cancel_sleeping_lock(request
, 1);
1395 /* Cancelled if some other thread has closed the file */
1397 if (IS_CANCELLED(request
)) {
1398 flk_cancel_sleeping_lock(request
, 1);
1402 request
->l_state
&= ~GRANTED_LOCK
;
1403 REMOVE_SLEEP_QUEUE(request
);
1404 return (flk_execute_request(request
));
1408 * This routine adds an edge between from and to because from depends
1409 * to. If asked to check for deadlock it checks whether there are any
1410 * reachable locks from "from_lock" that is owned by the same process
1412 * NOTE: It is the caller's responsibility to make sure that the color
1413 * of the graph is consistent between the calls to flk_add_edge as done
1414 * in flk_process_request. This routine does not color and check for
1415 * deadlock explicitly.
1419 flk_add_edge(lock_descriptor_t
*from_lock
, lock_descriptor_t
*to_lock
,
1420 int check_cycle
, int update_graph
)
1424 lock_descriptor_t
*vertex
;
1425 lock_descriptor_t
*vertex_stack
;
1427 STACK_INIT(vertex_stack
);
1430 * if to vertex already has mark_color just return
1431 * don't add an edge as it is reachable from from vertex
1435 if (COLORED(to_lock
))
1438 edge
= flk_get_edge();
1441 * set the from and to vertex
1444 edge
->from_vertex
= from_lock
;
1445 edge
->to_vertex
= to_lock
;
1448 * put in adjacency list of from vertex
1451 from_lock
->l_edge
.edge_adj_next
->edge_adj_prev
= edge
;
1452 edge
->edge_adj_next
= from_lock
->l_edge
.edge_adj_next
;
1453 edge
->edge_adj_prev
= &from_lock
->l_edge
;
1454 from_lock
->l_edge
.edge_adj_next
= edge
;
1457 * put in list of to vertex
1460 to_lock
->l_edge
.edge_in_next
->edge_in_prev
= edge
;
1461 edge
->edge_in_next
= to_lock
->l_edge
.edge_in_next
;
1462 to_lock
->l_edge
.edge_in_next
= edge
;
1463 edge
->edge_in_prev
= &to_lock
->l_edge
;
1467 flk_update_proc_graph(edge
, 0);
1474 STACK_PUSH(vertex_stack
, from_lock
, l_stack
);
1476 while ((vertex
= STACK_TOP(vertex_stack
)) != NULL
) {
1478 STACK_POP(vertex_stack
, l_stack
);
1480 for (ep
= FIRST_ADJ(vertex
);
1482 ep
= NEXT_ADJ(ep
)) {
1483 if (COLORED(ep
->to_vertex
))
1485 COLOR(ep
->to_vertex
);
1486 if (SAME_OWNER(ep
->to_vertex
, from_lock
))
1488 STACK_PUSH(vertex_stack
, ep
->to_vertex
, l_stack
);
1499 ep
= FIRST_ADJ(from_lock
);
1501 while (ep
!= HEAD(from_lock
)) {
1503 from_lock
->l_sedge
= NEXT_ADJ(ep
);
1504 ADJ_LIST_REMOVE(ep
);
1506 ep
= from_lock
->l_sedge
;
1512 * Get an edge structure for representing the dependency between two locks.
1520 ASSERT(flk_edge_cache
!= NULL
);
1522 ep
= kmem_cache_alloc(flk_edge_cache
, KM_SLEEP
);
1528 * Free the edge structure.
1532 flk_free_edge(edge_t
*ep
)
1535 kmem_cache_free(flk_edge_cache
, (void *)ep
);
1539 * Check the relationship of request with lock and perform the
1540 * recomputation of dependencies, break lock if required, and return
1541 * 1 if request cannot have any more relationship with the next
1543 * The 'lock' and 'request' are compared and in case of overlap we
1544 * delete the 'lock' and form new locks to represent the non-overlapped
1545 * portion of original 'lock'. This function has side effects such as
1546 * 'lock' will be freed, new locks will be added to the active list.
1550 flk_relation(lock_descriptor_t
*lock
, lock_descriptor_t
*request
)
1553 lock_descriptor_t
*lock1
, *lock2
;
1554 lock_descriptor_t
*topology
[3];
1558 graph_t
*gp
= (lock
->l_graph
);
1561 CHECK_SLEEPING_LOCKS(gp
);
1562 CHECK_ACTIVE_LOCKS(gp
);
1564 ASSERT(MUTEX_HELD(&gp
->gp_mutex
));
1566 topology
[0] = topology
[1] = topology
[2] = NULL
;
1568 if (request
->l_type
== F_UNLCK
)
1569 lock_effect
= FLK_UNLOCK
;
1570 else if (request
->l_type
== F_RDLCK
&&
1571 lock
->l_type
== F_WRLCK
)
1572 lock_effect
= FLK_DOWNGRADE
;
1573 else if (request
->l_type
== F_WRLCK
&&
1574 lock
->l_type
== F_RDLCK
)
1575 lock_effect
= FLK_UPGRADE
;
1577 lock_effect
= FLK_STAY_SAME
;
1579 if (lock
->l_end
< request
->l_start
) {
1580 if (lock
->l_end
== request
->l_start
- 1 &&
1581 lock_effect
== FLK_STAY_SAME
) {
1582 topology
[0] = request
;
1583 request
->l_start
= lock
->l_start
;
1591 if (lock
->l_start
> request
->l_end
) {
1592 if (request
->l_end
== lock
->l_start
- 1 &&
1593 lock_effect
== FLK_STAY_SAME
) {
1594 topology
[0] = request
;
1595 request
->l_end
= lock
->l_end
;
1603 if (request
->l_end
< lock
->l_end
) {
1604 if (request
->l_start
> lock
->l_start
) {
1605 if (lock_effect
== FLK_STAY_SAME
) {
1606 request
->l_start
= lock
->l_start
;
1607 request
->l_end
= lock
->l_end
;
1608 topology
[0] = request
;
1611 lock1
= flk_get_lock();
1612 lock2
= flk_get_lock();
1615 lock1
->l_start
= lock
->l_start
;
1616 lock1
->l_end
= request
->l_start
- 1;
1617 lock2
->l_start
= request
->l_end
+ 1;
1618 lock2
->l_end
= lock
->l_end
;
1619 topology
[0] = lock1
;
1620 topology
[1] = lock2
;
1621 topology
[2] = request
;
1624 } else if (request
->l_start
< lock
->l_start
) {
1625 if (lock_effect
== FLK_STAY_SAME
) {
1626 request
->l_end
= lock
->l_end
;
1627 topology
[0] = request
;
1630 lock1
= flk_get_lock();
1632 lock1
->l_start
= request
->l_end
+ 1;
1633 topology
[0] = lock1
;
1634 topology
[1] = request
;
1638 if (lock_effect
== FLK_STAY_SAME
) {
1639 request
->l_start
= lock
->l_start
;
1640 request
->l_end
= lock
->l_end
;
1641 topology
[0] = request
;
1644 lock1
= flk_get_lock();
1646 lock1
->l_start
= request
->l_end
+ 1;
1647 topology
[0] = lock1
;
1648 topology
[1] = request
;
1652 } else if (request
->l_end
> lock
->l_end
) {
1653 if (request
->l_start
> lock
->l_start
) {
1654 if (lock_effect
== FLK_STAY_SAME
) {
1655 request
->l_start
= lock
->l_start
;
1656 topology
[0] = request
;
1659 lock1
= flk_get_lock();
1661 lock1
->l_end
= request
->l_start
- 1;
1662 topology
[0] = lock1
;
1663 topology
[1] = request
;
1666 } else if (request
->l_start
< lock
->l_start
) {
1667 topology
[0] = request
;
1670 topology
[0] = request
;
1674 if (request
->l_start
> lock
->l_start
) {
1675 if (lock_effect
== FLK_STAY_SAME
) {
1676 request
->l_start
= lock
->l_start
;
1677 topology
[0] = request
;
1680 lock1
= flk_get_lock();
1682 lock1
->l_end
= request
->l_start
- 1;
1683 topology
[0] = lock1
;
1684 topology
[1] = request
;
1687 } else if (request
->l_start
< lock
->l_start
) {
1688 topology
[0] = request
;
1691 if (lock_effect
!= FLK_UNLOCK
) {
1692 topology
[0] = request
;
1695 flk_delete_active_lock(lock
, 0);
1696 flk_wakeup(lock
, 1);
1697 flk_free_lock(lock
);
1698 CHECK_SLEEPING_LOCKS(gp
);
1699 CHECK_ACTIVE_LOCKS(gp
);
1708 * For unlock we don't send the 'request' to for recomputing
1709 * dependencies because no lock will add an edge to this.
1712 if (lock_effect
== FLK_UNLOCK
) {
1713 topology
[nvertex
-1] = NULL
;
1716 for (i
= 0; i
< nvertex
; i
++) {
1717 topology
[i
]->l_state
|= RECOMPUTE_LOCK
;
1718 topology
[i
]->l_color
= NO_COLOR
;
1721 ASSERT(FIRST_ADJ(lock
) == HEAD(lock
));
1724 * we remove the adjacent edges for all vertices' to this vertex
1728 ep
= FIRST_IN(lock
);
1729 while (ep
!= HEAD(lock
)) {
1730 ADJ_LIST_REMOVE(ep
);
1734 flk_delete_active_lock(lock
, 0);
1736 /* We are ready for recomputing the dependencies now */
1738 flk_recompute_dependencies(lock
, topology
, nvertex
, 1);
1740 for (i
= 0; i
< nvertex
; i
++) {
1741 topology
[i
]->l_state
&= ~RECOMPUTE_LOCK
;
1742 topology
[i
]->l_color
= NO_COLOR
;
1746 if (lock_effect
== FLK_UNLOCK
) {
1749 for (i
= 0; i
< nvertex
- 1; i
++) {
1750 flk_insert_active_lock(topology
[i
]);
1754 if (lock_effect
== FLK_DOWNGRADE
|| lock_effect
== FLK_UNLOCK
) {
1755 flk_wakeup(lock
, 0);
1757 ep
= FIRST_IN(lock
);
1758 while (ep
!= HEAD(lock
)) {
1759 lock
->l_sedge
= NEXT_IN(ep
);
1761 flk_update_proc_graph(ep
, 1);
1766 flk_free_lock(lock
);
1768 CHECK_SLEEPING_LOCKS(gp
);
1769 CHECK_ACTIVE_LOCKS(gp
);
1774 * Insert a lock into the active queue.
