Merge commit 'ea01a15a654b9e1c7b37d958f4d1911882ed7781'
[unleashed.git] / kernel / os / fio.c
blob7efea558b52dfb019a376ea0ca8f0a154fa810af
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015, Joyent Inc.
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/errno.h>
35 #include <sys/signal.h>
36 #include <sys/cred.h>
37 #include <sys/user.h>
38 #include <sys/conf.h>
39 #include <sys/vfs.h>
40 #include <sys/vnode.h>
41 #include <sys/pathname.h>
42 #include <sys/file.h>
43 #include <sys/flock.h>
44 #include <sys/proc.h>
45 #include <sys/var.h>
46 #include <sys/cpuvar.h>
47 #include <sys/open.h>
48 #include <sys/cmn_err.h>
49 #include <sys/priocntl.h>
50 #include <sys/procset.h>
51 #include <sys/prsystm.h>
52 #include <sys/debug.h>
53 #include <sys/kmem.h>
54 #include <sys/atomic.h>
55 #include <sys/fcntl.h>
56 #include <sys/poll.h>
57 #include <sys/rctl.h>
58 #include <sys/port_impl.h>
59 #include <sys/dtrace.h>
61 #include <c2/audit.h>
62 #include <sys/nbmlock.h>
64 #ifdef DEBUG
66 static uint32_t afd_maxfd; /* # of entries in maximum allocated array */
67 static uint32_t afd_alloc; /* count of kmem_alloc()s */
68 static uint32_t afd_free; /* count of kmem_free()s */
69 static uint32_t afd_wait; /* count of waits on non-zero ref count */
70 #define MAXFD(x) (afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x)))
71 #define COUNT(x) atomic_inc_32(&x)
73 #else /* DEBUG */
75 #define MAXFD(x)
76 #define COUNT(x)
78 #endif /* DEBUG */
80 kmem_cache_t *file_cache;
82 static void port_close_fd(portfd_t *);
85 * File descriptor allocation.
87 * fd_find(fip, minfd) finds the first available descriptor >= minfd.
88 * The most common case is open(2), in which minfd = 0, but we must also
89 * support fcntl(fd, F_DUPFD, minfd).
91 * The algorithm is as follows: we keep all file descriptors in an infix
92 * binary tree in which each node records the number of descriptors
93 * allocated in its right subtree, including itself. Starting at minfd,
94 * we ascend the tree until we find a non-fully allocated right subtree.
95 * We then descend that subtree in a binary search for the smallest fd.
96 * Finally, we ascend the tree again to increment the allocation count
97 * of every subtree containing the newly-allocated fd. Freeing an fd
98 * requires only the last step: we ascend the tree to decrement allocation
99 * counts. Each of these three steps (ascent to find non-full subtree,
100 * descent to find lowest fd, ascent to update allocation counts) is
101 * O(log n), thus the algorithm as a whole is O(log n).
103 * We don't implement the fd tree using the customary left/right/parent
104 * pointers, but instead take advantage of the glorious mathematics of
105 * full infix binary trees. For reference, here's an illustration of the
106 * logical structure of such a tree, rooted at 4 (binary 100), covering
107 * the range 1-7 (binary 001-111). Our canonical trees do not include
108 * fd 0; we'll deal with that later.
110 * 100
111 * / \
112 * / \
113 * 010 110
114 * / \ / \
115 * 001 011 101 111
117 * We make the following observations, all of which are easily proven by
118 * induction on the depth of the tree:
120 * (T1) The least-significant bit (LSB) of any node is equal to its level
121 * in the tree. In our example, nodes 001, 011, 101 and 111 are at
122 * level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2.
124 * (T2) The child size (CSIZE) of node N -- that is, the total number of
125 * right-branch descendants in a child of node N, including itself -- is
126 * given by clearing all but the least significant bit of N. This
127 * follows immediately from (T1). Applying this rule to our example, we
128 * see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1.
130 * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest
131 * ancestor containing node N in its right child -- is given by clearing
132 * the LSB of N. For example, LPARENT(111) = 110 and LPARENT(110) = 100.
133 * Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting
134 * the fact that these are leftmost nodes. Note that this algorithm
135 * automatically skips generations as necessary. For example, the parent
136 * of node 101 is 110, which is a *right* ancestor (not what we want);
137 * but its grandparent is 100, which is a left ancestor. Clearing the LSB
138 * of 101 gets us to 100 directly, skipping right past the uninteresting
139 * generation (110).
141 * Note that since LPARENT clears the LSB, whereas CSIZE clears all *but*
142 * the LSB, we can express LPARENT() nicely in terms of CSIZE():
144 * LPARENT(N) = N - CSIZE(N)
146 * (T4) The nearest right ancestor (RPARENT) of node N is given by:
148 * RPARENT(N) = N + CSIZE(N)
150 * (T5) For every interior node, the children differ from their parent by
151 * CSIZE(parent) / 2. In our example, CSIZE(100) / 2 = 2 = 10 binary,
152 * and indeed, the children of 100 are 100 +/- 10 = 010 and 110.
154 * Next, we'll need a few two's-complement math tricks. Suppose a number,
155 * N, has the following form:
157 * N = xxxx10...0
159 * That is, the binary representation of N consists of some string of bits,
160 * then a 1, then all zeroes. This amounts to nothing more than saying that
161 * N has a least-significant bit, which is true for any N != 0. If we look
162 * at N and N - 1 together, we see that we can combine them in useful ways:
164 * N = xxxx10...0
165 * N - 1 = xxxx01...1
166 * ------------------------
167 * N & (N - 1) = xxxx000000
168 * N | (N - 1) = xxxx111111
169 * N ^ (N - 1) = 111111
171 * In particular, this suggests several easy ways to clear all but the LSB,
172 * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0.
173 * We'll opt for this formulation:
175 * (C1) CSIZE(N) = (N - 1) ^ (N | (N - 1))
177 * Similarly, we have an easy way to determine LPARENT(N), which requires
178 * that we clear the LSB of N:
180 * (L1) LPARENT(N) = N & (N - 1)
182 * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1.
183 * When combined with (T4), this yields an easy way to compute RPARENT(N):
185 * (R1) RPARENT(N) = (N | (N - 1)) + 1
187 * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to
188 * move the fd range from [1, 2^n) to [0, 2^n - 1). This is straightforward,
189 * so there's no need to belabor the algebra; the revised relations become:
191 * (C1a) CSIZE(N) = N ^ (N | (N + 1))
193 * (L1a) LPARENT(N) = (N & (N + 1)) - 1
195 * (R1a) RPARENT(N) = N | (N + 1)
197 * This completes the mathematical framework. We now have all the tools
198 * we need to implement fd_find() and fd_reserve().
200 * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd.
201 * It does not actually allocate the descriptor; that's done by fd_reserve().
202 * fd_find() proceeds in two steps:
204 * (1) Find the leftmost subtree that contains a descriptor >= minfd.
