loader: Minor cosmetic changes.
[unleashed.git] / kernel / os / zone.c
blob9966d113c0ae31f544e4357fd6a01b7e3b457e81
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015, Joyent Inc. All rights reserved.
25 * Copyright (c) 2016 by Delphix. All rights reserved.
29 * Zones
31 * A zone is a named collection of processes, namespace constraints,
32 * and other system resources which comprise a secure and manageable
33 * application containment facility.
35 * Zones (represented by the reference counted zone_t) are tracked in
36 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs
37 * (zoneid_t) are used to track zone association. Zone IDs are
38 * dynamically generated when the zone is created; if a persistent
39 * identifier is needed (core files, accounting logs, audit trail,
40 * etc.), the zone name should be used.
43 * Global Zone:
45 * The global zone (zoneid 0) is automatically associated with all
46 * system resources that have not been bound to a user-created zone.
47 * This means that even systems where zones are not in active use
48 * have a global zone, and all processes, mounts, etc. are
49 * associated with that zone. The global zone is generally
50 * unconstrained in terms of privileges and access, though the usual
51 * credential and privilege based restrictions apply.
54 * Zone States:
56 * The states in which a zone may be in and the transitions are as
57 * follows:
59 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
60 * initialized zone is added to the list of active zones on the system but
61 * isn't accessible.
63 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
64 * not yet completed. Not possible to enter the zone, but attributes can
65 * be retrieved.
67 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
68 * ready. The zone is made visible after the ZSD constructor callbacks are
69 * executed. A zone remains in this state until it transitions into
70 * the ZONE_IS_BOOTING state as a result of a call to zone_boot().
72 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
73 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
74 * state.
76 * ZONE_IS_RUNNING: The zone is open for business: zsched has
77 * successfully started init. A zone remains in this state until
78 * zone_shutdown() is called.
80 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
81 * killing all processes running in the zone. The zone remains
82 * in this state until there are no more user processes running in the zone.
83 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
84 * Since zone_shutdown() is restartable, it may be called successfully
85 * multiple times for the same zone_t. Setting of the zone's state to
86 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
87 * the zone's status without worrying about it being a moving target.
89 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there
90 * are no more user processes in the zone. The zone remains in this
91 * state until there are no more kernel threads associated with the
92 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will
93 * fail.
95 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
96 * have exited. zone_shutdown() returns. Henceforth it is not possible to
97 * join the zone or create kernel threads therein.
99 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
100 * remains in this state until zsched exits. Calls to zone_find_by_*()
101 * return NULL from now on.
103 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no
104 * processes or threads doing work on behalf of the zone. The zone is
105 * removed from the list of active zones. zone_destroy() returns, and
106 * the zone can be recreated.
108 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
109 * callbacks are executed, and all memory associated with the zone is
110 * freed.
112 * Threads can wait for the zone to enter a requested state by using
113 * zone_status_wait() or zone_status_timedwait() with the desired
114 * state passed in as an argument. Zone state transitions are
115 * uni-directional; it is not possible to move back to an earlier state.
118 * Zone-Specific Data:
120 * Subsystems needing to maintain zone-specific data can store that
121 * data using the ZSD mechanism. This provides a zone-specific data
122 * store, similar to thread-specific data (see pthread_getspecific(3C)
123 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used
124 * to register callbacks to be invoked when a zone is created, shut
125 * down, or destroyed. This can be used to initialize zone-specific
126 * data for new zones and to clean up when zones go away.
129 * Data Structures:
131 * The per-zone structure (zone_t) is reference counted, and freed
132 * when all references are released. zone_hold and zone_rele can be
133 * used to adjust the reference count. In addition, reference counts
134 * associated with the cred_t structure are tracked separately using
135 * zone_cred_hold and zone_cred_rele.
137 * Pointers to active zone_t's are stored in two hash tables; one
138 * for searching by id, the other for searching by name. Lookups
139 * can be performed on either basis, using zone_find_by_id and
140 * zone_find_by_name. Both return zone_t pointers with the zone
141 * held, so zone_rele should be called when the pointer is no longer
142 * needed. Zones can also be searched by path; zone_find_by_path
143 * returns the zone with which a path name is associated (global
144 * zone if the path is not within some other zone's file system
145 * hierarchy). This currently requires iterating through each zone,
146 * so it is slower than an id or name search via a hash table.
149 * Locking:
151 * zonehash_lock: This is a top-level global lock used to protect the
152 * zone hash tables and lists. Zones cannot be created or destroyed
153 * while this lock is held.
154 * zone_status_lock: This is a global lock protecting zone state.
155 * Zones cannot change state while this lock is held. It also
156 * protects the list of kernel threads associated with a zone.
157 * zone_lock: This is a per-zone lock used to protect several fields of
158 * the zone_t (see <sys/zone.h> for details). In addition, holding
159 * this lock means that the zone cannot go away.
160 * zone_nlwps_lock: This is a per-zone lock used to protect the fields
161 * related to the zone.max-lwps rctl.
162 * zone_mem_lock: This is a per-zone lock used to protect the fields
163 * related to the zone.max-locked-memory and zone.max-swap rctls.
164 * zone_rctl_lock: This is a per-zone lock used to protect other rctls,
165 * currently just max_lofi
166 * zsd_key_lock: This is a global lock protecting the key state for ZSD.
167 * zone_deathrow_lock: This is a global lock protecting the "deathrow"
168 * list (a list of zones in the ZONE_IS_DEAD state).
170 * Ordering requirements:
171 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
172 * zone_lock --> zsd_key_lock --> pidlock --> p_lock
174 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
176 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
178 * Blocking memory allocations are permitted while holding any of the
179 * zone locks.
182 * System Call Interface:
184 * The zone subsystem can be managed and queried from user level with
185 * the following system calls (all subcodes of the primary "zone"
186 * system call):
187 * - zone_create: creates a zone with selected attributes (name,
188 * root path, privileges, resource controls, ZFS datasets)
189 * - zone_enter: allows the current process to enter a zone
190 * - zone_getattr: reports attributes of a zone
191 * - zone_setattr: set attributes of a zone
192 * - zone_boot: set 'init' running for the zone
193 * - zone_list: lists all zones active in the system
194 * - zone_lookup: looks up zone id based on name
195 * - zone_shutdown: initiates shutdown process (see states above)
196 * - zone_destroy: completes shutdown process (see states above)
200 #include <sys/priv_impl.h>
201 #include <sys/cred.h>
202 #include <c2/audit.h>
203 #include <sys/debug.h>
204 #include <sys/file.h>
205 #include <sys/kmem.h>
206 #include <sys/kstat.h>
207 #include <sys/mutex.h>
208 #include <sys/note.h>
209 #include <sys/pathname.h>
210 #include <sys/proc.h>
211 #include <sys/project.h>
212 #include <sys/sysevent.h>
213 #include <sys/task.h>
214 #include <sys/systm.h>
215 #include <sys/types.h>
216 #include <sys/utsname.h>
217 #include <sys/vnode.h>
218 #include <sys/vfs.h>
219 #include <sys/systeminfo.h>
220 #include <sys/policy.h>
221 #include <sys/cred_impl.h>
222 #include <sys/contract_impl.h>
223 #include <sys/contract/process_impl.h>
224 #include <sys/class.h>
225 #include <sys/pool.h>
226 #include <sys/pool_pset.h>
227 #include <sys/pset.h>
228 #include <sys/strlog.h>
229 #include <sys/sysmacros.h>
230 #include <sys/callb.h>
231 #include <sys/vmparam.h>
232 #include <sys/corectl.h>
233 #include <sys/ipc_impl.h>
234 #include <sys/klpd.h>
236 #include <sys/door.h>
237 #include <sys/cpuvar.h>
238 #include <sys/sdt.h>
240 #include <sys/uadmin.h>
241 #include <sys/session.h>
242 #include <sys/cmn_err.h>
243 #include <sys/modhash.h>
244 #include <sys/sunddi.h>
245 #include <sys/nvpair.h>
246 #include <sys/rctl.h>
247 #include <sys/fss.h>
248 #include <sys/brand.h>
249 #include <sys/zone.h>
250 #include <net/if.h>
251 #include <sys/cpucaps.h>
252 #include <vm/seg.h>
253 #include <sys/mac.h>
256 * This constant specifies the number of seconds that threads waiting for
257 * subsystems to release a zone's general-purpose references will wait before
258 * they log the zone's reference counts. The constant's value shouldn't
259 * be so small that reference counts are unnecessarily reported for zones
260 * whose references are slowly released. On the other hand, it shouldn't be so
261 * large that users reboot their systems out of frustration over hung zones
262 * before the system logs the zones' reference counts.
264 #define ZONE_DESTROY_TIMEOUT_SECS 60
266 /* List of data link IDs which are accessible from the zone */
267 typedef struct zone_dl {
268 datalink_id_t zdl_id;
269 nvlist_t *zdl_net;
270 list_node_t zdl_linkage;
271 } zone_dl_t;
274 * cv used to signal that all references to the zone have been released. This
275 * needs to be global since there may be multiple waiters, and the first to
276 * wake up will free the zone_t, hence we cannot use zone->zone_cv.
278 static kcondvar_t zone_destroy_cv;
280 * Lock used to serialize access to zone_cv. This could have been per-zone,
281 * but then we'd need another lock for zone_destroy_cv, and why bother?
283 static kmutex_t zone_status_lock;
286 * ZSD-related global variables.
288 static kmutex_t zsd_key_lock; /* protects the following two */
290 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
292 static zone_key_t zsd_keyval = 0;
294 * Global list of registered keys. We use this when a new zone is created.
296 static list_t zsd_registered_keys;
298 int zone_hash_size = 256;
299 static mod_hash_t *zonehashbyname, *zonehashbyid;
300 static kmutex_t zonehash_lock;
301 static uint_t zonecount;
302 static id_space_t *zoneid_space;
305 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
306 * kernel proper runs, and which manages all other zones.
308 * Although not declared as static, the variable "zone0" should not be used
309 * except for by code that needs to reference the global zone early on in boot,
310 * before it is fully initialized. All other consumers should use
311 * 'global_zone'.
313 zone_t zone0;
314 zone_t *global_zone = NULL; /* Set when the global zone is initialized */
317 * List of active zones, protected by zonehash_lock.
319 static list_t zone_active;
322 * List of destroyed zones that still have outstanding cred references.
323 * Used for debugging. Uses a separate lock to avoid lock ordering
324 * problems in zone_free.
326 static list_t zone_deathrow;
327 static kmutex_t zone_deathrow_lock;
329 /* number of zones is limited by virtual interface limit in IP */
330 uint_t maxzones = 8192;
332 /* Event channel to sent zone state change notifications */
333 evchan_t *zone_event_chan;
336 * This table holds the mapping from kernel zone states to
337 * states visible in the state notification API.
338 * The idea is that we only expose "obvious" states and
339 * do not expose states which are just implementation details.
341 const char *zone_status_table[] = {
342 ZONE_EVENT_UNINITIALIZED, /* uninitialized */
343 ZONE_EVENT_INITIALIZED, /* initialized */
344 ZONE_EVENT_READY, /* ready */
345 ZONE_EVENT_READY, /* booting */
346 ZONE_EVENT_RUNNING, /* running */
347 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */
348 ZONE_EVENT_SHUTTING_DOWN, /* empty */
349 ZONE_EVENT_SHUTTING_DOWN, /* down */
350 ZONE_EVENT_SHUTTING_DOWN, /* dying */
351 ZONE_EVENT_UNINITIALIZED, /* dead */
355 * This array contains the names of the subsystems listed in zone_ref_subsys_t
356 * (see sys/zone.h).
358 static char *zone_ref_subsys_names[] = {
359 "NFS", /* ZONE_REF_NFS */
360 "NFSv4", /* ZONE_REF_NFSV4 */
361 "SMBFS", /* ZONE_REF_SMBFS */
362 "MNTFS", /* ZONE_REF_MNTFS */
363 "LOFI", /* ZONE_REF_LOFI */
364 "VFS", /* ZONE_REF_VFS */
365 "IPC" /* ZONE_REF_IPC */
369 * This isn't static so lint doesn't complain.