1778 flk_insert_active_lock(lock_descriptor_t
*new_lock
)
1780 graph_t
*gp
= new_lock
->l_graph
;
1781 vnode_t
*vp
= new_lock
->l_vnode
;
1782 lock_descriptor_t
*first_lock
, *lock
;
1784 ASSERT(MUTEX_HELD(&gp
->gp_mutex
));
1786 SET_LOCK_TO_FIRST_ACTIVE_VP(gp
, lock
, vp
);
1789 if (first_lock
!= NULL
) {
1790 for (; (lock
->l_vnode
== vp
&&
1791 lock
->l_start
< new_lock
->l_start
); lock
= lock
->l_next
)
1794 lock
= ACTIVE_HEAD(gp
);
1797 lock
->l_prev
->l_next
= new_lock
;
1798 new_lock
->l_next
= lock
;
1799 new_lock
->l_prev
= lock
->l_prev
;
1800 lock
->l_prev
= new_lock
;
1802 if (first_lock
== NULL
|| (new_lock
->l_start
<= first_lock
->l_start
)) {
1803 vp
->v_filocks
= (struct filock
*)new_lock
;
1805 flk_set_state(new_lock
, FLK_ACTIVE_STATE
);
1806 new_lock
->l_state
|= ACTIVE_LOCK
;
1808 CHECK_ACTIVE_LOCKS(gp
);
1809 CHECK_SLEEPING_LOCKS(gp
);
1813 * Delete the active lock : Performs two functions depending on the
1814 * value of second parameter. One is to remove from the active lists
1815 * only and other is to both remove and free the lock.
1819 flk_delete_active_lock(lock_descriptor_t
*lock
, int free_lock
)
1821 vnode_t
*vp
= lock
->l_vnode
;
1822 graph_t
*gp
= lock
->l_graph
;
1824 ASSERT(MUTEX_HELD(&gp
->gp_mutex
));
1826 ASSERT(NO_DEPENDENTS(lock
));
1827 ASSERT(NOT_BLOCKED(lock
));
1828 ASSERT(IS_ACTIVE(lock
));
1830 ASSERT((vp
->v_filocks
!= NULL
));
1832 if (vp
->v_filocks
== (struct filock
*)lock
) {
1833 vp
->v_filocks
= (struct filock
*)
1834 ((lock
->l_next
->l_vnode
== vp
) ? lock
->l_next
:
1837 lock
->l_next
->l_prev
= lock
->l_prev
;
1838 lock
->l_prev
->l_next
= lock
->l_next
;
1839 lock
->l_next
= lock
->l_prev
= NULL
;
1840 flk_set_state(lock
, FLK_DEAD_STATE
);
1841 lock
->l_state
&= ~ACTIVE_LOCK
;
1844 flk_free_lock(lock
);
1845 CHECK_ACTIVE_LOCKS(gp
);
1846 CHECK_SLEEPING_LOCKS(gp
);
1850 * Insert into the sleep queue.
1854 flk_insert_sleeping_lock(lock_descriptor_t
*request
)
1856 graph_t
*gp
= request
->l_graph
;
1857 vnode_t
*vp
= request
->l_vnode
;
1858 lock_descriptor_t
*lock
;
1860 ASSERT(MUTEX_HELD(&gp
->gp_mutex
));
1861 ASSERT(IS_INITIAL(request
));
1863 for (lock
= gp
->sleeping_locks
.l_next
; (lock
!= &gp
->sleeping_locks
&&
1864 lock
->l_vnode
< vp
); lock
= lock
->l_next
)
1867 lock
->l_prev
->l_next
= request
;
1868 request
->l_prev
= lock
->l_prev
;
1869 lock
->l_prev
= request
;
1870 request
->l_next
= lock
;
1871 flk_set_state(request
, FLK_SLEEPING_STATE
);
1872 request
->l_state
|= SLEEPING_LOCK
;
1876 * Cancelling a sleeping lock implies removing a vertex from the
1877 * dependency graph and therefore we should recompute the dependencies
1878 * of all vertices that have a path to this vertex, w.r.t. all
1879 * vertices reachable from this vertex.
1883 flk_cancel_sleeping_lock(lock_descriptor_t
*request
, int remove_from_queue
)
1885 graph_t
*gp
= request
->l_graph
;
1886 vnode_t
*vp
= request
->l_vnode
;
1887 lock_descriptor_t
**topology
= NULL
;
1889 lock_descriptor_t
*vertex
, *lock
;
1892 lock_descriptor_t
*vertex_stack
;
1894 STACK_INIT(vertex_stack
);
1896 ASSERT(MUTEX_HELD(&gp
->gp_mutex
));
1898 * count number of vertex pointers that has to be allocated
1899 * All vertices that are reachable from request.
1902 STACK_PUSH(vertex_stack
, request
, l_stack
);
1904 while ((vertex
= STACK_TOP(vertex_stack
)) != NULL
) {
1905 STACK_POP(vertex_stack
, l_stack
);
1906 for (ep
= FIRST_ADJ(vertex
); ep
!= HEAD(vertex
);
1907 ep
= NEXT_ADJ(ep
)) {
1908 if (IS_RECOMPUTE(ep
->to_vertex
))
1910 ep
->to_vertex
->l_state
|= RECOMPUTE_LOCK
;
1911 STACK_PUSH(vertex_stack
, ep
->to_vertex
, l_stack
);
1917 * allocate memory for holding the vertex pointers
1921 topology
= kmem_zalloc(nvertex
* sizeof (lock_descriptor_t
*),
1926 * one more pass to actually store the vertices in the
1928 * We first check sleeping locks and then active locks
1929 * so that topology array will be in a topological
1934 SET_LOCK_TO_FIRST_SLEEP_VP(gp
, lock
, vp
);
1938 if (IS_RECOMPUTE(lock
)) {
1939 lock
->l_index
= nvertex
;
1940 topology
[nvertex
++] = lock
;
1942 lock
->l_color
= NO_COLOR
;
1943 lock
= lock
->l_next
;
1944 } while (lock
->l_vnode
== vp
);
1947 SET_LOCK_TO_FIRST_ACTIVE_VP(gp
, lock
, vp
);
1951 if (IS_RECOMPUTE(lock
)) {
1952 lock
->l_index
= nvertex
;
1953 topology
[nvertex
++] = lock
;
1955 lock
->l_color
= NO_COLOR
;
1956 lock
= lock
->l_next
;
1957 } while (lock
->l_vnode
== vp
);
1961 * remove in and out edges of request
1962 * They are freed after updating proc_graph below.
1965 for (ep
= FIRST_IN(request
); ep
!= HEAD(request
); ep
= NEXT_IN(ep
)) {
1966 ADJ_LIST_REMOVE(ep
);
1970 if (remove_from_queue
)
1971 REMOVE_SLEEP_QUEUE(request
);
1973 /* we are ready to recompute */
1975 flk_recompute_dependencies(request
, topology
, nvertex
, 1);
1977 ep
= FIRST_ADJ(request
);
1978 while (ep
!= HEAD(request
)) {
1980 request
->l_sedge
= NEXT_ADJ(ep
);
1981 ADJ_LIST_REMOVE(ep
);
1982 flk_update_proc_graph(ep
, 1);
1984 ep
= request
->l_sedge
;
1989 * unset the RECOMPUTE flag in those vertices
1992 for (i
= 0; i
< nvertex
; i
++) {
1993 topology
[i
]->l_state
&= ~RECOMPUTE_LOCK
;
2000 kmem_free((void *)topology
,
2001 (nvertex
* sizeof (lock_descriptor_t
*)));
2003 * Possibility of some locks unblocked now
2006 flk_wakeup(request
, 0);
2009 * we expect to have a correctly recomputed graph now.
2011 flk_set_state(request
, FLK_DEAD_STATE
);
2012 flk_free_lock(request
);
2013 CHECK_SLEEPING_LOCKS(gp
);
2014 CHECK_ACTIVE_LOCKS(gp
);
2019 * Uncoloring the graph is simply to increment the mark value of the graph
2020 * And only when wrap round takes place will we color all vertices in
2021 * the graph explicitly.
2025 flk_graph_uncolor(graph_t
*gp
)
2027 lock_descriptor_t
*lock
;
2029 if (gp
->mark
== UINT_MAX
) {
2031 for (lock
= ACTIVE_HEAD(gp
)->l_next
; lock
!= ACTIVE_HEAD(gp
);
2032 lock
= lock
->l_next
)
2035 for (lock
= SLEEPING_HEAD(gp
)->l_next
; lock
!= SLEEPING_HEAD(gp
);
2036 lock
= lock
->l_next
)
2044 * Wake up locks that are blocked on the given lock.
2048 flk_wakeup(lock_descriptor_t
*lock
, int adj_list_remove
)
2051 graph_t
*gp
= lock
->l_graph
;
2052 lock_descriptor_t
*lck
;
2054 ASSERT(MUTEX_HELD(&gp
->gp_mutex
));
2055 if (NO_DEPENDENTS(lock
))
2057 ep
= FIRST_IN(lock
);
2060 * delete the edge from the adjacency list
2061 * of from vertex. if no more adjacent edges
2062 * for this vertex wake this process.