205 * We start at the right subtree rooted at minfd. If this subtree is
206 * not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then
207 * step 1 is done. Otherwise, we know that all fds in this subtree
208 * are taken, so we ascend to RPARENT(minfd) using (R1a). We repeat
209 * this process until we either find a candidate subtree or exceed
210 * fip->fi_nfiles. We use (C1a) to compute CSIZE().
212 * (2) Find the smallest fd in the subtree discovered by step 1.
213 * Starting at the root of this subtree, we descend to find the
214 * smallest available fd. Since the left children have the smaller
215 * fds, we will descend rightward only when the left child is full.
217 * We begin by comparing the number of allocated fds in the root
218 * to the number of allocated fds in its right child; if they differ
219 * by exactly CSIZE(child), we know the left subtree is full, so we
220 * descend right; that is, the right child becomes the search root.
221 * Otherwise we leave the root alone and start following the right
222 * child's left children. As fortune would have it, this is very
223 * simple computationally: by (T5), the right child of fd is just
224 * fd + size, where size = CSIZE(fd) / 2. Applying (T5) again,
225 * we find that the right child's left child is fd + size - (size / 2) =
226 * fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) =
227 * fd + (size / 4), and so on. In general, fd's right child's
228 * leftmost nth descendant is fd + (size >> n). Thus, to follow
229 * the right child's left descendants, we just halve the size in
230 * each iteration of the search.
232 * When we descend leftward, we must keep track of the number of fds
233 * that were allocated in all the right subtrees we rejected, so we
234 * know how many of the root fd's allocations are in the remaining
235 * (as yet unexplored) leftmost part of its right subtree. When we
236 * encounter a fully-allocated left child -- that is, when we find
237 * that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right
238 * (as described earlier), resetting ralloc to zero.
240 * fd_reserve(fip, fd, incr) either allocates or frees fd, depending
241 * on whether incr is 1 or -1. Starting at fd, fd_reserve() ascends
242 * the leftmost ancestors (see (T3)) and updates the allocation counts.
243 * At each step we use (L1a) to compute LPARENT(), the next left ancestor.
245 * flist_minsize() finds the minimal tree that still covers all
246 * used fds; as long as the allocation count of a root node is zero, we
247 * don't need that node or its right subtree.
249 * flist_nalloc() counts the number of allocated fds in the tree, by starting
250 * at the top of the tree and summing the right-subtree allocation counts as
251 * it descends leftwards.
253 * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form
254 * 2^n - 1. This ensures that the fd trees are always full, which saves
255 * quite a bit of boundary checking.
257 static int
258 fd_find(uf_info_t *fip, int minfd)
260 int size, ralloc, fd;
262 ASSERT(MUTEX_HELD(&fip->fi_lock));
263 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
265 for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) {
266 size = fd ^ (fd | (fd + 1));
267 if (fip->fi_list[fd].uf_alloc == size)
268 continue;
269 for (ralloc = 0, size >>= 1; size != 0; size >>= 1) {
270 ralloc += fip->fi_list[fd + size].uf_alloc;
271 if (fip->fi_list[fd].uf_alloc == ralloc + size) {
272 fd += size;
273 ralloc = 0;
276 return (fd);
278 return (-1);
281 static void
282 fd_reserve(uf_info_t *fip, int fd, int incr)
284 int pfd;
285 uf_entry_t *ufp = &fip->fi_list[fd];
287 ASSERT((uint_t)fd < fip->fi_nfiles);
288 ASSERT((ufp->uf_busy == 0 && incr == 1) ||
289 (ufp->uf_busy == 1 && incr == -1));
290 ASSERT(MUTEX_HELD(&ufp->uf_lock));
291 ASSERT(MUTEX_HELD(&fip->fi_lock));
293 for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1)
294 fip->fi_list[pfd].uf_alloc += incr;
296 ufp->uf_busy += incr;
299 static int
300 flist_minsize(uf_info_t *fip)
302 int fd;
305 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called
306 * by flist_fork(), which relies on other mechanisms for mutual
307 * exclusion.
309 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
311 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
312 if (fip->fi_list[fd >> 1].uf_alloc != 0)
313 break;
315 return (fd);
318 static int
319 flist_nalloc(uf_info_t *fip)
321 int fd;
322 int nalloc = 0;
324 ASSERT(MUTEX_HELD(&fip->fi_lock));
325 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
327 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
328 nalloc += fip->fi_list[fd >> 1].uf_alloc;
330 return (nalloc);
334 * Increase size of the fi_list array to accommodate at least maxfd.
335 * We keep the size of the form 2^n - 1 for benefit of fd_find().
337 static void
338 flist_grow(int maxfd)
340 uf_info_t *fip = P_FINFO(curproc);
341 int newcnt, oldcnt;
342 uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend;
343 uf_rlist_t *urp;
345 for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1)
346 continue;
348 newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP);
350 mutex_enter(&fip->fi_lock);
351 oldcnt = fip->fi_nfiles;
352 if (newcnt <= oldcnt) {
353 mutex_exit(&fip->fi_lock);
354 kmem_free(newlist, newcnt * sizeof (uf_entry_t));
355 return;
357 ASSERT((newcnt & (newcnt + 1)) == 0);
358 oldlist = fip->fi_list;
359 oldend = oldlist + oldcnt;
360 newend = newlist + oldcnt; /* no need to lock beyond old end */
363 * fi_list and fi_nfiles cannot change while any uf_lock is held,
364 * so we must grab all the old locks *and* the new locks up to oldcnt.
365 * (Locks beyond the end of oldcnt aren't visible until we store
366 * the new fi_nfiles, which is the last thing we do before dropping
367 * all the locks, so there's no need to acquire these locks).
368 * Holding the new locks is necessary because when fi_list changes
369 * to point to the new list, fi_nfiles won't have been stored yet.
370 * If we *didn't* hold the new locks, someone doing a UF_ENTER()
371 * could see the new fi_list, grab the new uf_lock, and then see
372 * fi_nfiles change while the lock is held -- in violation of
373 * UF_ENTER() semantics.
375 for (src = oldlist; src < oldend; src++)
376 mutex_enter(&src->uf_lock);
378 for (dst = newlist; dst < newend; dst++)
379 mutex_enter(&dst->uf_lock);
381 for (src = oldlist, dst = newlist; src < oldend; src++, dst++) {
382 dst->uf_file = src->uf_file;
383 dst->uf_fpollinfo = src->uf_fpollinfo;
384 dst->uf_refcnt = src->uf_refcnt;
385 dst->uf_alloc = src->uf_alloc;
386 dst->uf_flag = src->uf_flag;
387 dst->uf_busy = src->uf_busy;
388 dst->uf_portfd = src->uf_portfd;
392 * As soon as we store the new flist, future locking operations
393 * will use it. Therefore, we must ensure that all the state
394 * we've just established reaches global visibility before the
395 * new flist does.
