4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 1990 Mentat Inc.
27 * This file contains routines that manipulate Internet Routing Entries (IREs).
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/stropts.h>
33 #include <sys/strsun.h>
34 #include <sys/strsubr.h>
36 #include <sys/cmn_err.h>
37 #include <sys/policy.h>
39 #include <sys/systm.h>
41 #include <sys/param.h>
42 #include <sys/socket.h>
44 #include <net/route.h>
45 #include <netinet/in.h>
46 #include <net/if_dl.h>
47 #include <netinet/ip6.h>
48 #include <netinet/icmp6.h>
50 #include <inet/common.h>
54 #include <inet/ip_ndp.h>
56 #include <inet/ip_if.h>
57 #include <inet/ip_ire.h>
58 #include <inet/ip_ftable.h>
59 #include <inet/ip_rts.h>
61 #include <inet/tunables.h>
64 #include <inet/ipclassifier.h>
66 #include <sys/cpuvar.h>
68 struct kmem_cache
*rt_entry_cache
;
70 typedef struct nce_clookup_s
{
72 boolean_t ncecl_found
;
76 * Synchronization notes:
78 * The fields of the ire_t struct are protected in the following way :
82 * - bucket lock of the forwarding table in which is ire stored.
84 * ire_ill, ire_u *except* ire_gateway_addr[v6], ire_mask,
85 * ire_type, ire_create_time, ire_masklen, ire_ipversion, ire_flags,
88 * - Set in ire_create_v4/v6 and never changes after that. Thus,
89 * we don't need a lock whenever these fields are accessed.
91 * - ire_bucket and ire_masklen (also set in ire_create) is set in
92 * ire_add before inserting in the bucket and never
93 * changes after that. Thus we don't need a lock whenever these
94 * fields are accessed.
96 * ire_gateway_addr_v4[v6]
98 * - ire_gateway_addr_v4[v6] is set during ire_create and later modified
99 * by rts_setgwr[v6]. As ire_gateway_addr is a uint32_t, updates to
100 * it assumed to be atomic and hence the other parts of the code
101 * does not use any locks. ire_gateway_addr_v6 updates are not atomic
102 * and hence any access to it uses ire_lock to get/set the right value.
104 * ire_refcnt, ire_identical_ref
106 * - Updated atomically using atomic_add_32
108 * ire_ssthresh, ire_rtt_sd, ire_rtt, ire_ib_pkt_count, ire_ob_pkt_count
110 * - Assumes that 32 bit writes are atomic. No locks. ire_lock is
111 * used to serialize updates to ire_ssthresh, ire_rtt_sd, ire_rtt.
119 * ire_dep_parent (To next IRE in recursive lookup chain)
120 * - Under ips_ire_dep_lock. Write held when modifying. Read held when
121 * walking. We also hold ire_lock when modifying to allow the data path
122 * to only acquire ire_lock.
124 * ire_dep_parent_generation (Generation number from ire_dep_parent)
125 * - Under ips_ire_dep_lock and/or ire_lock. (A read claim on the dep_lock
126 * and ire_lock held when modifying)
128 * ire_dep_children (From parent to first child)
129 * ire_dep_sib_next (linked list of siblings)
130 * ire_dep_sib_ptpn (linked list of siblings)
131 * - Under ips_ire_dep_lock. Write held when modifying. Read held when
134 * As we always hold the bucket locks in all the places while accessing
135 * the above values, it is natural to use them for protecting them.
137 * We have a forwarding table for IPv4 and IPv6. The IPv6 forwarding table
138 * (ip_forwarding_table_v6) is an array of pointers to arrays of irb_t
139 * structures. ip_forwarding_table_v6 is allocated dynamically in
140 * ire_add_v6. ire_ft_init_lock is used to serialize multiple threads
141 * initializing the same bucket. Once a bucket is initialized, it is never
142 * de-alloacted. This assumption enables us to access
143 * ip_forwarding_table_v6[i] without any locks.
145 * The forwarding table for IPv4 is a radix tree whose leaves
146 * are rt_entry structures containing the irb_t for the rt_dst. The irb_t
147 * for IPv4 is dynamically allocated and freed.
149 * Each irb_t - ire bucket structure has a lock to protect
150 * a bucket and the ires residing in the bucket have a back pointer to
151 * the bucket structure. It also has a reference count for the number
152 * of threads walking the bucket - irb_refcnt which is bumped up
153 * using the irb_refhold function. The flags irb_marks can be
154 * set to IRB_MARK_CONDEMNED indicating that there are some ires
155 * in this bucket that are IRE_IS_CONDEMNED and the
156 * last thread to leave the bucket should delete the ires. Usually
157 * this is done by the irb_refrele function which is used to decrement
158 * the reference count on a bucket. See comments above irb_t structure
159 * definition in ip.h for further details.
161 * The ire_refhold/ire_refrele functions operate on the ire which increments/
162 * decrements the reference count, ire_refcnt, atomically on the ire.
163 * ire_refcnt is modified only using those functions. Operations on the IRE
164 * could be described as follows :
166 * CREATE an ire with reference count initialized to 1.
168 * ADDITION of an ire holds the bucket lock, checks for duplicates
169 * and then adds the ire. ire_add returns the ire after
170 * bumping up once more i.e the reference count is 2. This is to avoid
171 * an extra lookup in the functions calling ire_add which wants to
172 * work with the ire after adding.
174 * LOOKUP of an ire bumps up the reference count using ire_refhold
175 * function. It is valid to bump up the referece count of the IRE,
176 * after the lookup has returned an ire. Following are the lookup
177 * functions that return an HELD ire :
179 * ire_ftable_lookup[_v6], ire_lookup_multi_ill[_v6]
181 * DELETION of an ire holds the bucket lock, removes it from the list
182 * and then decrements the reference count for having removed from the list
183 * by using the ire_refrele function. If some other thread has looked up
184 * the ire, the reference count would have been bumped up and hence
185 * this ire will not be freed once deleted. It will be freed once the
186 * reference count drops to zero.
188 * Add and Delete acquires the bucket lock as RW_WRITER, while all the
189 * lookups acquire the bucket lock as RW_READER.
191 * The general rule is to do the ire_refrele in the function
192 * that is passing the ire as an argument.
194 * In trying to locate ires the following points are to be noted.
196 * IRE_IS_CONDEMNED signifies that the ire has been logically deleted and is
197 * to be ignored when walking the ires using ire_next.
200 * Walking IREs within a given zone also walks certain ires in other
201 * zones. This is done intentionally. IRE walks with a specified
202 * zoneid are used only when doing informational reports, and
203 * zone users want to see things that they can access. See block
204 * comment in ire_walk_ill_match().
208 * The size of the forwarding table. We will make sure that it is a
209 * power of 2 in ip_ire_init().
210 * Setable in /etc/system
212 uint32_t ip6_ftable_hash_size
= IP6_FTABLE_HASH_SIZE
;
214 struct kmem_cache
*ire_cache
;
215 struct kmem_cache
*ncec_cache
;
216 struct kmem_cache
*nce_cache
;
218 static ire_t ire_null
;
220 static ire_t
*ire_add_v4(ire_t
*ire
);
221 static void ire_delete_v4(ire_t
*ire
);
222 static void ire_dep_invalidate_children(ire_t
*child
);
223 static void ire_walk_ipvers(pfv_t func
, void *arg
, uchar_t vers
,
224 zoneid_t zoneid
, ip_stack_t
*);
225 static void ire_walk_ill_ipvers(uint_t match_flags
, uint_t ire_type
,
226 pfv_t func
, void *arg
, uchar_t vers
, ill_t
*ill
);
228 static void ire_trace_cleanup(const ire_t
*);
230 static void ire_dep_incr_generation_locked(ire_t
*);
233 * Following are the functions to increment/decrement the reference
234 * count of the IREs and IRBs (ire bucket).
236 * 1) We bump up the reference count of an IRE to make sure that
237 * it does not get deleted and freed while we are using it.
238 * Typically all the lookup functions hold the bucket lock,
239 * and look for the IRE. If it finds an IRE, it bumps up the
240 * reference count before dropping the lock. Sometimes we *may* want
241 * to bump up the reference count after we *looked* up i.e without
242 * holding the bucket lock. So, the ire_refhold function does not assert
243 * on the bucket lock being held. Any thread trying to delete from
244 * the hash bucket can still do so but cannot free the IRE if
245 * ire_refcnt is not 0.
247 * 2) We bump up the reference count on the bucket where the IRE resides
248 * (IRB), when we want to prevent the IREs getting deleted from a given
249 * hash bucket. This makes life easier for ire_walk type functions which
250 * wants to walk the IRE list, call a function, but needs to drop
251 * the bucket lock to prevent recursive rw_enters. While the
252 * lock is dropped, the list could be changed by other threads or
253 * the same thread could end up deleting the ire or the ire pointed by
254 * ire_next. ire_refholding the ire or ire_next is not sufficient as
255 * a delete will still remove the ire from the bucket while we have
256 * dropped the lock and hence the ire_next would be NULL. Thus, we
257 * need a mechanism to prevent deletions from a given bucket.
259 * To prevent deletions, we bump up the reference count on the
260 * bucket. If the bucket is held, ire_delete just marks both
261 * the ire and irb as CONDEMNED. When the
262 * reference count on the bucket drops to zero, all the CONDEMNED ires
263 * are deleted. We don't have to bump up the reference count on the
264 * bucket if we are walking the bucket and never have to drop the bucket
265 * lock. Note that irb_refhold does not prevent addition of new ires
266 * in the list. It is okay because addition of new ires will not cause
267 * ire_next to point to freed memory. We do irb_refhold only when
268 * all of the 3 conditions are true :
270 * 1) The code needs to walk the IRE bucket from start to end.
271 * 2) It may have to drop the bucket lock sometimes while doing (1)
272 * 3) It does not want any ires to be deleted meanwhile.
276 * Bump up the reference count on the hash bucket - IRB to
277 * prevent ires from being deleted in this bucket.
280 irb_refhold(irb_t
*irb
)
282 rw_enter(&irb
->irb_lock
, RW_WRITER
);
284 ASSERT(irb
->irb_refcnt
!= 0);
285 rw_exit(&irb
->irb_lock
);
289 irb_refhold_locked(irb_t
*irb
)
291 ASSERT(RW_WRITE_HELD(&irb
->irb_lock
));
293 ASSERT(irb
->irb_refcnt
!= 0);
297 * Note: when IRB_MARK_DYNAMIC is not set the irb_t
298 * is statically allocated, so that when the irb_refcnt goes to 0,
299 * we simply clean up the ire list and continue.
302 irb_refrele(irb_t
*irb
)
304 if (irb
->irb_marks
& IRB_MARK_DYNAMIC
) {
305 irb_refrele_ftable(irb
);
307 rw_enter(&irb
->irb_lock
, RW_WRITER
);
308 ASSERT(irb
->irb_refcnt
!= 0);
309 if (--irb
->irb_refcnt
== 0 &&
310 (irb
->irb_marks
& IRB_MARK_CONDEMNED
)) {
313 ire_list
= ire_unlink(irb
);
314 rw_exit(&irb
->irb_lock
);
315 ASSERT(ire_list
!= NULL
);
316 ire_cleanup(ire_list
);
318 rw_exit(&irb
->irb_lock
);
325 * Bump up the reference count on the IRE. We cannot assert that the
326 * bucket lock is being held as it is legal to bump up the reference
327 * count after the first lookup has returned the IRE without
331 ire_refhold(ire_t
*ire
)
333 atomic_inc_32(&(ire
)->ire_refcnt
);
334 ASSERT((ire
)->ire_refcnt
!= 0);
341 ire_refhold_notr(ire_t
*ire
)
343 atomic_inc_32(&(ire
)->ire_refcnt
);
344 ASSERT((ire
)->ire_refcnt
!= 0);
348 ire_refhold_locked(ire_t
*ire
)
357 * Release a ref on an IRE.
359 * Must not be called while holding any locks. Otherwise if this is
360 * the last reference to be released there is a chance of recursive mutex
361 * panic due to ire_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
362 * to restart an ioctl. The one exception is when the caller is sure that
363 * this is not the last reference to be released. Eg. if the caller is
364 * sure that the ire has not been deleted and won't be deleted.
366 * In architectures e.g sun4u, where atomic_add_32_nv is just
367 * a cas, we need to maintain the right memory barrier semantics
368 * as that of mutex_exit i.e all the loads and stores should complete
369 * before the cas is executed. membar_exit() does that here.
372 ire_refrele(ire_t
*ire
)
375 ire_untrace_ref(ire
);
377 ASSERT((ire
)->ire_refcnt
!= 0);
379 if (atomic_dec_32_nv(&(ire
)->ire_refcnt
) == 0)
384 ire_refrele_notr(ire_t
*ire
)
386 ASSERT((ire
)->ire_refcnt
!= 0);
388 if (atomic_dec_32_nv(&(ire
)->ire_refcnt
) == 0)
393 * This function is associated with the IP_IOC_IRE_DELETE[_NO_REPLY]
394 * IOCTL[s]. The NO_REPLY form is used by TCP to tell IP that it is
395 * having problems reaching a particular destination.
396 * This will make IP consider alternate routes (e.g., when there are
397 * muliple default routes), and it will also make IP discard any (potentially)
399 * Management processes may want to use the version that generates a reply.
401 * With the use of NUD like behavior for IPv4/ARP in addition to IPv6
402 * this function shouldn't be necessary for IP to recover from a bad redirect,
403 * a bad default router (when there are multiple default routers), or
404 * a stale ND/ARP entry. But we retain it in any case.
405 * For instance, this is helpful when TCP suspects a failure before NUD does.
408 ip_ire_delete(queue_t
*q
, mblk_t
*mp
, cred_t
*ioc_cr
)
421 ASSERT(q
->q_next
== NULL
);
422 zoneid
= IPCL_ZONEID(Q_TO_CONN(q
));
423 ipst
= CONNQ_TO_IPST(q
);
426 * Check privilege using the ioctl credential; if it is NULL
427 * then this is a kernel message and therefor privileged.
429 if (ioc_cr
!= NULL
&& secpolicy_ip_config(ioc_cr
, B_FALSE
) != 0)
432 ipid
= (ipid_t
*)mp
->b_rptr
;
434 addr_ucp
= mi_offset_param(mp
, ipid
->ipid_addr_offset
,
435 ipid
->ipid_addr_length
);
436 if (addr_ucp
== NULL
|| !OK_32PTR(addr_ucp
))
438 switch (ipid
->ipid_addr_length
) {
441 * got complete (sockaddr) address - increment addr_ucp to point
442 * at the ip_addr field.
444 sin
= (sin_t
*)addr_ucp
;
445 addr_ucp
= (uchar_t
*)&sin
->sin_addr
.s_addr
;
446 ipversion
= IPV4_VERSION
;
448 case sizeof (sin6_t
):
450 * got complete (sockaddr) address - increment addr_ucp to point
451 * at the ip_addr field.