371 rctl_hndl_t rc_zone_cpu_shares;
372 rctl_hndl_t rc_zone_locked_mem;
373 rctl_hndl_t rc_zone_max_swap;
374 rctl_hndl_t rc_zone_max_lofi;
375 rctl_hndl_t rc_zone_cpu_cap;
376 rctl_hndl_t rc_zone_nlwps;
377 rctl_hndl_t rc_zone_nprocs;
378 rctl_hndl_t rc_zone_shmmax;
379 rctl_hndl_t rc_zone_shmmni;
380 rctl_hndl_t rc_zone_semmni;
381 rctl_hndl_t rc_zone_msgmni;
383 const char * const zone_default_initname = "/sbin/init";
384 static char * const zone_prefix = "/zone/";
385 static int zone_shutdown(zoneid_t zoneid);
386 static int zone_add_datalink(zoneid_t, datalink_id_t);
387 static int zone_remove_datalink(zoneid_t, datalink_id_t);
388 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
389 static int zone_set_network(zoneid_t, zone_net_data_t *);
390 static int zone_get_network(zoneid_t, zone_net_data_t *);
392 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
394 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
395 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
396 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
397 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
398 zone_key_t);
399 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
400 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
401 kmutex_t *);
402 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
403 kmutex_t *);
406 * Bump this number when you alter the zone syscall interfaces; this is
407 * because we need to have support for previous API versions in libc
408 * to support patching; libc calls into the kernel to determine this number.
410 * Version 1 of the API is the version originally shipped with Solaris 10
411 * Version 2 alters the zone_create system call in order to support more
412 * arguments by moving the args into a structure; and to do better
413 * error reporting when zone_create() fails.
414 * Version 3 alters the zone_create system call in order to support the
415 * import of ZFS datasets to zones.
416 * Version 4 alters the zone_create system call in order to support
417 * Trusted Extensions.
418 * Version 5 alters the zone_boot system call, and converts its old
419 * bootargs parameter to be set by the zone_setattr API instead.
420 * Version 6 adds the flag argument to zone_create.
422 static const int ZONE_SYSCALL_API_VERSION = 6;
425 * Certain filesystems (such as NFS and autofs) need to know which zone
426 * the mount is being placed in. Because of this, we need to be able to
427 * ensure that a zone isn't in the process of being created/destroyed such
428 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
429 * it gets added the list of mounted zones, it ends up on the wrong zone's
430 * mount list. Since a zone can't reside on an NFS file system, we don't
431 * have to worry about the zonepath itself.
433 * The following functions: block_mounts()/resume_mounts() and
434 * mount_in_progress()/mount_completed() are used by zones and the VFS
435 * layer (respectively) to synchronize zone state transitions and new
436 * mounts within a zone. This syncronization is on a per-zone basis, so
437 * activity for one zone will not interfere with activity for another zone.
439 * The semantics are like a reader-reader lock such that there may
440 * either be multiple mounts (or zone state transitions, if that weren't
441 * serialized by zonehash_lock) in progress at the same time, but not
442 * both.
444 * We use cv's so the user can ctrl-C out of the operation if it's
445 * taking too long.
447 * The semantics are such that there is unfair bias towards the
448 * "current" operation. This means that zone halt may starve if
449 * there is a rapid succession of new mounts coming in to the zone.
452 * Prevent new mounts from progressing to the point of calling
453 * VFS_MOUNT(). If there are already mounts in this "region", wait for
454 * them to complete.
456 static int
457 block_mounts(zone_t *zp)
459 int retval = 0;
462 * Since it may block for a long time, block_mounts() shouldn't be
463 * called with zonehash_lock held.
465 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
466 mutex_enter(&zp->zone_mount_lock);
467 while (zp->zone_mounts_in_progress > 0) {
468 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
469 goto signaled;
472 * A negative value of mounts_in_progress indicates that mounts
473 * have been blocked by (-mounts_in_progress) different callers
474 * (remotely possible if two threads enter zone_shutdown at the same
475 * time).
477 zp->zone_mounts_in_progress--;
478 retval = 1;
479 signaled:
480 mutex_exit(&zp->zone_mount_lock);
481 return (retval);
485 * The VFS layer may progress with new mounts as far as we're concerned.
486 * Allow them to progress if we were the last obstacle.
488 static void
489 resume_mounts(zone_t *zp)
491 mutex_enter(&zp->zone_mount_lock);
492 if (++zp->zone_mounts_in_progress == 0)
493 cv_broadcast(&zp->zone_mount_cv);
494 mutex_exit(&zp->zone_mount_lock);
498 * The VFS layer is busy with a mount; this zone should wait until all
499 * of its mounts are completed to progress.
501 void
502 mount_in_progress(zone_t *zp)
504 mutex_enter(&zp->zone_mount_lock);
505 while (zp->zone_mounts_in_progress < 0)
506 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
507 zp->zone_mounts_in_progress++;
508 mutex_exit(&zp->zone_mount_lock);
512 * VFS is done with one mount; wake up any waiting block_mounts()
513 * callers if this is the last mount.
515 void
516 mount_completed(zone_t *zp)
518 mutex_enter(&zp->zone_mount_lock);
519 if (--zp->zone_mounts_in_progress == 0)
520 cv_broadcast(&zp->zone_mount_cv);
521 mutex_exit(&zp->zone_mount_lock);
525 * ZSD routines.
527 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
528 * defined by the pthread_key_create() and related interfaces.
530 * Kernel subsystems may register one or more data items and/or
531 * callbacks to be executed when a zone is created, shutdown, or
532 * destroyed.
534 * Unlike the thread counterpart, destructor callbacks will be executed
535 * even if the data pointer is NULL and/or there are no constructor
536 * callbacks, so it is the responsibility of such callbacks to check for
537 * NULL data values if necessary.
539 * The locking strategy and overall picture is as follows:
541 * When someone calls zone_key_create(), a template ZSD entry is added to the
542 * global list "zsd_registered_keys", protected by zsd_key_lock. While
543 * holding that lock all the existing zones are marked as
544 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
545 * zone_zsd list (protected by zone_lock). The global list is updated first
546 * (under zone_key_lock) to make sure that newly created zones use the
547 * most recent list of keys. Then under zonehash_lock we walk the zones
548 * and mark them. Similar locking is used in zone_key_delete().
550 * The actual create, shutdown, and destroy callbacks are done without
551 * holding any lock. And zsd_flags are used to ensure that the operations
552 * completed so that when zone_key_create (and zone_create) is done, as well as
553 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
554 * are completed.
556 * When new zones are created constructor callbacks for all registered ZSD
557 * entries will be called. That also uses the above two phases of marking
558 * what needs to be done, and then running the callbacks without holding
559 * any locks.
561 * The framework does not provide any locking around zone_getspecific() and
562 * zone_setspecific() apart from that needed for internal consistency, so
563 * callers interested in atomic "test-and-set" semantics will need to provide
564 * their own locking.
568 * Helper function to find the zsd_entry associated with the key in the
569 * given list.
571 static struct zsd_entry *
572 zsd_find(list_t *l, zone_key_t key)
574 struct zsd_entry *zsd;
576 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
577 if (zsd->zsd_key == key) {
578 return (zsd);
581 return (NULL);
585 * Helper function to find the zsd_entry associated with the key in the
586 * given list. Move it to the front of the list.
588 static struct zsd_entry *
589 zsd_find_mru(list_t *l, zone_key_t key)
591 struct zsd_entry *zsd;
593 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
594 if (zsd->zsd_key == key) {
596 * Move to head of list to keep list in MRU order.
598 if (zsd != list_head(l)) {
599 list_remove(l, zsd);
600 list_insert_head(l, zsd);
602 return (zsd);
605 return (NULL);
608 void
609 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
610 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
612 struct zsd_entry *zsdp;
613 struct zsd_entry *t;
614 struct zone *zone;
615 zone_key_t key;
617 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
618 zsdp->zsd_data = NULL;
619 zsdp->zsd_create = create;
620 zsdp->zsd_shutdown = shutdown;
621 zsdp->zsd_destroy = destroy;
624 * Insert in global list of callbacks. Makes future zone creations
625 * see it.
627 mutex_enter(&zsd_key_lock);
628 key = zsdp->zsd_key = ++zsd_keyval;
629 ASSERT(zsd_keyval != 0);
630 list_insert_tail(&zsd_registered_keys, zsdp);
631 mutex_exit(&zsd_key_lock);
634 * Insert for all existing zones and mark them as needing
635 * a create callback.
637 mutex_enter(&zonehash_lock); /* stop the world */
638 for (zone = list_head(&zone_active); zone != NULL;
639 zone = list_next(&zone_active, zone)) {
640 zone_status_t status;
642 mutex_enter(&zone->zone_lock);
644 /* Skip zones that are on the way down or not yet up */
645 status = zone_status_get(zone);
646 if (status >= ZONE_IS_DOWN ||
647 status == ZONE_IS_UNINITIALIZED) {
648 mutex_exit(&zone->zone_lock);
649 continue;
652 t = zsd_find_mru(&zone->zone_zsd, key);
653 if (t != NULL) {
655 * A zsd_configure already inserted it after
656 * we dropped zsd_key_lock above.
658 mutex_exit(&zone->zone_lock);
659 continue;
661 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
662 t->zsd_key = key;
663 t->zsd_create = create;
664 t->zsd_shutdown = shutdown;
665 t->zsd_destroy = destroy;
666 if (create != NULL) {
667 t->zsd_flags = ZSD_CREATE_NEEDED;
668 DTRACE_PROBE2(zsd__create__needed,
669 zone_t *, zone, zone_key_t, key);
671 list_insert_tail(&zone->zone_zsd, t);
672 mutex_exit(&zone->zone_lock);
674 mutex_exit(&zonehash_lock);
676 if (create != NULL) {
677 /* Now call the create callback for this key */
678 zsd_apply_all_zones(zsd_apply_create, key);
681 * It is safe for consumers to use the key now, make it
682 * globally visible. Specifically zone_getspecific() will
683 * always successfully return the zone specific data associated
684 * with the key.
686 *keyp = key;
691 * Function called when a module is being unloaded, or otherwise wishes
692 * to unregister its ZSD key and callbacks.
694 * Remove from the global list and determine the functions that need to
695 * be called under a global lock. Then call the functions without
696 * holding any locks. Finally free up the zone_zsd entries. (The apply
697 * functions need to access the zone_zsd entries to find zsd_data etc.)
700 zone_key_delete(zone_key_t key)
702 struct zsd_entry *zsdp = NULL;
703 zone_t *zone;
705 mutex_enter(&zsd_key_lock);
706 zsdp = zsd_find_mru(&zsd_registered_keys, key);
707 if (zsdp == NULL) {
708 mutex_exit(&zsd_key_lock);
709 return (-1);
711 list_remove(&zsd_registered_keys, zsdp);
712 mutex_exit(&zsd_key_lock);
714 mutex_enter(&zonehash_lock);
715 for (zone = list_head(&zone_active); zone != NULL;
716 zone = list_next(&zone_active, zone)) {
717 struct zsd_entry *del;
719 mutex_enter(&zone->zone_lock);
720 del = zsd_find_mru(&zone->zone_zsd, key);
721 if (del == NULL) {
723 * Somebody else got here first e.g the zone going
724 * away.
726 mutex_exit(&zone->zone_lock);
727 continue;
729 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
730 ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
731 if (del->zsd_shutdown != NULL &&
732 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
733 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
734 DTRACE_PROBE2(zsd__shutdown__needed,
735 zone_t *, zone, zone_key_t, key);
737 if (del->zsd_destroy != NULL &&
738 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
739 del->zsd_flags |= ZSD_DESTROY_NEEDED;
740 DTRACE_PROBE2(zsd__destroy__needed,
741 zone_t *, zone, zone_key_t, key);
743 mutex_exit(&zone->zone_lock);
745 mutex_exit(&zonehash_lock);
746 kmem_free(zsdp, sizeof (*zsdp));
748 /* Now call the shutdown and destroy callback for this key */
749 zsd_apply_all_zones(zsd_apply_shutdown, key);
750 zsd_apply_all_zones(zsd_apply_destroy, key);
752 /* Now we can free up the zsdp structures in each zone */
753 mutex_enter(&zonehash_lock);
754 for (zone = list_head(&zone_active); zone != NULL;
755 zone = list_next(&zone_active, zone)) {
756 struct zsd_entry *del;
758 mutex_enter(&zone->zone_lock);
759 del = zsd_find(&zone->zone_zsd, key);
760 if (del != NULL) {
761 list_remove(&zone->zone_zsd, del);
762 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
763 kmem_free(del, sizeof (*del));
765 mutex_exit(&zone->zone_lock);
767 mutex_exit(&zonehash_lock);
769 return (0);
773 * ZSD counterpart of pthread_setspecific().