397 membar_producer();
398 fip->fi_list = newlist;
401 * Routines like getf() make an optimistic check on the validity
402 * of the supplied file descriptor: if it's less than the current
403 * value of fi_nfiles -- examined without any locks -- then it's
404 * safe to attempt a UF_ENTER() on that fd (which is a valid
405 * assumption because fi_nfiles only increases). Therefore, it
406 * is critical that the new value of fi_nfiles not reach global
407 * visibility until after the new fi_list: if it happened the
408 * other way around, getf() could see the new fi_nfiles and attempt
409 * a UF_ENTER() on the old fi_list, which would write beyond its
410 * end if the fd exceeded the old fi_nfiles.
412 membar_producer();
413 fip->fi_nfiles = newcnt;
416 * The new state is consistent now, so we can drop all the locks.
418 for (dst = newlist; dst < newend; dst++)
419 mutex_exit(&dst->uf_lock);
421 for (src = oldlist; src < oldend; src++) {
423 * If any threads are blocked on the old cvs, wake them.
424 * This will force them to wake up, discover that fi_list
425 * has changed, and go back to sleep on the new cvs.
427 cv_broadcast(&src->uf_wanted_cv);
428 cv_broadcast(&src->uf_closing_cv);
429 mutex_exit(&src->uf_lock);
432 mutex_exit(&fip->fi_lock);
435 * Retire the old flist. We can't actually kmem_free() it now
436 * because someone may still have a pointer to it. Instead,
437 * we link it onto a list of retired flists. The new flist
438 * is at least double the size of the previous flist, so the
439 * total size of all retired flists will be less than the size
440 * of the current one (to prove, consider the sum of a geometric
441 * series in powers of 2). exit() frees the retired flists.
443 urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP);
444 urp->ur_list = oldlist;
445 urp->ur_nfiles = oldcnt;
447 mutex_enter(&fip->fi_lock);
448 urp->ur_next = fip->fi_rlist;
449 fip->fi_rlist = urp;
450 mutex_exit(&fip->fi_lock);
454 * Utility functions for keeping track of the active file descriptors.
456 void
457 clear_stale_fd() /* called from post_syscall() */
459 afd_t *afd = &curthread->t_activefd;
460 int i;
462 /* uninitialized is ok here, a_nfd is then zero */
463 for (i = 0; i < afd->a_nfd; i++) {
464 /* assert that this should not be necessary */
465 ASSERT(afd->a_fd[i] == -1);
466 afd->a_fd[i] = -1;
468 afd->a_stale = 0;
471 void
472 free_afd(afd_t *afd) /* called below and from thread_free() */
474 int i;
476 /* free the buffer if it was kmem_alloc()ed */
477 if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
478 COUNT(afd_free);
479 kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0]));
482 /* (re)initialize the structure */
483 afd->a_fd = &afd->a_buf[0];
484 afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]);
485 afd->a_stale = 0;
486 for (i = 0; i < afd->a_nfd; i++)
487 afd->a_fd[i] = -1;
490 static void
491 set_active_fd(int fd)
493 afd_t *afd = &curthread->t_activefd;
494 int i;
495 int *old_fd;
496 int old_nfd;
497 int *new_fd;
498 int new_nfd;
500 if (afd->a_nfd == 0) { /* first time initialization */
501 ASSERT(fd == -1);
502 mutex_enter(&afd->a_fdlock);
503 free_afd(afd);
504 mutex_exit(&afd->a_fdlock);
507 /* insert fd into vacant slot, if any */
508 for (i = 0; i < afd->a_nfd; i++) {
509 if (afd->a_fd[i] == -1) {
510 afd->a_fd[i] = fd;
511 return;
516 * Reallocate the a_fd[] array to add one more slot.
518 ASSERT(fd == -1);
519 old_nfd = afd->a_nfd;
520 old_fd = afd->a_fd;
521 new_nfd = old_nfd + 1;
522 new_fd = kmem_alloc(new_nfd * sizeof (afd->a_fd[0]), KM_SLEEP);
523 MAXFD(new_nfd);
524 COUNT(afd_alloc);
526 mutex_enter(&afd->a_fdlock);
527 afd->a_fd = new_fd;
528 afd->a_nfd = new_nfd;
529 for (i = 0; i < old_nfd; i++)
530 afd->a_fd[i] = old_fd[i];
531 afd->a_fd[i] = fd;
532 mutex_exit(&afd->a_fdlock);
534 if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
535 COUNT(afd_free);
536 kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0]));
540 void
541 clear_active_fd(int fd) /* called below and from aio.c */
543 afd_t *afd = &curthread->t_activefd;
544 int i;
546 for (i = 0; i < afd->a_nfd; i++) {
547 if (afd->a_fd[i] == fd) {
548 afd->a_fd[i] = -1;
549 break;
552 ASSERT(i < afd->a_nfd); /* not found is not ok */
556 * Does this thread have this fd active?
558 static int
559 is_active_fd(kthread_t *t, int fd)
561 afd_t *afd = &t->t_activefd;
562 int i;
564 ASSERT(t != curthread);
565 mutex_enter(&afd->a_fdlock);
566 /* uninitialized is ok here, a_nfd is then zero */
567 for (i = 0; i < afd->a_nfd; i++) {
568 if (afd->a_fd[i] == fd) {
569 mutex_exit(&afd->a_fdlock);
570 return (1);
573 mutex_exit(&afd->a_fdlock);
574 return (0);
578 * Convert a user supplied file descriptor into a pointer to a file
579 * structure. Only task is to check range of the descriptor (soft
580 * resource limit was enforced at open time and shouldn't be checked
581 * here).
583 file_t *
584 getf(int fd)
586 uf_info_t *fip = P_FINFO(curproc);
587 uf_entry_t *ufp;
588 file_t *fp;
590 if ((uint_t)fd >= fip->fi_nfiles)
591 return (NULL);
594 * Reserve a slot in the active fd array now so we can call
595 * set_active_fd(fd) for real below, while still inside UF_ENTER().
597 set_active_fd(-1);
599 UF_ENTER(ufp, fip, fd);
601 if ((fp = ufp->uf_file) == NULL) {
602 UF_EXIT(ufp);
604 if (fd == fip->fi_badfd && fip->fi_action > 0)
605 tsignal(curthread, fip->fi_action);
607 return (NULL);
609 ufp->uf_refcnt++;
611 set_active_fd(fd); /* record the active file descriptor */
613 UF_EXIT(ufp);
615 return (fp);
619 * Close whatever file currently occupies the file descriptor slot
620 * and install the new file, usually NULL, in the file descriptor slot.
621 * The close must complete before we release the file descriptor slot.
622 * If newfp != NULL we only return an error if we can't allocate the
623 * slot so the caller knows that it needs to free the filep;
624 * in the other cases we return the error number from closef().
627 closeandsetf(int fd, file_t *newfp)
629 proc_t *p = curproc;
630 uf_info_t *fip = P_FINFO(p);
631 uf_entry_t *ufp;
632 file_t *fp;
633 fpollinfo_t *fpip;
634 portfd_t *pfd;
635 int error;
637 if ((uint_t)fd >= fip->fi_nfiles) {
638 if (newfp == NULL)
639 return (EBADF);
640 flist_grow(fd);
643 if (newfp != NULL) {
645 * If ufp is reserved but has no file pointer, it's in the
646 * transition between ufalloc() and setf(). We must wait
647 * for this transition to complete before assigning the
648 * new non-NULL file pointer.