453 sin6
= (sin6_t
*)addr_ucp
;
454 addr_ucp
= (uchar_t
*)&sin6
->sin6_addr
;
455 ipversion
= IPV6_VERSION
;
460 if (ipversion
== IPV4_VERSION
) {
461 /* Extract the destination address. */
462 bcopy(addr_ucp
, &v4addr
, IP_ADDR_LEN
);
464 ire
= ire_ftable_lookup_v4(v4addr
, 0, 0, 0, NULL
,
465 zoneid
, MATCH_IRE_DSTONLY
, 0, ipst
, NULL
);
467 /* Extract the destination address. */
468 bcopy(addr_ucp
, &v6addr
, IPV6_ADDR_LEN
);
470 ire
= ire_ftable_lookup_v6(&v6addr
, NULL
, NULL
, 0, NULL
,
471 zoneid
, MATCH_IRE_DSTONLY
, 0, ipst
, NULL
);
474 if (ipversion
== IPV4_VERSION
) {
475 ip_rts_change(RTM_LOSING
, ire
->ire_addr
,
476 ire
->ire_gateway_addr
, ire
->ire_mask
,
477 (Q_TO_CONN(q
))->conn_laddr_v4
, 0, 0, 0,
478 (RTA_DST
| RTA_GATEWAY
| RTA_NETMASK
| RTA_IFA
),
481 (void) ire_no_good(ire
);
488 * Initialize the ire that is specific to IPv4 part and call
489 * ire_init_common to finish it.
490 * Returns zero or errno.
493 ire_init_v4(ire_t
*ire
, uchar_t
*addr
, uchar_t
*mask
, uchar_t
*gateway
,
494 ushort_t type
, ill_t
*ill
, zoneid_t zoneid
, uint_t flags
,
499 BUMP_IRE_STATS(ipst
->ips_ire_stats_v4
, ire_stats_alloced
);
502 bcopy(addr
, &ire
->ire_addr
, IP_ADDR_LEN
);
504 bcopy(gateway
, &ire
->ire_gateway_addr
, IP_ADDR_LEN
);
506 /* Make sure we don't have stray values in some fields */
513 ire
->ire_mask
= IP_HOST_MASK
;
514 ire
->ire_masklen
= IPV4_ABITS
;
518 case IRE_IF_RESOLVER
:
519 case IRE_IF_NORESOLVER
:
521 bcopy(mask
, &ire
->ire_mask
, IP_ADDR_LEN
);
522 ire
->ire_masklen
= ip_mask_to_plen(ire
->ire_mask
);
527 ASSERT(mask
== NULL
);
534 error
= ire_init_common(ire
, type
, ill
, zoneid
, flags
, IPV4_VERSION
,
539 /* Determine which function pointers to use */
540 ire
->ire_postfragfn
= ip_xmit
; /* Common case */
542 switch (ire
->ire_type
) {
544 ire
->ire_sendfn
= ire_send_local_v4
;
545 ire
->ire_recvfn
= ire_recv_local_v4
;
546 ASSERT(ire
->ire_ill
!= NULL
);
547 if (ire
->ire_ill
->ill_flags
& ILLF_NOACCEPT
)
548 ire
->ire_recvfn
= ire_recv_noaccept_v6
;
551 ire
->ire_sendfn
= ire_send_local_v4
;
552 ire
->ire_recvfn
= ire_recv_loopback_v4
;
555 ire
->ire_postfragfn
= ip_postfrag_loopcheck
;
556 ire
->ire_sendfn
= ire_send_broadcast_v4
;
557 ire
->ire_recvfn
= ire_recv_broadcast_v4
;
560 ire
->ire_postfragfn
= ip_postfrag_loopcheck
;
561 ire
->ire_sendfn
= ire_send_multicast_v4
;
562 ire
->ire_recvfn
= ire_recv_multicast_v4
;
566 * For IRE_IF_ALL and IRE_OFFLINK we forward received
567 * packets by default.
569 ire
->ire_sendfn
= ire_send_wire_v4
;
570 ire
->ire_recvfn
= ire_recv_forward_v4
;
573 if (ire
->ire_flags
& (RTF_REJECT
|RTF_BLACKHOLE
)) {
574 ire
->ire_sendfn
= ire_send_noroute_v4
;
575 ire
->ire_recvfn
= ire_recv_noroute_v4
;
577 ire
->ire_nce_capable
= ire_determine_nce_capable(ire
);
582 * Determine ire_nce_capable
585 ire_determine_nce_capable(ire_t
*ire
)
589 if ((ire
->ire_flags
& (RTF_REJECT
|RTF_BLACKHOLE
)) ||
590 (ire
->ire_type
& IRE_MULTICAST
))
593 if (ire
->ire_ipversion
== IPV4_VERSION
)
594 max_masklen
= IPV4_ABITS
;
596 max_masklen
= IPV6_ABITS
;
598 if ((ire
->ire_type
& IRE_ONLINK
) && ire
->ire_masklen
== max_masklen
)
604 * ire_create is called to allocate and initialize a new IRE.
606 * NOTE : This is called as writer sometimes though not required
610 ire_create(uchar_t
*addr
, uchar_t
*mask
, uchar_t
*gateway
,
611 ushort_t type
, ill_t
*ill
, zoneid_t zoneid
, uint_t flags
,
617 ire
= kmem_cache_alloc(ire_cache
, KM_NOSLEEP
);
619 DTRACE_PROBE(kmem__cache__alloc
);
624 error
= ire_init_v4(ire
, addr
, mask
, gateway
, type
, ill
, zoneid
, flags
,
627 DTRACE_PROBE2(ire__init
, ire_t
*, ire
, int, error
);
628 kmem_cache_free(ire_cache
, ire
);
635 * Common to IPv4 and IPv6
636 * Returns zero or errno.
639 ire_init_common(ire_t
*ire
, ushort_t type
, ill_t
*ill
, zoneid_t zoneid
,
640 uint_t flags
, uchar_t ipversion
, ip_stack_t
*ipst
)
647 ASSERT(ipversion
== IPV6_VERSION
);
649 ASSERT(ipversion
== IPV4_VERSION
);
653 ire
->ire_type
= type
;
654 ire
->ire_flags
= RTF_UP
| flags
;
655 ire
->ire_create_time
= (uint32_t)gethrestime_sec();
656 ire
->ire_generation
= IRE_GENERATION_INITIAL
;
659 * The ill_ire_cnt isn't increased until
660 * the IRE is added to ensure that a walker will find
661 * all IREs that hold a reference on an ill.
663 * Note that ill_ire_multicast doesn't hold a ref on the ill since
664 * ire_add() is not called for the IRE_MULTICAST.
667 ire
->ire_zoneid
= zoneid
;
668 ire
->ire_ipversion
= ipversion
;
670 mutex_init(&ire
->ire_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
672 ire
->ire_identical_ref
= 1; /* Number of ire_delete's needed */
673 ire
->ire_ipst
= ipst
; /* No netstack_hold */
674 ire
->ire_trace_disable
= B_FALSE
;
680 * This creates an IRE_BROADCAST based on the arguments.
681 * A mirror is ire_lookup_bcast().
683 * Any supression of unneeded ones is done in ire_add_v4.
684 * We add one IRE_BROADCAST per address. ire_send_broadcast_v4()
685 * takes care of generating a loopback copy of the packet.
688 ire_create_bcast(ill_t
*ill
, ipaddr_t addr
, zoneid_t zoneid
, ire_t
**irep
)
690 ip_stack_t
*ipst
= ill
->ill_ipst
;
692 ASSERT(IAM_WRITER_ILL(ill
));
694 *irep
++ = ire_create(
695 (uchar_t
*)&addr
, /* dest addr */
696 (uchar_t
*)&ip_g_all_ones
, /* mask */
697 NULL
, /* no gateway */
708 * This looks up an IRE_BROADCAST based on the arguments.
709 * Mirrors ire_create_bcast().
712 ire_lookup_bcast(ill_t
*ill
, ipaddr_t addr
, zoneid_t zoneid
)
717 match_args
= MATCH_IRE_TYPE
| MATCH_IRE_ILL
| MATCH_IRE_GW
|
718 MATCH_IRE_MASK
| MATCH_IRE_ZONEONLY
;
720 if (IS_UNDER_IPMP(ill
))
721 match_args
|= MATCH_IRE_TESTHIDDEN
;
723 ire
= ire_ftable_lookup_v4(
724 addr
, /* dest addr */
725 ip_g_all_ones
, /* mask */
737 /* Arrange to call the specified function for every IRE in the world. */
739 ire_walk(pfv_t func
, void *arg
, ip_stack_t
*ipst
)
741 ire_walk_ipvers(func
, arg
, 0, ALL_ZONES
, ipst
);
745 ire_walk_v4(pfv_t func
, void *arg
, zoneid_t zoneid
, ip_stack_t
*ipst
)
747 ire_walk_ipvers(func
, arg
, IPV4_VERSION
, zoneid
, ipst
);
751 ire_walk_v6(pfv_t func
, void *arg
, zoneid_t zoneid
, ip_stack_t
*ipst
)
753 ire_walk_ipvers(func
, arg
, IPV6_VERSION
, zoneid
, ipst
);
757 * Walk a particular version. version == 0 means both v4 and v6.
760 ire_walk_ipvers(pfv_t func
, void *arg
, uchar_t vers
, zoneid_t zoneid
,
763 if (vers
!= IPV6_VERSION
) {
765 * ip_forwarding_table variable doesn't matter for IPv4 since
766 * ire_walk_ill_tables uses ips_ip_ftable for IPv4.
768 ire_walk_ill_tables(0, 0, func
, arg
, IP_MASK_TABLE_SIZE
,
772 if (vers
!= IPV4_VERSION
) {
773 ire_walk_ill_tables(0, 0, func
, arg
, IP6_MASK_TABLE_SIZE
,
774 ipst
->ips_ip6_ftable_hash_size
,
775 ipst
->ips_ip_forwarding_table_v6
,
781 * Arrange to call the specified function for every IRE that matches the ill.
784 ire_walk_ill(uint_t match_flags
, uint_t ire_type
, pfv_t func
, void *arg
,
787 uchar_t vers
= (ill
->ill_isv6
? IPV6_VERSION
: IPV4_VERSION
);
789 ire_walk_ill_ipvers(match_flags
, ire_type
, func
, arg
, vers
, ill
);
793 * Walk a particular ill and version.
796 ire_walk_ill_ipvers(uint_t match_flags
, uint_t ire_type
, pfv_t func
,
797 void *arg
, uchar_t vers
, ill_t
*ill
)
799 ip_stack_t
*ipst
= ill
->ill_ipst
;
801 if (vers
== IPV4_VERSION
) {
802 ire_walk_ill_tables(match_flags
, ire_type
, func
, arg
,
805 ill
, ALL_ZONES
, ipst
);
807 if (vers
!= IPV4_VERSION
) {
808 ire_walk_ill_tables(match_flags
, ire_type
, func
, arg
,
809 IP6_MASK_TABLE_SIZE
, ipst
->ips_ip6_ftable_hash_size
,
810 ipst
->ips_ip_forwarding_table_v6
,
811 ill
, ALL_ZONES
, ipst
);
816 * Do the specific matching of IREs to shared-IP zones.
818 * We have the same logic as in ire_match_args but implemented slightly
822 ire_walk_ill_match(uint_t match_flags
, uint_t ire_type
, ire_t
*ire
,
823 ill_t
*ill
, zoneid_t zoneid
, ip_stack_t
*ipst
)
825 ill_t
*dst_ill
= ire
->ire_ill
;
827 ASSERT(match_flags
!= 0 || zoneid
!= ALL_ZONES
);
829 if (zoneid
!= ALL_ZONES
&& zoneid
!= ire
->ire_zoneid
&&
830 ire
->ire_zoneid
!= ALL_ZONES
) {
832 * We're walking the IREs for a specific zone. The only relevant
834 * - all IREs with a matching ire_zoneid
835 * - IRE_IF_ALL IREs for interfaces with a usable source addr
836 * with a matching zone
837 * - IRE_OFFLINK with a gateway reachable from the zone
838 * Note that ealier we only did the IRE_OFFLINK check for
839 * IRE_DEFAULT (and only when we had multiple IRE_DEFAULTs).
841 if (ire
->ire_type
& IRE_ONLINK
) {
845 * Note there is no IRE_INTERFACE on vniN thus
846 * can't do an IRE lookup for a matching route.
848 ifindex
= dst_ill
->ill_usesrc_ifindex
;
853 * If there is a usable source address in the
854 * zone, then it's ok to return an
857 if (!ipif_zone_avail(ifindex
, dst_ill
->ill_isv6
,
862 if (dst_ill
!= NULL
&& (ire
->ire_type
& IRE_OFFLINK
)) {
865 mutex_enter(&dst_ill
->ill_lock
);
866 for (tipif
= dst_ill
->ill_ipif
;
867 tipif
!= NULL
; tipif
= tipif
->ipif_next
) {
868 if (!IPIF_IS_CONDEMNED(tipif
) &&
869 (tipif
->ipif_flags
& IPIF_UP
) &&
870 (tipif
->ipif_zoneid
== zoneid
||
871 tipif
->ipif_zoneid
== ALL_ZONES
))
874 mutex_exit(&dst_ill
->ill_lock
);
881 * Except for ALL_ZONES, we only match the offlink routes
882 * where ire_gateway_addr has an IRE_INTERFACE for the zoneid.
883 * Since we can have leftover routes after the IP addresses have
884 * changed, the global zone will also match offlink routes where the
885 * gateway is unreachable from any zone.
887 if ((ire
->ire_type
& IRE_OFFLINK
) && zoneid
!= ALL_ZONES
) {
888 in6_addr_t gw_addr_v6
;
891 if (ire
->ire_ipversion
== IPV4_VERSION
) {
892 reach
= ire_gateway_ok_zone_v4(ire
->ire_gateway_addr
,
893 zoneid
, dst_ill
, ipst
, B_FALSE
);
895 ASSERT(ire
->ire_ipversion
== IPV6_VERSION
);
896 mutex_enter(&ire
->ire_lock
);
897 gw_addr_v6
= ire
->ire_gateway_addr_v6
;
898 mutex_exit(&ire
->ire_lock
);
900 reach
= ire_gateway_ok_zone_v6(&gw_addr_v6
, zoneid
,
901 dst_ill
, ipst
, B_FALSE
);
904 if (zoneid
!= GLOBAL_ZONEID
)
908 * Check if ALL_ZONES reachable - if not then let the
909 * global zone see it.
911 if (ire
->ire_ipversion
== IPV4_VERSION
) {
912 reach
= ire_gateway_ok_zone_v4(
913 ire
->ire_gateway_addr
, ALL_ZONES
,
914 dst_ill
, ipst
, B_FALSE
);
916 reach
= ire_gateway_ok_zone_v6(&gw_addr_v6
,
917 ALL_ZONES
, dst_ill
, ipst
, B_FALSE
);
921 * Some other zone could see it, hence hide it
922 * in the global zone.
929 if (((!(match_flags
& MATCH_IRE_TYPE
)) ||
930 (ire
->ire_type
& ire_type
)) &&
931 ((!(match_flags
& MATCH_IRE_ILL
)) ||
933 dst_ill
!= NULL
&& IS_IN_SAME_ILLGRP(dst_ill
, ill
)))) {
940 rtfunc(struct radix_node
*rn
, void *arg
)
942 struct rtfuncarg
*rtf
= arg
;
948 rt
= (struct rt_entry
*)rn
;
951 for (ire
= irb
->irb_ire
; ire
!= NULL
; ire
= ire
->ire_next
) {
952 if ((rtf
->rt_match_flags
!= 0) ||
953 (rtf
->rt_zoneid
!= ALL_ZONES
)) {
954 ret
= ire_walk_ill_match(rtf
->rt_match_flags
,
955 rtf
->rt_ire_type
, ire
,
956 rtf
->rt_ill
, rtf
->rt_zoneid
, rtf
->rt_ipst
);
961 (*rtf
->rt_func
)(ire
, rtf
->rt_arg
);
967 * Walk the ftable entries that match the ill.