2064 lck
= ep
->from_vertex
;
2065 if (adj_list_remove
)
2066 ADJ_LIST_REMOVE(ep
);
2067 flk_update_proc_graph(ep
, 1);
2068 if (NOT_BLOCKED(lck
)) {
2071 lock
->l_sedge
= NEXT_IN(ep
);
2075 } while (ep
!= HEAD(lock
));
2076 ASSERT(NO_DEPENDENTS(lock
));
2080 * The dependents of request, is checked for its dependency against the
2081 * locks in topology (called topology because the array is and should be in
2082 * topological order for this algorithm, if not in topological order the
2083 * inner loop below might add more edges than necessary. Topological ordering
2084 * of vertices satisfies the property that all edges will be from left to
2085 * right i.e., topology[i] can have an edge to topology[j], iff i<j)
2086 * If lock l1 in the dependent set of request is dependent (blocked by)
2087 * on lock l2 in topology but does not have a path to it, we add an edge
2088 * in the inner loop below.
2090 * We don't want to add an edge between l1 and l2 if there exists
2091 * already a path from l1 to l2, so care has to be taken for those vertices
2092 * that have two paths to 'request'. These vertices are referred to here
2095 * The barriers has to be found (those vertex that originally had two paths
2096 * to request) because otherwise we may end up adding edges unnecessarily
2097 * to vertices in topology, and thus barrier vertices can have an edge
2098 * to a vertex in topology as well a path to it.
2102 flk_recompute_dependencies(lock_descriptor_t
*request
,
2103 lock_descriptor_t
**topology
, int nvertex
, int update_graph
)
2105 lock_descriptor_t
*vertex
, *lock
;
2106 graph_t
*gp
= request
->l_graph
;
2108 int barrier_found
= 0;
2110 lock_descriptor_t
*vertex_stack
;
2112 STACK_INIT(vertex_stack
);
2114 ASSERT(MUTEX_HELD(&gp
->gp_mutex
));
2117 flk_graph_uncolor(request
->l_graph
);
2118 barrier_found
= flk_find_barriers(request
);
2119 request
->l_state
|= RECOMPUTE_DONE
;
2121 STACK_PUSH(vertex_stack
, request
, l_stack
);
2122 request
->l_sedge
= FIRST_IN(request
);
2125 while ((vertex
= STACK_TOP(vertex_stack
)) != NULL
) {
2126 if (vertex
->l_state
& RECOMPUTE_DONE
) {
2130 if (IS_BARRIER(vertex
)) {
2131 /* decrement the barrier count */
2132 if (vertex
->l_index
) {
2134 /* this guy will be pushed again anyway ? */
2135 STACK_POP(vertex_stack
, l_stack
);
2136 if (vertex
->l_index
== 0) {
2138 * barrier is over we can recompute
2139 * dependencies for this lock in the
2142 vertex
->l_state
&= ~BARRIER_LOCK
;
2147 vertex
->l_state
|= RECOMPUTE_DONE
;
2148 flk_graph_uncolor(gp
);
2149 count
= flk_color_reachables(vertex
);
2150 for (i
= 0; i
< nvertex
; i
++) {
2154 if (BLOCKS(lock
, vertex
)) {
2155 (void) flk_add_edge(vertex
, lock
,
2156 NO_CHECK_CYCLE
, update_graph
);
2159 count
+= flk_color_reachables(lock
);
2165 if (count
== nvertex
||
2166 vertex
->l_sedge
== HEAD(vertex
)) {
2167 /* prune the tree below this */
2168 STACK_POP(vertex_stack
, l_stack
);
2169 vertex
->l_state
&= ~RECOMPUTE_DONE
;
2170 /* update the barrier locks below this! */
2171 if (vertex
->l_sedge
!= HEAD(vertex
) && barrier_found
) {
2172 flk_graph_uncolor(gp
);
2173 flk_update_barriers(vertex
);
2178 ep
= vertex
->l_sedge
;
2179 lock
= ep
->from_vertex
;
2180 STACK_PUSH(vertex_stack
, lock
, l_stack
);
2181 lock
->l_sedge
= FIRST_IN(lock
);
2182 vertex
->l_sedge
= NEXT_IN(ep
);
2188 * Color all reachable vertices from vertex that belongs to topology (here
2189 * those that have RECOMPUTE_LOCK set in their state) and yet uncolored.
2191 * Note: we need to use a different stack_link l_stack1 because this is
2192 * called from flk_recompute_dependencies() that already uses a stack with
2193 * l_stack as stack_link.
2197 flk_color_reachables(lock_descriptor_t
*vertex
)
2199 lock_descriptor_t
*ver
, *lock
;
2202 lock_descriptor_t
*vertex_stack
;
2204 STACK_INIT(vertex_stack
);
2206 STACK_PUSH(vertex_stack
, vertex
, l_stack1
);
2208 while ((ver
= STACK_TOP(vertex_stack
)) != NULL
) {
2210 STACK_POP(vertex_stack
, l_stack1
);
2211 for (ep
= FIRST_ADJ(ver
); ep
!= HEAD(ver
);
2212 ep
= NEXT_ADJ(ep
)) {
2213 lock
= ep
->to_vertex
;
2217 if (IS_RECOMPUTE(lock
))
2219 STACK_PUSH(vertex_stack
, lock
, l_stack1
);
2227 * Called from flk_recompute_dependencies() this routine decrements
2228 * the barrier count of barrier vertices that are reachable from lock.
2232 flk_update_barriers(lock_descriptor_t
*lock
)
2234 lock_descriptor_t
*vertex
, *lck
;
2236 lock_descriptor_t
*vertex_stack
;
2238 STACK_INIT(vertex_stack
);
2240 STACK_PUSH(vertex_stack
, lock
, l_stack1
);
2242 while ((vertex
= STACK_TOP(vertex_stack
)) != NULL
) {
2243 STACK_POP(vertex_stack
, l_stack1
);
2244 for (ep
= FIRST_IN(vertex
); ep
!= HEAD(vertex
);
2246 lck
= ep
->from_vertex
;
2248 if (IS_BARRIER(lck
)) {
2249 ASSERT(lck
->l_index
> 0);
2251 if (lck
->l_index
== 0)
2252 lck
->l_state
&= ~BARRIER_LOCK
;
2257 if (IS_BARRIER(lck
)) {
2258 ASSERT(lck
->l_index
> 0);
2260 if (lck
->l_index
== 0)
2261 lck
->l_state
&= ~BARRIER_LOCK
;
2263 STACK_PUSH(vertex_stack
, lck
, l_stack1
);
2269 * Finds all vertices that are reachable from 'lock' more than once and
2270 * mark them as barrier vertices and increment their barrier count.
2271 * The barrier count is one minus the total number of paths from lock
2276 flk_find_barriers(lock_descriptor_t
*lock
)
2278 lock_descriptor_t
*vertex
, *lck
;
2281 lock_descriptor_t
*vertex_stack
;
2283 STACK_INIT(vertex_stack
);
2285 STACK_PUSH(vertex_stack
, lock
, l_stack1
);
2287 while ((vertex
= STACK_TOP(vertex_stack
)) != NULL
) {
2288 STACK_POP(vertex_stack
, l_stack1
);
2289 for (ep
= FIRST_IN(vertex
); ep
!= HEAD(vertex
);
2291 lck
= ep
->from_vertex
;
2293 /* this is a barrier */
2294 lck
->l_state
|= BARRIER_LOCK
;
2295 /* index will have barrier count */
2303 STACK_PUSH(vertex_stack
, lck
, l_stack1
);
2310 * Finds the first lock that is mainly responsible for blocking this
2311 * request. If there is no such lock, request->l_flock.l_type is set to
2312 * F_UNLCK. Otherwise, request->l_flock is filled in with the particulars
2313 * of the blocking lock.
2315 * Note: It is possible a request is blocked by a sleeping lock because
2316 * of the fairness policy used in flk_process_request() to construct the
2317 * dependencies. (see comments before flk_process_request()).
2321 flk_get_first_blocking_lock(lock_descriptor_t
*request
)
2323 graph_t
*gp
= request
->l_graph
;
2324 vnode_t
*vp
= request
->l_vnode
;
2325 lock_descriptor_t
*lock
, *blocker
;
2327 ASSERT(MUTEX_HELD(&gp
->gp_mutex
));
2329 SET_LOCK_TO_FIRST_ACTIVE_VP(gp
, lock
, vp
);
2333 if (BLOCKS(lock
, request
)) {
2337 lock
= lock
->l_next
;
2338 } while (lock
->l_vnode
== vp
);
2341 if (blocker
== NULL
&& request
->l_flock
.l_type
== F_RDLCK
) {
2343 * No active lock is blocking this request, but if a read
2344 * lock is requested, it may also get blocked by a waiting
2345 * writer. So search all sleeping locks and see if there is
2348 SET_LOCK_TO_FIRST_SLEEP_VP(gp
, lock
, vp
);
2351 if (BLOCKS(lock
, request
)) {
2355 lock
= lock
->l_next
;
2356 } while (lock
->l_vnode
== vp
);
2361 report_blocker(blocker
, request
);
2363 request
->l_flock
.l_type
= F_UNLCK
;
2367 * Get the graph_t structure associated with a vnode.
2368 * If 'initialize' is non-zero, and the graph_t structure for this vnode has
2369 * not yet been initialized, then a new element is allocated and returned.