775 * Since all zsd callbacks, including those with no create function,
776 * have an entry in zone_zsd, if the key is registered it is part of
777 * the zone_zsd list.
778 * Return an error if the key wasn't registerd.
781 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
783 struct zsd_entry *t;
785 mutex_enter(&zone->zone_lock);
786 t = zsd_find_mru(&zone->zone_zsd, key);
787 if (t != NULL) {
789 * Replace old value with new
791 t->zsd_data = (void *)data;
792 mutex_exit(&zone->zone_lock);
793 return (0);
795 mutex_exit(&zone->zone_lock);
796 return (-1);
800 * ZSD counterpart of pthread_getspecific().
802 void *
803 zone_getspecific(zone_key_t key, zone_t *zone)
805 struct zsd_entry *t;
806 void *data;
808 mutex_enter(&zone->zone_lock);
809 t = zsd_find_mru(&zone->zone_zsd, key);
810 data = (t == NULL ? NULL : t->zsd_data);
811 mutex_exit(&zone->zone_lock);
812 return (data);
816 * Function used to initialize a zone's list of ZSD callbacks and data
817 * when the zone is being created. The callbacks are initialized from
818 * the template list (zsd_registered_keys). The constructor callback is
819 * executed later (once the zone exists and with locks dropped).
821 static void
822 zone_zsd_configure(zone_t *zone)
824 struct zsd_entry *zsdp;
825 struct zsd_entry *t;
827 ASSERT(MUTEX_HELD(&zonehash_lock));
828 ASSERT(list_head(&zone->zone_zsd) == NULL);
829 mutex_enter(&zone->zone_lock);
830 mutex_enter(&zsd_key_lock);
831 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
832 zsdp = list_next(&zsd_registered_keys, zsdp)) {
834 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
835 * should not have added anything to it.
837 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
839 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
840 t->zsd_key = zsdp->zsd_key;
841 t->zsd_create = zsdp->zsd_create;
842 t->zsd_shutdown = zsdp->zsd_shutdown;
843 t->zsd_destroy = zsdp->zsd_destroy;
844 if (zsdp->zsd_create != NULL) {
845 t->zsd_flags = ZSD_CREATE_NEEDED;
846 DTRACE_PROBE2(zsd__create__needed,
847 zone_t *, zone, zone_key_t, zsdp->zsd_key);
849 list_insert_tail(&zone->zone_zsd, t);
851 mutex_exit(&zsd_key_lock);
852 mutex_exit(&zone->zone_lock);
855 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
858 * Helper function to execute shutdown or destructor callbacks.
860 static void
861 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
863 struct zsd_entry *t;
865 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
866 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
867 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
870 * Run the callback solely based on what is registered for the zone
871 * in zone_zsd. The global list can change independently of this
872 * as keys are registered and unregistered and we don't register new
873 * callbacks for a zone that is in the process of going away.
875 mutex_enter(&zone->zone_lock);
876 for (t = list_head(&zone->zone_zsd); t != NULL;
877 t = list_next(&zone->zone_zsd, t)) {
878 zone_key_t key = t->zsd_key;
880 /* Skip if no callbacks registered */
882 if (ct == ZSD_SHUTDOWN) {
883 if (t->zsd_shutdown != NULL &&
884 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
885 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
886 DTRACE_PROBE2(zsd__shutdown__needed,
887 zone_t *, zone, zone_key_t, key);
889 } else {
890 if (t->zsd_destroy != NULL &&
891 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
892 t->zsd_flags |= ZSD_DESTROY_NEEDED;
893 DTRACE_PROBE2(zsd__destroy__needed,
894 zone_t *, zone, zone_key_t, key);
898 mutex_exit(&zone->zone_lock);
900 /* Now call the shutdown and destroy callback for this key */
901 zsd_apply_all_keys(zsd_apply_shutdown, zone);
902 zsd_apply_all_keys(zsd_apply_destroy, zone);
907 * Called when the zone is going away; free ZSD-related memory, and
908 * destroy the zone_zsd list.
910 static void
911 zone_free_zsd(zone_t *zone)
913 struct zsd_entry *t, *next;
916 * Free all the zsd_entry's we had on this zone.
918 mutex_enter(&zone->zone_lock);
919 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
920 next = list_next(&zone->zone_zsd, t);
921 list_remove(&zone->zone_zsd, t);
922 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
923 kmem_free(t, sizeof (*t));
925 list_destroy(&zone->zone_zsd);
926 mutex_exit(&zone->zone_lock);
931 * Apply a function to all zones for particular key value.
933 * The applyfn has to drop zonehash_lock if it does some work, and
934 * then reacquire it before it returns.
935 * When the lock is dropped we don't follow list_next even
936 * if it is possible to do so without any hazards. This is
937 * because we want the design to allow for the list of zones
938 * to change in any arbitrary way during the time the
939 * lock was dropped.
941 * It is safe to restart the loop at list_head since the applyfn
942 * changes the zsd_flags as it does work, so a subsequent
943 * pass through will have no effect in applyfn, hence the loop will terminate
944 * in at worst O(N^2).
946 static void
947 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
949 zone_t *zone;
951 mutex_enter(&zonehash_lock);
952 zone = list_head(&zone_active);
953 while (zone != NULL) {
954 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
955 /* Lock dropped - restart at head */
956 zone = list_head(&zone_active);
957 } else {
958 zone = list_next(&zone_active, zone);
961 mutex_exit(&zonehash_lock);
965 * Apply a function to all keys for a particular zone.
967 * The applyfn has to drop zonehash_lock if it does some work, and
968 * then reacquire it before it returns.
969 * When the lock is dropped we don't follow list_next even
970 * if it is possible to do so without any hazards. This is
971 * because we want the design to allow for the list of zsd callbacks
972 * to change in any arbitrary way during the time the
973 * lock was dropped.
975 * It is safe to restart the loop at list_head since the applyfn
976 * changes the zsd_flags as it does work, so a subsequent
977 * pass through will have no effect in applyfn, hence the loop will terminate
978 * in at worst O(N^2).
980 static void
981 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
983 struct zsd_entry *t;
985 mutex_enter(&zone->zone_lock);
986 t = list_head(&zone->zone_zsd);
987 while (t != NULL) {
988 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
989 /* Lock dropped - restart at head */
990 t = list_head(&zone->zone_zsd);
991 } else {
992 t = list_next(&zone->zone_zsd, t);
995 mutex_exit(&zone->zone_lock);
999 * Call the create function for the zone and key if CREATE_NEEDED
1000 * is set.
1001 * If some other thread gets here first and sets CREATE_INPROGRESS, then
1002 * we wait for that thread to complete so that we can ensure that
1003 * all the callbacks are done when we've looped over all zones/keys.
1005 * When we call the create function, we drop the global held by the
1006 * caller, and return true to tell the caller it needs to re-evalute the
1007 * state.
1008 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1009 * remains held on exit.
1011 static boolean_t
1012 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1013 zone_t *zone, zone_key_t key)
1015 void *result;
1016 struct zsd_entry *t;
1017 boolean_t dropped;
1019 if (lockp != NULL) {
1020 ASSERT(MUTEX_HELD(lockp));
1022 if (zone_lock_held) {
1023 ASSERT(MUTEX_HELD(&zone->zone_lock));
1024 } else {
1025 mutex_enter(&zone->zone_lock);
1028 t = zsd_find(&zone->zone_zsd, key);
1029 if (t == NULL) {
1031 * Somebody else got here first e.g the zone going
1032 * away.
1034 if (!zone_lock_held)
1035 mutex_exit(&zone->zone_lock);
1036 return (B_FALSE);
1038 dropped = B_FALSE;
1039 if (zsd_wait_for_inprogress(zone, t, lockp))
1040 dropped = B_TRUE;
1042 if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1043 t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1044 t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1045 DTRACE_PROBE2(zsd__create__inprogress,
1046 zone_t *, zone, zone_key_t, key);
1047 mutex_exit(&zone->zone_lock);
1048 if (lockp != NULL)
1049 mutex_exit(lockp);
1051 dropped = B_TRUE;
1052 ASSERT(t->zsd_create != NULL);
1053 DTRACE_PROBE2(zsd__create__start,
1054 zone_t *, zone, zone_key_t, key);
1056 result = (*t->zsd_create)(zone->zone_id);
1058 DTRACE_PROBE2(zsd__create__end,
1059 zone_t *, zone, voidn *, result);
1061 ASSERT(result != NULL);
1062 if (lockp != NULL)
1063 mutex_enter(lockp);
1064 mutex_enter(&zone->zone_lock);
1065 t->zsd_data = result;
1066 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1067 t->zsd_flags |= ZSD_CREATE_COMPLETED;
1068 cv_broadcast(&t->zsd_cv);
1069 DTRACE_PROBE2(zsd__create__completed,
1070 zone_t *, zone, zone_key_t, key);
1072 if (!zone_lock_held)
1073 mutex_exit(&zone->zone_lock);
1074 return (dropped);
1078 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1079 * is set.
1080 * If some other thread gets here first and sets *_INPROGRESS, then
1081 * we wait for that thread to complete so that we can ensure that
1082 * all the callbacks are done when we've looped over all zones/keys.
1084 * When we call the shutdown function, we drop the global held by the
1085 * caller, and return true to tell the caller it needs to re-evalute the
1086 * state.
1087 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1088 * remains held on exit.
1090 static boolean_t
1091 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1092 zone_t *zone, zone_key_t key)
1094 struct zsd_entry *t;
1095 void *data;
1096 boolean_t dropped;
1098 if (lockp != NULL) {
1099 ASSERT(MUTEX_HELD(lockp));
1101 if (zone_lock_held) {
1102 ASSERT(MUTEX_HELD(&zone->zone_lock));
1103 } else {
1104 mutex_enter(&zone->zone_lock);
1107 t = zsd_find(&zone->zone_zsd, key);
1108 if (t == NULL) {
1110 * Somebody else got here first e.g the zone going
1111 * away.
1113 if (!zone_lock_held)
1114 mutex_exit(&zone->zone_lock);
1115 return (B_FALSE);
1117 dropped = B_FALSE;
1118 if (zsd_wait_for_creator(zone, t, lockp))
1119 dropped = B_TRUE;
1121 if (zsd_wait_for_inprogress(zone, t, lockp))
1122 dropped = B_TRUE;
1124 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1125 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1126 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1127 DTRACE_PROBE2(zsd__shutdown__inprogress,
1128 zone_t *, zone, zone_key_t, key);
1129 mutex_exit(&zone->zone_lock);
1130 if (lockp != NULL)
1131 mutex_exit(lockp);
1132 dropped = B_TRUE;
1134 ASSERT(t->zsd_shutdown != NULL);
1135 data = t->zsd_data;
1137 DTRACE_PROBE2(zsd__shutdown__start,
1138 zone_t *, zone, zone_key_t, key);
1140 (t->zsd_shutdown)(zone->zone_id, data);
1141 DTRACE_PROBE2(zsd__shutdown__end,
1142 zone_t *, zone, zone_key_t, key);
1144 if (lockp != NULL)
1145 mutex_enter(lockp);
1146 mutex_enter(&zone->zone_lock);
1147 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1148 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1149 cv_broadcast(&t->zsd_cv);
1150 DTRACE_PROBE2(zsd__shutdown__completed,
1151 zone_t *, zone, zone_key_t, key);
1153 if (!zone_lock_held)
1154 mutex_exit(&zone->zone_lock);
1155 return (dropped);
1159 * Call the destroy function for the zone and key if DESTROY_NEEDED
1160 * is set.