650 mutex_enter(&fip->fi_lock);
651 if (fd == fip->fi_badfd) {
652 mutex_exit(&fip->fi_lock);
653 if (fip->fi_action > 0)
654 tsignal(curthread, fip->fi_action);
655 return (EBADF);
657 UF_ENTER(ufp, fip, fd);
658 while (ufp->uf_busy && ufp->uf_file == NULL) {
659 mutex_exit(&fip->fi_lock);
660 cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250);
661 UF_EXIT(ufp);
662 mutex_enter(&fip->fi_lock);
663 UF_ENTER(ufp, fip, fd);
665 if ((fp = ufp->uf_file) == NULL) {
666 ASSERT(ufp->uf_fpollinfo == NULL);
667 ASSERT(ufp->uf_flag == 0);
668 fd_reserve(fip, fd, 1);
669 ufp->uf_file = newfp;
670 UF_EXIT(ufp);
671 mutex_exit(&fip->fi_lock);
672 return (0);
674 mutex_exit(&fip->fi_lock);
675 } else {
676 UF_ENTER(ufp, fip, fd);
677 if ((fp = ufp->uf_file) == NULL) {
678 UF_EXIT(ufp);
679 return (EBADF);
683 ASSERT(ufp->uf_busy);
684 ufp->uf_file = NULL;
685 ufp->uf_flag = 0;
688 * If the file descriptor reference count is non-zero, then
689 * some other lwp in the process is performing system call
690 * activity on the file. To avoid blocking here for a long
691 * time (the other lwp might be in a long term sleep in its
692 * system call), we scan all other lwps in the process to
693 * find the ones with this fd as one of their active fds,
694 * set their a_stale flag, and set them running if they
695 * are in an interruptible sleep so they will emerge from
696 * their system calls immediately. post_syscall() will
697 * test the a_stale flag and set errno to EBADF.
699 ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1);
700 if (ufp->uf_refcnt > 0) {
701 kthread_t *t;
704 * We call sprlock_proc(p) to ensure that the thread
705 * list will not change while we are scanning it.
706 * To do this, we must drop ufp->uf_lock and then
707 * reacquire it (so we are not holding both p->p_lock
708 * and ufp->uf_lock at the same time). ufp->uf_lock
709 * must be held for is_active_fd() to be correct
710 * (set_active_fd() is called while holding ufp->uf_lock).
712 * This is a convoluted dance, but it is better than
713 * the old brute-force method of stopping every thread
714 * in the process by calling holdlwps(SHOLDFORK1).
717 UF_EXIT(ufp);
718 COUNT(afd_wait);
720 mutex_enter(&p->p_lock);
721 sprlock_proc(p);
722 mutex_exit(&p->p_lock);
724 UF_ENTER(ufp, fip, fd);
725 ASSERT(ufp->uf_file == NULL);
727 if (ufp->uf_refcnt > 0) {
728 for (t = curthread->t_forw;
729 t != curthread;
730 t = t->t_forw) {
731 if (is_active_fd(t, fd)) {
732 thread_lock(t);
733 t->t_activefd.a_stale = 1;
734 t->t_post_sys = 1;
735 if (ISWAKEABLE(t))
736 setrun_locked(t);
737 thread_unlock(t);
742 UF_EXIT(ufp);
744 mutex_enter(&p->p_lock);
745 sprunlock(p);
747 UF_ENTER(ufp, fip, fd);
748 ASSERT(ufp->uf_file == NULL);
752 * Wait for other lwps to stop using this file descriptor.
754 while (ufp->uf_refcnt > 0) {
755 cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250);
757 * cv_wait_stop() drops ufp->uf_lock, so the file list
758 * can change. Drop the lock on our (possibly) stale
759 * ufp and let UF_ENTER() find and lock the current ufp.
761 UF_EXIT(ufp);
762 UF_ENTER(ufp, fip, fd);
765 #ifdef DEBUG
767 * catch a watchfd on device's pollhead list but not on fpollinfo list
769 if (ufp->uf_fpollinfo != NULL)
770 checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo);
771 #endif /* DEBUG */
774 * We may need to cleanup some cached poll states in t_pollstate
775 * before the fd can be reused. It is important that we don't
776 * access a stale thread structure. We will do the cleanup in two
777 * phases to avoid deadlock and holding uf_lock for too long.
778 * In phase 1, hold the uf_lock and call pollblockexit() to set
779 * state in t_pollstate struct so that a thread does not exit on
780 * us. In phase 2, we drop the uf_lock and call pollcacheclean().
782 pfd = ufp->uf_portfd;
783 ufp->uf_portfd = NULL;
784 fpip = ufp->uf_fpollinfo;
785 ufp->uf_fpollinfo = NULL;
786 if (fpip != NULL)
787 pollblockexit(fpip);
788 UF_EXIT(ufp);
789 if (fpip != NULL)
790 pollcacheclean(fpip, fd);
791 if (pfd)
792 port_close_fd(pfd);
795 * Keep the file descriptor entry reserved across the closef().
797 error = closef(fp);
799 setf(fd, newfp);
801 /* Only return closef() error when closing is all we do */
802 return (newfp == NULL ? error : 0);
806 * Decrement uf_refcnt; wakeup anyone waiting to close the file.
808 void
809 releasef(int fd)
811 uf_info_t *fip = P_FINFO(curproc);
812 uf_entry_t *ufp;
814 UF_ENTER(ufp, fip, fd);
815 ASSERT(ufp->uf_refcnt > 0);
816 clear_active_fd(fd); /* clear the active file descriptor */
817 if (--ufp->uf_refcnt == 0)
818 cv_broadcast(&ufp->uf_closing_cv);
819 UF_EXIT(ufp);
823 * Identical to releasef() but can be called from another process.
825 void
826 areleasef(int fd, uf_info_t *fip)
828 uf_entry_t *ufp;
830 UF_ENTER(ufp, fip, fd);
831 ASSERT(ufp->uf_refcnt > 0);
832 if (--ufp->uf_refcnt == 0)
833 cv_broadcast(&ufp->uf_closing_cv);
834 UF_EXIT(ufp);
838 * Duplicate all file descriptors across a fork.
840 void
841 flist_fork(uf_info_t *pfip, uf_info_t *cfip)
843 int fd, nfiles;
844 uf_entry_t *pufp, *cufp;
846 mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL);
847 cfip->fi_rlist = NULL;
850 * We don't need to hold fi_lock because all other lwp's in the
851 * parent have been held.