2372 flk_get_lock_graph(vnode_t
*vp
, int initialize
)
2375 graph_t
*gp_alloc
= NULL
;
2376 int index
= HASH_INDEX(vp
);
2378 if (initialize
== FLK_USE_GRAPH
) {
2379 mutex_enter(&flock_lock
);
2380 gp
= lock_graph
[index
];
2381 mutex_exit(&flock_lock
);
2385 ASSERT(initialize
== FLK_INIT_GRAPH
);
2387 if (lock_graph
[index
] == NULL
) {
2389 gp_alloc
= kmem_zalloc(sizeof (graph_t
), KM_SLEEP
);
2391 /* Initialize the graph */
2393 gp_alloc
->active_locks
.l_next
=
2394 gp_alloc
->active_locks
.l_prev
=
2395 (lock_descriptor_t
*)ACTIVE_HEAD(gp_alloc
);
2396 gp_alloc
->sleeping_locks
.l_next
=
2397 gp_alloc
->sleeping_locks
.l_prev
=
2398 (lock_descriptor_t
*)SLEEPING_HEAD(gp_alloc
);
2399 gp_alloc
->index
= index
;
2400 mutex_init(&gp_alloc
->gp_mutex
, NULL
, MUTEX_DEFAULT
, NULL
);
2403 mutex_enter(&flock_lock
);
2405 gp
= lock_graph
[index
];
2407 /* Recheck the value within flock_lock */
2409 struct flock_globals
*fg
;
2411 /* We must have previously allocated the graph_t structure */
2412 ASSERT(gp_alloc
!= NULL
);
2413 lock_graph
[index
] = gp
= gp_alloc
;
2415 * The lockmgr status is only needed if KLM is loaded.
2417 if (flock_zone_key
!= ZONE_KEY_UNINITIALIZED
) {
2418 fg
= flk_get_globals();
2419 fg
->lockmgr_status
[index
] = fg
->flk_lockmgr_status
;
2423 mutex_exit(&flock_lock
);
2425 if ((gp_alloc
!= NULL
) && (gp
!= gp_alloc
)) {
2426 /* There was a race to allocate the graph_t and we lost */
2427 mutex_destroy(&gp_alloc
->gp_mutex
);
2428 kmem_free(gp_alloc
, sizeof (graph_t
));
2435 * Determine whether there are any locks for the given vnode with a remote
2436 * sysid. Returns zero if not, non-zero if there are.
2438 * Note that the return value from this function is potentially invalid
2439 * once it has been returned. The caller is responsible for providing its
2440 * own synchronization mechanism to ensure that the return value is useful
2441 * (e.g., see nfs_lockcompletion()).
2444 flk_has_remote_locks(vnode_t
*vp
)
2446 lock_descriptor_t
*lock
;
2450 gp
= flk_get_lock_graph(vp
, FLK_USE_GRAPH
);
2455 mutex_enter(&gp
->gp_mutex
);
2457 SET_LOCK_TO_FIRST_ACTIVE_VP(gp
, lock
, vp
);
2460 while (lock
->l_vnode
== vp
) {
2461 if (IS_REMOTE(lock
)) {
2465 lock
= lock
->l_next
;
2469 SET_LOCK_TO_FIRST_SLEEP_VP(gp
, lock
, vp
);
2472 while (lock
->l_vnode
== vp
) {
2473 if (IS_REMOTE(lock
)) {
2477 lock
= lock
->l_next
;
2482 mutex_exit(&gp
->gp_mutex
);
2487 * Determine whether there are any locks for the given vnode with a remote
2488 * sysid matching given sysid.
2489 * Used by the new (open source) NFS Lock Manager (NLM)
2492 flk_has_remote_locks_for_sysid(vnode_t
*vp
, int sysid
)
2494 lock_descriptor_t
*lock
;
2501 gp
= flk_get_lock_graph(vp
, FLK_USE_GRAPH
);
2506 mutex_enter(&gp
->gp_mutex
);
2508 SET_LOCK_TO_FIRST_ACTIVE_VP(gp
, lock
, vp
);
2511 while (lock
->l_vnode
== vp
) {
2512 if (lock
->l_flock
.l_sysid
== sysid
) {
2516 lock
= lock
->l_next
;
2520 SET_LOCK_TO_FIRST_SLEEP_VP(gp
, lock
, vp
);
2523 while (lock
->l_vnode
== vp
) {
2524 if (lock
->l_flock
.l_sysid
== sysid
) {
2528 lock
= lock
->l_next
;
2533 mutex_exit(&gp
->gp_mutex
);
2538 * Determine if there are any locks owned by the given sysid.
2539 * Returns zero if not, non-zero if there are. Note that this return code
2540 * could be derived from flk_get_{sleeping,active}_locks, but this routine
2541 * avoids all the memory allocations of those routines.
2543 * This routine has the same synchronization issues as
2544 * flk_has_remote_locks.
2548 flk_sysid_has_locks(int sysid
, int lck_type
)
2551 lock_descriptor_t
*lock
;
2555 for (i
= 0; i
< HASH_SIZE
&& !has_locks
; i
++) {
2556 mutex_enter(&flock_lock
);
2558 mutex_exit(&flock_lock
);
2563 mutex_enter(&gp
->gp_mutex
);
2565 if (lck_type
& FLK_QUERY_ACTIVE
) {
2566 for (lock
= ACTIVE_HEAD(gp
)->l_next
;
2567 lock
!= ACTIVE_HEAD(gp
) && !has_locks
;
2568 lock
= lock
->l_next
) {
2569 if (lock
->l_flock
.l_sysid
== sysid
)
2574 if (lck_type
& FLK_QUERY_SLEEPING
) {
2575 for (lock
= SLEEPING_HEAD(gp
)->l_next
;
2576 lock
!= SLEEPING_HEAD(gp
) && !has_locks
;
2577 lock
= lock
->l_next
) {
2578 if (lock
->l_flock
.l_sysid
== sysid
)
2582 mutex_exit(&gp
->gp_mutex
);
2590 * Delete all locks in the system that belongs to the sysid of the request.
2594 flk_delete_locks_by_sysid(lock_descriptor_t
*request
)
2596 int sysid
= request
->l_flock
.l_sysid
;
2597 lock_descriptor_t
*lock
, *nlock
;
2601 ASSERT(MUTEX_HELD(&request
->l_graph
->gp_mutex
));
2604 mutex_exit(&request
->l_graph
->gp_mutex
);
2606 for (i
= 0; i
< HASH_SIZE
; i
++) {
2607 mutex_enter(&flock_lock
);
2609 mutex_exit(&flock_lock
);
2614 mutex_enter(&gp
->gp_mutex
);
2616 /* signal sleeping requests so that they bail out */
2617 lock
= SLEEPING_HEAD(gp
)->l_next
;
2618 while (lock
!= SLEEPING_HEAD(gp
)) {
2619 nlock
= lock
->l_next
;
2620 if (lock
->l_flock
.l_sysid
== sysid
) {
2621 INTERRUPT_WAKEUP(lock
);
2626 /* delete active locks */
2627 lock
= ACTIVE_HEAD(gp
)->l_next
;
2628 while (lock
!= ACTIVE_HEAD(gp
)) {
2629 nlock
= lock
->l_next
;
2630 if (lock
->l_flock
.l_sysid
== sysid
) {
2631 flk_delete_active_lock(lock
, 0);
2632 flk_wakeup(lock
, 1);
2633 flk_free_lock(lock
);
2637 mutex_exit(&gp
->gp_mutex
);
2640 mutex_enter(&request
->l_graph
->gp_mutex
);
2644 * Search for a sleeping lock manager lock which matches exactly this lock
2645 * request; if one is found, fake a signal to cancel it.
2647 * Return 1 if a matching lock was found, 0 otherwise.
2651 flk_canceled(lock_descriptor_t
*request
)
2653 lock_descriptor_t
*lock
, *nlock
;
2654 graph_t
*gp
= request
->l_graph
;
2655 vnode_t
*vp
= request
->l_vnode
;
2657 ASSERT(MUTEX_HELD(&gp
->gp_mutex
));
2658 ASSERT(IS_LOCKMGR(request
));
2659 SET_LOCK_TO_FIRST_SLEEP_VP(gp
, lock
, vp
);
2662 while (lock
->l_vnode
== vp
) {
2663 nlock
= lock
->l_next
;
2664 if (SAME_OWNER(lock
, request
) &&
2665 lock
->l_start
== request
->l_start
&&
2666 lock
->l_end
== request
->l_end
) {
2667 INTERRUPT_WAKEUP(lock
);
2677 * Remove all non-OFD locks for the vnode belonging to the given pid and sysid.