1161 * If some other thread gets here first and sets *_INPROGRESS, then
1162 * we wait for that thread to complete so that we can ensure that
1163 * all the callbacks are done when we've looped over all zones/keys.
1165 * When we call the destroy function, we drop the global held by the
1166 * caller, and return true to tell the caller it needs to re-evalute the
1167 * state.
1168 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1169 * remains held on exit.
1171 static boolean_t
1172 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1173 zone_t *zone, zone_key_t key)
1175 struct zsd_entry *t;
1176 void *data;
1177 boolean_t dropped;
1179 if (lockp != NULL) {
1180 ASSERT(MUTEX_HELD(lockp));
1182 if (zone_lock_held) {
1183 ASSERT(MUTEX_HELD(&zone->zone_lock));
1184 } else {
1185 mutex_enter(&zone->zone_lock);
1188 t = zsd_find(&zone->zone_zsd, key);
1189 if (t == NULL) {
1191 * Somebody else got here first e.g the zone going
1192 * away.
1194 if (!zone_lock_held)
1195 mutex_exit(&zone->zone_lock);
1196 return (B_FALSE);
1198 dropped = B_FALSE;
1199 if (zsd_wait_for_creator(zone, t, lockp))
1200 dropped = B_TRUE;
1202 if (zsd_wait_for_inprogress(zone, t, lockp))
1203 dropped = B_TRUE;
1205 if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1206 t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1207 t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1208 DTRACE_PROBE2(zsd__destroy__inprogress,
1209 zone_t *, zone, zone_key_t, key);
1210 mutex_exit(&zone->zone_lock);
1211 if (lockp != NULL)
1212 mutex_exit(lockp);
1213 dropped = B_TRUE;
1215 ASSERT(t->zsd_destroy != NULL);
1216 data = t->zsd_data;
1217 DTRACE_PROBE2(zsd__destroy__start,
1218 zone_t *, zone, zone_key_t, key);
1220 (t->zsd_destroy)(zone->zone_id, data);
1221 DTRACE_PROBE2(zsd__destroy__end,
1222 zone_t *, zone, zone_key_t, key);
1224 if (lockp != NULL)
1225 mutex_enter(lockp);
1226 mutex_enter(&zone->zone_lock);
1227 t->zsd_data = NULL;
1228 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1229 t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1230 cv_broadcast(&t->zsd_cv);
1231 DTRACE_PROBE2(zsd__destroy__completed,
1232 zone_t *, zone, zone_key_t, key);
1234 if (!zone_lock_held)
1235 mutex_exit(&zone->zone_lock);
1236 return (dropped);
1240 * Wait for any CREATE_NEEDED flag to be cleared.
1241 * Returns true if lockp was temporarily dropped while waiting.
1243 static boolean_t
1244 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1246 boolean_t dropped = B_FALSE;
1248 while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1249 DTRACE_PROBE2(zsd__wait__for__creator,
1250 zone_t *, zone, struct zsd_entry *, t);
1251 if (lockp != NULL) {
1252 dropped = B_TRUE;
1253 mutex_exit(lockp);
1255 cv_wait(&t->zsd_cv, &zone->zone_lock);
1256 if (lockp != NULL) {
1257 /* First drop zone_lock to preserve order */
1258 mutex_exit(&zone->zone_lock);
1259 mutex_enter(lockp);
1260 mutex_enter(&zone->zone_lock);
1263 return (dropped);
1267 * Wait for any INPROGRESS flag to be cleared.
1268 * Returns true if lockp was temporarily dropped while waiting.
1270 static boolean_t
1271 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1273 boolean_t dropped = B_FALSE;
1275 while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1276 DTRACE_PROBE2(zsd__wait__for__inprogress,
1277 zone_t *, zone, struct zsd_entry *, t);
1278 if (lockp != NULL) {
1279 dropped = B_TRUE;
1280 mutex_exit(lockp);
1282 cv_wait(&t->zsd_cv, &zone->zone_lock);
1283 if (lockp != NULL) {
1284 /* First drop zone_lock to preserve order */
1285 mutex_exit(&zone->zone_lock);
1286 mutex_enter(lockp);
1287 mutex_enter(&zone->zone_lock);
1290 return (dropped);
1294 * Frees memory associated with the zone dataset list.
1296 static void
1297 zone_free_datasets(zone_t *zone)
1299 zone_dataset_t *t, *next;
1301 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1302 next = list_next(&zone->zone_datasets, t);
1303 list_remove(&zone->zone_datasets, t);
1304 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1305 kmem_free(t, sizeof (*t));
1307 list_destroy(&zone->zone_datasets);
1311 * zone.cpu-shares resource control support.
1313 /*ARGSUSED*/
1314 static rctl_qty_t
1315 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1317 ASSERT(MUTEX_HELD(&p->p_lock));
1318 return (p->p_zone->zone_shares);
1321 /*ARGSUSED*/
1322 static int
1323 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1324 rctl_qty_t nv)
1326 ASSERT(MUTEX_HELD(&p->p_lock));
1327 ASSERT(e->rcep_t == RCENTITY_ZONE);
1328 if (e->rcep_p.zone == NULL)
1329 return (0);
1331 e->rcep_p.zone->zone_shares = nv;
1332 return (0);
1335 static rctl_ops_t zone_cpu_shares_ops = {
1336 rcop_no_action,
1337 zone_cpu_shares_usage,
1338 zone_cpu_shares_set,
1339 rcop_no_test
1343 * zone.cpu-cap resource control support.
1345 /*ARGSUSED*/
1346 static rctl_qty_t
1347 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1349 ASSERT(MUTEX_HELD(&p->p_lock));
1350 return (cpucaps_zone_get(p->p_zone));
1353 /*ARGSUSED*/
1354 static int
1355 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1356 rctl_qty_t nv)
1358 zone_t *zone = e->rcep_p.zone;
1360 ASSERT(MUTEX_HELD(&p->p_lock));
1361 ASSERT(e->rcep_t == RCENTITY_ZONE);
1363 if (zone == NULL)
1364 return (0);
1367 * set cap to the new value.
1369 return (cpucaps_zone_set(zone, nv));
1372 static rctl_ops_t zone_cpu_cap_ops = {
1373 rcop_no_action,
1374 zone_cpu_cap_get,
1375 zone_cpu_cap_set,
1376 rcop_no_test
1379 /*ARGSUSED*/
1380 static rctl_qty_t
1381 zone_lwps_usage(rctl_t *r, proc_t *p)
1383 rctl_qty_t nlwps;
1384 zone_t *zone = p->p_zone;
1386 ASSERT(MUTEX_HELD(&p->p_lock));
1388 mutex_enter(&zone->zone_nlwps_lock);
1389 nlwps = zone->zone_nlwps;
1390 mutex_exit(&zone->zone_nlwps_lock);
1392 return (nlwps);
1395 /*ARGSUSED*/
1396 static int
1397 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1398 rctl_qty_t incr, uint_t flags)
1400 rctl_qty_t nlwps;
1402 ASSERT(MUTEX_HELD(&p->p_lock));
1403 ASSERT(e->rcep_t == RCENTITY_ZONE);
1404 if (e->rcep_p.zone == NULL)
1405 return (0);
1406 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1407 nlwps = e->rcep_p.zone->zone_nlwps;
1409 if (nlwps + incr > rcntl->rcv_value)
1410 return (1);
1412 return (0);
1415 /*ARGSUSED*/
1416 static int
1417 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1419 ASSERT(MUTEX_HELD(&p->p_lock));
1420 ASSERT(e->rcep_t == RCENTITY_ZONE);
1421 if (e->rcep_p.zone == NULL)
1422 return (0);
1423 e->rcep_p.zone->zone_nlwps_ctl = nv;
1424 return (0);
1427 static rctl_ops_t zone_lwps_ops = {
1428 rcop_no_action,
1429 zone_lwps_usage,
1430 zone_lwps_set,
1431 zone_lwps_test,
1434 /*ARGSUSED*/
1435 static rctl_qty_t
1436 zone_procs_usage(rctl_t *r, proc_t *p)
1438 rctl_qty_t nprocs;
1439 zone_t *zone = p->p_zone;
1441 ASSERT(MUTEX_HELD(&p->p_lock));
1443 mutex_enter(&zone->zone_nlwps_lock);
1444 nprocs = zone->zone_nprocs;
1445 mutex_exit(&zone->zone_nlwps_lock);
1447 return (nprocs);
1450 /*ARGSUSED*/
1451 static int
1452 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1453 rctl_qty_t incr, uint_t flags)
1455 rctl_qty_t nprocs;
1457 ASSERT(MUTEX_HELD(&p->p_lock));
1458 ASSERT(e->rcep_t == RCENTITY_ZONE);
1459 if (e->rcep_p.zone == NULL)
1460 return (0);
1461 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1462 nprocs = e->rcep_p.zone->zone_nprocs;
1464 if (nprocs + incr > rcntl->rcv_value)
1465 return (1);
1467 return (0);
1470 /*ARGSUSED*/
1471 static int
1472 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1474 ASSERT(MUTEX_HELD(&p->p_lock));
1475 ASSERT(e->rcep_t == RCENTITY_ZONE);
1476 if (e->rcep_p.zone == NULL)
1477 return (0);
1478 e->rcep_p.zone->zone_nprocs_ctl = nv;
1479 return (0);
1482 static rctl_ops_t zone_procs_ops = {
1483 rcop_no_action,
1484 zone_procs_usage,
1485 zone_procs_set,
1486 zone_procs_test,
1489 /*ARGSUSED*/
1490 static rctl_qty_t
1491 zone_shmmax_usage(rctl_t *rctl, struct proc *p)
1493 ASSERT(MUTEX_HELD(&p->p_lock));
1494 return (p->p_zone->zone_shmmax);
1497 /*ARGSUSED*/
1498 static int
1499 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1500 rctl_qty_t incr, uint_t flags)
1502 rctl_qty_t v;
1503 ASSERT(MUTEX_HELD(&p->p_lock));
1504 ASSERT(e->rcep_t == RCENTITY_ZONE);
1505 v = e->rcep_p.zone->zone_shmmax + incr;
1506 if (v > rval->rcv_value)
1507 return (1);
1508 return (0);
1511 static rctl_ops_t zone_shmmax_ops = {
1512 rcop_no_action,
1513 zone_shmmax_usage,
1514 rcop_no_set,
1515 zone_shmmax_test
1518 /*ARGSUSED*/
1519 static rctl_qty_t
1520 zone_shmmni_usage(rctl_t *rctl, struct proc *p)
1522 ASSERT(MUTEX_HELD(&p->p_lock));
1523 return (p->p_zone->zone_ipc.ipcq_shmmni);
1526 /*ARGSUSED*/
1527 static int
1528 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1529 rctl_qty_t incr, uint_t flags)
1531 rctl_qty_t v;
1532 ASSERT(MUTEX_HELD(&p->p_lock));
1533 ASSERT(e->rcep_t == RCENTITY_ZONE);
1534 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1535 if (v > rval->rcv_value)
1536 return (1);
1537 return (0);
1540 static rctl_ops_t zone_shmmni_ops = {
1541 rcop_no_action,
1542 zone_shmmni_usage,
1543 rcop_no_set,
1544 zone_shmmni_test
1547 /*ARGSUSED*/
1548 static rctl_qty_t
1549 zone_semmni_usage(rctl_t *rctl, struct proc *p)
1551 ASSERT(MUTEX_HELD(&p->p_lock));
1552 return (p->p_zone->zone_ipc.ipcq_semmni);
1555 /*ARGSUSED*/
1556 static int
1557 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1558 rctl_qty_t incr, uint_t flags)
1560 rctl_qty_t v;
1561 ASSERT(MUTEX_HELD(&p->p_lock));
1562 ASSERT(e->rcep_t == RCENTITY_ZONE);
1563 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1564 if (v > rval->rcv_value)
1565 return (1);
1566 return (0);
1569 static rctl_ops_t zone_semmni_ops = {
1570 rcop_no_action,
1571 zone_semmni_usage,
1572 rcop_no_set,
1573 zone_semmni_test
1576 /*ARGSUSED*/
1577 static rctl_qty_t
1578 zone_msgmni_usage(rctl_t *rctl, struct proc *p)
1580 ASSERT(MUTEX_HELD(&p->p_lock));
1581 return (p->p_zone->zone_ipc.ipcq_msgmni);
1584 /*ARGSUSED*/
1585 static int
1586 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1587 rctl_qty_t incr, uint_t flags)
1589 rctl_qty_t v;
1590 ASSERT(MUTEX_HELD(&p->p_lock));
1591 ASSERT(e->rcep_t == RCENTITY_ZONE);
1592 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1593 if (v > rval->rcv_value)
1594 return (1);
1595 return (0);
1598 static rctl_ops_t zone_msgmni_ops = {
1599 rcop_no_action,
1600 zone_msgmni_usage,
1601 rcop_no_set,
1602 zone_msgmni_test
1605 /*ARGSUSED*/
1606 static rctl_qty_t
1607 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1609 rctl_qty_t q;
1610 ASSERT(MUTEX_HELD(&p->p_lock));
1611 mutex_enter(&p->p_zone->zone_mem_lock);
1612 q = p->p_zone->zone_locked_mem;
1613 mutex_exit(&p->p_zone->zone_mem_lock);
1614 return (q);
1617 /*ARGSUSED*/
1618 static int
1619 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1620 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1622 rctl_qty_t q;
1623 zone_t *z;
1625 z = e->rcep_p.zone;
1626 ASSERT(MUTEX_HELD(&p->p_lock));
1627 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1628 q = z->zone_locked_mem;
1629 if (q + incr > rcntl->rcv_value)
1630 return (1);
1631 return (0);
1634 /*ARGSUSED*/
1635 static int
1636 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1637 rctl_qty_t nv)
1639 ASSERT(MUTEX_HELD(&p->p_lock));
1640 ASSERT(e->rcep_t == RCENTITY_ZONE);