970 ire_walk_ill_tables(uint_t match_flags
, uint_t ire_type
, pfv_t func
,
971 void *arg
, size_t ftbl_sz
, size_t htbl_sz
, irb_t
**ipftbl
,
972 ill_t
*ill
, zoneid_t zoneid
,
980 struct rtfuncarg rtfarg
;
982 ASSERT((!(match_flags
& MATCH_IRE_ILL
)) || (ill
!= NULL
));
983 ASSERT(!(match_flags
& MATCH_IRE_TYPE
) || (ire_type
!= 0));
985 /* knobs such that routine is called only for v6 case */
986 if (ipftbl
== ipst
->ips_ip_forwarding_table_v6
) {
987 for (i
= (ftbl_sz
- 1); i
>= 0; i
--) {
988 if ((irb_ptr
= ipftbl
[i
]) == NULL
)
990 for (j
= 0; j
< htbl_sz
; j
++) {
992 if (irb
->irb_ire
== NULL
)
996 for (ire
= irb
->irb_ire
; ire
!= NULL
;
997 ire
= ire
->ire_next
) {
998 if (match_flags
== 0 &&
999 zoneid
== ALL_ZONES
) {
1015 bzero(&rtfarg
, sizeof (rtfarg
));
1016 rtfarg
.rt_func
= func
;
1017 rtfarg
.rt_arg
= arg
;
1018 if (match_flags
!= 0) {
1019 rtfarg
.rt_match_flags
= match_flags
;
1021 rtfarg
.rt_ire_type
= ire_type
;
1022 rtfarg
.rt_ill
= ill
;
1023 rtfarg
.rt_zoneid
= zoneid
;
1024 rtfarg
.rt_ipst
= ipst
; /* No netstack_hold */
1025 (void) ipst
->ips_ip_ftable
->rnh_walktree_mt(
1026 ipst
->ips_ip_ftable
,
1027 rtfunc
, &rtfarg
, irb_refhold_rn
, irb_refrele_rn
);
1032 * This function takes a mask and returns
1033 * number of bits set in the mask. If no
1034 * bit is set it returns 0.
1035 * Assumes a contiguous mask.
1038 ip_mask_to_plen(ipaddr_t mask
)
1040 return (mask
== 0 ? 0 : IP_ABITS
- (ffs(ntohl(mask
)) -1));
1044 * Convert length for a mask to the mask.
1047 ip_plen_to_mask(uint_t masklen
)
1052 return (htonl(IP_HOST_MASK
<< (IP_ABITS
- masklen
)));
1056 ire_atomic_end(irb_t
*irb_ptr
, ire_t
*ire
)
1062 mutex_exit(&ill
->ill_lock
);
1063 rw_exit(&irb_ptr
->irb_lock
);
1067 * ire_add_v[46] atomically make sure that the ill associated
1068 * with the new ire is not going away i.e., we check ILL_CONDEMNED.
1071 ire_atomic_start(irb_t
*irb_ptr
, ire_t
*ire
)
1077 rw_enter(&irb_ptr
->irb_lock
, RW_WRITER
);
1079 mutex_enter(&ill
->ill_lock
);
1082 * Don't allow IRE's to be created on dying ills, or on
1083 * ill's for which the last ipif is going down, or ones which
1084 * don't have even a single UP interface
1086 if ((ill
->ill_state_flags
&
1087 (ILL_CONDEMNED
|ILL_DOWN_IN_PROGRESS
)) != 0) {
1088 ire_atomic_end(irb_ptr
, ire
);
1089 DTRACE_PROBE1(ire__add__on__dying__ill
, ire_t
*, ire
);
1093 if (IS_UNDER_IPMP(ill
)) {
1095 mutex_enter(&ill
->ill_phyint
->phyint_lock
);
1096 if (!ipmp_ill_is_active(ill
) &&
1097 IRE_HIDDEN_TYPE(ire
->ire_type
) &&
1098 !ire
->ire_testhidden
) {
1101 mutex_exit(&ill
->ill_phyint
->phyint_lock
);
1103 ire_atomic_end(irb_ptr
, ire
);
1113 * Add a fully initialized IRE to the forwarding table.
1114 * This returns NULL on failure, or a held IRE on success.
1115 * Normally the returned IRE is the same as the argument. But a different
1116 * IRE will be returned if the added IRE is deemed identical to an existing
1117 * one. In that case ire_identical_ref will be increased.
1118 * The caller always needs to do an ire_refrele() on the returned IRE.
1123 if (IRE_HIDDEN_TYPE(ire
->ire_type
) &&
1124 ire
->ire_ill
!= NULL
&& IS_UNDER_IPMP(ire
->ire_ill
)) {
1126 * IREs hosted on interfaces that are under IPMP
1127 * should be hidden so that applications don't
1128 * accidentally end up sending packets with test
1129 * addresses as their source addresses, or
1130 * sending out interfaces that are e.g. IFF_INACTIVE.
1133 ire
->ire_testhidden
= B_TRUE
;
1136 if (ire
->ire_ipversion
== IPV6_VERSION
)
1137 return (ire_add_v6(ire
));
1139 return (ire_add_v4(ire
));
1143 * Add a fully initialized IPv4 IRE to the forwarding table.
1144 * This returns NULL on failure, or a held IRE on success.
1145 * Normally the returned IRE is the same as the argument. But a different
1146 * IRE will be returned if the added IRE is deemed identical to an existing
1147 * one. In that case ire_identical_ref will be increased.
1148 * The caller always needs to do an ire_refrele() on the returned IRE.
1151 ire_add_v4(ire_t
*ire
)
1158 ip_stack_t
*ipst
= ire
->ire_ipst
;
1160 if (ire
->ire_ill
!= NULL
)
1161 ASSERT(!MUTEX_HELD(&ire
->ire_ill
->ill_lock
));
1162 ASSERT(ire
->ire_ipversion
== IPV4_VERSION
);
1164 /* Make sure the address is properly masked. */
1165 ire
->ire_addr
&= ire
->ire_mask
;
1167 match_flags
= (MATCH_IRE_MASK
| MATCH_IRE_TYPE
| MATCH_IRE_GW
);
1169 if (ire
->ire_ill
!= NULL
) {
1170 match_flags
|= MATCH_IRE_ILL
;
1172 irb_ptr
= ire_get_bucket(ire
);
1173 if (irb_ptr
== NULL
) {
1174 printf("no bucket for %p\n", (void *)ire
);
1180 * Start the atomic add of the ire. Grab the ill lock,
1181 * the bucket lock. Check for condemned.
1183 error
= ire_atomic_start(irb_ptr
, ire
);
1185 printf("no ire_atomic_start for %p\n", (void *)ire
);
1187 irb_refrele(irb_ptr
);
1191 * If we are creating a hidden IRE, make sure we search for
1192 * hidden IREs when searching for duplicates below.
1193 * Otherwise, we might find an IRE on some other interface
1194 * that's not marked hidden.
1196 if (ire
->ire_testhidden
)
1197 match_flags
|= MATCH_IRE_TESTHIDDEN
;
1200 * Atomically check for duplicate and insert in the table.
1202 for (ire1
= irb_ptr
->irb_ire
; ire1
!= NULL
; ire1
= ire1
->ire_next
) {
1203 if (IRE_IS_CONDEMNED(ire1
))
1206 * Here we need an exact match on zoneid, i.e.,
1207 * ire_match_args doesn't fit.
1209 if (ire1
->ire_zoneid
!= ire
->ire_zoneid
)
1212 if (ire1
->ire_type
!= ire
->ire_type
)
1216 * Note: We do not allow multiple routes that differ only
1217 * in the gateway security attributes; such routes are
1218 * considered duplicates.
1219 * To change that we explicitly have to treat them as
1222 if (ire_match_args(ire1
, ire
->ire_addr
, ire
->ire_mask
,
1223 ire
->ire_gateway_addr
, ire
->ire_type
, ire
->ire_ill
,
1224 ire
->ire_zoneid
, match_flags
)) {
1226 * Return the old ire after doing a REFHOLD.
1227 * As most of the callers continue to use the IRE
1228 * after adding, we return a held ire. This will
1229 * avoid a lookup in the caller again. If the callers
1230 * don't want to use it, they need to do a REFRELE.
1232 * We only allow exactly one IRE_IF_CLONE for any dst,
1233 * so, if the is an IF_CLONE, return the ire without
1234 * an identical_ref, but with an ire_ref held.
1236 if (ire
->ire_type
!= IRE_IF_CLONE
) {
1237 atomic_inc_32(&ire1
->ire_identical_ref
);
1238 DTRACE_PROBE2(ire__add__exist
, ire_t
*, ire1
,
1242 ire_atomic_end(irb_ptr
, ire
);
1244 irb_refrele(irb_ptr
);
1250 * Normally we do head insertion since most things do not care about
1251 * the order of the IREs in the bucket. However, due to shared-IP
1252 * zones (and restrict_interzone_loopback) we can have an IRE_LOCAL
1253 * as well as IRE_IF_CLONE for the same address. For that reason we
1254 * do tail insertion for IRE_IF_CLONE. The IRE_BROADCAST case is a
1257 irep
= (ire_t
**)irb_ptr
;
1258 if ((ire
->ire_type
& IRE_IF_CLONE
) || (ire
->ire_type
& IRE_BROADCAST
)) {
1259 while ((ire1
= *irep
) != NULL
)
1260 irep
= &ire1
->ire_next
;
1262 /* Insert at *irep */
1265 ire1
->ire_ptpn
= &ire
->ire_next
;
1266 ire
->ire_next
= ire1
;
1267 /* Link the new one in. */
1268 ire
->ire_ptpn
= irep
;
1271 * ire_walk routines de-reference ire_next without holding
1272 * a lock. Before we point to the new ire, we want to make
1273 * sure the store that sets the ire_next of the new ire
1274 * reaches global visibility, so that ire_walk routines
1275 * don't see a truncated list of ires i.e if the ire_next
1276 * of the new ire gets set after we do "*irep = ire" due
1277 * to re-ordering, the ire_walk thread will see a NULL
1278 * once it accesses the ire_next of the new ire.
1279 * membar_producer() makes sure that the following store
1280 * happens *after* all of the above stores.
1284 ire
->ire_bucket
= irb_ptr
;
1286 * We return a bumped up IRE above. Keep it symmetrical
1287 * so that the callers will always have to release. This
1288 * helps the callers of this function because they continue
1289 * to use the IRE after adding and hence they don't have to
1290 * lookup again after we return the IRE.
1292 * NOTE : We don't have to use atomics as this is appearing
1293 * in the list for the first time and no one else can bump
1294 * up the reference count on this yet.
1296 ire_refhold_locked(ire
);
1297 BUMP_IRE_STATS(ipst
->ips_ire_stats_v4
, ire_stats_inserted
);
1299 irb_ptr
->irb_ire_cnt
++;
1300 if (irb_ptr
->irb_marks
& IRB_MARK_DYNAMIC
)
1301 irb_ptr
->irb_nire
++;
1303 if (ire
->ire_ill
!= NULL
) {
1304 ire
->ire_ill
->ill_ire_cnt
++;
1305 ASSERT(ire
->ire_ill
->ill_ire_cnt
!= 0); /* Wraparound */
1308 ire_atomic_end(irb_ptr
, ire
);
1310 /* Make any caching of the IREs be notified or updated */
1311 ire_flush_cache_v4(ire
, IRE_FLUSH_ADD
);
1313 if (ire
->ire_ill
!= NULL
)
1314 ASSERT(!MUTEX_HELD(&ire
->ire_ill
->ill_lock
));
1315 irb_refrele(irb_ptr
);
1320 * irb_refrele is the only caller of the function. ire_unlink calls to
1321 * do the final cleanup for this ire.
1324 ire_cleanup(ire_t
*ire
)
1327 ip_stack_t
*ipst
= ire
->ire_ipst
;
1329 ASSERT(ire
!= NULL
);
1331 while (ire
!= NULL
) {
1332 ire_next
= ire
->ire_next
;
1333 if (ire
->ire_ipversion
== IPV4_VERSION
) {
1335 BUMP_IRE_STATS(ipst
->ips_ire_stats_v4
,
1338 ASSERT(ire
->ire_ipversion
== IPV6_VERSION
);
1340 BUMP_IRE_STATS(ipst
->ips_ire_stats_v6
,
1344 * Now it's really out of the list. Before doing the
1345 * REFRELE, set ire_next to NULL as ire_inactive asserts
1348 ire
->ire_next
= NULL
;
1349 ire_refrele_notr(ire
);
1355 * irb_refrele is the only caller of the function. It calls to unlink
1356 * all the CONDEMNED ires from this bucket.
1359 ire_unlink(irb_t
*irb
)
1364 ire_t
*ire_list
= NULL
;
1366 ASSERT(RW_WRITE_HELD(&irb
->irb_lock
));
1367 ASSERT(((irb
->irb_marks
& IRB_MARK_DYNAMIC
) && irb
->irb_refcnt
== 1) ||
1368 (irb
->irb_refcnt
== 0));
1369 ASSERT(irb
->irb_marks
& IRB_MARK_CONDEMNED
);
1370 ASSERT(irb
->irb_ire
!= NULL
);
1372 for (ire
= irb
->irb_ire
; ire
!= NULL
; ire
= ire1
) {
1373 ire1
= ire
->ire_next
;
1374 if (IRE_IS_CONDEMNED(ire
)) {
1375 ptpn
= ire
->ire_ptpn
;
1376 ire1
= ire
->ire_next
;
1378 ire1
->ire_ptpn
= ptpn
;
1380 ire
->ire_ptpn
= NULL
;
1381 ire
->ire_next
= NULL
;
1384 * We need to call ire_delete_v4 or ire_delete_v6 to
1385 * clean up dependents and the redirects pointing at
1386 * the default gateway. We need to drop the lock
1387 * as ire_flush_cache/ire_delete_host_redircts require
1388 * so. But we can't drop the lock, as ire_unlink needs
1389 * to atomically remove the ires from the list.
1390 * So, create a temporary list of CONDEMNED ires
1391 * for doing ire_delete_v4/ire_delete_v6 operations
1394 ire
->ire_next
= ire_list
;
1398 irb
->irb_marks
&= ~IRB_MARK_CONDEMNED
;
1403 * Clean up the radix node for this ire. Must be called by irb_refrele
1404 * when there are no ire's left in the bucket. Returns TRUE if the bucket
1405 * is deleted and freed.