2678 * That is, since OFD locks are pid-less we'll never match on the incoming
2679 * pid. OFD locks are removed earlier in the close() path via closef() and
2683 cleanlocks(vnode_t
*vp
, pid_t pid
, int sysid
)
2686 lock_descriptor_t
*lock
, *nlock
;
2687 lock_descriptor_t
*link_stack
;
2689 STACK_INIT(link_stack
);
2691 gp
= flk_get_lock_graph(vp
, FLK_USE_GRAPH
);
2695 mutex_enter(&gp
->gp_mutex
);
2697 CHECK_SLEEPING_LOCKS(gp
);
2698 CHECK_ACTIVE_LOCKS(gp
);
2700 SET_LOCK_TO_FIRST_SLEEP_VP(gp
, lock
, vp
);
2704 nlock
= lock
->l_next
;
2705 if ((lock
->l_flock
.l_pid
== pid
||
2707 lock
->l_flock
.l_sysid
== sysid
) {
2708 CANCEL_WAKEUP(lock
);
2711 } while (lock
->l_vnode
== vp
);
2714 SET_LOCK_TO_FIRST_ACTIVE_VP(gp
, lock
, vp
);
2718 nlock
= lock
->l_next
;
2719 if ((lock
->l_flock
.l_pid
== pid
||
2721 lock
->l_flock
.l_sysid
== sysid
) {
2722 flk_delete_active_lock(lock
, 0);
2723 STACK_PUSH(link_stack
, lock
, l_stack
);
2726 } while (lock
->l_vnode
== vp
);
2729 while ((lock
= STACK_TOP(link_stack
)) != NULL
) {
2730 STACK_POP(link_stack
, l_stack
);
2731 flk_wakeup(lock
, 1);
2732 flk_free_lock(lock
);
2735 CHECK_SLEEPING_LOCKS(gp
);
2736 CHECK_ACTIVE_LOCKS(gp
);
2737 CHECK_OWNER_LOCKS(gp
, pid
, sysid
, vp
);
2738 mutex_exit(&gp
->gp_mutex
);
2743 * Called from 'fs' read and write routines for files that have mandatory
2748 chklock(struct vnode
*vp
, int iomode
, uoff_t offset
, ssize_t len
, int fmode
,
2749 caller_context_t
*ct
)
2755 bf
.l_type
= (iomode
& FWRITE
) ? F_WRLCK
: F_RDLCK
;
2757 bf
.l_start
= offset
;
2760 bf
.l_pid
= curproc
->p_pid
;
2763 bf
.l_pid
= ct
->cc_pid
;
2764 bf
.l_sysid
= ct
->cc_sysid
;
2766 i
= (fmode
& (FNDELAY
|FNONBLOCK
)) ? INOFLCK
: INOFLCK
|SLPFLCK
;
2767 if ((i
= reclock(vp
, &bf
, i
, 0, offset
, NULL
)) != 0 ||
2768 bf
.l_type
!= F_UNLCK
)
2769 error
= i
? i
: EAGAIN
;
2774 * convoff - converts the given data (start, whence) to the
2778 convoff(struct vnode
*vp
, struct flock64
*lckdat
, int whence
, offset_t offset
)
2783 if ((lckdat
->l_whence
== 2) || (whence
== 2)) {
2784 vattr
.va_mask
= AT_SIZE
;
2785 if (error
= fop_getattr(vp
, &vattr
, 0, CRED(), NULL
))
2789 switch (lckdat
->l_whence
) {
2791 lckdat
->l_start
+= offset
;
2794 lckdat
->l_start
+= vattr
.va_size
;
2802 if (lckdat
->l_start
< 0)
2807 lckdat
->l_start
-= offset
;
2810 lckdat
->l_start
-= vattr
.va_size
;
2818 lckdat
->l_whence
= (short)whence
;
2823 /* proc_graph function definitions */
2826 * Function checks for deadlock due to the new 'lock'. If deadlock found
2827 * edges of this lock are freed and returned.
2831 flk_check_deadlock(lock_descriptor_t
*lock
)
2833 proc_vertex_t
*start_vertex
, *pvertex
;
2834 proc_vertex_t
*dvertex
;
2835 proc_edge_t
*pep
, *ppep
;
2837 proc_vertex_t
*process_stack
;
2840 * OFD style locks are not associated with any process so there is
2841 * no proc graph for these. Thus we cannot, and do not, do deadlock
2844 if (lock
->l_ofd
!= NULL
)
2847 STACK_INIT(process_stack
);
2849 mutex_enter(&flock_lock
);
2850 start_vertex
= flk_get_proc_vertex(lock
);
2851 ASSERT(start_vertex
!= NULL
);
2853 /* construct the edges from this process to other processes */
2855 ep
= FIRST_ADJ(lock
);
2856 while (ep
!= HEAD(lock
)) {
2857 proc_vertex_t
*adj_proc
;
2859 adj_proc
= flk_get_proc_vertex(ep
->to_vertex
);
2860 for (pep
= start_vertex
->edge
; pep
!= NULL
; pep
= pep
->next
) {
2861 if (pep
->to_proc
== adj_proc
) {
2862 ASSERT(pep
->refcount
);
2868 pep
= flk_get_proc_edge();
2869 pep
->to_proc
= adj_proc
;
2871 adj_proc
->incount
++;
2872 pep
->next
= start_vertex
->edge
;
2873 start_vertex
->edge
= pep
;
2878 ep
= FIRST_IN(lock
);
2880 while (ep
!= HEAD(lock
)) {
2881 proc_vertex_t
*in_proc
;
2883 in_proc
= flk_get_proc_vertex(ep
->from_vertex
);
2885 for (pep
= in_proc
->edge
; pep
!= NULL
; pep
= pep
->next
) {
2886 if (pep
->to_proc
== start_vertex
) {
2887 ASSERT(pep
->refcount
);
2893 pep
= flk_get_proc_edge();
2894 pep
->to_proc
= start_vertex
;
2896 start_vertex
->incount
++;
2897 pep
->next
= in_proc
->edge
;
2898 in_proc
->edge
= pep
;
2903 if (start_vertex
->incount
== 0) {
2904 mutex_exit(&flock_lock
);
2908 flk_proc_graph_uncolor();
2910 start_vertex
->p_sedge
= start_vertex
->edge
;
2912 STACK_PUSH(process_stack
, start_vertex
, p_stack
);
2914 while ((pvertex
= STACK_TOP(process_stack
)) != NULL
) {
2915 for (pep
= pvertex
->p_sedge
; pep
!= NULL
; pep
= pep
->next
) {
2916 dvertex
= pep
->to_proc
;
2917 if (!PROC_ARRIVED(dvertex
)) {
2918 STACK_PUSH(process_stack
, dvertex
, p_stack
);
2919 dvertex
->p_sedge
= dvertex
->edge
;
2920 PROC_ARRIVE(pvertex
);
2921 pvertex
->p_sedge
= pep
->next
;
2924 if (!PROC_DEPARTED(dvertex
))
2928 PROC_DEPART(pvertex
);
2929 STACK_POP(process_stack
, p_stack
);
2932 mutex_exit(&flock_lock
);
2937 /* we remove all lock edges and proc edges */
2939 ep
= FIRST_ADJ(lock
);
2940 while (ep
!= HEAD(lock
)) {
2941 proc_vertex_t
*adj_proc
;
2942 adj_proc
= flk_get_proc_vertex(ep
->to_vertex
);
2945 ADJ_LIST_REMOVE(ep
);
2947 ppep
= start_vertex
->edge
;
2948 for (pep
= start_vertex
->edge
; pep
!= NULL
; ppep
= pep
,
2950 if (pep
->to_proc
== adj_proc
) {
2952 if (pep
->refcount
== 0) {
2954 start_vertex
->edge
= pep
->next
;
2956 ppep
->next
= pep
->next
;
2958 adj_proc
->incount
--;
2959 flk_proc_release(adj_proc
);
2960 flk_free_proc_edge(pep
);
2967 ep
= FIRST_IN(lock
);
2968 while (ep
!= HEAD(lock
)) {
2969 proc_vertex_t
*in_proc
;
2970 in_proc
= flk_get_proc_vertex(ep
->from_vertex
);
2973 ADJ_LIST_REMOVE(ep
);
2975 ppep
= in_proc
->edge
;
2976 for (pep
= in_proc
->edge
; pep
!= NULL
; ppep
= pep
,
2978 if (pep
->to_proc
== start_vertex
) {
2980 if (pep
->refcount
== 0) {
2982 in_proc
->edge
= pep
->next
;
2984 ppep
->next
= pep
->next
;
2986 start_vertex
->incount
--;
2987 flk_proc_release(in_proc
);
2988 flk_free_proc_edge(pep
);
2995 flk_proc_release(start_vertex
);
2996 mutex_exit(&flock_lock
);
3001 * Get a proc vertex. If lock's pvertex value gets a correct proc vertex
3002 * from the list we return that, otherwise we allocate one. If necessary,
3003 * we grow the list of vertices also.
3006 static proc_vertex_t
*
3007 flk_get_proc_vertex(lock_descriptor_t
*lock
)
3011 proc_vertex_t
**palloc
;
3013 ASSERT(MUTEX_HELD(&flock_lock
));
3014 if (lock
->pvertex
!= -1) {
3015 ASSERT(lock
->pvertex
>= 0);
3016 pv
= pgraph
.proc
[lock
->pvertex
];
3017 if (pv
!= NULL
&& PROC_SAME_OWNER(lock
, pv
)) {
3021 for (i
= 0; i
< pgraph
.gcount
; i
++) {
3022 pv
= pgraph
.proc
[i
];
3023 if (pv
!= NULL
&& PROC_SAME_OWNER(lock
, pv
)) {
3024 lock
->pvertex
= pv
->index
= i
;
3028 pv
= kmem_zalloc(sizeof (struct proc_vertex
), KM_SLEEP
);
3029 pv
->pid
= lock
->l_flock
.l_pid
;
3030 pv
->sysid
= lock
->l_flock
.l_sysid
;
3031 flk_proc_vertex_allocs
++;
3032 if (pgraph
.free
!= 0) {
3033 for (i
= 0; i
< pgraph
.gcount
; i
++) {
3034 if (pgraph
.proc
[i
] == NULL
) {
3035 pgraph
.proc
[i
] = pv
;
3036 lock
->pvertex
= pv
->index
= i
;
3042 palloc
= kmem_zalloc((pgraph
.gcount
+ PROC_CHUNK
) *
3043 sizeof (proc_vertex_t
*), KM_SLEEP
);
3046 bcopy(pgraph
.proc
, palloc
,
3047 pgraph
.gcount
* sizeof (proc_vertex_t
*));
3049 kmem_free(pgraph
.proc
,
3050 pgraph
.gcount
* sizeof (proc_vertex_t
*));
3052 pgraph
.proc
= palloc
;
3053 pgraph
.free
+= (PROC_CHUNK
- 1);
3054 pv
->index
= lock
->pvertex
= pgraph
.gcount
;
3055 pgraph
.gcount
+= PROC_CHUNK
;
3056 pgraph
.proc
[pv
->index
] = pv
;
3061 * Allocate a proc edge.