1641 if (e->rcep_p.zone == NULL)
1642 return (0);
1643 e->rcep_p.zone->zone_locked_mem_ctl = nv;
1644 return (0);
1647 static rctl_ops_t zone_locked_mem_ops = {
1648 rcop_no_action,
1649 zone_locked_mem_usage,
1650 zone_locked_mem_set,
1651 zone_locked_mem_test
1654 /*ARGSUSED*/
1655 static rctl_qty_t
1656 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1658 rctl_qty_t q;
1659 zone_t *z = p->p_zone;
1661 ASSERT(MUTEX_HELD(&p->p_lock));
1662 mutex_enter(&z->zone_mem_lock);
1663 q = z->zone_max_swap;
1664 mutex_exit(&z->zone_mem_lock);
1665 return (q);
1668 /*ARGSUSED*/
1669 static int
1670 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1671 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1673 rctl_qty_t q;
1674 zone_t *z;
1676 z = e->rcep_p.zone;
1677 ASSERT(MUTEX_HELD(&p->p_lock));
1678 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1679 q = z->zone_max_swap;
1680 if (q + incr > rcntl->rcv_value)
1681 return (1);
1682 return (0);
1685 /*ARGSUSED*/
1686 static int
1687 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1688 rctl_qty_t nv)
1690 ASSERT(MUTEX_HELD(&p->p_lock));
1691 ASSERT(e->rcep_t == RCENTITY_ZONE);
1692 if (e->rcep_p.zone == NULL)
1693 return (0);
1694 e->rcep_p.zone->zone_max_swap_ctl = nv;
1695 return (0);
1698 static rctl_ops_t zone_max_swap_ops = {
1699 rcop_no_action,
1700 zone_max_swap_usage,
1701 zone_max_swap_set,
1702 zone_max_swap_test
1705 /*ARGSUSED*/
1706 static rctl_qty_t
1707 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1709 rctl_qty_t q;
1710 zone_t *z = p->p_zone;
1712 ASSERT(MUTEX_HELD(&p->p_lock));
1713 mutex_enter(&z->zone_rctl_lock);
1714 q = z->zone_max_lofi;
1715 mutex_exit(&z->zone_rctl_lock);
1716 return (q);
1719 /*ARGSUSED*/
1720 static int
1721 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1722 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1724 rctl_qty_t q;
1725 zone_t *z;
1727 z = e->rcep_p.zone;
1728 ASSERT(MUTEX_HELD(&p->p_lock));
1729 ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1730 q = z->zone_max_lofi;
1731 if (q + incr > rcntl->rcv_value)
1732 return (1);
1733 return (0);
1736 /*ARGSUSED*/
1737 static int
1738 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1739 rctl_qty_t nv)
1741 ASSERT(MUTEX_HELD(&p->p_lock));
1742 ASSERT(e->rcep_t == RCENTITY_ZONE);
1743 if (e->rcep_p.zone == NULL)
1744 return (0);
1745 e->rcep_p.zone->zone_max_lofi_ctl = nv;
1746 return (0);
1749 static rctl_ops_t zone_max_lofi_ops = {
1750 rcop_no_action,
1751 zone_max_lofi_usage,
1752 zone_max_lofi_set,
1753 zone_max_lofi_test
1757 * Helper function to brand the zone with a unique ID.
1759 static void
1760 zone_uniqid(zone_t *zone)
1762 static uint64_t uniqid = 0;
1764 ASSERT(MUTEX_HELD(&zonehash_lock));
1765 zone->zone_uniqid = uniqid++;
1769 * Returns a held pointer to the "kcred" for the specified zone.
1771 struct cred *
1772 zone_get_kcred(zoneid_t zoneid)
1774 zone_t *zone;
1775 cred_t *cr;
1777 if ((zone = zone_find_by_id(zoneid)) == NULL)
1778 return (NULL);
1779 cr = zone->zone_kcred;
1780 crhold(cr);
1781 zone_rele(zone);
1782 return (cr);
1785 static int
1786 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1788 zone_t *zone = ksp->ks_private;
1789 zone_kstat_t *zk = ksp->ks_data;
1791 if (rw == KSTAT_WRITE)
1792 return (EACCES);
1794 zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1795 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1796 return (0);
1799 static int
1800 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1802 zone_t *zone = ksp->ks_private;
1803 zone_kstat_t *zk = ksp->ks_data;
1805 if (rw == KSTAT_WRITE)
1806 return (EACCES);
1808 zk->zk_usage.value.ui64 = zone->zone_nprocs;
1809 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1810 return (0);
1813 static int
1814 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1816 zone_t *zone = ksp->ks_private;
1817 zone_kstat_t *zk = ksp->ks_data;
1819 if (rw == KSTAT_WRITE)
1820 return (EACCES);
1822 zk->zk_usage.value.ui64 = zone->zone_max_swap;
1823 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1824 return (0);
1827 static kstat_t *
1828 zone_kstat_create_common(zone_t *zone, char *name,
1829 int (*updatefunc) (kstat_t *, int))
1831 kstat_t *ksp;
1832 zone_kstat_t *zk;
1834 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1835 sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1836 KSTAT_FLAG_VIRTUAL);
1838 if (ksp == NULL)
1839 return (NULL);
1841 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1842 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1843 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1844 kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1845 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1846 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1847 ksp->ks_update = updatefunc;
1848 ksp->ks_private = zone;
1849 kstat_install(ksp);
1850 return (ksp);
1854 static int
1855 zone_mcap_kstat_update(kstat_t *ksp, int rw)
1857 zone_t *zone = ksp->ks_private;
1858 zone_mcap_kstat_t *zmp = ksp->ks_data;
1860 if (rw == KSTAT_WRITE)
1861 return (EACCES);
1863 zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin;
1864 zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin;
1865 zmp->zm_execpgin.value.ui64 = zone->zone_execpgin;
1866 zmp->zm_fspgin.value.ui64 = zone->zone_fspgin;
1867 zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail;
1869 return (0);
1872 static kstat_t *
1873 zone_mcap_kstat_create(zone_t *zone)
1875 kstat_t *ksp;
1876 zone_mcap_kstat_t *zmp;
1878 if ((ksp = kstat_create_zone("memory_cap", zone->zone_id,
1879 zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED,
1880 sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t),
1881 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1882 return (NULL);
1884 if (zone->zone_id != GLOBAL_ZONEID)
1885 kstat_zone_add(ksp, GLOBAL_ZONEID);
1887 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP);
1888 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1889 ksp->ks_lock = &zone->zone_mcap_lock;
1890 zone->zone_mcap_stats = zmp;
1892 /* The kstat "name" field is not large enough for a full zonename */
1893 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1894 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1895 kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64);
1896 kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64);
1897 kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64);
1898 kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64);
1899 kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail",
1900 KSTAT_DATA_UINT64);
1902 ksp->ks_update = zone_mcap_kstat_update;
1903 ksp->ks_private = zone;
1905 kstat_install(ksp);
1906 return (ksp);
1909 static int
1910 zone_misc_kstat_update(kstat_t *ksp, int rw)
1912 zone_t *zone = ksp->ks_private;
1913 zone_misc_kstat_t *zmp = ksp->ks_data;
1914 hrtime_t tmp;
1916 if (rw == KSTAT_WRITE)
1917 return (EACCES);
1919 tmp = zone->zone_utime;
1920 scalehrtime(&tmp);
1921 zmp->zm_utime.value.ui64 = tmp;
1922 tmp = zone->zone_stime;
1923 scalehrtime(&tmp);
1924 zmp->zm_stime.value.ui64 = tmp;
1925 tmp = zone->zone_wtime;
1926 scalehrtime(&tmp);
1927 zmp->zm_wtime.value.ui64 = tmp;
1929 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1930 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1931 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1933 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1934 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1935 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1936 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1938 zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp;
1940 zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid;
1941 zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time;
1943 return (0);
1946 static kstat_t *
1947 zone_misc_kstat_create(zone_t *zone)
1949 kstat_t *ksp;
1950 zone_misc_kstat_t *zmp;
1952 if ((ksp = kstat_create_zone("zones", zone->zone_id,
1953 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1954 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1955 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1956 return (NULL);
1958 if (zone->zone_id != GLOBAL_ZONEID)
1959 kstat_zone_add(ksp, GLOBAL_ZONEID);
1961 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1962 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1963 ksp->ks_lock = &zone->zone_misc_lock;
1964 zone->zone_misc_stats = zmp;
1966 /* The kstat "name" field is not large enough for a full zonename */
1967 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1968 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1969 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1970 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1971 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1972 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1973 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1974 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1975 KSTAT_DATA_UINT32);
1976 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1977 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1978 KSTAT_DATA_UINT32);
1979 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1980 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1981 kstat_named_init(&zmp->zm_nested_intp, "nested_interp",
1982 KSTAT_DATA_UINT32);
1983 kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32);
1984 kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64);
1986 ksp->ks_update = zone_misc_kstat_update;
1987 ksp->ks_private = zone;
1989 kstat_install(ksp);
1990 return (ksp);
1993 static void
1994 zone_kstat_create(zone_t *zone)
1996 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
1997 "lockedmem", zone_lockedmem_kstat_update);
1998 zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
1999 "swapresv", zone_swapresv_kstat_update);
2000 zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
2001 "nprocs", zone_nprocs_kstat_update);
2003 if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) {
2004 zone->zone_mcap_stats = kmem_zalloc(
2005 sizeof (zone_mcap_kstat_t), KM_SLEEP);
2008 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
2009 zone->zone_misc_stats = kmem_zalloc(
2010 sizeof (zone_misc_kstat_t), KM_SLEEP);
2014 static void
2015 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
2017 void *data;
2019 if (*pkstat != NULL) {
2020 data = (*pkstat)->ks_data;
2021 kstat_delete(*pkstat);
2022 kmem_free(data, datasz);
2023 *pkstat = NULL;
2027 static void
2028 zone_kstat_delete(zone_t *zone)
2030 zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
2031 sizeof (zone_kstat_t));
2032 zone_kstat_delete_common(&zone->zone_swapresv_kstat,
2033 sizeof (zone_kstat_t));
2034 zone_kstat_delete_common(&zone->zone_nprocs_kstat,
2035 sizeof (zone_kstat_t));
2036 zone_kstat_delete_common(&zone->zone_mcap_ksp,
2037 sizeof (zone_mcap_kstat_t));
2038 zone_kstat_delete_common(&zone->zone_misc_ksp,
2039 sizeof (zone_misc_kstat_t));
2043 * Called very early on in boot to initialize the ZSD list so that
2044 * zone_key_create() can be called before zone_init(). It also initializes
2045 * portions of zone0 which may be used before zone_init() is called. The
2046 * variable "global_zone" will be set when zone0 is fully initialized by
2047 * zone_init().