853 cfip->fi_nfiles = nfiles = flist_minsize(pfip);
855 cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP);
857 for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles;
858 fd++, pufp++, cufp++) {
859 cufp->uf_file = pufp->uf_file;
860 cufp->uf_alloc = pufp->uf_alloc;
861 cufp->uf_flag = pufp->uf_flag;
862 cufp->uf_busy = pufp->uf_busy;
863 if (pufp->uf_file == NULL) {
864 ASSERT(pufp->uf_flag == 0);
865 if (pufp->uf_busy) {
867 * Grab locks to appease ASSERTs in fd_reserve
869 mutex_enter(&cfip->fi_lock);
870 mutex_enter(&cufp->uf_lock);
871 fd_reserve(cfip, fd, -1);
872 mutex_exit(&cufp->uf_lock);
873 mutex_exit(&cfip->fi_lock);
880 * Close all open file descriptors for the current process.
881 * This is only called from exit(), which is single-threaded,
882 * so we don't need any locking.
884 void
885 closeall(uf_info_t *fip)
887 int fd;
888 file_t *fp;
889 uf_entry_t *ufp;
891 ufp = fip->fi_list;
892 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
893 if ((fp = ufp->uf_file) != NULL) {
894 ufp->uf_file = NULL;
895 if (ufp->uf_portfd != NULL) {
896 portfd_t *pfd;
897 /* remove event port association */
898 pfd = ufp->uf_portfd;
899 ufp->uf_portfd = NULL;
900 port_close_fd(pfd);
902 ASSERT(ufp->uf_fpollinfo == NULL);
903 (void) closef(fp);
907 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
908 fip->fi_list = NULL;
909 fip->fi_nfiles = 0;
910 while (fip->fi_rlist != NULL) {
911 uf_rlist_t *urp = fip->fi_rlist;
912 fip->fi_rlist = urp->ur_next;
913 kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t));
914 kmem_free(urp, sizeof (uf_rlist_t));
919 * Internal form of close. Decrement reference count on file
920 * structure. Decrement reference count on the vnode following
921 * removal of the referencing file structure.
924 closef(file_t *fp)
926 vnode_t *vp;
927 int error;
928 int count;
929 int flag;
930 offset_t offset;
933 * audit close of file (may be exit)
935 if (AU_AUDITING())
936 audit_closef(fp);
937 ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock));
939 mutex_enter(&fp->f_tlock);
941 ASSERT(fp->f_count > 0);
943 count = fp->f_count--;
944 flag = fp->f_flag;
945 offset = fp->f_offset;
947 vp = fp->f_vnode;
949 error = fop_close(vp, flag, count, offset, fp->f_cred, NULL);
951 if (count > 1) {
952 mutex_exit(&fp->f_tlock);
953 return (error);
955 ASSERT(fp->f_count == 0);
956 /* Last reference, remove any OFD style lock for the file_t */
957 ofdcleanlock(fp);
958 mutex_exit(&fp->f_tlock);
961 * If DTrace has getf() subroutines active, it will set dtrace_closef
962 * to point to code that implements a barrier with respect to probe
963 * context. This must be called before the file_t is freed (and the
964 * vnode that it refers to is released) -- but it must be after the
965 * file_t has been removed from the uf_entry_t. That is, there must
966 * be no way for a racing getf() in probe context to yield the fp that
967 * we're operating upon.
969 if (dtrace_closef != NULL)
970 (*dtrace_closef)();
972 VN_RELE(vp);
974 * deallocate resources to audit_data
976 if (audit_active)
977 audit_unfalloc(fp);
978 crfree(fp->f_cred);
979 kmem_cache_free(file_cache, fp);
980 return (error);
984 * This is a combination of ufalloc() and setf().
987 ufalloc_file(int start, file_t *fp)
989 proc_t *p = curproc;
990 uf_info_t *fip = P_FINFO(p);
991 int filelimit;
992 uf_entry_t *ufp;
993 int nfiles;
994 int fd;
997 * Assertion is to convince the correctness of the following
998 * assignment for filelimit after casting to int.
1000 ASSERT(p->p_fno_ctl <= INT_MAX);
1001 filelimit = (int)p->p_fno_ctl;
1003 for (;;) {
1004 mutex_enter(&fip->fi_lock);
1005 fd = fd_find(fip, start);
1006 if (fd >= 0 && fd == fip->fi_badfd) {
1007 start = fd + 1;
1008 mutex_exit(&fip->fi_lock);
1009 continue;
1011 if ((uint_t)fd < filelimit)
1012 break;
1013 if (fd >= filelimit) {
1014 mutex_exit(&fip->fi_lock);
1015 mutex_enter(&p->p_lock);
1016 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1017 p->p_rctls, p, RCA_SAFE);
1018 mutex_exit(&p->p_lock);
1019 return (-1);
1021 /* fd_find() returned -1 */
1022 nfiles = fip->fi_nfiles;
1023 mutex_exit(&fip->fi_lock);
1024 flist_grow(MAX(start, nfiles));
1027 UF_ENTER(ufp, fip, fd);
1028 fd_reserve(fip, fd, 1);
1029 ASSERT(ufp->uf_file == NULL);
1030 ufp->uf_file = fp;
1031 UF_EXIT(ufp);
1032 mutex_exit(&fip->fi_lock);
1033 return (fd);
1037 * Allocate a user file descriptor greater than or equal to "start".
1040 ufalloc(int start)
1042 return (ufalloc_file(start, NULL));
1046 * Check that a future allocation of count fds on proc p has a good
1047 * chance of succeeding. If not, do rctl processing as if we'd failed
1048 * the allocation.
1050 * Our caller must guarantee that p cannot disappear underneath us.
1053 ufcanalloc(proc_t *p, uint_t count)
1055 uf_info_t *fip = P_FINFO(p);
1056 int filelimit;
1057 int current;
1059 if (count == 0)
1060 return (1);
1062 ASSERT(p->p_fno_ctl <= INT_MAX);
1063 filelimit = (int)p->p_fno_ctl;
1065 mutex_enter(&fip->fi_lock);
1066 current = flist_nalloc(fip); /* # of in-use descriptors */
1067 mutex_exit(&fip->fi_lock);
1070 * If count is a positive integer, the worst that can happen is
1071 * an overflow to a negative value, which is caught by the >= 0 check.
1073 current += count;
1074 if (count <= INT_MAX && current >= 0 && current <= filelimit)
1075 return (1);
1077 mutex_enter(&p->p_lock);
1078 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1079 p->p_rctls, p, RCA_SAFE);
1080 mutex_exit(&p->p_lock);
1081 return (0);
1085 * Allocate a user file descriptor and a file structure.
1086 * Initialize the descriptor to point at the file structure.
1087 * If fdp is NULL, the user file descriptor will not be allocated.