3064 static proc_edge_t
*
3069 pep
= kmem_zalloc(sizeof (proc_edge_t
), KM_SLEEP
);
3070 flk_proc_edge_allocs
++;
3075 * Free the proc edge. Called whenever its reference count goes to zero.
3079 flk_free_proc_edge(proc_edge_t
*pep
)
3081 ASSERT(pep
->refcount
== 0);
3082 kmem_free((void *)pep
, sizeof (proc_edge_t
));
3083 flk_proc_edge_frees
++;
3087 * Color the graph explicitly done only when the mark value hits max value.
3091 flk_proc_graph_uncolor()
3095 if (pgraph
.mark
== UINT_MAX
) {
3096 for (i
= 0; i
< pgraph
.gcount
; i
++)
3097 if (pgraph
.proc
[i
] != NULL
) {
3098 pgraph
.proc
[i
]->atime
= 0;
3099 pgraph
.proc
[i
]->dtime
= 0;
3108 * Release the proc vertex iff both there are no in edges and out edges
3112 flk_proc_release(proc_vertex_t
*proc
)
3114 ASSERT(MUTEX_HELD(&flock_lock
));
3115 if (proc
->edge
== NULL
&& proc
->incount
== 0) {
3116 pgraph
.proc
[proc
->index
] = NULL
;
3118 kmem_free(proc
, sizeof (proc_vertex_t
));
3119 flk_proc_vertex_frees
++;
3124 * Updates process graph to reflect change in a lock_graph.
3125 * Note: We should call this function only after we have a correctly
3126 * recomputed lock graph. Otherwise we might miss a deadlock detection.
3127 * eg: in function flk_relation() we call this function after flk_recompute_
3128 * dependencies() otherwise if a process tries to lock a vnode hashed
3129 * into another graph it might sleep for ever.
3133 flk_update_proc_graph(edge_t
*ep
, int delete)
3135 proc_vertex_t
*toproc
, *fromproc
;
3136 proc_edge_t
*pep
, *prevpep
;
3138 mutex_enter(&flock_lock
);
3141 * OFD style locks are not associated with any process so there is
3142 * no proc graph for these.
3144 if (ep
->from_vertex
->l_ofd
!= NULL
) {
3145 mutex_exit(&flock_lock
);
3149 toproc
= flk_get_proc_vertex(ep
->to_vertex
);
3150 fromproc
= flk_get_proc_vertex(ep
->from_vertex
);
3154 pep
= prevpep
= fromproc
->edge
;
3156 ASSERT(pep
!= NULL
);
3157 while (pep
!= NULL
) {
3158 if (pep
->to_proc
== toproc
) {
3159 ASSERT(pep
->refcount
> 0);
3161 if (pep
->refcount
== 0) {
3162 if (pep
== prevpep
) {
3163 fromproc
->edge
= pep
->next
;
3165 prevpep
->next
= pep
->next
;
3168 flk_proc_release(toproc
);
3169 flk_free_proc_edge(pep
);
3176 flk_proc_release(fromproc
);
3177 mutex_exit(&flock_lock
);
3181 pep
= fromproc
->edge
;
3183 while (pep
!= NULL
) {
3184 if (pep
->to_proc
== toproc
) {
3185 ASSERT(pep
->refcount
> 0);
3192 pep
= flk_get_proc_edge();
3193 pep
->to_proc
= toproc
;
3196 pep
->next
= fromproc
->edge
;
3197 fromproc
->edge
= pep
;
3199 mutex_exit(&flock_lock
);
3203 * Set the control status for lock manager requests.
3205 * Note that when this routine is called with FLK_WAKEUP_SLEEPERS, there
3206 * may be locks requests that have gotten started but not finished. In
3207 * particular, there may be blocking requests that are in the callback code
3208 * before sleeping (so they're not holding the lock for the graph). If
3209 * such a thread reacquires the graph's lock (to go to sleep) after
3210 * flk_lockmgr_status is set to a non-up value, it will notice the status
3211 * and bail out. If the request gets granted before the thread can check
3212 * flk_lockmgr_status, let it continue normally. It will get flushed when
3213 * we are called with FLK_LOCKMGR_DOWN.
3217 flk_set_lockmgr_status(flk_lockmgr_status_t status
)
3221 struct flock_globals
*fg
;
3223 fg
= flk_get_globals();
3226 mutex_enter(&flock_lock
);
3227 fg
->flk_lockmgr_status
= status
;
3228 mutex_exit(&flock_lock
);
3231 * If the lock manager is coming back up, all that's needed is to
3232 * propagate this information to the graphs. If the lock manager
3233 * is going down, additional action is required, and each graph's
3234 * copy of the state is updated atomically with this other action.
3237 case FLK_LOCKMGR_UP
:
3238 for (i
= 0; i
< HASH_SIZE
; i
++) {
3239 mutex_enter(&flock_lock
);
3241 mutex_exit(&flock_lock
);
3244 mutex_enter(&gp
->gp_mutex
);
3245 fg
->lockmgr_status
[i
] = status
;
3246 mutex_exit(&gp
->gp_mutex
);
3249 case FLK_WAKEUP_SLEEPERS
:
3250 wakeup_sleeping_lockmgr_locks(fg
);
3252 case FLK_LOCKMGR_DOWN
:
3253 unlock_lockmgr_granted(fg
);
3256 panic("flk_set_lockmgr_status: bad status (%d)", status
);
3262 * This routine returns all the locks that are active or sleeping and are
3263 * associated with a particular set of identifiers. If lock_state != 0, then
3264 * only locks that match the lock_state are returned. If lock_state == 0, then
3265 * all locks are returned. If pid == NOPID, the pid is ignored. If
3266 * use_sysid is FALSE, then the sysid is ignored. If vp is NULL, then the
3267 * vnode pointer is ignored.
3269 * A list containing the vnode pointer and an flock structure
3270 * describing the lock is returned. Each element in the list is
3271 * dynamically allocated and must be freed by the caller. The
3272 * last item in the list is denoted by a NULL value in the ll_next
3275 * The vnode pointers returned are held. The caller is responsible
3276 * for releasing these. Note that the returned list is only a snapshot of
3277 * the current lock information, and that it is a snapshot of a moving
3278 * target (only one graph is locked at a time).
3282 get_lock_list(int list_type
, int lock_state
, int sysid
, boolean_t use_sysid
,
3283 pid_t pid
, const vnode_t
*vp
, zoneid_t zoneid
)
3285 lock_descriptor_t
*lock
;
3286 lock_descriptor_t
*graph_head
;
3287 locklist_t listhead
;
3288 locklist_t
*llheadp
;
3293 int first_index
; /* graph index */
3294 int num_indexes
; /* graph index */
3296 ASSERT((list_type
== FLK_ACTIVE_STATE
) ||
3297 (list_type
== FLK_SLEEPING_STATE
));
3300 * Get a pointer to something to use as a list head while building
3301 * the rest of the list.
3303 llheadp
= &listhead
;
3305 llheadp
->ll_next
= (locklist_t
*)NULL
;
3307 /* Figure out which graphs we want to look at. */
3310 num_indexes
= HASH_SIZE
;
3312 first_index
= HASH_INDEX(vp
);
3316 for (i
= first_index
; i
< first_index
+ num_indexes
; i
++) {
3317 mutex_enter(&flock_lock
);
3319 mutex_exit(&flock_lock
);
3324 mutex_enter(&gp
->gp_mutex
);
3325 graph_head
= (list_type
== FLK_ACTIVE_STATE
) ?
3326 ACTIVE_HEAD(gp
) : SLEEPING_HEAD(gp
);
3327 for (lock
= graph_head
->l_next
;
3329 lock
= lock
->l_next
) {
3330 if (use_sysid
&& lock
->l_flock
.l_sysid
!= sysid
)
3332 if (pid
!= NOPID
&& lock
->l_flock
.l_pid
!= pid
)
3334 if (vp
!= NULL
&& lock
->l_vnode
!= vp
)
3336 if (lock_state
&& !(lock_state
& lock
->l_state
))
3338 if (zoneid
!= lock
->l_zoneid
&& zoneid
!= ALL_ZONES
)
3341 * A matching lock was found. Allocate
3342 * space for a new locklist entry and fill
3345 llp
= kmem_alloc(sizeof (locklist_t
), KM_SLEEP
);
3346 lltp
->ll_next
= llp
;
3347 VN_HOLD(lock
->l_vnode
);
3348 llp
->ll_vp
= lock
->l_vnode
;
3349 create_flock(lock
, &(llp
->ll_flock
));
3350 llp
->ll_next
= (locklist_t
*)NULL
;
3353 mutex_exit(&gp
->gp_mutex
);
3356 llp
= llheadp
->ll_next
;
3361 * These two functions are simply interfaces to get_lock_list. They return
3362 * a list of sleeping or active locks for the given sysid and pid. See
3363 * get_lock_list for details.
3365 * In either case we don't particularly care to specify the zone of interest;
3366 * the sysid-space is global across zones, so the sysid will map to exactly one
3367 * zone, and we'll return information for that zone.
3371 flk_get_sleeping_locks(int sysid
, pid_t pid
)
3373 return (get_lock_list(FLK_SLEEPING_STATE
, 0, sysid
, B_TRUE
, pid
, NULL
,
3378 flk_get_active_locks(int sysid
, pid_t pid
)
3380 return (get_lock_list(FLK_ACTIVE_STATE
, 0, sysid
, B_TRUE
, pid
, NULL
,
3385 * Another interface to get_lock_list. This one returns all the active
3386 * locks for a given vnode. Again, see get_lock_list for details.
3388 * We don't need to specify which zone's locks we're interested in. The matter
3389 * would only be interesting if the vnode belonged to NFS, and NFS vnodes can't
3390 * be used by multiple zones, so the list of locks will all be from the right
3395 flk_active_locks_for_vp(const vnode_t
*vp
)
3397 return (get_lock_list(FLK_ACTIVE_STATE
, 0, 0, B_FALSE
, NOPID
, vp
,
3402 * Another interface to get_lock_list. This one returns all the active
3403 * nbmand locks for a given vnode. Again, see get_lock_list for details.