2049 void
2050 zone_zsd_init(void)
2052 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
2053 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
2054 list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
2055 offsetof(struct zsd_entry, zsd_linkage));
2056 list_create(&zone_active, sizeof (zone_t),
2057 offsetof(zone_t, zone_linkage));
2058 list_create(&zone_deathrow, sizeof (zone_t),
2059 offsetof(zone_t, zone_linkage));
2061 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
2062 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
2063 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
2064 zone0.zone_shares = 1;
2065 zone0.zone_nlwps = 0;
2066 zone0.zone_nlwps_ctl = INT_MAX;
2067 zone0.zone_nprocs = 0;
2068 zone0.zone_nprocs_ctl = INT_MAX;
2069 zone0.zone_locked_mem = 0;
2070 zone0.zone_locked_mem_ctl = UINT64_MAX;
2071 ASSERT(zone0.zone_max_swap == 0);
2072 zone0.zone_max_swap_ctl = UINT64_MAX;
2073 zone0.zone_max_lofi = 0;
2074 zone0.zone_max_lofi_ctl = UINT64_MAX;
2075 zone0.zone_shmmax = 0;
2076 zone0.zone_ipc.ipcq_shmmni = 0;
2077 zone0.zone_ipc.ipcq_semmni = 0;
2078 zone0.zone_ipc.ipcq_msgmni = 0;
2079 zone0.zone_name = GLOBAL_ZONENAME;
2080 zone0.zone_nodename = utsname.nodename;
2081 zone0.zone_domain = srpc_domain;
2082 zone0.zone_hostid = HW_INVALID_HOSTID;
2083 zone0.zone_fs_allowed = NULL;
2084 psecflags_default(&zone0.zone_secflags);
2085 zone0.zone_ref = 1;
2086 zone0.zone_id = GLOBAL_ZONEID;
2087 zone0.zone_status = ZONE_IS_RUNNING;
2088 zone0.zone_rootpath = "/";
2089 zone0.zone_rootpathlen = 2;
2090 zone0.zone_psetid = ZONE_PS_INVAL;
2091 zone0.zone_ncpus = 0;
2092 zone0.zone_ncpus_online = 0;
2093 zone0.zone_proc_initpid = 1;
2094 zone0.zone_initname = initname;
2095 zone0.zone_lockedmem_kstat = NULL;
2096 zone0.zone_swapresv_kstat = NULL;
2097 zone0.zone_nprocs_kstat = NULL;
2099 zone0.zone_stime = 0;
2100 zone0.zone_utime = 0;
2101 zone0.zone_wtime = 0;
2103 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2104 offsetof(zone_ref_t, zref_linkage));
2105 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2106 offsetof(struct zsd_entry, zsd_linkage));
2107 list_insert_head(&zone_active, &zone0);
2110 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2111 * to anything meaningful. It is assigned to be 'rootdir' in
2112 * vfs_mountroot().
2114 zone0.zone_rootvp = NULL;
2115 zone0.zone_vfslist = NULL;
2116 zone0.zone_bootargs = initargs;
2117 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2119 * The global zone has all privileges
2121 priv_fillset(zone0.zone_privset);
2123 * Add p0 to the global zone
2125 zone0.zone_zsched = &p0;
2126 p0.p_zone = &zone0;
2130 * Called by main() to initialize the zones framework.
2132 void
2133 zone_init(void)
2135 rctl_dict_entry_t *rde;
2136 rctl_val_t *dval;
2137 rctl_set_t *set;
2138 rctl_alloc_gp_t *gp;
2139 rctl_entity_p_t e;
2140 int res;
2142 ASSERT(curproc == &p0);
2145 * Create ID space for zone IDs. ID 0 is reserved for the
2146 * global zone.
2148 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2151 * Initialize generic zone resource controls, if any.
2153 rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2154 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2155 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2156 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2158 rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2159 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2160 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2161 RCTL_GLOBAL_INFINITE,
2162 MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2164 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2165 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2166 INT_MAX, INT_MAX, &zone_lwps_ops);
2168 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2169 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2170 INT_MAX, INT_MAX, &zone_procs_ops);
2173 * System V IPC resource controls
2175 rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2176 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2177 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2179 rc_zone_semmni = rctl_register("zone.max-sem-ids",
2180 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2181 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2183 rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2184 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2185 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2187 rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2188 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2189 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2192 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach
2193 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2195 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2196 bzero(dval, sizeof (rctl_val_t));
2197 dval->rcv_value = 1;
2198 dval->rcv_privilege = RCPRIV_PRIVILEGED;
2199 dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2200 dval->rcv_action_recip_pid = -1;
2202 rde = rctl_dict_lookup("zone.cpu-shares");
2203 (void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2205 rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2206 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2207 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2208 &zone_locked_mem_ops);
2210 rc_zone_max_swap = rctl_register("zone.max-swap",
2211 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2212 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2213 &zone_max_swap_ops);
2215 rc_zone_max_lofi = rctl_register("zone.max-lofi",
2216 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2217 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2218 &zone_max_lofi_ops);
2221 * Initialize the ``global zone''.
2223 set = rctl_set_create();
2224 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2225 mutex_enter(&p0.p_lock);
2226 e.rcep_p.zone = &zone0;
2227 e.rcep_t = RCENTITY_ZONE;
2228 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2229 gp);
2231 zone0.zone_nlwps = p0.p_lwpcnt;
2232 zone0.zone_nprocs = 1;
2233 zone0.zone_ntasks = 1;
2234 mutex_exit(&p0.p_lock);
2235 zone0.zone_restart_init = B_TRUE;
2236 zone0.zone_brand = &native_brand;
2237 rctl_prealloc_destroy(gp);
2239 * pool_default hasn't been initialized yet, so we let pool_init()
2240 * take care of making sure the global zone is in the default pool.
2244 * Initialize global zone kstats
2246 zone_kstat_create(&zone0);
2249 * Initialise the lock for the database structure used by mntfs.
2251 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2253 mutex_enter(&zonehash_lock);
2254 zone_uniqid(&zone0);
2255 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2257 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2258 mod_hash_null_valdtor);
2259 zonehashbyname = mod_hash_create_strhash("zone_by_name",
2260 zone_hash_size, mod_hash_null_valdtor);
2261 zonecount = 1;
2263 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2264 (mod_hash_val_t)&zone0);
2265 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2266 (mod_hash_val_t)&zone0);
2267 mutex_exit(&zonehash_lock);
2270 * We avoid setting zone_kcred until now, since kcred is initialized
2271 * sometime after zone_zsd_init() and before zone_init().
2273 zone0.zone_kcred = kcred;
2275 * The global zone is fully initialized (except for zone_rootvp which
2276 * will be set when the root filesystem is mounted).
2278 global_zone = &zone0;
2281 * Setup an event channel to send zone status change notifications on
2283 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2284 EVCH_CREAT);
2286 if (res)
2287 panic("Sysevent_evc_bind failed during zone setup.\n");
2291 static void
2292 zone_free(zone_t *zone)
2294 ASSERT(zone != global_zone);
2295 ASSERT(zone->zone_ntasks == 0);
2296 ASSERT(zone->zone_nlwps == 0);
2297 ASSERT(zone->zone_nprocs == 0);
2298 ASSERT(zone->zone_cred_ref == 0);
2299 ASSERT(zone->zone_kcred == NULL);
2300 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2301 zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2302 ASSERT(list_is_empty(&zone->zone_ref_list));
2305 * Remove any zone caps.
2307 cpucaps_zone_remove(zone);
2309 ASSERT(zone->zone_cpucap == NULL);
2311 /* remove from deathrow list */
2312 if (zone_status_get(zone) == ZONE_IS_DEAD) {
2313 ASSERT(zone->zone_ref == 0);
2314 mutex_enter(&zone_deathrow_lock);
2315 list_remove(&zone_deathrow, zone);
2316 mutex_exit(&zone_deathrow_lock);
2319 list_destroy(&zone->zone_ref_list);
2320 zone_free_zsd(zone);
2321 zone_free_datasets(zone);
2322 list_destroy(&zone->zone_dl_list);
2324 if (zone->zone_rootvp != NULL)
2325 VN_RELE(zone->zone_rootvp);
2326 if (zone->zone_rootpath)
2327 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2328 if (zone->zone_name != NULL)
2329 kmem_free(zone->zone_name, ZONENAME_MAX);
2330 if (zone->zone_nodename != NULL)
2331 kmem_free(zone->zone_nodename, _SYS_NMLN);
2332 if (zone->zone_domain != NULL)
2333 kmem_free(zone->zone_domain, _SYS_NMLN);
2334 if (zone->zone_privset != NULL)
2335 kmem_free(zone->zone_privset, sizeof (priv_set_t));
2336 if (zone->zone_rctls != NULL)
2337 rctl_set_free(zone->zone_rctls);
2338 if (zone->zone_bootargs != NULL)
2339 strfree(zone->zone_bootargs);
2340 if (zone->zone_initname != NULL)
2341 strfree(zone->zone_initname);
2342 if (zone->zone_fs_allowed != NULL)
2343 strfree(zone->zone_fs_allowed);
2344 if (zone->zone_pfexecd != NULL)
2345 klpd_freelist(&zone->zone_pfexecd);
2346 id_free(zoneid_space, zone->zone_id);
2347 mutex_destroy(&zone->zone_lock);
2348 cv_destroy(&zone->zone_cv);
2349 rw_destroy(&zone->zone_mntfs_db_lock);
2350 kmem_free(zone, sizeof (zone_t));
2354 * See block comment at the top of this file for information about zone
2355 * status values.
2358 * Convenience function for setting zone status.
2360 static void
2361 zone_status_set(zone_t *zone, zone_status_t status)
2364 nvlist_t *nvl = NULL;
2365 ASSERT(MUTEX_HELD(&zone_status_lock));
2366 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2367 status >= zone_status_get(zone));
2369 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2370 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2371 nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2372 zone_status_table[status]) ||
2373 nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2374 zone_status_table[zone->zone_status]) ||
2375 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2376 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2377 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2378 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2379 #ifdef DEBUG
2380 (void) printf(
2381 "Failed to allocate and send zone state change event.\n");
2382 #endif
2384 nvlist_free(nvl);
2386 zone->zone_status = status;
2388 cv_broadcast(&zone->zone_cv);
2392 * Public function to retrieve the zone status. The zone status may
2393 * change after it is retrieved.
2395 zone_status_t
2396 zone_status_get(zone_t *zone)
2398 return (zone->zone_status);
2401 static int
2402 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2404 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2405 int err = 0;
2407 ASSERT(zone != global_zone);
2408 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2409 goto done; /* EFAULT or ENAMETOOLONG */
2411 if (zone->zone_bootargs != NULL)
2412 strfree(zone->zone_bootargs);
2414 zone->zone_bootargs = strdup(buf);
2416 done:
2417 kmem_free(buf, BOOTARGS_MAX);
2418 return (err);
2421 static int
2422 zone_set_brand(zone_t *zone, const char *brand)
2424 struct brand_attr *attrp;
2425 brand_t *bp;
2427 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2428 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2429 kmem_free(attrp, sizeof (struct brand_attr));
2430 return (EFAULT);
2433 bp = brand_register_zone(attrp);
2434 kmem_free(attrp, sizeof (struct brand_attr));
2435 if (bp == NULL)
2436 return (EINVAL);
2439 * This is the only place where a zone can change it's brand.
2440 * We already need to hold zone_status_lock to check the zone
2441 * status, so we'll just use that lock to serialize zone
2442 * branding requests as well.