1090 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp)
1092 file_t *fp;
1093 int fd;
1095 if (fdp) {
1096 if ((fd = ufalloc(0)) == -1)
1097 return (EMFILE);
1099 fp = kmem_cache_alloc(file_cache, KM_SLEEP);
1101 * Note: falloc returns the fp locked
1103 mutex_enter(&fp->f_tlock);
1104 fp->f_count = 1;
1105 fp->f_flag = (uint32_t)flag;
1106 fp->f_vnode = vp;
1107 fp->f_offset = 0;
1108 fp->f_audit_data = 0;
1109 crhold(fp->f_cred = CRED());
1111 * allocate resources to audit_data
1113 if (audit_active)
1114 audit_falloc(fp);
1115 *fpp = fp;
1116 if (fdp)
1117 *fdp = fd;
1118 return (0);
1121 /*ARGSUSED*/
1122 static int
1123 file_cache_constructor(void *buf, void *cdrarg, int kmflags)
1125 file_t *fp = buf;
1127 mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL);
1128 return (0);
1131 /*ARGSUSED*/
1132 static void
1133 file_cache_destructor(void *buf, void *cdrarg)
1135 file_t *fp = buf;
1137 mutex_destroy(&fp->f_tlock);
1140 void
1141 finit()
1143 file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0,
1144 file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0);
1147 void
1148 unfalloc(file_t *fp)
1150 ASSERT(MUTEX_HELD(&fp->f_tlock));
1151 if (--fp->f_count <= 0) {
1153 * deallocate resources to audit_data
1155 if (audit_active)
1156 audit_unfalloc(fp);
1157 crfree(fp->f_cred);
1158 mutex_exit(&fp->f_tlock);
1159 kmem_cache_free(file_cache, fp);
1160 } else
1161 mutex_exit(&fp->f_tlock);
1165 * Given a file descriptor, set the user's
1166 * file pointer to the given parameter.
1168 void
1169 setf(int fd, file_t *fp)
1171 uf_info_t *fip = P_FINFO(curproc);
1172 uf_entry_t *ufp;
1174 if (AU_AUDITING())
1175 audit_setf(fp, fd);
1177 if (fp == NULL) {
1178 mutex_enter(&fip->fi_lock);
1179 UF_ENTER(ufp, fip, fd);
1180 fd_reserve(fip, fd, -1);
1181 mutex_exit(&fip->fi_lock);
1182 } else {
1183 UF_ENTER(ufp, fip, fd);
1184 ASSERT(ufp->uf_busy);
1186 ASSERT(ufp->uf_fpollinfo == NULL);
1187 ASSERT(ufp->uf_flag == 0);
1188 ufp->uf_file = fp;
1189 cv_broadcast(&ufp->uf_wanted_cv);
1190 UF_EXIT(ufp);
1194 * Given a file descriptor, return the file table flags, plus,
1195 * if this is a socket in asynchronous mode, the FASYNC flag.
1196 * getf() may or may not have been called before calling f_getfl().
1199 f_getfl(int fd, int *flagp)
1201 uf_info_t *fip = P_FINFO(curproc);
1202 uf_entry_t *ufp;
1203 file_t *fp;
1204 int error;
1206 if ((uint_t)fd >= fip->fi_nfiles)
1207 error = EBADF;
1208 else {
1209 UF_ENTER(ufp, fip, fd);
1210 if ((fp = ufp->uf_file) == NULL)
1211 error = EBADF;
1212 else {
1213 vnode_t *vp = fp->f_vnode;
1214 int flag = (fp->f_flag & ~FEPOLLED);
1215 ASSERT((flag & (FREAD|FWRITE|FSEARCH|FEXEC)) != 0);
1218 * BSD fcntl() FASYNC compatibility.
1220 if (vp->v_type == VSOCK)
1221 flag |= sock_getfasync(vp);
1222 *flagp = flag;
1223 error = 0;
1225 UF_EXIT(ufp);
1228 return (error);
1232 * Given a file descriptor, return the user's file flags.
1233 * Force the FD_CLOEXEC flag for writable self-open /proc files.
1234 * getf() may or may not have been called before calling f_getfd_error().
1237 f_getfd_error(int fd, int *flagp)
1239 uf_info_t *fip = P_FINFO(curproc);
1240 uf_entry_t *ufp;
1241 file_t *fp;
1242 int flag;
1243 int error;
1245 if ((uint_t)fd >= fip->fi_nfiles)
1246 error = EBADF;
1247 else {
1248 UF_ENTER(ufp, fip, fd);
1249 if ((fp = ufp->uf_file) == NULL)
1250 error = EBADF;
1251 else {
1252 flag = ufp->uf_flag;
1253 if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode))
1254 flag |= FD_CLOEXEC;
1255 *flagp = flag;
1256 error = 0;
1258 UF_EXIT(ufp);
1261 return (error);
1265 * getf() must have been called before calling f_getfd().
1267 char
1268 f_getfd(int fd)
1270 int flag = 0;
1271 (void) f_getfd_error(fd, &flag);
1272 return ((char)flag);
1276 * Given a file descriptor and file flags, set the user's file flags.
1277 * At present, the only valid flag is FD_CLOEXEC.
1278 * getf() may or may not have been called before calling f_setfd_error().
1281 f_setfd_error(int fd, int flags)
1283 uf_info_t *fip = P_FINFO(curproc);
1284 uf_entry_t *ufp;
1285 int error;
1287 if ((uint_t)fd >= fip->fi_nfiles)
1288 error = EBADF;
1289 else {
1290 UF_ENTER(ufp, fip, fd);
1291 if (ufp->uf_file == NULL)
1292 error = EBADF;
1293 else {
1294 ufp->uf_flag = flags & FD_CLOEXEC;
1295 error = 0;
1297 UF_EXIT(ufp);
1299 return (error);
1302 void
1303 f_setfd(int fd, char flags)
1305 (void) f_setfd_error(fd, flags);
1308 #define BADFD_MIN 3
1309 #define BADFD_MAX 255
1312 * Attempt to allocate a file descriptor which is bad and which
1313 * is "poison" to the application. It cannot be closed (except
1314 * on exec), allocated for a different use, etc.
1317 f_badfd(int start, int *fdp, int action)
1319 int fdr;
1320 int badfd;
1321 uf_info_t *fip = P_FINFO(curproc);
1323 #ifdef _LP64
1324 /* No restrictions on 64 bit _file */
1325 if (get_udatamodel() != DATAMODEL_ILP32)
1326 return (EINVAL);
1327 #endif
1329 if (start > BADFD_MAX || start < BADFD_MIN)
1330 return (EINVAL);
1332 if (action >= NSIG || action < 0)
1333 return (EINVAL);
1335 mutex_enter(&fip->fi_lock);
1336 badfd = fip->fi_badfd;
1337 mutex_exit(&fip->fi_lock);
1339 if (badfd != -1)
1340 return (EAGAIN);
1342 fdr = ufalloc(start);
1344 if (fdr > BADFD_MAX) {
1345 setf(fdr, NULL);
1346 return (EMFILE);
1348 if (fdr < 0)
1349 return (EMFILE);
1351 mutex_enter(&fip->fi_lock);
1352 if (fip->fi_badfd != -1) {
1353 /* Lost race */
1354 mutex_exit(&fip->fi_lock);
1355 setf(fdr, NULL);
1356 return (EAGAIN);
1358 fip->fi_action = action;
1359 fip->fi_badfd = fdr;
1360 mutex_exit(&fip->fi_lock);
1361 setf(fdr, NULL);
1363 *fdp = fdr;
1365 return (0);
1369 * Allocate a file descriptor and assign it to the vnode "*vpp",
1370 * performing the usual open protocol upon it and returning the
1371 * file descriptor allocated. It is the responsibility of the
1372 * caller to dispose of "*vpp" if any error occurs.