1408 irb_inactive(irb_t
*irb
)
1410 struct rt_entry
*rt
;
1411 struct radix_node
*rn
;
1412 ip_stack_t
*ipst
= irb
->irb_ipst
;
1414 ASSERT(irb
->irb_ipst
!= NULL
);
1417 rn
= (struct radix_node
*)rt
;
1419 /* first remove it from the radix tree. */
1420 RADIX_NODE_HEAD_WLOCK(ipst
->ips_ip_ftable
);
1421 rw_enter(&irb
->irb_lock
, RW_WRITER
);
1422 if (irb
->irb_refcnt
== 1 && irb
->irb_nire
== 0) {
1423 rn
= ipst
->ips_ip_ftable
->rnh_deladdr(rn
->rn_key
, rn
->rn_mask
,
1424 ipst
->ips_ip_ftable
);
1425 DTRACE_PROBE1(irb__free
, rt_t
*, rt
);
1426 ASSERT((void *)rn
== (void *)rt
);
1427 Free(rt
, rt_entry_cache
);
1428 /* irb_lock is freed */
1429 RADIX_NODE_HEAD_UNLOCK(ipst
->ips_ip_ftable
);
1432 rw_exit(&irb
->irb_lock
);
1433 RADIX_NODE_HEAD_UNLOCK(ipst
->ips_ip_ftable
);
1438 * Delete the specified IRE.
1439 * We assume that if ire_bucket is not set then ire_ill->ill_ire_cnt was
1440 * not incremented i.e., that the insertion in the bucket and the increment
1441 * of that counter is done atomically.
1444 ire_delete(ire_t
*ire
)
1449 ip_stack_t
*ipst
= ire
->ire_ipst
;
1451 if ((irb
= ire
->ire_bucket
) == NULL
) {
1453 * It was never inserted in the list. Should call REFRELE
1456 ire_make_condemned(ire
);
1457 ire_refrele_notr(ire
);
1462 * Move the use counts from an IRE_IF_CLONE to its parent
1464 * We need to do this before acquiring irb_lock.
1466 if (ire
->ire_type
& IRE_IF_CLONE
) {
1469 rw_enter(&ipst
->ips_ire_dep_lock
, RW_READER
);
1470 if ((parent
= ire
->ire_dep_parent
) != NULL
) {
1471 parent
->ire_ob_pkt_count
+= ire
->ire_ob_pkt_count
;
1472 parent
->ire_ib_pkt_count
+= ire
->ire_ib_pkt_count
;
1473 ire
->ire_ob_pkt_count
= 0;
1474 ire
->ire_ib_pkt_count
= 0;
1476 rw_exit(&ipst
->ips_ire_dep_lock
);
1479 rw_enter(&irb
->irb_lock
, RW_WRITER
);
1480 if (ire
->ire_ptpn
== NULL
) {
1482 * Some other thread has removed us from the list.
1483 * It should have done the REFRELE for us.
1485 rw_exit(&irb
->irb_lock
);
1489 if (!IRE_IS_CONDEMNED(ire
)) {
1490 /* Is this an IRE representing multiple duplicate entries? */
1491 ASSERT(ire
->ire_identical_ref
>= 1);
1492 if (atomic_dec_32_nv(&ire
->ire_identical_ref
) != 0) {
1493 /* Removed one of the identical parties */
1494 rw_exit(&irb
->irb_lock
);
1499 ire_make_condemned(ire
);
1502 if (irb
->irb_refcnt
!= 0) {
1504 * The last thread to leave this bucket will
1507 irb
->irb_marks
|= IRB_MARK_CONDEMNED
;
1508 rw_exit(&irb
->irb_lock
);
1513 * Normally to delete an ire, we walk the bucket. While we
1514 * walk the bucket, we normally bump up irb_refcnt and hence
1515 * we return from above where we mark CONDEMNED and the ire
1516 * gets deleted from ire_unlink. This case is where somebody
1517 * knows the ire e.g by doing a lookup, and wants to delete the
1518 * IRE. irb_refcnt would be 0 in this case if nobody is walking
1521 ptpn
= ire
->ire_ptpn
;
1522 ire1
= ire
->ire_next
;
1524 ire1
->ire_ptpn
= ptpn
;
1525 ASSERT(ptpn
!= NULL
);
1527 ire
->ire_ptpn
= NULL
;
1528 ire
->ire_next
= NULL
;
1529 if (ire
->ire_ipversion
== IPV6_VERSION
) {
1530 BUMP_IRE_STATS(ipst
->ips_ire_stats_v6
, ire_stats_deleted
);
1532 BUMP_IRE_STATS(ipst
->ips_ire_stats_v4
, ire_stats_deleted
);
1534 rw_exit(&irb
->irb_lock
);
1536 /* Cleanup dependents and related stuff */
1537 if (ire
->ire_ipversion
== IPV6_VERSION
) {
1543 * We removed it from the list. Decrement the
1546 ire_refrele_notr(ire
);
1550 * Delete the specified IRE.
1551 * All calls should use ire_delete().
1552 * Sometimes called as writer though not required by this function.
1554 * NOTE : This function is called only if the ire was added
1558 ire_delete_v4(ire_t
*ire
)
1560 ip_stack_t
*ipst
= ire
->ire_ipst
;
1562 ASSERT(ire
->ire_refcnt
>= 1);
1563 ASSERT(ire
->ire_ipversion
== IPV4_VERSION
);
1565 ire_flush_cache_v4(ire
, IRE_FLUSH_DELETE
);
1566 if (ire
->ire_type
== IRE_DEFAULT
) {
1568 * when a default gateway is going away
1569 * delete all the host redirects pointing at that
1572 ire_delete_host_redirects(ire
->ire_gateway_addr
, ipst
);
1576 * If we are deleting an IRE_INTERFACE then we make sure we also
1577 * delete any IRE_IF_CLONE that has been created from it.
1578 * Those are always in ire_dep_children.
1580 if ((ire
->ire_type
& IRE_INTERFACE
) && ire
->ire_dep_children
!= NULL
)
1581 ire_dep_delete_if_clone(ire
);
1583 /* Remove from parent dependencies and child */
1584 rw_enter(&ipst
->ips_ire_dep_lock
, RW_WRITER
);
1585 if (ire
->ire_dep_parent
!= NULL
)
1586 ire_dep_remove(ire
);
1588 while (ire
->ire_dep_children
!= NULL
)
1589 ire_dep_remove(ire
->ire_dep_children
);
1590 rw_exit(&ipst
->ips_ire_dep_lock
);
1594 * ire_refrele is the only caller of the function. It calls
1595 * to free the ire when the reference count goes to zero.
1598 ire_inactive(ire_t
*ire
)
1602 ip_stack_t
*ipst
= ire
->ire_ipst
;
1604 ASSERT(ire
->ire_refcnt
== 0);
1605 ASSERT(ire
->ire_ptpn
== NULL
);
1606 ASSERT(ire
->ire_next
== NULL
);
1608 /* Count how many condemned ires for kmem_cache callback */
1609 ASSERT(IRE_IS_CONDEMNED(ire
));
1610 atomic_add_32(&ipst
->ips_num_ire_condemned
, -1);
1613 * ire_nce_cache is cleared in ire_delete, and we make sure we don't
1614 * set it once the ire is marked condemned.
1616 ASSERT(ire
->ire_nce_cache
== NULL
);
1619 * Since any parent would have a refhold on us they would already
1620 * have been removed.
1622 ASSERT(ire
->ire_dep_parent
== NULL
);
1623 ASSERT(ire
->ire_dep_sib_next
== NULL
);
1624 ASSERT(ire
->ire_dep_sib_ptpn
== NULL
);
1627 * Since any children would have a refhold on us they should have
1628 * already been removed.
1630 ASSERT(ire
->ire_dep_children
== NULL
);
1633 * ill_ire_ref is increased when the IRE is inserted in the
1634 * bucket - not when the IRE is created.
1636 irb
= ire
->ire_bucket
;
1638 if (irb
!= NULL
&& ill
!= NULL
) {
1639 mutex_enter(&ill
->ill_lock
);
1640 ASSERT(ill
->ill_ire_cnt
!= 0);
1641 DTRACE_PROBE3(ill__decr__cnt
, (ill_t
*), ill
,
1642 (char *), "ire", (void *), ire
);
1644 if (ILL_DOWN_OK(ill
)) {
1645 /* Drops the ill lock */
1646 ipif_ill_refrele_tail(ill
);
1648 mutex_exit(&ill
->ill_lock
);
1651 ire
->ire_ill
= NULL
;
1653 /* This should be true for both V4 and V6 */
1654 if (irb
!= NULL
&& (irb
->irb_marks
& IRB_MARK_DYNAMIC
)) {
1655 rw_enter(&irb
->irb_lock
, RW_WRITER
);
1658 * Instead of examining the conditions for freeing
1659 * the radix node here, we do it by calling
1660 * irb_refrele which is a single point in the code
1661 * that embeds that logic. Bump up the refcnt to
1662 * be able to call irb_refrele
1664 irb_refhold_locked(irb
);
1665 rw_exit(&irb
->irb_lock
);
1670 ire_trace_cleanup(ire
);
1672 mutex_destroy(&ire
->ire_lock
);
1673 if (ire
->ire_ipversion
== IPV6_VERSION
) {
1674 BUMP_IRE_STATS(ipst
->ips_ire_stats_v6
, ire_stats_freed
);
1676 BUMP_IRE_STATS(ipst
->ips_ire_stats_v4
, ire_stats_freed
);
1678 kmem_cache_free(ire_cache
, ire
);
1682 * ire_update_generation is the callback function provided by
1683 * ire_get_bucket() to update the generation number of any
1684 * matching shorter route when a new route is added.
1686 * This fucntion always returns a failure return (B_FALSE)
1687 * to force the caller (rn_matchaddr_args)
1688 * to back-track up the tree looking for shorter matches.
1692 ire_update_generation(struct radix_node
*rn
, void *arg
)
1694 struct rt_entry
*rt
= (struct rt_entry
*)rn
;
1696 /* We need to handle all in the same bucket */
1697 irb_increment_generation(&rt
->rt_irb
);
1702 * Take care of all the generation numbers in the bucket.
1705 irb_increment_generation(irb_t
*irb
)
1710 if (irb
== NULL
|| irb
->irb_ire_cnt
== 0)
1713 ipst
= irb
->irb_ipst
;
1715 * we cannot do an irb_refhold/irb_refrele here as the caller
1716 * already has the global RADIX_NODE_HEAD_WLOCK, and the irb_refrele
1717 * may result in an attempt to free the irb_t, which also needs
1718 * the RADIX_NODE_HEAD lock. However, since we want to traverse the
1719 * irb_ire list without fear of having a condemned ire removed from
1720 * the list, we acquire the irb_lock as WRITER. Moreover, since
1721 * the ire_generation increments are done under the ire_dep_lock,
1722 * acquire the locks in the prescribed lock order first.
1724 rw_enter(&ipst
->ips_ire_dep_lock
, RW_READER
);
1725 rw_enter(&irb
->irb_lock
, RW_WRITER
);
1726 for (ire
= irb
->irb_ire
; ire
!= NULL
; ire
= ire
->ire_next
) {
1727 if (!IRE_IS_CONDEMNED(ire
))
1728 ire_increment_generation(ire
); /* Ourselves */
1729 ire_dep_incr_generation_locked(ire
); /* Dependants */
1731 rw_exit(&irb
->irb_lock
);
1732 rw_exit(&ipst
->ips_ire_dep_lock
);
1736 * When an IRE is added or deleted this routine is called to make sure
1737 * any caching of IRE information is notified or updated.
1739 * The flag argument indicates if the flush request is due to addition
1740 * of new route (IRE_FLUSH_ADD), deletion of old route (IRE_FLUSH_DELETE),
1741 * or a change to ire_gateway_addr (IRE_FLUSH_GWCHANGE).
1744 ire_flush_cache_v4(ire_t
*ire
, int flag
)
1746 irb_t
*irb
= ire
->ire_bucket
;
1747 struct rt_entry
*rt
= IRB2RT(irb
);
1748 ip_stack_t
*ipst
= ire
->ire_ipst
;
1751 * IRE_IF_CLONE ire's don't provide any new information
1752 * than the parent from which they are cloned, so don't
1753 * perturb the generation numbers.
1755 if (ire
->ire_type
& IRE_IF_CLONE
)
1759 * Ensure that an ire_add during a lookup serializes the updates of the
1760 * generation numbers under the radix head lock so that the lookup gets
1761 * either the old ire and old generation number, or a new ire and new
1762 * generation number.
1764 RADIX_NODE_HEAD_WLOCK(ipst
->ips_ip_ftable
);
1767 * If a route was just added, we need to notify everybody that
1768 * has cached an IRE_NOROUTE since there might now be a better
1771 if (flag
== IRE_FLUSH_ADD
) {
1772 ire_increment_generation(ipst
->ips_ire_reject_v4
);
1773 ire_increment_generation(ipst
->ips_ire_blackhole_v4
);
1776 /* Adding a default can't otherwise provide a better route */
1777 if (ire
->ire_type
== IRE_DEFAULT
&& flag
== IRE_FLUSH_ADD
) {
1778 RADIX_NODE_HEAD_UNLOCK(ipst
->ips_ip_ftable
);
1783 case IRE_FLUSH_DELETE
:
1784 case IRE_FLUSH_GWCHANGE
:
1786 * Update ire_generation for all ire_dep_children chains
1787 * starting with this IRE
1789 ire_dep_incr_generation(ire
);
1793 * Update the generation numbers of all shorter matching routes.
1794 * ire_update_generation takes care of the dependants by
1795 * using ire_dep_incr_generation.
1797 (void) ipst
->ips_ip_ftable
->rnh_matchaddr_args(&rt
->rt_dst
,
1798 ipst
->ips_ip_ftable
, ire_update_generation
, NULL
);
1801 RADIX_NODE_HEAD_UNLOCK(ipst
->ips_ip_ftable
);
1805 * Matches the arguments passed with the values in the ire.
1807 * Note: for match types that match using "ill" passed in, ill
1808 * must be checked for non-NULL before calling this routine.
1811 ire_match_args(ire_t
*ire
, ipaddr_t addr
, ipaddr_t mask
, ipaddr_t gateway
,
1812 int type
, const ill_t
*ill
, zoneid_t zoneid
, int match_flags
)
1814 ill_t
*ire_ill
= NULL
, *dst_ill
;
1815 ip_stack_t
*ipst
= ire
->ire_ipst
;
1817 ASSERT(ire
->ire_ipversion
== IPV4_VERSION
);
1818 ASSERT((ire
->ire_addr
& ~ire
->ire_mask
) == 0);
1819 ASSERT((!(match_flags
& (MATCH_IRE_ILL
|MATCH_IRE_SRC_ILL
))) ||
1820 (ill
!= NULL
&& !ill
->ill_isv6
));
1823 * If MATCH_IRE_TESTHIDDEN is set, then only return the IRE if it is
1824 * in fact hidden, to ensure the caller gets the right one.
1826 if (ire
->ire_testhidden
) {
1827 if (!(match_flags
& MATCH_IRE_TESTHIDDEN
))
1831 if (zoneid
!= ALL_ZONES
&& zoneid
!= ire
->ire_zoneid
&&
1832 ire
->ire_zoneid
!= ALL_ZONES
) {
1834 * If MATCH_IRE_ZONEONLY has been set and the supplied zoneid
1835 * does not match that of ire_zoneid, a failure to
1836 * match is reported at this point. Otherwise, since some IREs
1837 * that are available in the global zone can be used in local
1838 * zones, additional checks need to be performed:
1841 * entries should never be matched in this situation.
1842 * Each zone has its own IRE_LOOPBACK.
1845 * We allow them for any zoneid. ire_route_recursive
1846 * does additional checks when
1847 * ip_restrict_interzone_loopback is set.
1849 * If ill_usesrc_ifindex is set
1850 * Then we check if the zone has a valid source address
1851 * on the usesrc ill.