2444 mutex_enter(&zone_status_lock);
2446 /* Re-Branding is not allowed and the zone can't be booted yet */
2447 if ((ZONE_IS_BRANDED(zone)) ||
2448 (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2449 mutex_exit(&zone_status_lock);
2450 brand_unregister_zone(bp);
2451 return (EINVAL);
2454 /* set up the brand specific data */
2455 zone->zone_brand = bp;
2456 ZBROP(zone)->b_init_brand_data(zone);
2458 mutex_exit(&zone_status_lock);
2459 return (0);
2462 static int
2463 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags)
2465 int err = 0;
2466 psecflags_t psf;
2468 ASSERT(zone != global_zone);
2470 if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0)
2471 return (err);
2473 if (zone_status_get(zone) > ZONE_IS_READY)
2474 return (EINVAL);
2476 if (!psecflags_validate(&psf))
2477 return (EINVAL);
2479 (void) memcpy(&zone->zone_secflags, &psf, sizeof (psf));
2481 /* Set security flags on the zone's zsched */
2482 (void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags,
2483 sizeof (zone->zone_zsched->p_secflags));
2485 return (0);
2488 static int
2489 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2491 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2492 int err = 0;
2494 ASSERT(zone != global_zone);
2495 if ((err = copyinstr(zone_fs_allowed, buf,
2496 ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2497 goto done;
2499 if (zone->zone_fs_allowed != NULL)
2500 strfree(zone->zone_fs_allowed);
2502 zone->zone_fs_allowed = strdup(buf);
2504 done:
2505 kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2506 return (err);
2509 static int
2510 zone_set_initname(zone_t *zone, const char *zone_initname)
2512 char initname[INITNAME_SZ];
2513 size_t len;
2514 int err = 0;
2516 ASSERT(zone != global_zone);
2517 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2518 return (err); /* EFAULT or ENAMETOOLONG */
2520 if (zone->zone_initname != NULL)
2521 strfree(zone->zone_initname);
2523 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2524 (void) strcpy(zone->zone_initname, initname);
2525 return (0);
2528 static int
2529 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2531 uint64_t mcap;
2532 int err = 0;
2534 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2535 zone->zone_phys_mcap = mcap;
2537 return (err);
2540 static int
2541 zone_set_sched_class(zone_t *zone, const char *new_class)
2543 char sched_class[PC_CLNMSZ];
2544 id_t classid;
2545 int err;
2547 ASSERT(zone != global_zone);
2548 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2549 return (err); /* EFAULT or ENAMETOOLONG */
2551 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2552 return (set_errno(EINVAL));
2553 zone->zone_defaultcid = classid;
2554 ASSERT(zone->zone_defaultcid > 0 &&
2555 zone->zone_defaultcid < loaded_classes);
2557 return (0);
2561 * Block indefinitely waiting for (zone_status >= status)
2563 void
2564 zone_status_wait(zone_t *zone, zone_status_t status)
2566 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2568 mutex_enter(&zone_status_lock);
2569 while (zone->zone_status < status) {
2570 cv_wait(&zone->zone_cv, &zone_status_lock);
2572 mutex_exit(&zone_status_lock);
2576 * Private CPR-safe version of zone_status_wait().
2578 static void
2579 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2581 callb_cpr_t cprinfo;
2583 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2585 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2586 str);
2587 mutex_enter(&zone_status_lock);
2588 while (zone->zone_status < status) {
2589 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2590 cv_wait(&zone->zone_cv, &zone_status_lock);
2591 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2594 * zone_status_lock is implicitly released by the following.
2596 CALLB_CPR_EXIT(&cprinfo);
2600 * Block until zone enters requested state or signal is received. Return (0)
2601 * if signaled, non-zero otherwise.
2604 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2606 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2608 mutex_enter(&zone_status_lock);
2609 while (zone->zone_status < status) {
2610 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2611 mutex_exit(&zone_status_lock);
2612 return (0);
2615 mutex_exit(&zone_status_lock);
2616 return (1);
2620 * Block until the zone enters the requested state or the timeout expires,
2621 * whichever happens first. Return (-1) if operation timed out, time remaining
2622 * otherwise.
2624 clock_t
2625 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2627 clock_t timeleft = 0;
2629 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2631 mutex_enter(&zone_status_lock);
2632 while (zone->zone_status < status && timeleft != -1) {
2633 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2635 mutex_exit(&zone_status_lock);
2636 return (timeleft);
2640 * Block until the zone enters the requested state, the current process is
2641 * signaled, or the timeout expires, whichever happens first. Return (-1) if
2642 * operation timed out, 0 if signaled, time remaining otherwise.
2644 clock_t
2645 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2647 clock_t timeleft = tim - ddi_get_lbolt();
2649 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2651 mutex_enter(&zone_status_lock);
2652 while (zone->zone_status < status) {
2653 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2654 tim);
2655 if (timeleft <= 0)
2656 break;
2658 mutex_exit(&zone_status_lock);
2659 return (timeleft);
2663 * Zones have two reference counts: one for references from credential
2664 * structures (zone_cred_ref), and one (zone_ref) for everything else.
2665 * This is so we can allow a zone to be rebooted while there are still
2666 * outstanding cred references, since certain drivers cache dblks (which
2667 * implicitly results in cached creds). We wait for zone_ref to drop to
2668 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is
2669 * later freed when the zone_cred_ref drops to 0, though nothing other
2670 * than the zone id and privilege set should be accessed once the zone
2671 * is "dead".
2673 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2674 * to force halt/reboot to block waiting for the zone_cred_ref to drop
2675 * to 0. This can be useful to flush out other sources of cached creds
2676 * that may be less innocuous than the driver case.
2678 * Zones also provide a tracked reference counting mechanism in which zone
2679 * references are represented by "crumbs" (zone_ref structures). Crumbs help
2680 * debuggers determine the sources of leaked zone references. See
2681 * zone_hold_ref() and zone_rele_ref() below for more information.
2684 int zone_wait_for_cred = 0;
2686 static void
2687 zone_hold_locked(zone_t *z)
2689 ASSERT(MUTEX_HELD(&z->zone_lock));
2690 z->zone_ref++;
2691 ASSERT(z->zone_ref != 0);
2695 * Increment the specified zone's reference count. The zone's zone_t structure
2696 * will not be freed as long as the zone's reference count is nonzero.
2697 * Decrement the zone's reference count via zone_rele().
2699 * NOTE: This function should only be used to hold zones for short periods of
2700 * time. Use zone_hold_ref() if the zone must be held for a long time.
2702 void
2703 zone_hold(zone_t *z)
2705 mutex_enter(&z->zone_lock);
2706 zone_hold_locked(z);
2707 mutex_exit(&z->zone_lock);
2711 * If the non-cred ref count drops to 1 and either the cred ref count
2712 * is 0 or we aren't waiting for cred references, the zone is ready to
2713 * be destroyed.
2715 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \
2716 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2719 * Common zone reference release function invoked by zone_rele() and
2720 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2721 * zone's subsystem-specific reference counters are not affected by the
2722 * release. If ref is not NULL, then the zone_ref_t to which it refers is
2723 * removed from the specified zone's reference list. ref must be non-NULL iff
2724 * subsys is not ZONE_REF_NUM_SUBSYS.
2726 static void
2727 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2729 boolean_t wakeup;
2731 mutex_enter(&z->zone_lock);
2732 ASSERT(z->zone_ref != 0);
2733 z->zone_ref--;
2734 if (subsys != ZONE_REF_NUM_SUBSYS) {
2735 ASSERT(z->zone_subsys_ref[subsys] != 0);
2736 z->zone_subsys_ref[subsys]--;
2737 list_remove(&z->zone_ref_list, ref);
2739 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2740 /* no more refs, free the structure */
2741 mutex_exit(&z->zone_lock);
2742 zone_free(z);
2743 return;
2745 /* signal zone_destroy so the zone can finish halting */
2746 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2747 mutex_exit(&z->zone_lock);
2749 if (wakeup) {
2751 * Grabbing zonehash_lock here effectively synchronizes with
2752 * zone_destroy() to avoid missed signals.
2754 mutex_enter(&zonehash_lock);
2755 cv_broadcast(&zone_destroy_cv);
2756 mutex_exit(&zonehash_lock);
2761 * Decrement the specified zone's reference count. The specified zone will
2762 * cease to exist after this function returns if the reference count drops to
2763 * zero. This function should be paired with zone_hold().
2765 void
2766 zone_rele(zone_t *z)
2768 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2772 * Initialize a zone reference structure. This function must be invoked for
2773 * a reference structure before the structure is passed to zone_hold_ref().
2775 void
2776 zone_init_ref(zone_ref_t *ref)
2778 ref->zref_zone = NULL;
2779 list_link_init(&ref->zref_linkage);
2783 * Acquire a reference to zone z. The caller must specify the
2784 * zone_ref_subsys_t constant associated with its subsystem. The specified
2785 * zone_ref_t structure will represent a reference to the specified zone. Use
2786 * zone_rele_ref() to release the reference.
2788 * The referenced zone_t structure will not be freed as long as the zone_t's
2789 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2790 * references.
2792 * NOTE: The zone_ref_t structure must be initialized before it is used.
2793 * See zone_init_ref() above.
2795 void
2796 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2798 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2801 * Prevent consumers from reusing a reference structure before
2802 * releasing it.
2804 VERIFY(ref->zref_zone == NULL);
2806 ref->zref_zone = z;
2807 mutex_enter(&z->zone_lock);
2808 zone_hold_locked(z);
2809 z->zone_subsys_ref[subsys]++;
2810 ASSERT(z->zone_subsys_ref[subsys] != 0);
2811 list_insert_head(&z->zone_ref_list, ref);
2812 mutex_exit(&z->zone_lock);
2816 * Release the zone reference represented by the specified zone_ref_t.
2817 * The reference is invalid after it's released; however, the zone_ref_t
2818 * structure can be reused without having to invoke zone_init_ref().
2819 * subsys should be the same value that was passed to zone_hold_ref()
2820 * when the reference was acquired.
2822 void
2823 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2825 zone_rele_common(ref->zref_zone, ref, subsys);
2828 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2829 * when consumers dereference the reference. This helps us catch
2830 * consumers who use released references. Furthermore, this lets
2831 * consumers reuse the zone_ref_t structure without having to
2832 * invoke zone_init_ref().
2834 ref->zref_zone = NULL;
2837 void
2838 zone_cred_hold(zone_t *z)
2840 mutex_enter(&z->zone_lock);
2841 z->zone_cred_ref++;
2842 ASSERT(z->zone_cred_ref != 0);
2843 mutex_exit(&z->zone_lock);
2846 void
2847 zone_cred_rele(zone_t *z)
2849 boolean_t wakeup;
2851 mutex_enter(&z->zone_lock);
2852 ASSERT(z->zone_cred_ref != 0);
2853 z->zone_cred_ref--;
2854 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2855 /* no more refs, free the structure */
2856 mutex_exit(&z->zone_lock);
2857 zone_free(z);
2858 return;
2861 * If zone_destroy is waiting for the cred references to drain
2862 * out, and they have, signal it.
2864 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2865 zone_status_get(z) >= ZONE_IS_DEAD);
2866 mutex_exit(&z->zone_lock);
2868 if (wakeup) {
2870 * Grabbing zonehash_lock here effectively synchronizes with
2871 * zone_destroy() to avoid missed signals.
2873 mutex_enter(&zonehash_lock);
2874 cv_broadcast(&zone_destroy_cv);
2875 mutex_exit(&zonehash_lock);
2879 void
2880 zone_task_hold(zone_t *z)
2882 mutex_enter(&z->zone_lock);
2883 z->zone_ntasks++;
2884 ASSERT(z->zone_ntasks != 0);
2885 mutex_exit(&z->zone_lock);
2888 void
2889 zone_task_rele(zone_t *zone)
2891 uint_t refcnt;
2893 mutex_enter(&zone->zone_lock);
2894 ASSERT(zone->zone_ntasks != 0);
2895 refcnt = --zone->zone_ntasks;
2896 if (refcnt > 1) { /* Common case */
2897 mutex_exit(&zone->zone_lock);
2898 return;
2900 zone_hold_locked(zone); /* so we can use the zone_t later */
2901 mutex_exit(&zone->zone_lock);
2902 if (refcnt == 1) {
2904 * See if the zone is shutting down.