1375 fassign(vnode_t **vpp, int mode, int *fdp)
1377 file_t *fp;
1378 int error;
1379 int fd;
1381 if (error = falloc(NULL, mode, &fp, &fd))
1382 return (error);
1383 if (error = fop_open(vpp, mode, fp->f_cred, NULL)) {
1384 setf(fd, NULL);
1385 unfalloc(fp);
1386 return (error);
1388 fp->f_vnode = *vpp;
1389 mutex_exit(&fp->f_tlock);
1391 * Fill in the slot falloc reserved.
1393 setf(fd, fp);
1394 *fdp = fd;
1395 return (0);
1399 * When a process forks it must increment the f_count of all file pointers
1400 * since there is a new process pointing at them. fcnt_add(fip, 1) does this.
1401 * Since we are called when there is only 1 active lwp we don't need to
1402 * hold fi_lock or any uf_lock. If the fork fails, fork_fail() calls
1403 * fcnt_add(fip, -1) to restore the counts.
1405 void
1406 fcnt_add(uf_info_t *fip, int incr)
1408 int i;
1409 uf_entry_t *ufp;
1410 file_t *fp;
1412 ufp = fip->fi_list;
1413 for (i = 0; i < fip->fi_nfiles; i++, ufp++) {
1414 if ((fp = ufp->uf_file) != NULL) {
1415 mutex_enter(&fp->f_tlock);
1416 ASSERT((incr == 1 && fp->f_count >= 1) ||
1417 (incr == -1 && fp->f_count >= 2));
1418 fp->f_count += incr;
1419 mutex_exit(&fp->f_tlock);
1425 * This is called from exec to close all fd's that have the FD_CLOEXEC flag
1426 * set and also to close all self-open for write /proc file descriptors.
1428 void
1429 close_exec(uf_info_t *fip)
1431 int fd;
1432 file_t *fp;
1433 fpollinfo_t *fpip;
1434 uf_entry_t *ufp;
1435 portfd_t *pfd;
1437 ufp = fip->fi_list;
1438 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
1439 if ((fp = ufp->uf_file) != NULL &&
1440 ((ufp->uf_flag & FD_CLOEXEC) ||
1441 ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) {
1442 fpip = ufp->uf_fpollinfo;
1443 mutex_enter(&fip->fi_lock);
1444 mutex_enter(&ufp->uf_lock);
1445 fd_reserve(fip, fd, -1);
1446 mutex_exit(&fip->fi_lock);
1447 ufp->uf_file = NULL;
1448 ufp->uf_fpollinfo = NULL;
1449 ufp->uf_flag = 0;
1451 * We may need to cleanup some cached poll states
1452 * in t_pollstate before the fd can be reused. It
1453 * is important that we don't access a stale thread
1454 * structure. We will do the cleanup in two
1455 * phases to avoid deadlock and holding uf_lock for
1456 * too long. In phase 1, hold the uf_lock and call
1457 * pollblockexit() to set state in t_pollstate struct
1458 * so that a thread does not exit on us. In phase 2,
1459 * we drop the uf_lock and call pollcacheclean().
1461 pfd = ufp->uf_portfd;
1462 ufp->uf_portfd = NULL;
1463 if (fpip != NULL)
1464 pollblockexit(fpip);
1465 mutex_exit(&ufp->uf_lock);
1466 if (fpip != NULL)
1467 pollcacheclean(fpip, fd);
1468 if (pfd)
1469 port_close_fd(pfd);
1470 (void) closef(fp);
1474 /* Reset bad fd */
1475 fip->fi_badfd = -1;
1476 fip->fi_action = -1;
1480 * Utility function called by most of the *at() system call interfaces.
1482 * Generate a starting vnode pointer for an (fd, path) pair where 'fd'
1483 * is an open file descriptor for a directory to be used as the starting
1484 * point for the lookup of the relative pathname 'path' (or, if path is
1485 * NULL, generate a vnode pointer for the direct target of the operation).
1487 * If we successfully return a non-NULL startvp, it has been the target
1488 * of VN_HOLD() and the caller must call VN_RELE() on it.
1491 fgetstartvp(int fd, char *path, vnode_t **startvpp)
1493 vnode_t *startvp;
1494 file_t *startfp;
1495 char startchar;
1497 if (fd == AT_FDCWD && path == NULL)
1498 return (EFAULT);
1500 if (fd == AT_FDCWD) {
1502 * Start from the current working directory.
1504 startvp = NULL;
1505 } else {
1506 if (path == NULL)
1507 startchar = '\0';
1508 else if (copyin(path, &startchar, sizeof (char)))
1509 return (EFAULT);
1511 if (startchar == '/') {
1513 * 'path' is an absolute pathname.
1515 startvp = NULL;
1516 } else {
1518 * 'path' is a relative pathname or we will
1519 * be applying the operation to 'fd' itself.
1521 if ((startfp = getf(fd)) == NULL)
1522 return (EBADF);
1523 startvp = startfp->f_vnode;
1524 VN_HOLD(startvp);
1525 releasef(fd);
1528 *startvpp = startvp;
1529 return (0);
1533 * Called from fchownat() and fchmodat() to set ownership and mode.
1534 * The contents of *vap must be set before calling here.
1537 fsetattrat(int fd, char *path, int flags, struct vattr *vap)
1539 vnode_t *startvp;
1540 vnode_t *vp;
1541 int error;
1544 * Since we are never called to set the size of a file, we don't
1545 * need to check for non-blocking locks (via nbl_need_check(vp)).
1547 ASSERT(!(vap->va_mask & AT_SIZE));
1549 if ((error = fgetstartvp(fd, path, &startvp)) != 0)
1550 return (error);
1551 if (AU_AUDITING() && startvp != NULL)
1552 audit_setfsat_path(1);
1555 * Do lookup for fchownat/fchmodat when path not NULL
1557 if (path != NULL) {
1558 if (error = lookupnameat(path, UIO_USERSPACE,
1559 (flags == AT_SYMLINK_NOFOLLOW) ?
1560 NO_FOLLOW : FOLLOW,
1561 NULLVPP, &vp, startvp)) {
1562 if (startvp != NULL)
1563 VN_RELE(startvp);
1564 return (error);
1566 } else {
1567 vp = startvp;
1568 ASSERT(vp);
1569 VN_HOLD(vp);
1572 if (vn_is_readonly(vp)) {
1573 error = EROFS;
1574 } else {
1575 error = fop_setattr(vp, vap, 0, CRED(), NULL);
1578 if (startvp != NULL)
1579 VN_RELE(startvp);
1580 VN_RELE(vp);
1582 return (error);
1586 * Return true if the given vnode is referenced by any
1587 * entry in the current process's file descriptor table.