1853 * If ire_ill is set, then check that the zone has an ipif
1856 * Outside of this function (in ire_round_robin) we check
1857 * that any IRE_OFFLINK has a gateway that reachable from the
1858 * zone when we have multiple choices (ECMP).
1860 if (match_flags
& MATCH_IRE_ZONEONLY
)
1862 if (ire
->ire_type
& IRE_LOOPBACK
)
1865 if (ire
->ire_type
& IRE_LOCAL
)
1869 * The normal case of IRE_ONLINK has a matching zoneid.
1870 * Here we handle the case when shared-IP zones have been
1871 * configured with IP addresses on vniN. In that case it
1872 * is ok for traffic from a zone to use IRE_ONLINK routes
1873 * if the ill has a usesrc pointing at vniN
1875 dst_ill
= ire
->ire_ill
;
1876 if (ire
->ire_type
& IRE_ONLINK
) {
1880 * Note there is no IRE_INTERFACE on vniN thus
1881 * can't do an IRE lookup for a matching route.
1883 ifindex
= dst_ill
->ill_usesrc_ifindex
;
1888 * If there is a usable source address in the
1889 * zone, then it's ok to return this IRE_INTERFACE
1891 if (!ipif_zone_avail(ifindex
, dst_ill
->ill_isv6
,
1893 ip3dbg(("ire_match_args: no usrsrc for zone"
1894 " dst_ill %p\n", (void *)dst_ill
));
1900 * route add 11.0.0.0 gw1 -ifp bge0
1901 * route add 11.0.0.0 gw2 -ifp bge1
1902 * this code would differentiate based on
1903 * where the sending zone has addresses.
1904 * Only if the zone has an address on bge0 can it use the first
1905 * route. It isn't clear if this behavior is documented
1908 if (dst_ill
!= NULL
&& (ire
->ire_type
& IRE_OFFLINK
)) {
1911 mutex_enter(&dst_ill
->ill_lock
);
1912 for (tipif
= dst_ill
->ill_ipif
;
1913 tipif
!= NULL
; tipif
= tipif
->ipif_next
) {
1914 if (!IPIF_IS_CONDEMNED(tipif
) &&
1915 (tipif
->ipif_flags
& IPIF_UP
) &&
1916 (tipif
->ipif_zoneid
== zoneid
||
1917 tipif
->ipif_zoneid
== ALL_ZONES
))
1920 mutex_exit(&dst_ill
->ill_lock
);
1921 if (tipif
== NULL
) {
1928 ire_ill
= ire
->ire_ill
;
1929 if (match_flags
& MATCH_IRE_ILL
) {
1932 * If asked to match an ill, we *must* match
1933 * on the ire_ill for ipmp test addresses, or
1934 * any of the ill in the group for data addresses.
1935 * If we don't, we may as well fail.
1936 * However, we need an exception for IRE_LOCALs to ensure
1937 * we loopback packets even sent to test addresses on different
1938 * interfaces in the group.
1940 if ((match_flags
& MATCH_IRE_TESTHIDDEN
) &&
1941 !(ire
->ire_type
& IRE_LOCAL
)) {
1942 if (ire
->ire_ill
!= ill
)
1945 match_flags
&= ~MATCH_IRE_TESTHIDDEN
;
1947 * We know that ill is not NULL, but ire_ill could be
1950 if (ire_ill
== NULL
|| !IS_ON_SAME_LAN(ill
, ire_ill
))
1954 if (match_flags
& MATCH_IRE_SRC_ILL
) {
1955 if (ire_ill
== NULL
)
1957 if (!IS_ON_SAME_LAN(ill
, ire_ill
)) {
1958 if (ire_ill
->ill_usesrc_ifindex
== 0 ||
1959 (ire_ill
->ill_usesrc_ifindex
!=
1960 ill
->ill_phyint
->phyint_ifindex
))
1965 if ((ire
->ire_addr
== (addr
& mask
)) &&
1966 ((!(match_flags
& MATCH_IRE_GW
)) ||
1967 (ire
->ire_gateway_addr
== gateway
)) &&
1968 ((!(match_flags
& MATCH_IRE_DIRECT
)) ||
1969 !(ire
->ire_flags
& RTF_INDIRECT
)) &&
1970 ((!(match_flags
& MATCH_IRE_TYPE
)) || (ire
->ire_type
& type
)) &&
1971 ((!(match_flags
& MATCH_IRE_TESTHIDDEN
)) || ire
->ire_testhidden
) &&
1972 ((!(match_flags
& MATCH_IRE_MASK
)) || (ire
->ire_mask
== mask
))) {
1973 /* We found the matched IRE */
1980 * Check if the IRE_LOCAL uses the same ill as another route would use.
1981 * If there is no alternate route, or the alternate is a REJECT or BLACKHOLE,
1982 * then we don't allow this IRE_LOCAL to be used.
1983 * We always return an IRE; will be RTF_REJECT if no route available.
1986 ire_alt_local(ire_t
*ire
, zoneid_t zoneid
, const ill_t
*ill
,
1987 uint_t
*generationp
)
1989 ip_stack_t
*ipst
= ire
->ire_ipst
;
1995 ASSERT(ire
->ire_type
& IRE_LOCAL
);
1996 ASSERT(ire
->ire_ill
!= NULL
);
1999 * Need to match on everything but local.
2000 * This might result in the creation of a IRE_IF_CLONE for the
2001 * same address as the IRE_LOCAL when restrict_interzone_loopback is
2002 * set. ire_add_*() ensures that the IRE_IF_CLONE are tail inserted
2003 * to make sure the IRE_LOCAL is always found first.
2005 ire_type
= (IRE_ONLINK
| IRE_OFFLINK
) & ~(IRE_LOCAL
|IRE_LOOPBACK
);
2006 match_flags
= MATCH_IRE_TYPE
;
2008 match_flags
|= MATCH_IRE_ILL
;
2010 if (ire
->ire_ipversion
== IPV4_VERSION
) {
2011 alt_ire
= ire_route_recursive_v4(ire
->ire_addr
, ire_type
,
2012 ill
, zoneid
, match_flags
, IRR_ALLOCATE
, 0, ipst
, NULL
,
2015 alt_ire
= ire_route_recursive_v6(&ire
->ire_addr_v6
, ire_type
,
2016 ill
, zoneid
, match_flags
, IRR_ALLOCATE
, 0, ipst
, NULL
,
2019 ASSERT(alt_ire
!= NULL
);
2021 if (alt_ire
->ire_ill
== ire
->ire_ill
) {
2022 /* Going out the same ILL - ok to send to IRE_LOCAL */
2023 ire_refrele(alt_ire
);
2025 /* Different ill - ignore IRE_LOCAL */
2028 if (generationp
!= NULL
)
2029 *generationp
= generation
;
2035 ire_find_zoneid(struct radix_node
*rn
, void *arg
)
2037 struct rt_entry
*rt
= (struct rt_entry
*)rn
;
2040 ire_ftable_args_t
*margs
= arg
;
2046 if (irb
->irb_ire_cnt
== 0)
2049 rw_enter(&irb
->irb_lock
, RW_READER
);
2050 for (ire
= irb
->irb_ire
; ire
!= NULL
; ire
= ire
->ire_next
) {
2051 if (IRE_IS_CONDEMNED(ire
))
2054 if (!(ire
->ire_type
& IRE_INTERFACE
))
2057 if (ire
->ire_zoneid
!= ALL_ZONES
&&
2058 ire
->ire_zoneid
!= margs
->ift_zoneid
)
2061 if (margs
->ift_ill
!= NULL
&& margs
->ift_ill
!= ire
->ire_ill
)
2064 rw_exit(&irb
->irb_lock
);
2067 rw_exit(&irb
->irb_lock
);
2072 * Check if the zoneid (not ALL_ZONES) has an IRE_INTERFACE for the specified
2073 * gateway address. If ill is non-NULL we also match on it.
2074 * The caller must hold a read lock on RADIX_NODE_HEAD if lock_held is set.
2077 ire_gateway_ok_zone_v4(ipaddr_t gateway
, zoneid_t zoneid
, ill_t
*ill
,
2078 ip_stack_t
*ipst
, boolean_t lock_held
)
2080 struct rt_sockaddr rdst
;
2081 struct rt_entry
*rt
;
2082 ire_ftable_args_t margs
;
2084 ASSERT(ill
== NULL
|| !ill
->ill_isv6
);
2086 ASSERT(RW_READ_HELD(&ipst
->ips_ip_ftable
->rnh_lock
));
2088 RADIX_NODE_HEAD_RLOCK(ipst
->ips_ip_ftable
);
2090 bzero(&rdst
, sizeof (rdst
));
2091 rdst
.rt_sin_len
= sizeof (rdst
);
2092 rdst
.rt_sin_family
= AF_INET
;
2093 rdst
.rt_sin_addr
.s_addr
= gateway
;
2095 /* We only use margs for ill and zoneidmatching in ire_find_zoneid */
2096 bzero(&margs
, sizeof (margs
));
2097 margs
.ift_ill
= ill
;
2098 margs
.ift_zoneid
= zoneid
;
2099 rt
= (struct rt_entry
*)ipst
->ips_ip_ftable
->rnh_matchaddr_args(&rdst
,
2100 ipst
->ips_ip_ftable
, ire_find_zoneid
, (void *)&margs
);
2103 RADIX_NODE_HEAD_UNLOCK(ipst
->ips_ip_ftable
);
2105 return (rt
!= NULL
);
2109 * ire_walk routine to delete a fraction of redirect IREs and IRE_CLONE_IF IREs.
2110 * The fraction argument tells us what fraction of the IREs to delete.
2111 * Common for IPv4 and IPv6.
2112 * Used when memory backpressure.
2115 ire_delete_reclaim(ire_t
*ire
, char *arg
)
2117 ip_stack_t
*ipst
= ire
->ire_ipst
;
2118 uint_t fraction
= *(uint_t
*)arg
;
2121 if ((ire
->ire_flags
& RTF_DYNAMIC
) ||
2122 (ire
->ire_type
& IRE_IF_CLONE
)) {
2124 /* Pick a random number */
2125 rand
= (uint_t
)ddi_get_lbolt() +
2126 IRE_ADDR_HASH_V6(ire
->ire_addr_v6
, 256);
2128 /* Use truncation */
2129 if ((rand
/fraction
)*fraction
== rand
) {
2130 IP_STAT(ipst
, ip_ire_reclaim_deleted
);
2138 * kmem_cache callback to free up memory.
2140 * Free a fraction (ips_ip_ire_reclaim_fraction) of things IP added dynamically
2141 * (RTF_DYNAMIC and IRE_IF_CLONE).
2144 ip_ire_reclaim_stack(ip_stack_t
*ipst
)
2146 uint_t fraction
= ipst
->ips_ip_ire_reclaim_fraction
;
2148 IP_STAT(ipst
, ip_ire_reclaim_calls
);
2150 ire_walk(ire_delete_reclaim
, &fraction
, ipst
);
2153 * Walk all CONNs that can have a reference on an ire, nce or dce.
2154 * Get them to update any stale references to drop any refholds they
2157 ipcl_walk(conn_ixa_cleanup
, (void *)B_FALSE
, ipst
);
2161 * Called by the memory allocator subsystem directly, when the system
2162 * is running low on memory.
2166 ip_ire_reclaim(void *args
)
2168 netstack_handle_t nh
;
2172 netstack_next_init(&nh
);
2173 while ((ns
= netstack_next(&nh
)) != NULL
) {
2175 * netstack_next() can return a netstack_t with a NULL
2176 * netstack_ip at boot time.
2178 if ((ipst
= ns
->netstack_ip
) == NULL
) {
2182 ip_ire_reclaim_stack(ipst
);
2185 netstack_next_fini(&nh
);
2189 power2_roundup(uint32_t *value
)
2193 for (i
= 1; i
< 31; i
++) {
2194 if (*value
<= (1 << i
))
2200 /* Global init for all zones */
2205 * Create kmem_caches. ip_ire_reclaim() and ip_nce_reclaim()
2206 * will give disposable IREs back to system when needed.
2207 * This needs to be done here before anything else, since
2208 * ire_add() expects the cache to be created.
2210 ire_cache
= kmem_cache_create("ire_cache",
2211 sizeof (ire_t
), 0, NULL
, NULL
,
2212 ip_ire_reclaim
, NULL
, NULL
, 0);
2214 ncec_cache
= kmem_cache_create("ncec_cache",
2215 sizeof (ncec_t
), 0, NULL
, NULL
,
2216 ip_nce_reclaim
, NULL
, NULL
, 0);
2217 nce_cache
= kmem_cache_create("nce_cache",
2218 sizeof (nce_t
), 0, NULL
, NULL
,
2219 NULL
, NULL
, NULL
, 0);
2221 rt_entry_cache
= kmem_cache_create("rt_entry",
2222 sizeof (struct rt_entry
), 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
2225 * Have radix code setup kmem caches etc.
2231 ip_ire_init(ip_stack_t
*ipst
)
2236 mutex_init(&ipst
->ips_ire_ft_init_lock
, NULL
, MUTEX_DEFAULT
, 0);
2238 (void) rn_inithead((void **)&ipst
->ips_ip_ftable
, 32);
2241 * Make sure that the forwarding table size is a power of 2.
2242 * The IRE*_ADDR_HASH() macroes depend on that.
2244 ipst
->ips_ip6_ftable_hash_size
= ip6_ftable_hash_size
;
2245 power2_roundup(&ipst
->ips_ip6_ftable_hash_size
);
2248 * Allocate/initialize a pair of IRE_NOROUTEs for each of IPv4 and IPv6.
2249 * The ire_reject_v* has RTF_REJECT set, and the ire_blackhole_v* has
2250 * RTF_BLACKHOLE set. We use the latter for transient errors such
2251 * as memory allocation failures and tripping on IRE_IS_CONDEMNED
2254 ire
= kmem_cache_alloc(ire_cache
, KM_SLEEP
);
2256 error
= ire_init_v4(ire
, 0, 0, 0, IRE_NOROUTE
, NULL
, ALL_ZONES
,
2257 RTF_REJECT
|RTF_UP
, ipst
);
2259 ipst
->ips_ire_reject_v4
= ire
;
2261 ire
= kmem_cache_alloc(ire_cache
, KM_SLEEP
);
2263 error
= ire_init_v6(ire
, 0, 0, 0, IRE_NOROUTE
, NULL
, ALL_ZONES
,
2264 RTF_REJECT
|RTF_UP
, ipst
);
2266 ipst
->ips_ire_reject_v6
= ire
;
2268 ire
= kmem_cache_alloc(ire_cache
, KM_SLEEP
);
2270 error
= ire_init_v4(ire
, 0, 0, 0, IRE_NOROUTE
, NULL
, ALL_ZONES
,
2271 RTF_BLACKHOLE
|RTF_UP
, ipst
);
2273 ipst
->ips_ire_blackhole_v4
= ire
;
2275 ire
= kmem_cache_alloc(ire_cache
, KM_SLEEP
);
2277 error
= ire_init_v6(ire
, 0, 0, 0, IRE_NOROUTE
, NULL
, ALL_ZONES
,
2278 RTF_BLACKHOLE
|RTF_UP
, ipst
);
2280 ipst
->ips_ire_blackhole_v6
= ire
;
2282 rw_init(&ipst
->ips_ip6_ire_head_lock
, NULL
, RW_DEFAULT
, NULL
);
2283 rw_init(&ipst
->ips_ire_dep_lock
, NULL
, RW_DEFAULT
, NULL
);
2289 kmem_cache_destroy(ire_cache
);
2290 kmem_cache_destroy(ncec_cache
);
2291 kmem_cache_destroy(nce_cache
);
2292 kmem_cache_destroy(rt_entry_cache
);
2298 ip_ire_fini(ip_stack_t
*ipst
)
2302 ire_make_condemned(ipst
->ips_ire_reject_v6
);
2303 ire_refrele_notr(ipst
->ips_ire_reject_v6
);
2304 ipst
->ips_ire_reject_v6
= NULL
;
2306 ire_make_condemned(ipst
->ips_ire_reject_v4
);
2307 ire_refrele_notr(ipst
->ips_ire_reject_v4
);
2308 ipst
->ips_ire_reject_v4
= NULL
;
2310 ire_make_condemned(ipst
->ips_ire_blackhole_v6
);
2311 ire_refrele_notr(ipst
->ips_ire_blackhole_v6
);
2312 ipst
->ips_ire_blackhole_v6
= NULL
;
2314 ire_make_condemned(ipst
->ips_ire_blackhole_v4
);
2315 ire_refrele_notr(ipst
->ips_ire_blackhole_v4
);
2316 ipst
->ips_ire_blackhole_v4
= NULL
;
2319 * Delete all IREs - assumes that the ill/ipifs have
2320 * been removed so what remains are just the ftable to handle.