3405 * See the comment for flk_active_locks_for_vp() for why we don't care to
3406 * specify the particular zone of interest.
3409 flk_active_nbmand_locks_for_vp(const vnode_t
*vp
)
3411 return (get_lock_list(FLK_ACTIVE_STATE
, NBMAND_LOCK
, 0, B_FALSE
,
3412 NOPID
, vp
, ALL_ZONES
));
3416 * Another interface to get_lock_list. This one returns all the active
3417 * nbmand locks for a given pid. Again, see get_lock_list for details.
3419 * The zone doesn't need to be specified here; the locks held by a
3420 * particular process will either be local (ie, non-NFS) or from the zone
3421 * the process is executing in. This is because other parts of the system
3422 * ensure that an NFS vnode can't be used in a zone other than that in
3423 * which it was opened.
3426 flk_active_nbmand_locks(pid_t pid
)
3428 return (get_lock_list(FLK_ACTIVE_STATE
, NBMAND_LOCK
, 0, B_FALSE
,
3429 pid
, NULL
, ALL_ZONES
));
3433 * Free up all entries in the locklist.
3436 flk_free_locklist(locklist_t
*llp
)
3438 locklist_t
*next_llp
;
3441 next_llp
= llp
->ll_next
;
3442 VN_RELE(llp
->ll_vp
);
3443 kmem_free(llp
, sizeof (*llp
));
3449 * Find all sleeping lock manager requests and poke them.
3452 wakeup_sleeping_lockmgr_locks(struct flock_globals
*fg
)
3454 lock_descriptor_t
*lock
;
3455 lock_descriptor_t
*nlock
= NULL
; /* next lock */
3458 zoneid_t zoneid
= getzoneid();
3460 for (i
= 0; i
< HASH_SIZE
; i
++) {
3461 mutex_enter(&flock_lock
);
3463 mutex_exit(&flock_lock
);
3468 mutex_enter(&gp
->gp_mutex
);
3469 fg
->lockmgr_status
[i
] = FLK_WAKEUP_SLEEPERS
;
3470 for (lock
= SLEEPING_HEAD(gp
)->l_next
;
3471 lock
!= SLEEPING_HEAD(gp
);
3473 nlock
= lock
->l_next
;
3474 if (IS_LOCKMGR(lock
) && lock
->l_zoneid
== zoneid
) {
3475 INTERRUPT_WAKEUP(lock
);
3478 mutex_exit(&gp
->gp_mutex
);
3484 * Find all active (granted) lock manager locks and release them.
3487 unlock_lockmgr_granted(struct flock_globals
*fg
)
3489 lock_descriptor_t
*lock
;
3490 lock_descriptor_t
*nlock
= NULL
; /* next lock */
3493 zoneid_t zoneid
= getzoneid();
3495 for (i
= 0; i
< HASH_SIZE
; i
++) {
3496 mutex_enter(&flock_lock
);
3498 mutex_exit(&flock_lock
);
3503 mutex_enter(&gp
->gp_mutex
);
3504 fg
->lockmgr_status
[i
] = FLK_LOCKMGR_DOWN
;
3505 for (lock
= ACTIVE_HEAD(gp
)->l_next
;
3506 lock
!= ACTIVE_HEAD(gp
);
3508 nlock
= lock
->l_next
;
3509 if (IS_LOCKMGR(lock
) && lock
->l_zoneid
== zoneid
) {
3510 ASSERT(IS_ACTIVE(lock
));
3511 flk_delete_active_lock(lock
, 0);
3512 flk_wakeup(lock
, 1);
3513 flk_free_lock(lock
);
3516 mutex_exit(&gp
->gp_mutex
);
3522 * Wait until a lock is granted, cancelled, or interrupted.
3526 wait_for_lock(lock_descriptor_t
*request
)
3528 graph_t
*gp
= request
->l_graph
;
3530 ASSERT(MUTEX_HELD(&gp
->gp_mutex
));
3532 while (!(IS_GRANTED(request
)) && !(IS_CANCELLED(request
)) &&
3533 !(IS_INTERRUPTED(request
))) {
3534 if (!cv_wait_sig(&request
->l_cv
, &gp
->gp_mutex
)) {
3535 flk_set_state(request
, FLK_INTERRUPTED_STATE
);
3536 request
->l_state
|= INTERRUPTED_LOCK
;
3542 * Create an flock structure from the existing lock information
3544 * This routine is used to create flock structures for the lock manager
3545 * to use in a reclaim request. Since the lock was originated on this
3546 * host, it must be conforming to UNIX semantics, so no checking is
3547 * done to make sure it falls within the lower half of the 32-bit range.
3551 create_flock(lock_descriptor_t
*lp
, flock64_t
*flp
)
3553 ASSERT(lp
->l_end
== MAX_U_OFFSET_T
|| lp
->l_end
<= MAXEND
);
3554 ASSERT(lp
->l_end
>= lp
->l_start
);
3556 flp
->l_type
= lp
->l_type
;
3558 flp
->l_start
= lp
->l_start
;
3559 flp
->l_len
= (lp
->l_end
== MAX_U_OFFSET_T
) ? 0 :
3560 (lp
->l_end
- lp
->l_start
+ 1);
3561 flp
->l_sysid
= lp
->l_flock
.l_sysid
;
3562 flp
->l_pid
= lp
->l_flock
.l_pid
;
3566 * Convert flock_t data describing a lock range into unsigned long starting
3567 * and ending points, which are put into lock_request. Returns 0 or an
3572 flk_convert_lock_data(vnode_t
*vp
, flock64_t
*flp
,
3573 uoff_t
*start
, uoff_t
*end
, offset_t offset
)
3579 * Determine the starting point of the request
3581 switch (flp
->l_whence
) {
3582 case 0: /* SEEK_SET */
3583 *start
= (uoff_t
)flp
->l_start
;
3585 case 1: /* SEEK_CUR */
3586 *start
= (uoff_t
)(flp
->l_start
+ offset
);
3588 case 2: /* SEEK_END */
3589 vattr
.va_mask
= AT_SIZE
;
3590 if (error
= fop_getattr(vp
, &vattr
, 0, CRED(), NULL
))
3592 *start
= (uoff_t
)(flp
->l_start
+ vattr
.va_size
);
3599 * Determine the range covered by the request.
3601 if (flp
->l_len
== 0)
3602 *end
= MAX_U_OFFSET_T
;
3603 else if ((offset_t
)flp
->l_len
> 0) {
3604 *end
= (uoff_t
)(*start
+ (flp
->l_len
- 1));
3607 * Negative length; why do we even allow this ?
3608 * Because this allows easy specification of
3609 * the last n bytes of the file.
3612 *start
+= (uoff_t
)flp
->l_len
;
3619 * Check the validity of lock data. This can used by the NFS
3620 * frlock routines to check data before contacting the server. The
3621 * server must support semantics that aren't as restrictive as
3622 * the UNIX API, so the NFS client is required to check.
3623 * The maximum is now passed in by the caller.
3627 flk_check_lock_data(uoff_t start
, uoff_t end
, offset_t max
)
3630 * The end (length) for local locking should never be greater
3631 * than MAXEND. However, the representation for
3632 * the entire file is MAX_U_OFFSET_T.
3634 if ((start
> max
) ||
3635 ((end
> max
) && (end
!= MAX_U_OFFSET_T
))) {
3645 * Fill in request->l_flock with information about the lock blocking the
3646 * request. The complexity here is that lock manager requests are allowed
3647 * to see into the upper part of the 32-bit address range, whereas local
3648 * requests are only allowed to see signed values.
3650 * What should be done when "blocker" is a lock manager lock that uses the
3651 * upper portion of the 32-bit range, but "request" is local? Since the
3652 * request has already been determined to have been blocked by the blocker,
3653 * at least some portion of "blocker" must be in the range of the request,
3654 * or the request extends to the end of file. For the first case, the
3655 * portion in the lower range is returned with the indication that it goes
3656 * "to EOF." For the second case, the last byte of the lower range is
3657 * returned with the indication that it goes "to EOF."
3661 report_blocker(lock_descriptor_t
*blocker
, lock_descriptor_t
*request
)
3663 flock64_t
*flrp
; /* l_flock portion of request */
3665 ASSERT(blocker
!= NULL
);
3667 flrp
= &request
->l_flock
;
3669 flrp
->l_type
= blocker
->l_type
;
3670 flrp
->l_pid
= blocker
->l_flock
.l_pid
;
3671 flrp
->l_sysid
= blocker
->l_flock
.l_sysid
;
3672 request
->l_ofd
= blocker
->l_ofd
;
3674 if (IS_LOCKMGR(request
)) {
3675 flrp
->l_start
= blocker
->l_start
;
3676 if (blocker
->l_end
== MAX_U_OFFSET_T
)
3679 flrp
->l_len
= blocker
->l_end
- blocker
->l_start
+ 1;
3681 if (blocker
->l_start
> MAXEND
) {
3682 flrp
->l_start
= MAXEND
;
3685 flrp
->l_start
= blocker
->l_start
;
3686 if (blocker
->l_end
== MAX_U_OFFSET_T
)
3689 flrp
->l_len
= blocker
->l_end
-
3690 blocker
->l_start
+ 1;
3696 * Return non-zero if the given I/O request conflicts with an active NBMAND
3698 * If svmand is non-zero, it means look at all active locks, not just NBMAND
3703 nbl_lock_conflict(vnode_t
*vp
, nbl_op_t op
, uoff_t offset
,
3704 ssize_t length
, int svmand
, caller_context_t
*ct
)
3708 lock_descriptor_t
*lock
;
3713 pid
= curproc
->p_pid
;
3717 sysid
= ct
->cc_sysid
;
3720 mutex_enter(&flock_lock
);
3721 gp
= lock_graph
[HASH_INDEX(vp
)];
3722 mutex_exit(&flock_lock
);
3726 mutex_enter(&gp
->gp_mutex
);
3727 SET_LOCK_TO_FIRST_ACTIVE_VP(gp
, lock
, vp
);
3729 for (; lock
&& lock
->l_vnode
== vp
; lock
= lock
->l_next
) {
3730 if ((svmand
|| (lock
->l_state
& NBMAND_LOCK
)) &&
3731 (lock
->l_flock
.l_sysid
!= sysid
||
3732 lock
->l_flock
.l_pid
!= pid
) &&
3733 lock_blocks_io(op
, offset
, length
,
3734 lock
->l_type
, lock
->l_start
, lock
->l_end
)) {
3739 mutex_exit(&gp
->gp_mutex
);
3745 * Return non-zero if the given I/O request conflicts with the given lock.