1590 fisopen(vnode_t *vp)
1592 int fd;
1593 file_t *fp;
1594 vnode_t *ovp;
1595 uf_info_t *fip = P_FINFO(curproc);
1596 uf_entry_t *ufp;
1598 mutex_enter(&fip->fi_lock);
1599 for (fd = 0; fd < fip->fi_nfiles; fd++) {
1600 UF_ENTER(ufp, fip, fd);
1601 if ((fp = ufp->uf_file) != NULL &&
1602 (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) {
1603 UF_EXIT(ufp);
1604 mutex_exit(&fip->fi_lock);
1605 return (1);
1607 UF_EXIT(ufp);
1609 mutex_exit(&fip->fi_lock);
1610 return (0);
1614 * Return zero if at least one file currently open (by curproc) shouldn't be
1615 * allowed to change zones.
1618 files_can_change_zones(void)
1620 int fd;
1621 file_t *fp;
1622 uf_info_t *fip = P_FINFO(curproc);
1623 uf_entry_t *ufp;
1625 mutex_enter(&fip->fi_lock);
1626 for (fd = 0; fd < fip->fi_nfiles; fd++) {
1627 UF_ENTER(ufp, fip, fd);
1628 if ((fp = ufp->uf_file) != NULL &&
1629 !vn_can_change_zones(fp->f_vnode)) {
1630 UF_EXIT(ufp);
1631 mutex_exit(&fip->fi_lock);
1632 return (0);
1634 UF_EXIT(ufp);
1636 mutex_exit(&fip->fi_lock);
1637 return (1);
1640 #ifdef DEBUG
1643 * The following functions are only used in ASSERT()s elsewhere.
1644 * They do not modify the state of the system.
1648 * Return true (1) if the current thread is in the fpollinfo
1649 * list for this file descriptor, else false (0).
1651 static int
1652 curthread_in_plist(uf_entry_t *ufp)
1654 fpollinfo_t *fpip;
1656 ASSERT(MUTEX_HELD(&ufp->uf_lock));
1657 for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next)
1658 if (fpip->fp_thread == curthread)
1659 return (1);
1660 return (0);
1664 * Sanity check to make sure that after lwp_exit(),
1665 * curthread does not appear on any fd's fpollinfo list.
1667 void
1668 checkfpollinfo(void)
1670 int fd;
1671 uf_info_t *fip = P_FINFO(curproc);
1672 uf_entry_t *ufp;
1674 mutex_enter(&fip->fi_lock);
1675 for (fd = 0; fd < fip->fi_nfiles; fd++) {
1676 UF_ENTER(ufp, fip, fd);
1677 ASSERT(!curthread_in_plist(ufp));
1678 UF_EXIT(ufp);
1680 mutex_exit(&fip->fi_lock);
1684 * Return true (1) if the current thread is in the fpollinfo
1685 * list for this file descriptor, else false (0).
1686 * This is the same as curthread_in_plist(),
1687 * but is called w/o holding uf_lock.
1690 infpollinfo(int fd)
1692 uf_info_t *fip = P_FINFO(curproc);
1693 uf_entry_t *ufp;
1694 int rc;
1696 UF_ENTER(ufp, fip, fd);
1697 rc = curthread_in_plist(ufp);
1698 UF_EXIT(ufp);
1699 return (rc);
1702 #endif /* DEBUG */
1705 * Add the curthread to fpollinfo list, meaning this fd is currently in the
1706 * thread's poll cache. Each lwp polling this file descriptor should call
1707 * this routine once.
1709 void
1710 addfpollinfo(int fd)
1712 struct uf_entry *ufp;
1713 fpollinfo_t *fpip;
1714 uf_info_t *fip = P_FINFO(curproc);
1716 fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP);
1717 fpip->fp_thread = curthread;
1718 UF_ENTER(ufp, fip, fd);
1720 * Assert we are not already on the list, that is, that
1721 * this lwp did not call addfpollinfo twice for the same fd.
1723 ASSERT(!curthread_in_plist(ufp));
1725 * addfpollinfo is always done inside the getf/releasef pair.
1727 ASSERT(ufp->uf_refcnt >= 1);
1728 fpip->fp_next = ufp->uf_fpollinfo;
1729 ufp->uf_fpollinfo = fpip;
1730 UF_EXIT(ufp);
1734 * Delete curthread from fpollinfo list if it is there.
1736 void
1737 delfpollinfo(int fd)
1739 struct uf_entry *ufp;
1740 struct fpollinfo *fpip;
1741 struct fpollinfo **fpipp;
1742 uf_info_t *fip = P_FINFO(curproc);
1744 UF_ENTER(ufp, fip, fd);
1745 for (fpipp = &ufp->uf_fpollinfo;
1746 (fpip = *fpipp) != NULL;
1747 fpipp = &fpip->fp_next) {
1748 if (fpip->fp_thread == curthread) {
1749 *fpipp = fpip->fp_next;
1750 kmem_free(fpip, sizeof (fpollinfo_t));
1751 break;
1755 * Assert that we are not still on the list, that is, that
1756 * this lwp did not call addfpollinfo twice for the same fd.
1758 ASSERT(!curthread_in_plist(ufp));
1759 UF_EXIT(ufp);
1763 * fd is associated with a port. pfd is a pointer to the fd entry in the
1764 * cache of the port.
1767 void
1768 addfd_port(int fd, portfd_t *pfd)
1770 struct uf_entry *ufp;
1771 uf_info_t *fip = P_FINFO(curproc);
1773 UF_ENTER(ufp, fip, fd);
1775 * addfd_port is always done inside the getf/releasef pair.
1777 ASSERT(ufp->uf_refcnt >= 1);
1778 if (ufp->uf_portfd == NULL) {
1779 /* first entry */
1780 ufp->uf_portfd = pfd;
1781 pfd->pfd_next = NULL;
1782 } else {
1783 pfd->pfd_next = ufp->uf_portfd;
1784 ufp->uf_portfd = pfd;
1785 pfd->pfd_next->pfd_prev = pfd;
1787 UF_EXIT(ufp);
1790 void
1791 delfd_port(int fd, portfd_t *pfd)
1793 struct uf_entry *ufp;
1794 uf_info_t *fip = P_FINFO(curproc);
1796 UF_ENTER(ufp, fip, fd);
1798 * delfd_port is always done inside the getf/releasef pair.
1800 ASSERT(ufp->uf_refcnt >= 1);
1801 if (ufp->uf_portfd == pfd) {
1802 /* remove first entry */
1803 ufp->uf_portfd = pfd->pfd_next;
1804 } else {
1805 pfd->pfd_prev->pfd_next = pfd->pfd_next;
1806 if (pfd->pfd_next != NULL)
1807 pfd->pfd_next->pfd_prev = pfd->pfd_prev;
1809 UF_EXIT(ufp);
1812 static void
1813 port_close_fd(portfd_t *pfd)
1815 portfd_t *pfdn;
1818 * At this point, no other thread should access
1819 * the portfd_t list for this fd. The uf_file, uf_portfd
1820 * pointers in the uf_entry_t struct for this fd would
1821 * be set to NULL.
1823 for (; pfd != NULL; pfd = pfdn) {
1824 pfdn = pfd->pfd_next;
1825 port_close_pfd(pfd);