2322 ire_walk(ire_delete
, NULL
, ipst
);
2324 rn_freehead(ipst
->ips_ip_ftable
);
2325 ipst
->ips_ip_ftable
= NULL
;
2327 rw_destroy(&ipst
->ips_ire_dep_lock
);
2328 rw_destroy(&ipst
->ips_ip6_ire_head_lock
);
2330 mutex_destroy(&ipst
->ips_ire_ft_init_lock
);
2332 for (i
= 0; i
< IP6_MASK_TABLE_SIZE
; i
++) {
2336 if ((ptr
= ipst
->ips_ip_forwarding_table_v6
[i
]) == NULL
)
2339 for (j
= 0; j
< ipst
->ips_ip6_ftable_hash_size
; j
++) {
2340 ASSERT(ptr
[j
].irb_ire
== NULL
);
2341 rw_destroy(&ptr
[j
].irb_lock
);
2344 ipst
->ips_ip_forwarding_table_v6
[i
] = NULL
;
2350 ire_trace_ref(ire_t
*ire
)
2352 mutex_enter(&ire
->ire_lock
);
2353 if (ire
->ire_trace_disable
) {
2354 mutex_exit(&ire
->ire_lock
);
2358 if (th_trace_ref(ire
, ire
->ire_ipst
)) {
2359 mutex_exit(&ire
->ire_lock
);
2361 ire
->ire_trace_disable
= B_TRUE
;
2362 mutex_exit(&ire
->ire_lock
);
2363 ire_trace_cleanup(ire
);
2368 ire_untrace_ref(ire_t
*ire
)
2370 mutex_enter(&ire
->ire_lock
);
2371 if (!ire
->ire_trace_disable
)
2372 th_trace_unref(ire
);
2373 mutex_exit(&ire
->ire_lock
);
2377 ire_trace_cleanup(const ire_t
*ire
)
2379 th_trace_cleanup(ire
, ire
->ire_trace_disable
);
2384 * Find, or create if needed, the nce_t pointer to the neighbor cache
2385 * entry ncec_t for an IPv4 address. The nce_t will be created on the ill_t
2386 * in the non-IPMP case, or on the cast-ill in the IPMP bcast/mcast case, or
2387 * on the next available under-ill (selected by the IPMP rotor) in the
2388 * unicast IPMP case.
2390 * If a neighbor-cache entry has to be created (i.e., one does not already
2391 * exist in the nce list) the ncec_lladdr and ncec_state of the neighbor cache
2392 * entry are initialized in nce_add_v4(). The broadcast, multicast, and
2393 * link-layer type determine the contents of {ncec_state, ncec_lladdr} of
2394 * the ncec_t created. The ncec_lladdr is non-null for all link types with
2395 * non-zero ill_phys_addr_length, though the contents may be zero in cases
2396 * where the link-layer type is not known at the time of creation
2397 * (e.g., IRE_IFRESOLVER links)
2399 * All IRE_BROADCAST entries have ncec_state = ND_REACHABLE, and the nce_lladr
2400 * has the physical broadcast address of the outgoing interface.
2401 * For unicast ire entries,
2402 * - if the outgoing interface is of type IRE_IF_RESOLVER, a newly created
2403 * ncec_t with 0 nce_lladr contents, and will be in the ND_INITIAL state.
2404 * - if the outgoing interface is a IRE_IF_NORESOLVER interface, no link
2405 * layer resolution is necessary, so that the ncec_t will be in the
2406 * ND_REACHABLE state
2408 * The link layer information needed for broadcast addresses, and for
2409 * packets sent on IRE_IF_NORESOLVER interfaces is a constant mapping that
2410 * never needs re-verification for the lifetime of the ncec_t. These are
2411 * therefore marked NCE_F_NONUD.
2413 * The nce returned will be created such that the nce_ill == ill that
2414 * is passed in. Note that the nce itself may not have ncec_ill == ill
2415 * where IPMP links are involved.
2418 ire_nce_init(ill_t
*ill
, const void *addr
, int ire_type
)
2422 uint16_t ncec_flags
;
2424 boolean_t need_refrele
= B_FALSE
;
2425 ill_t
*in_ill
= ill
;
2426 boolean_t is_unicast
;
2429 is_unicast
= ((ire_type
& (IRE_MULTICAST
|IRE_BROADCAST
)) == 0);
2431 ((ire_type
& IRE_BROADCAST
) && IS_UNDER_IPMP(ill
))) {
2432 if ((ill
= ipmp_ill_hold_xmit_ill(ill
, is_unicast
)) == NULL
)
2434 need_refrele
= B_TRUE
;
2436 ncec_flags
= (ill
->ill_flags
& ILLF_NONUD
) ? NCE_F_NONUD
: 0;
2440 ASSERT(!ill
->ill_isv6
);
2441 ncec_flags
|= (NCE_F_BCAST
|NCE_F_NONUD
);
2444 ncec_flags
|= (NCE_F_MCAST
|NCE_F_NONUD
);
2448 if (ill
->ill_net_type
== IRE_IF_NORESOLVER
&& is_unicast
) {
2449 hwaddr
= ill
->ill_dest_addr
;
2453 hwaddr_len
= ill
->ill_phys_addr_length
;
2456 /* nce_state will be computed by nce_add_common() */
2457 if (!ill
->ill_isv6
) {
2458 err
= nce_lookup_then_add_v4(ill
, hwaddr
, hwaddr_len
, addr
,
2459 ncec_flags
, ND_UNCHANGED
, &nce
);
2461 err
= nce_lookup_then_add_v6(ill
, hwaddr
, hwaddr_len
, addr
,
2462 ncec_flags
, ND_UNCHANGED
, &nce
);
2470 * When subnets change or partially overlap what was once
2471 * a broadcast address could now be a unicast, or vice versa.
2473 if (((ncec_flags
^ nce
->nce_common
->ncec_flags
) &
2474 NCE_F_BCAST
) != 0) {
2475 ASSERT(!ill
->ill_isv6
);
2476 ncec_delete(nce
->nce_common
);
2482 DTRACE_PROBE2(nce__init__fail
, ill_t
*, ill
, int, err
);
2488 * If the ill was an under-ill of an IPMP group, we need to verify
2489 * that it is still active so that we select an active interface in
2490 * the group. However, since ipmp_ill_is_active ASSERTs for
2491 * IS_UNDER_IPMP(), we first need to verify that the ill is an
2492 * under-ill, and since this is being done in the data path, the
2493 * only way to ascertain this is by holding the ill_g_lock.
2495 rw_enter(&ill
->ill_ipst
->ips_ill_g_lock
, RW_READER
);
2496 mutex_enter(&ill
->ill_lock
);
2497 mutex_enter(&ill
->ill_phyint
->phyint_lock
);
2498 if (need_refrele
&& IS_UNDER_IPMP(ill
) && !ipmp_ill_is_active(ill
)) {
2500 * need_refrele implies that the under ill was selected by
2501 * ipmp_ill_hold_xmit_ill() because either the in_ill was an
2502 * ipmp_ill, or we are sending a non-unicast packet on an
2503 * under_ill. However, when we get here, the ill selected by
2504 * ipmp_ill_hold_xmit_ill was pulled out of the active set
2505 * (for unicast) or cast_ill nomination (for !unicast) after
2506 * it was picked as the outgoing ill. We have to pick an
2507 * active interface and/or cast_ill in the group.
2509 mutex_exit(&ill
->ill_phyint
->phyint_lock
);
2511 mutex_exit(&ill
->ill_lock
);
2512 rw_exit(&ill
->ill_ipst
->ips_ill_g_lock
);
2515 if ((ill
= ipmp_ill_hold_xmit_ill(in_ill
, is_unicast
)) == NULL
)
2519 mutex_exit(&ill
->ill_phyint
->phyint_lock
);
2520 mutex_exit(&ill
->ill_lock
);
2521 rw_exit(&ill
->ill_ipst
->ips_ill_g_lock
);
2524 ASSERT(nce
->nce_ill
== ill
);
2531 arp_nce_init(ill_t
*ill
, in_addr_t addr4
, int ire_type
)
2533 return (ire_nce_init(ill
, &addr4
, ire_type
));
2537 ndp_nce_init(ill_t
*ill
, const in6_addr_t
*addr6
, int ire_type
)
2539 ASSERT((ire_type
& IRE_BROADCAST
) == 0);
2540 return (ire_nce_init(ill
, addr6
, ire_type
));
2544 * The caller should hold irb_lock as a writer if the ire is in a bucket.
2545 * This routine will clear ire_nce_cache, and we make sure that we can never
2546 * set ire_nce_cache after the ire is marked condemned.
2549 ire_make_condemned(ire_t
*ire
)
2551 ip_stack_t
*ipst
= ire
->ire_ipst
;
2554 mutex_enter(&ire
->ire_lock
);
2555 ASSERT(ire
->ire_bucket
== NULL
||
2556 RW_WRITE_HELD(&ire
->ire_bucket
->irb_lock
));
2557 ASSERT(!IRE_IS_CONDEMNED(ire
));
2558 ire
->ire_generation
= IRE_GENERATION_CONDEMNED
;
2559 /* Count how many condemned ires for kmem_cache callback */
2560 atomic_inc_32(&ipst
->ips_num_ire_condemned
);
2561 nce
= ire
->ire_nce_cache
;
2562 ire
->ire_nce_cache
= NULL
;
2563 mutex_exit(&ire
->ire_lock
);
2569 * Increment the generation avoiding the special condemned value
2572 ire_increment_generation(ire_t
*ire
)
2576 mutex_enter(&ire
->ire_lock
);
2578 * Even though the caller has a hold it can't prevent a concurrent
2579 * ire_delete marking the IRE condemned
2581 if (!IRE_IS_CONDEMNED(ire
)) {
2582 generation
= ire
->ire_generation
+ 1;
2583 if (generation
== IRE_GENERATION_CONDEMNED
)
2584 generation
= IRE_GENERATION_INITIAL
;
2585 ASSERT(generation
!= IRE_GENERATION_VERIFY
);
2586 ire
->ire_generation
= generation
;
2588 mutex_exit(&ire
->ire_lock
);
2592 * Increment ire_generation on all the IRE_MULTICASTs
2593 * Used when the default multicast interface (as determined by
2594 * ill_lookup_multicast) might have changed.
2596 * That includes the zoneid, IFF_ flags, the IPv6 scope of the address, and
2600 ire_increment_multicast_generation(ip_stack_t
*ipst
, boolean_t isv6
)
2603 ill_walk_context_t ctx
;
2605 rw_enter(&ipst
->ips_ill_g_lock
, RW_READER
);
2607 ill
= ILL_START_WALK_V6(&ctx
, ipst
);
2609 ill
= ILL_START_WALK_V4(&ctx
, ipst
);
2610 for (; ill
!= NULL
; ill
= ill_next(&ctx
, ill
)) {
2611 if (ILL_IS_CONDEMNED(ill
))
2613 if (ill
->ill_ire_multicast
!= NULL
)
2614 ire_increment_generation(ill
->ill_ire_multicast
);
2616 rw_exit(&ipst
->ips_ill_g_lock
);
2620 * Return a held IRE_NOROUTE with RTF_REJECT set
2623 ire_reject(ip_stack_t
*ipst
, boolean_t isv6
)
2628 ire
= ipst
->ips_ire_reject_v6
;
2630 ire
= ipst
->ips_ire_reject_v4
;
2632 ASSERT(ire
->ire_generation
!= IRE_GENERATION_CONDEMNED
);
2638 * Return a held IRE_NOROUTE with RTF_BLACKHOLE set
2641 ire_blackhole(ip_stack_t
*ipst
, boolean_t isv6
)
2646 ire
= ipst
->ips_ire_blackhole_v6
;
2648 ire
= ipst
->ips_ire_blackhole_v4
;
2650 ASSERT(ire
->ire_generation
!= IRE_GENERATION_CONDEMNED
);
2656 * Return a held IRE_MULTICAST.
2659 ire_multicast(ill_t
*ill
)
2661 ire_t
*ire
= ill
->ill_ire_multicast
;
2663 ASSERT(ire
== NULL
|| ire
->ire_generation
!= IRE_GENERATION_CONDEMNED
);
2665 ire
= ire_blackhole(ill
->ill_ipst
, ill
->ill_isv6
);
2672 * Given an IRE return its nexthop IRE. The nexthop IRE is an IRE_ONLINK
2673 * that is an exact match (i.e., a /32 for IPv4 and /128 for IPv6).
2674 * This can return an RTF_REJECT|RTF_BLACKHOLE.
2675 * The returned IRE is held.
2676 * The assumption is that ip_select_route() has been called and returned the
2677 * IRE (thus ip_select_route would have set up the ire_dep* information.)
2678 * If some IRE is deleteted then ire_dep_remove() will have been called and
2679 * we might not find a nexthop IRE, in which case we return NULL.
2682 ire_nexthop(ire_t
*ire
)
2684 ip_stack_t
*ipst
= ire
->ire_ipst
;
2686 /* Acquire lock to walk ire_dep_parent */
2687 rw_enter(&ipst
->ips_ire_dep_lock
, RW_READER
);
2688 while (ire
!= NULL
) {
2689 if (ire
->ire_flags
& (RTF_REJECT
|RTF_BLACKHOLE
)) {
2693 * If we find an IRE_ONLINK we are done. This includes
2694 * the case of IRE_MULTICAST.
2695 * Note that in order to send packets we need a host-specific
2696 * IRE_IF_ALL first in the ire_dep_parent chain. Normally this
2697 * is done by inserting an IRE_IF_CLONE if the IRE_INTERFACE
2698 * was not host specific.
2699 * However, ip_rts_request doesn't want to send packets
2700 * hence doesn't want to allocate an IRE_IF_CLONE. Yet
2701 * it needs an IRE_IF_ALL to get to the ill. Thus
2702 * we return IRE_IF_ALL that are not host specific here.