3749 lock_blocks_io(nbl_op_t op
, uoff_t offset
, ssize_t length
,
3750 int lock_type
, uoff_t lock_start
, uoff_t lock_end
)
3752 ASSERT(op
== NBL_READ
|| op
== NBL_WRITE
|| op
== NBL_READWRITE
);
3753 ASSERT(lock_type
== F_RDLCK
|| lock_type
== F_WRLCK
);
3755 if (op
== NBL_READ
&& lock_type
== F_RDLCK
)
3758 if (offset
<= lock_start
&& lock_start
< offset
+ length
)
3760 if (lock_start
<= offset
&& offset
<= lock_end
)
3768 check_active_locks(graph_t
*gp
)
3770 lock_descriptor_t
*lock
, *lock1
;
3773 for (lock
= ACTIVE_HEAD(gp
)->l_next
; lock
!= ACTIVE_HEAD(gp
);
3774 lock
= lock
->l_next
) {
3775 ASSERT(IS_ACTIVE(lock
));
3776 ASSERT(NOT_BLOCKED(lock
));
3777 ASSERT(!IS_BARRIER(lock
));
3779 ep
= FIRST_IN(lock
);
3781 while (ep
!= HEAD(lock
)) {
3782 ASSERT(IS_SLEEPING(ep
->from_vertex
));
3783 ASSERT(!NOT_BLOCKED(ep
->from_vertex
));
3787 for (lock1
= lock
->l_next
; lock1
!= ACTIVE_HEAD(gp
);
3788 lock1
= lock1
->l_next
) {
3789 if (lock1
->l_vnode
== lock
->l_vnode
) {
3790 if (BLOCKS(lock1
, lock
)) {
3792 "active lock %p blocks %p",
3793 (void *)lock1
, (void *)lock
);
3794 } else if (BLOCKS(lock
, lock1
)) {
3796 "active lock %p blocks %p",
3797 (void *)lock
, (void *)lock1
);
3805 * Effect: This functions checks to see if the transition from 'old_state' to
3806 * 'new_state' is a valid one. It returns 0 if the transition is valid
3807 * and 1 if it is not.
3808 * For a map of valid transitions, see sys/flock_impl.h
3811 check_lock_transition(int old_state
, int new_state
)
3813 switch (old_state
) {
3814 case FLK_INITIAL_STATE
:
3815 if ((new_state
== FLK_START_STATE
) ||
3816 (new_state
== FLK_SLEEPING_STATE
) ||
3817 (new_state
== FLK_ACTIVE_STATE
) ||
3818 (new_state
== FLK_DEAD_STATE
)) {
3823 case FLK_START_STATE
:
3824 if ((new_state
== FLK_ACTIVE_STATE
) ||
3825 (new_state
== FLK_DEAD_STATE
)) {
3830 case FLK_ACTIVE_STATE
:
3831 if (new_state
== FLK_DEAD_STATE
) {
3836 case FLK_SLEEPING_STATE
:
3837 if ((new_state
== FLK_GRANTED_STATE
) ||
3838 (new_state
== FLK_INTERRUPTED_STATE
) ||
3839 (new_state
== FLK_CANCELLED_STATE
)) {
3844 case FLK_GRANTED_STATE
:
3845 if ((new_state
== FLK_START_STATE
) ||
3846 (new_state
== FLK_INTERRUPTED_STATE
) ||
3847 (new_state
== FLK_CANCELLED_STATE
)) {
3852 case FLK_CANCELLED_STATE
:
3853 if ((new_state
== FLK_INTERRUPTED_STATE
) ||
3854 (new_state
== FLK_DEAD_STATE
)) {
3859 case FLK_INTERRUPTED_STATE
:
3860 if (new_state
== FLK_DEAD_STATE
) {
3865 case FLK_DEAD_STATE
:
3866 /* May be set more than once */
3867 if (new_state
== FLK_DEAD_STATE
) {
3878 check_sleeping_locks(graph_t
*gp
)
3880 lock_descriptor_t
*lock1
, *lock2
;
3882 for (lock1
= SLEEPING_HEAD(gp
)->l_next
; lock1
!= SLEEPING_HEAD(gp
);
3883 lock1
= lock1
->l_next
) {
3884 ASSERT(!IS_BARRIER(lock1
));
3885 for (lock2
= lock1
->l_next
; lock2
!= SLEEPING_HEAD(gp
);
3886 lock2
= lock2
->l_next
) {
3887 if (lock1
->l_vnode
== lock2
->l_vnode
) {
3888 if (BLOCKS(lock2
, lock1
)) {
3889 ASSERT(!IS_GRANTED(lock1
));
3890 ASSERT(!NOT_BLOCKED(lock1
));
3896 for (lock2
= ACTIVE_HEAD(gp
)->l_next
; lock2
!= ACTIVE_HEAD(gp
);
3897 lock2
= lock2
->l_next
) {
3898 ASSERT(!IS_BARRIER(lock1
));
3899 if (lock1
->l_vnode
== lock2
->l_vnode
) {
3900 if (BLOCKS(lock2
, lock1
)) {
3901 ASSERT(!IS_GRANTED(lock1
));
3902 ASSERT(!NOT_BLOCKED(lock1
));
3907 ep
= FIRST_ADJ(lock1
);
3908 while (ep
!= HEAD(lock1
)) {
3909 ASSERT(BLOCKS(ep
->to_vertex
, lock1
));
3916 level_two_path(lock_descriptor_t
*lock1
, lock_descriptor_t
*lock2
, int no_path
)
3919 lock_descriptor_t
*vertex
;
3920 lock_descriptor_t
*vertex_stack
;
3922 STACK_INIT(vertex_stack
);
3924 flk_graph_uncolor(lock1
->l_graph
);
3925 ep
= FIRST_ADJ(lock1
);
3926 ASSERT(ep
!= HEAD(lock1
));
3927 while (ep
!= HEAD(lock1
)) {
3929 ASSERT(ep
->to_vertex
!= lock2
);
3930 STACK_PUSH(vertex_stack
, ep
->to_vertex
, l_dstack
);
3931 COLOR(ep
->to_vertex
);
3935 while ((vertex
= STACK_TOP(vertex_stack
)) != NULL
) {
3936 STACK_POP(vertex_stack
, l_dstack
);
3937 for (ep
= FIRST_ADJ(vertex
); ep
!= HEAD(vertex
);
3938 ep
= NEXT_ADJ(ep
)) {
3939 if (COLORED(ep
->to_vertex
))
3941 COLOR(ep
->to_vertex
);
3942 if (ep
->to_vertex
== lock2
)
3945 STACK_PUSH(vertex_stack
, ep
->to_vertex
, l_dstack
);
3952 check_owner_locks(graph_t
*gp
, pid_t pid
, int sysid
, vnode_t
*vp
)
3954 lock_descriptor_t
*lock
;
3956 /* Ignore OFD style locks since they're not process-wide. */
3960 SET_LOCK_TO_FIRST_ACTIVE_VP(gp
, lock
, vp
);
3963 while (lock
!= ACTIVE_HEAD(gp
) && (lock
->l_vnode
== vp
)) {
3964 if (lock
->l_flock
.l_pid
== pid
&&
3965 lock
->l_flock
.l_sysid
== sysid
)
3967 "owner pid %d's lock %p in active queue",
3969 lock
= lock
->l_next
;
3972 SET_LOCK_TO_FIRST_SLEEP_VP(gp
, lock
, vp
);
3975 while (lock
!= SLEEPING_HEAD(gp
) && (lock
->l_vnode
== vp
)) {
3976 if (lock
->l_flock
.l_pid
== pid
&&
3977 lock
->l_flock
.l_sysid
== sysid
)
3979 "owner pid %d's lock %p in sleep queue",
3981 lock
= lock
->l_next
;
3987 level_one_path(lock_descriptor_t
*lock1
, lock_descriptor_t
*lock2
)
3989 edge_t
*ep
= FIRST_ADJ(lock1
);
3991 while (ep
!= HEAD(lock1
)) {
3992 if (ep
->to_vertex
== lock2
)
4001 no_path(lock_descriptor_t
*lock1
, lock_descriptor_t
*lock2
)
4003 return (!level_two_path(lock1
, lock2
, 1));
4007 path(lock_descriptor_t
*lock1
, lock_descriptor_t
*lock2
)
4009 if (level_one_path(lock1
, lock2
)) {
4010 if (level_two_path(lock1
, lock2
, 0) != 0) {
4012 "one edge one path from lock1 %p lock2 %p",
4013 (void *)lock1
, (void *)lock2
);
4015 } else if (no_path(lock1
, lock2
)) {
4017 "No path from lock1 %p to lock2 %p",
4018 (void *)lock1
, (void *)lock2
);