2704 if (ire
->ire_type
& IRE_ONLINK
)
2706 ire
= ire
->ire_dep_parent
;
2708 rw_exit(&ipst
->ips_ire_dep_lock
);
2713 rw_exit(&ipst
->ips_ire_dep_lock
);
2718 * Find the ill used to send packets. This will be NULL in case
2719 * of a reject or blackhole.
2720 * The returned ill is held; caller needs to do ill_refrele when done.
2723 ire_nexthop_ill(ire_t
*ire
)
2727 ire
= ire_nexthop(ire
);
2731 /* ire_ill can not change for an existing ire */
2741 parent_has_child(ire_t
*parent
, ire_t
*child
)
2746 ire
= parent
->ire_dep_children
;
2748 while (ire
!= NULL
) {
2750 ASSERT(ire
->ire_dep_sib_ptpn
==
2751 &(parent
->ire_dep_children
));
2753 ASSERT(ire
->ire_dep_sib_ptpn
==
2754 &(prev
->ire_dep_sib_next
));
2759 ire
= ire
->ire_dep_sib_next
;
2765 ire_dep_verify(ire_t
*ire
)
2767 ire_t
*parent
= ire
->ire_dep_parent
;
2768 ire_t
*child
= ire
->ire_dep_children
;
2770 ASSERT(ire
->ire_ipversion
== IPV4_VERSION
||
2771 ire
->ire_ipversion
== IPV6_VERSION
);
2772 if (parent
!= NULL
) {
2773 ASSERT(parent
->ire_ipversion
== IPV4_VERSION
||
2774 parent
->ire_ipversion
== IPV6_VERSION
);
2775 ASSERT(parent
->ire_refcnt
>= 1);
2776 ASSERT(parent_has_child(parent
, ire
));
2778 if (child
!= NULL
) {
2779 ASSERT(child
->ire_ipversion
== IPV4_VERSION
||
2780 child
->ire_ipversion
== IPV6_VERSION
);
2781 ASSERT(child
->ire_dep_parent
== ire
);
2782 ASSERT(child
->ire_dep_sib_ptpn
!= NULL
);
2783 ASSERT(parent_has_child(ire
, child
));
2789 * Assumes ire_dep_parent is set. Remove this child from its parent's linkage.
2792 ire_dep_remove(ire_t
*ire
)
2794 ip_stack_t
*ipst
= ire
->ire_ipst
;
2795 ire_t
*parent
= ire
->ire_dep_parent
;
2799 ASSERT(RW_WRITE_HELD(&ipst
->ips_ire_dep_lock
));
2800 ASSERT(ire
->ire_dep_parent
!= NULL
);
2801 ASSERT(ire
->ire_dep_sib_ptpn
!= NULL
);
2804 ire_dep_verify(ire
);
2805 ire_dep_verify(parent
);
2808 next
= ire
->ire_dep_sib_next
;
2810 next
->ire_dep_sib_ptpn
= ire
->ire_dep_sib_ptpn
;
2812 ASSERT(*(ire
->ire_dep_sib_ptpn
) == ire
);
2813 *(ire
->ire_dep_sib_ptpn
) = ire
->ire_dep_sib_next
;
2815 ire
->ire_dep_sib_ptpn
= NULL
;
2816 ire
->ire_dep_sib_next
= NULL
;
2818 mutex_enter(&ire
->ire_lock
);
2819 parent
= ire
->ire_dep_parent
;
2820 ire
->ire_dep_parent
= NULL
;
2821 mutex_exit(&ire
->ire_lock
);
2824 * Make sure all our children, grandchildren, etc set
2825 * ire_dep_parent_generation to IRE_GENERATION_VERIFY since
2826 * we can no longer guarantee than the children have a current
2827 * ire_nce_cache and ire_nexthop_ill().
2829 if (ire
->ire_dep_children
!= NULL
)
2830 ire_dep_invalidate_children(ire
->ire_dep_children
);
2833 * Since the parent is gone we make sure we clear ire_nce_cache.
2834 * We can clear it under ire_lock even if the IRE is used
2836 mutex_enter(&ire
->ire_lock
);
2837 nce
= ire
->ire_nce_cache
;
2838 ire
->ire_nce_cache
= NULL
;
2839 mutex_exit(&ire
->ire_lock
);
2844 ire_dep_verify(ire
);
2845 ire_dep_verify(parent
);
2848 ire_refrele_notr(parent
);
2849 ire_refrele_notr(ire
);
2853 * Insert the child in the linkage of the parent
2856 ire_dep_parent_insert(ire_t
*child
, ire_t
*parent
)
2858 ip_stack_t
*ipst
= child
->ire_ipst
;
2861 ASSERT(RW_WRITE_HELD(&ipst
->ips_ire_dep_lock
));
2862 ASSERT(child
->ire_dep_parent
== NULL
);
2865 ire_dep_verify(child
);
2866 ire_dep_verify(parent
);
2868 /* No parents => no siblings */
2869 ASSERT(child
->ire_dep_sib_ptpn
== NULL
);
2870 ASSERT(child
->ire_dep_sib_next
== NULL
);
2872 ire_refhold_notr(parent
);
2873 ire_refhold_notr(child
);
2875 /* Head insertion */
2876 next
= parent
->ire_dep_children
;
2878 ASSERT(next
->ire_dep_sib_ptpn
== &(parent
->ire_dep_children
));
2879 child
->ire_dep_sib_next
= next
;
2880 next
->ire_dep_sib_ptpn
= &(child
->ire_dep_sib_next
);
2882 parent
->ire_dep_children
= child
;
2883 child
->ire_dep_sib_ptpn
= &(parent
->ire_dep_children
);
2885 mutex_enter(&child
->ire_lock
);
2886 child
->ire_dep_parent
= parent
;
2887 mutex_exit(&child
->ire_lock
);
2890 ire_dep_verify(child
);
2891 ire_dep_verify(parent
);
2897 * Given count worth of ires and generations, build ire_dep_* relationships
2898 * from ires[0] to ires[count-1]. Record generations[i+1] in
2899 * ire_dep_parent_generation for ires[i].
2900 * We graft onto an existing parent chain by making sure that we don't
2901 * touch ire_dep_parent for ires[count-1].
2903 * We check for any condemned ire_generation count and return B_FALSE in
2904 * that case so that the caller can tear it apart.
2906 * Note that generations[0] is not used. Caller handles that.
2909 ire_dep_build(ire_t
*ires
[], uint_t generations
[], uint_t count
)
2911 ire_t
*ire
= ires
[0];
2920 ipst
= ire
->ire_ipst
;
2921 rw_enter(&ipst
->ips_ire_dep_lock
, RW_WRITER
);
2923 * Do not remove the linkage for any existing parent chain i.e.,
2924 * ires[count-1] is left alone.
2926 for (i
= 0; i
< count
-1; i
++) {
2927 /* Remove existing parent if we need to change it */
2928 if (ires
[i
]->ire_dep_parent
!= NULL
&&
2929 ires
[i
]->ire_dep_parent
!= ires
[i
+1])
2930 ire_dep_remove(ires
[i
]);
2933 for (i
= 0; i
< count
- 1; i
++) {
2934 ASSERT(ires
[i
]->ire_ipversion
== IPV4_VERSION
||
2935 ires
[i
]->ire_ipversion
== IPV6_VERSION
);
2936 /* Does it need to change? */
2937 if (ires
[i
]->ire_dep_parent
!= ires
[i
+1])
2938 ire_dep_parent_insert(ires
[i
], ires
[i
+1]);
2940 mutex_enter(&ires
[i
+1]->ire_lock
);
2941 if (IRE_IS_CONDEMNED(ires
[i
+1])) {
2942 mutex_exit(&ires
[i
+1]->ire_lock
);
2943 rw_exit(&ipst
->ips_ire_dep_lock
);
2946 mutex_exit(&ires
[i
+1]->ire_lock
);
2948 mutex_enter(&ires
[i
]->ire_lock
);
2949 ires
[i
]->ire_dep_parent_generation
= generations
[i
+1];
2950 mutex_exit(&ires
[i
]->ire_lock
);
2952 rw_exit(&ipst
->ips_ire_dep_lock
);
2957 * Given count worth of ires, unbuild ire_dep_* relationships
2958 * from ires[0] to ires[count-1].
2961 ire_dep_unbuild(ire_t
*ires
[], uint_t count
)
2970 ipst
= ires
[0]->ire_ipst
;
2971 rw_enter(&ipst
->ips_ire_dep_lock
, RW_WRITER
);
2972 for (i
= 0; i
< count
; i
++) {
2973 ASSERT(ires
[i
]->ire_ipversion
== IPV4_VERSION
||
2974 ires
[i
]->ire_ipversion
== IPV6_VERSION
);
2975 if (ires
[i
]->ire_dep_parent
!= NULL
)
2976 ire_dep_remove(ires
[i
]);
2977 mutex_enter(&ires
[i
]->ire_lock
);
2978 ires
[i
]->ire_dep_parent_generation
= IRE_GENERATION_VERIFY
;
2979 mutex_exit(&ires
[i
]->ire_lock
);
2981 rw_exit(&ipst
->ips_ire_dep_lock
);
2985 * Both the forwarding and the outbound code paths can trip on
2986 * a condemned NCE, in which case we call this function.
2987 * We have two different behaviors: if the NCE was UNREACHABLE
2988 * it is an indication that something failed. In that case
2989 * we see if we should look for a different IRE (for example,
2990 * delete any matching redirect IRE, or try a different
2991 * IRE_DEFAULT (ECMP)). We mark the ire as bad so a hopefully
2992 * different IRE will be picked next time we send/forward.
2994 * If we are called by the output path then fail_if_better is set
2995 * and we return NULL if there could be a better IRE. This is because the
2996 * output path retries the IRE lookup. (The input/forward path can not retry.)
2998 * If the NCE was not unreachable then we pick/allocate a
2999 * new (most likely ND_INITIAL) NCE and proceed with it.
3001 * ipha/ip6h are needed for multicast packets; ipha needs to be
3002 * set for IPv4 and ip6h needs to be set for IPv6 packets.
3005 ire_handle_condemned_nce(nce_t
*nce
, ire_t
*ire
, ipha_t
*ipha
, ip6_t
*ip6h
,
3006 boolean_t fail_if_better
)
3008 if (nce
->nce_common
->ncec_state
== ND_UNREACHABLE
) {
3009 if (ire_no_good(ire
) && fail_if_better
) {
3011 * Did some changes, or ECMP likely to exist.
3012 * Make ip_output look for a different IRE
3017 if (ire_revalidate_nce(ire
) == ENETUNREACH
) {
3018 /* The ire_dep_parent chain went bad, or no memory? */
3019 (void) ire_no_good(ire
);
3022 if (ire
->ire_ipversion
== IPV4_VERSION
) {
3023 ASSERT(ipha
!= NULL
);
3024 nce
= ire_to_nce(ire
, ipha
->ipha_dst
, NULL
);
3026 ASSERT(ip6h
!= NULL
);
3027 nce
= ire_to_nce(ire
, INADDR_ANY
, &ip6h
->ip6_dst
);
3032 if (nce
->nce_is_condemned
) {
3040 * The caller has found that the ire is bad due to a reference to an NCE in
3041 * ND_UNREACHABLE state. We update things so a subsequent attempt to send
3042 * to the destination is likely to find different IRE, or that a new NCE
3045 * Returns B_TRUE if it is likely that a subsequent ire_ftable_lookup would
3046 * find a different route (either due to having deleted a redirect, or there
3047 * being ECMP routes.)
3049 * If we have a redirect (RTF_DYNAMIC) we delete it.
3050 * Otherwise we increment ire_badcnt and increment the generation number so
3051 * that a cached ixa_ire will redo the route selection. ire_badcnt is taken
3052 * into account in the route selection when we have multiple choices (multiple
3053 * default routes or ECMP in general).
3054 * Any time ip_select_route find an ire with a condemned ire_nce_cache
3055 * (e.g., if no equal cost route to the bad one) ip_select_route will make
3056 * sure the NCE is revalidated to avoid getting stuck on a
3057 * NCE_F_CONDMNED ncec that caused ire_no_good to be called.
3060 ire_no_good(ire_t
*ire
)
3062 ip_stack_t
*ipst
= ire
->ire_ipst
;
3066 if (ire
->ire_flags
& RTF_DYNAMIC
) {
3070 if (ire
->ire_flags
& RTF_INDIRECT
) {
3071 /* Check if next IRE is a redirect */
3072 rw_enter(&ipst
->ips_ire_dep_lock
, RW_READER
);
3073 if (ire
->ire_dep_parent
!= NULL
&&
3074 (ire
->ire_dep_parent
->ire_flags
& RTF_DYNAMIC
)) {
3075 ire2
= ire
->ire_dep_parent
;
3080 rw_exit(&ipst
->ips_ire_dep_lock
);
3088 * No redirect involved. Increment badcnt so that if we have ECMP
3089 * routes we are likely to pick a different one for the next packet.
3091 * If the NCE is unreachable and condemned we should drop the reference
3092 * to it so that a new NCE can be created.
3094 * Finally we increment the generation number so that any ixa_ire
3095 * cache will be revalidated.
3097 mutex_enter(&ire
->ire_lock
);
3099 ire
->ire_last_badcnt
= TICK_TO_SEC(ddi_get_lbolt64());
3100 nce
= ire
->ire_nce_cache
;
3101 if (nce
!= NULL
&& nce
->nce_is_condemned
&&
3102 nce
->nce_common
->ncec_state
== ND_UNREACHABLE
)
3103 ire
->ire_nce_cache
= NULL
;
3106 mutex_exit(&ire
->ire_lock
);
3110 ire_increment_generation(ire
);
3111 ire_dep_incr_generation(ire
);
3113 return (ire
->ire_bucket
->irb_ire_cnt
> 1);
3117 * Walk ire_dep_parent chain and validate that ire_dep_parent->ire_generation ==
3118 * ire_dep_parent_generation.
3119 * If they all match we just return ire_generation from the topmost IRE.
3120 * Otherwise we propagate the mismatch by setting all ire_dep_parent_generation
3121 * above the mismatch to IRE_GENERATION_VERIFY and also returning
3122 * IRE_GENERATION_VERIFY.
3125 ire_dep_validate_generations(ire_t
*ire
)
3127 ip_stack_t
*ipst
= ire
->ire_ipst
;
3131 rw_enter(&ipst
->ips_ire_dep_lock
, RW_READER
);
3132 generation
= ire
->ire_generation
; /* Assuming things match */
3133 for (ire1
= ire
; ire1
!= NULL
; ire1
= ire1
->ire_dep_parent
) {
3134 ASSERT(ire1
->ire_ipversion
== IPV4_VERSION
||
3135 ire1
->ire_ipversion
== IPV6_VERSION
);
3136 if (ire1
->ire_dep_parent
== NULL
)
3138 if (ire1
->ire_dep_parent_generation
!=
3139 ire1
->ire_dep_parent
->ire_generation
)
3142 rw_exit(&ipst
->ips_ire_dep_lock
);
3143 return (generation
);
3146 generation
= IRE_GENERATION_VERIFY
;
3147 /* Fill from top down to the mismatch with _VERIFY */
3148 while (ire
!= ire1
) {
3149 ASSERT(ire
->ire_ipversion
== IPV4_VERSION
||
3150 ire
->ire_ipversion
== IPV6_VERSION
);
3151 mutex_enter(&ire
->ire_lock
);
3152 ire
->ire_dep_parent_generation
= IRE_GENERATION_VERIFY
;
3153 mutex_exit(&ire
->ire_lock
);
3154 ire
= ire
->ire_dep_parent
;
3156 rw_exit(&ipst
->ips_ire_dep_lock
);
3157 return (generation
);
3161 * Used when we need to return an ire with ire_dep_parent, but we
3162 * know the chain is invalid for instance we didn't create an IRE_IF_CLONE
3163 * Using IRE_GENERATION_VERIFY means that next time we'll redo the
3167 ire_dep_invalidate_generations(ire_t
*ire
)
3169 ip_stack_t
*ipst
= ire
->ire_ipst
;
3171 rw_enter(&ipst
->ips_ire_dep_lock
, RW_READER
);
3172 while (ire
!= NULL
) {
3173 ASSERT(ire
->ire_ipversion
== IPV4_VERSION
||
3174 ire
->ire_ipversion
== IPV6_VERSION
);
3175 mutex_enter(&ire
->ire_lock
);
3176 ire
->ire_dep_parent_generation
= IRE_GENERATION_VERIFY
;
3177 mutex_exit(&ire
->ire_lock
);
3178 ire
= ire
->ire_dep_parent
;
3180 rw_exit(&ipst
->ips_ire_dep_lock
);
3183 /* Set _VERIFY ire_dep_parent_generation for all children recursively */
3185 ire_dep_invalidate_children(ire_t
*child
)
3187 ip_stack_t
*ipst
= child
->ire_ipst
;
3189 ASSERT(RW_WRITE_HELD(&ipst
->ips_ire_dep_lock
));
3191 if (child
->ire_dep_children
!= NULL
)
3192 ire_dep_invalidate_children(child
->ire_dep_children
);
3194 while (child
!= NULL
) {
3195 mutex_enter(&child
->ire_lock
);
3196 child
->ire_dep_parent_generation
= IRE_GENERATION_VERIFY
;
3197 mutex_exit(&child
->ire_lock
);
3198 child
= child
->ire_dep_sib_next
;
3203 ire_dep_increment_children(ire_t
*child
)
3205 ip_stack_t
*ipst
= child
->ire_ipst
;
3207 ASSERT(RW_READ_HELD(&ipst
->ips_ire_dep_lock
));
3209 if (child
->ire_dep_children
!= NULL
)
3210 ire_dep_increment_children(child
->ire_dep_children
);
3212 while (child
!= NULL
) {
3213 if (!IRE_IS_CONDEMNED(child
))
3214 ire_increment_generation(child
);
3215 child
= child
->ire_dep_sib_next
;
3220 * Walk all the children of this ire recursively and increment their
3221 * generation number.
3224 ire_dep_incr_generation_locked(ire_t
*parent
)
3226 ASSERT(RW_READ_HELD(&parent
->ire_ipst
->ips_ire_dep_lock
));
3227 if (parent
->ire_dep_children
!= NULL
)
3228 ire_dep_increment_children(parent
->ire_dep_children
);
3232 ire_dep_incr_generation(ire_t
*parent
)
3234 ip_stack_t
*ipst
= parent
->ire_ipst
;
3236 rw_enter(&ipst
->ips_ire_dep_lock
, RW_READER
);
3237 ire_dep_incr_generation_locked(parent
);
3238 rw_exit(&ipst
->ips_ire_dep_lock
);
3242 * Get a new ire_nce_cache for this IRE as well as its nexthop.
3243 * Returns zero if it succeeds. Can fail due to lack of memory or when
3244 * the route has become unreachable. Returns ENOMEM and ENETUNREACH in those
3247 * In the in.mpathd case, the ire will have ire_testhidden
3248 * set; so we should create the ncec for the underlying ill.
3250 * Note that the error returned by ire_revalidate_nce() is ignored by most
3251 * callers except ire_handle_condemned_nce(), which handles the ENETUNREACH
3252 * error to mark potentially bad ire's. For all the other callers, an
3253 * error return could indicate a transient condition like ENOMEM, or could
3254 * be the result of an interface that is going down/unplumbing. In the former
3255 * case (transient error), we would leave the old stale ire/ire_nce_cache
3256 * in place, and possibly use incorrect link-layer information to send packets
3257 * but would eventually recover. In the latter case (ill down/replumb),
3258 * ire_revalidate_nce() might return a condemned nce back, but we would then
3259 * recover in the packet output path.
3262 ire_revalidate_nce(ire_t
*ire
)
3264 nce_t
*nce
, *old_nce
;
3268 * For multicast we conceptually have an NCE but we don't store it
3269 * in ire_nce_cache; when ire_to_nce is called we allocate the nce.
3271 if (ire
->ire_type
& IRE_MULTICAST
)
3274 /* ire_testhidden should only be set on under-interfaces */
3275 ASSERT(!ire
->ire_testhidden
|| !IS_IPMP(ire
->ire_ill
));
3277 nexthop
= ire_nexthop(ire
);
3278 if (nexthop
== NULL
) {
3279 /* The route is potentially bad */
3280 (void) ire_no_good(ire
);
3281 return (ENETUNREACH
);
3283 if (ire
->ire_type
& (IRE_LOCAL
|IRE_LOOPBACK
)) {
3284 ASSERT(ire
->ire_ill
!= NULL
);
3286 if (ire
->ire_ipversion
== IPV4_VERSION
)
3287 nce
= nce_lookup_v4(ire
->ire_ill
, &ire
->ire_addr
);
3289 nce
= nce_lookup_v6(ire
->ire_ill
, &ire
->ire_addr_v6
);
3291 ASSERT(nexthop
->ire_type
& IRE_ONLINK
);
3292 if (ire
->ire_ipversion
== IPV4_VERSION
) {
3293 nce
= arp_nce_init(nexthop
->ire_ill
, nexthop
->ire_addr
,
3296 nce
= ndp_nce_init(nexthop
->ire_ill
,
3297 &nexthop
->ire_addr_v6
, nexthop
->ire_type
);
3302 * Leave the old stale one in place to avoid a NULL
3305 ire_refrele(nexthop
);
3309 if (nexthop
!= ire
) {
3310 /* Update the nexthop ire */
3311 mutex_enter(&nexthop
->ire_lock
);
3312 old_nce
= nexthop
->ire_nce_cache
;
3313 if (!IRE_IS_CONDEMNED(nexthop
)) {
3315 nexthop
->ire_nce_cache
= nce
;
3317 nexthop
->ire_nce_cache
= NULL
;
3319 mutex_exit(&nexthop
->ire_lock
);
3320 if (old_nce
!= NULL
)
3321 nce_refrele(old_nce
);
3323 ire_refrele(nexthop
);
3325 mutex_enter(&ire
->ire_lock
);
3326 old_nce
= ire
->ire_nce_cache
;
3327 if (!IRE_IS_CONDEMNED(ire
)) {
3329 ire
->ire_nce_cache
= nce
;
3331 ire
->ire_nce_cache
= NULL
;
3333 mutex_exit(&ire
->ire_lock
);
3334 if (old_nce
!= NULL
)
3335 nce_refrele(old_nce
);
3342 * Get a held nce for a given ire.
3343 * In the common case this is just from ire_nce_cache.
3344 * For IRE_MULTICAST this needs to do an explicit lookup since we do not
3345 * have an IRE_MULTICAST per address.
3346 * Note that this explicitly returns CONDEMNED NCEs. The caller needs those
3347 * so they can check whether the NCE went unreachable (as opposed to was
3348 * condemned for some other reason).
3351 ire_to_nce(ire_t
*ire
, ipaddr_t v4nexthop
, const in6_addr_t
*v6nexthop
)
3355 if (ire
->ire_flags
& (RTF_REJECT
|RTF_BLACKHOLE
))
3358 /* ire_testhidden should only be set on under-interfaces */
3359 ASSERT(!ire
->ire_testhidden
|| !IS_IPMP(ire
->ire_ill
));
3361 mutex_enter(&ire
->ire_lock
);
3362 nce
= ire
->ire_nce_cache
;
3365 mutex_exit(&ire
->ire_lock
);
3368 mutex_exit(&ire
->ire_lock
);
3370 if (ire
->ire_type
& IRE_MULTICAST
) {
3371 ASSERT(ire
->ire_ill
!= NULL
);
3373 if (ire
->ire_ipversion
== IPV4_VERSION
) {
3374 ASSERT(v6nexthop
== NULL
);
3376 nce
= arp_nce_init(ire
->ire_ill
, v4nexthop
,
3379 ASSERT(v6nexthop
!= NULL
);
3380 ASSERT(v4nexthop
== 0);
3381 nce
= ndp_nce_init(ire
->ire_ill
, v6nexthop
,
3390 ire_to_nce_pkt(ire_t
*ire
, mblk_t
*mp
)
3395 if (IPH_HDR_VERSION(mp
->b_rptr
) == IPV4_VERSION
) {
3396 ipha
= (ipha_t
*)mp
->b_rptr
;
3397 return (ire_to_nce(ire
, ipha
->ipha_dst
, NULL
));
3399 ip6h
= (ip6_t
*)mp
->b_rptr
;
3400 return (ire_to_nce(ire
, INADDR_ANY
, &ip6h
->ip6_dst
));
3405 * Given an IRE_INTERFACE (that matches more than one address) create
3406 * and return an IRE_IF_CLONE for the specific address.
3407 * Return the generation number.
3408 * Returns NULL is no memory for the IRE.
3409 * Handles both IPv4 and IPv6.
3411 * IRE_IF_CLONE entries may only be created adn added by calling
3412 * ire_create_if_clone(), and we depend on the fact that ire_add will
3413 * atomically ensure that attempts to add multiple identical IRE_IF_CLONE
3414 * entries will not result in duplicate (i.e., ire_identical_ref > 1)
3415 * CLONE entries, so that a single ire_delete is sufficient to remove the
3419 ire_create_if_clone(ire_t
*ire_if
, const in6_addr_t
*addr
, uint_t
*generationp
)
3424 if (ire_if
->ire_ipversion
== IPV4_VERSION
) {
3426 ipaddr_t mask
= IP_HOST_MASK
;
3428 ASSERT(IN6_IS_ADDR_V4MAPPED(addr
));
3429 IN6_V4MAPPED_TO_IPADDR(addr
, v4addr
);
3432 (uchar_t
*)&v4addr
, /* dest address */
3433 (uchar_t
*)&mask
, /* mask */
3434 (uchar_t
*)&ire_if
->ire_gateway_addr
,
3435 IRE_IF_CLONE
, /* IRE type */
3438 ire_if
->ire_flags
| RTF_HOST
,
3441 ASSERT(!IN6_IS_ADDR_V4MAPPED(addr
));
3442 ire
= ire_create_v6(
3443 addr
, /* dest address */
3444 &ipv6_all_ones
, /* mask */
3445 &ire_if
->ire_gateway_addr_v6
, /* gateway addr */
3446 IRE_IF_CLONE
, /* IRE type */
3449 ire_if
->ire_flags
| RTF_HOST
,
3455 /* Take the metrics, in particular the mtu, from the IRE_IF */
3456 ire
->ire_metrics
= ire_if
->ire_metrics
;
3458 nire
= ire_add(ire
);
3459 if (nire
== NULL
) /* Some failure */
3462 if (generationp
!= NULL
)
3463 *generationp
= nire
->ire_generation
;
3469 * The argument is an IRE_INTERFACE. Delete all of IRE_IF_CLONE in the
3470 * ire_dep_children (just walk the ire_dep_sib_next since they are all
3471 * immediate children.)
3472 * Since we hold a lock while we remove them we need to defer the actual
3473 * calls to ire_delete() until we have dropped the lock. This makes things
3474 * less efficient since we restart at the top after dropping the lock. But
3475 * we only run when an IRE_INTERFACE is deleted which is infrquent.
3477 * Note that ire_dep_children can be any mixture of offlink routes and
3478 * IRE_IF_CLONE entries.
3481 ire_dep_delete_if_clone(ire_t
*parent
)
3483 ip_stack_t
*ipst
= parent
->ire_ipst
;
3484 ire_t
*child
, *next
;
3487 rw_enter(&ipst
->ips_ire_dep_lock
, RW_READER
);
3488 if (parent
->ire_dep_children
== NULL
) {
3489 rw_exit(&ipst
->ips_ire_dep_lock
);
3492 child
= parent
->ire_dep_children
;
3493 while (child
!= NULL
) {
3494 next
= child
->ire_dep_sib_next
;
3495 if ((child
->ire_type
& IRE_IF_CLONE
) &&
3496 !IRE_IS_CONDEMNED(child
)) {
3498 rw_exit(&ipst
->ips_ire_dep_lock
);
3500 ASSERT(IRE_IS_CONDEMNED(child
));
3506 rw_exit(&ipst
->ips_ire_dep_lock
);
3510 * In the preferred/strict src multihoming modes, unbound routes (i.e.,
3511 * ire_t entries with ire_unbound set to B_TRUE) are bound to an interface
3512 * by selecting the first available interface that has an interface route for
3513 * the ire_gateway. If that interface is subsequently brought down, ill_downi()
3514 * will call ire_rebind() so that the unbound route can be bound to some other
3515 * matching interface thereby preserving the intended reachability information
3516 * from the original unbound route.
3519 ire_rebind(ire_t
*ire
)
3521 ire_t
*gw_ire
, *new_ire
;
3522 int match_flags
= MATCH_IRE_TYPE
;
3524 boolean_t isv6
= (ire
->ire_ipversion
== IPV6_VERSION
);
3525 ip_stack_t
*ipst
= ire
->ire_ipst
;
3527 ASSERT(ire
->ire_unbound
);
3530 gw_ire
= ire_ftable_lookup_v6(&ire
->ire_gateway_addr_v6
, 0, 0,
3531 IRE_INTERFACE
, NULL
, ALL_ZONES
, match_flags
, 0, ipst
,
3534 gw_ire
= ire_ftable_lookup_v4(ire
->ire_gateway_addr
, 0, 0,
3535 IRE_INTERFACE
, NULL
, ALL_ZONES
, match_flags
, 0, ipst
,
3538 if (gw_ire
== NULL
) {
3539 /* see comments in ip_rt_add[_v6]() for IPMP */
3540 if (match_flags
& MATCH_IRE_TESTHIDDEN
)
3543 match_flags
|= MATCH_IRE_TESTHIDDEN
;
3546 gw_ill
= gw_ire
->ire_ill
;
3548 new_ire
= ire_create_v6(&ire
->ire_addr_v6
, &ire
->ire_mask_v6
,
3549 &ire
->ire_gateway_addr_v6
, ire
->ire_type
, gw_ill
,
3550 ire
->ire_zoneid
, ire
->ire_flags
, ipst
);
3552 new_ire
= ire_create((uchar_t
*)&ire
->ire_addr
,
3553 (uchar_t
*)&ire
->ire_mask
,
3554 (uchar_t
*)&ire
->ire_gateway_addr
, ire
->ire_type
, gw_ill
,
3555 ire
->ire_zoneid
, ire
->ire_flags
, ipst
);
3557 ire_refrele(gw_ire
);
3558 if (new_ire
== NULL
)
3560 new_ire
->ire_unbound
= B_TRUE
;
3561 new_ire
= ire_add(new_ire
);
3562 if (new_ire
!= NULL
)
3563 ire_refrele(new_ire
);