2906 mutex_enter(&zone_status_lock);
2907 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2908 goto out;
2912 * Make sure the ntasks didn't change since we
2913 * dropped zone_lock.
2915 mutex_enter(&zone->zone_lock);
2916 if (refcnt != zone->zone_ntasks) {
2917 mutex_exit(&zone->zone_lock);
2918 goto out;
2920 mutex_exit(&zone->zone_lock);
2923 * No more user processes in the zone. The zone is empty.
2925 zone_status_set(zone, ZONE_IS_EMPTY);
2926 goto out;
2929 ASSERT(refcnt == 0);
2931 * zsched has exited; the zone is dead.
2933 zone->zone_zsched = NULL; /* paranoia */
2934 mutex_enter(&zone_status_lock);
2935 zone_status_set(zone, ZONE_IS_DEAD);
2936 out:
2937 mutex_exit(&zone_status_lock);
2938 zone_rele(zone);
2941 zoneid_t
2942 getzoneid(void)
2944 return (curproc->p_zone->zone_id);
2948 * Internal versions of zone_find_by_*(). These don't zone_hold() or
2949 * check the validity of a zone's state.
2951 static zone_t *
2952 zone_find_all_by_id(zoneid_t zoneid)
2954 mod_hash_val_t hv;
2955 zone_t *zone = NULL;
2957 ASSERT(MUTEX_HELD(&zonehash_lock));
2959 if (mod_hash_find(zonehashbyid,
2960 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
2961 zone = (zone_t *)hv;
2962 return (zone);
2965 static zone_t *
2966 zone_find_all_by_name(char *name)
2968 mod_hash_val_t hv;
2969 zone_t *zone = NULL;
2971 ASSERT(MUTEX_HELD(&zonehash_lock));
2973 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
2974 zone = (zone_t *)hv;
2975 return (zone);
2979 * Public interface for looking up a zone by zoneid. Only returns the zone if
2980 * it is fully initialized, and has not yet begun the zone_destroy() sequence.
2981 * Caller must call zone_rele() once it is done with the zone.
2983 * The zone may begin the zone_destroy() sequence immediately after this
2984 * function returns, but may be safely used until zone_rele() is called.
2986 zone_t *
2987 zone_find_by_id(zoneid_t zoneid)
2989 zone_t *zone;
2990 zone_status_t status;
2992 mutex_enter(&zonehash_lock);
2993 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
2994 mutex_exit(&zonehash_lock);
2995 return (NULL);
2997 status = zone_status_get(zone);
2998 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3000 * For all practical purposes the zone doesn't exist.
3002 mutex_exit(&zonehash_lock);
3003 return (NULL);
3005 zone_hold(zone);
3006 mutex_exit(&zonehash_lock);
3007 return (zone);
3011 * Similar to zone_find_by_id, but using zone name as the key.
3013 zone_t *
3014 zone_find_by_name(char *name)
3016 zone_t *zone;
3017 zone_status_t status;
3019 mutex_enter(&zonehash_lock);
3020 if ((zone = zone_find_all_by_name(name)) == NULL) {
3021 mutex_exit(&zonehash_lock);
3022 return (NULL);
3024 status = zone_status_get(zone);
3025 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3027 * For all practical purposes the zone doesn't exist.
3029 mutex_exit(&zonehash_lock);
3030 return (NULL);
3032 zone_hold(zone);
3033 mutex_exit(&zonehash_lock);
3034 return (zone);
3038 * Similar to zone_find_by_id(), using the path as a key. For instance,
3039 * if there is a zone "foo" rooted at /foo/root, and the path argument
3040 * is "/foo/root/proc", it will return the held zone_t corresponding to
3041 * zone "foo".
3043 * zone_find_by_path() always returns a non-NULL value, since at the
3044 * very least every path will be contained in the global zone.
3046 * As with the other zone_find_by_*() functions, the caller is
3047 * responsible for zone_rele()ing the return value of this function.
3049 zone_t *
3050 zone_find_by_path(const char *path)
3052 zone_t *zone;
3053 zone_t *zret = NULL;
3054 zone_status_t status;
3056 if (path == NULL) {
3058 * Call from rootconf().
3060 zone_hold(global_zone);
3061 return (global_zone);
3063 ASSERT(*path == '/');
3064 mutex_enter(&zonehash_lock);
3065 for (zone = list_head(&zone_active); zone != NULL;
3066 zone = list_next(&zone_active, zone)) {
3067 if (ZONE_PATH_VISIBLE(path, zone))
3068 zret = zone;
3070 ASSERT(zret != NULL);
3071 status = zone_status_get(zret);
3072 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3074 * Zone practically doesn't exist.
3076 zret = global_zone;
3078 zone_hold(zret);
3079 mutex_exit(&zonehash_lock);
3080 return (zret);
3084 * Public interface for updating per-zone load averages. Called once per
3085 * second.
3087 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3089 void
3090 zone_loadavg_update()
3092 zone_t *zp;
3093 zone_status_t status;
3094 struct loadavg_s *lavg;
3095 hrtime_t zone_total;
3096 int i;
3097 hrtime_t hr_avg;
3098 int nrun;
3099 static int64_t f[3] = { 135, 27, 9 };
3100 int64_t q, r;
3102 mutex_enter(&zonehash_lock);
3103 for (zp = list_head(&zone_active); zp != NULL;
3104 zp = list_next(&zone_active, zp)) {
3105 mutex_enter(&zp->zone_lock);
3107 /* Skip zones that are on the way down or not yet up */
3108 status = zone_status_get(zp);
3109 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3110 /* For all practical purposes the zone doesn't exist. */
3111 mutex_exit(&zp->zone_lock);
3112 continue;
3116 * Update the 10 second moving average data in zone_loadavg.
3118 lavg = &zp->zone_loadavg;
3120 zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime;
3121 scalehrtime(&zone_total);
3123 /* The zone_total should always be increasing. */
3124 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3125 zone_total - lavg->lg_total : 0;
3126 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3127 /* lg_total holds the prev. 1 sec. total */
3128 lavg->lg_total = zone_total;
3131 * To simplify the calculation, we don't calculate the load avg.
3132 * until the zone has been up for at least 10 seconds and our
3133 * moving average is thus full.
3135 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3136 lavg->lg_len++;
3137 mutex_exit(&zp->zone_lock);
3138 continue;
3141 /* Now calculate the 1min, 5min, 15 min load avg. */
3142 hr_avg = 0;
3143 for (i = 0; i < S_LOADAVG_SZ; i++)
3144 hr_avg += lavg->lg_loads[i];
3145 hr_avg = hr_avg / S_LOADAVG_SZ;
3146 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3148 /* Compute load avg. See comment in calcloadavg() */
3149 for (i = 0; i < 3; i++) {
3150 q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3151 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3152 zp->zone_hp_avenrun[i] +=
3153 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3155 /* avenrun[] can only hold 31 bits of load avg. */
3156 if (zp->zone_hp_avenrun[i] <
3157 ((uint64_t)1<<(31+16-FSHIFT)))
3158 zp->zone_avenrun[i] = (int32_t)
3159 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3160 else
3161 zp->zone_avenrun[i] = 0x7fffffff;
3164 mutex_exit(&zp->zone_lock);
3166 mutex_exit(&zonehash_lock);
3170 * Get the number of cpus visible to this zone. The system-wide global
3171 * 'ncpus' is returned if pools are disabled, the caller is in the
3172 * global zone, or a NULL zone argument is passed in.
3175 zone_ncpus_get(zone_t *zone)
3177 int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3179 return (myncpus != 0 ? myncpus : ncpus);
3183 * Get the number of online cpus visible to this zone. The system-wide
3184 * global 'ncpus_online' is returned if pools are disabled, the caller
3185 * is in the global zone, or a NULL zone argument is passed in.
3188 zone_ncpus_online_get(zone_t *zone)
3190 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3192 return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3196 * Return the pool to which the zone is currently bound.
3198 pool_t *
3199 zone_pool_get(zone_t *zone)
3201 ASSERT(pool_lock_held());
3203 return (zone->zone_pool);
3207 * Set the zone's pool pointer and update the zone's visibility to match
3208 * the resources in the new pool.
3210 void
3211 zone_pool_set(zone_t *zone, pool_t *pool)
3213 ASSERT(pool_lock_held());
3214 ASSERT(MUTEX_HELD(&cpu_lock));
3216 zone->zone_pool = pool;
3217 zone_pset_set(zone, pool->pool_pset->pset_id);
3221 * Return the cached value of the id of the processor set to which the
3222 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools
3223 * facility is disabled.
3225 psetid_t
3226 zone_pset_get(zone_t *zone)
3228 ASSERT(MUTEX_HELD(&cpu_lock));
3230 return (zone->zone_psetid);
3234 * Set the cached value of the id of the processor set to which the zone
3235 * is currently bound. Also update the zone's visibility to match the
3236 * resources in the new processor set.
3238 void
3239 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3241 psetid_t oldpsetid;
3243 ASSERT(MUTEX_HELD(&cpu_lock));
3244 oldpsetid = zone_pset_get(zone);
3246 if (oldpsetid == newpsetid)
3247 return;
3249 * Global zone sees all.
3251 if (zone != global_zone) {
3252 zone->zone_psetid = newpsetid;
3253 if (newpsetid != ZONE_PS_INVAL)
3254 pool_pset_visibility_add(newpsetid, zone);
3255 if (oldpsetid != ZONE_PS_INVAL)
3256 pool_pset_visibility_remove(oldpsetid, zone);
3259 * Disabling pools, so we should start using the global values
3260 * for ncpus and ncpus_online.
3262 if (newpsetid == ZONE_PS_INVAL) {
3263 zone->zone_ncpus = 0;
3264 zone->zone_ncpus_online = 0;
3269 * Walk the list of active zones and issue the provided callback for
3270 * each of them.
3272 * Caller must not be holding any locks that may be acquired under
3273 * zonehash_lock. See comment at the beginning of the file for a list of
3274 * common locks and their interactions with zones.
3277 zone_walk(int (*cb)(zone_t *, void *), void *data)
3279 zone_t *zone;
3280 int ret = 0;
3281 zone_status_t status;
3283 mutex_enter(&zonehash_lock);
3284 for (zone = list_head(&zone_active); zone != NULL;
3285 zone = list_next(&zone_active, zone)) {
3287 * Skip zones that shouldn't be externally visible.
3289 status = zone_status_get(zone);
3290 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3291 continue;
3293 * Bail immediately if any callback invocation returns a
3294 * non-zero value.
3296 ret = (*cb)(zone, data);
3297 if (ret != 0)
3298 break;
3300 mutex_exit(&zonehash_lock);
3301 return (ret);
3304 static int
3305 zone_set_root(zone_t *zone, const char *upath)
3307 vnode_t *vp;
3308 int trycount;
3309 int error = 0;
3310 char *path;
3311 struct pathname upn, pn;
3312 size_t pathlen;
3314 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3315 return (error);
3317 pn_alloc(&pn);
3319 /* prevent infinite loop */
3320 trycount = 10;
3321 for (;;) {
3322 if (--trycount <= 0) {
3323 error = ESTALE;
3324 goto out;
3327 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3329 * fop_access() may cover 'vp' with a new
3330 * filesystem, if 'vp' is an autoFS vnode.
3331 * Get the new 'vp' if so.
3333 if ((error =
3334 fop_access(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3335 (!vn_ismntpt(vp) ||
3336 (error = traverse(&vp)) == 0)) {
3337 pathlen = pn.pn_pathlen + 2;
3338 path = kmem_alloc(pathlen, KM_SLEEP);
3339 (void) strncpy(path, pn.pn_path,
3340 pn.pn_pathlen + 1);
3341 path[pathlen - 2] = '/';
3342 path[pathlen - 1] = '\0';
3343 pn_free(&pn);
3344 pn_free(&upn);
3346 /* Success! */
3347 break;
3349 VN_RELE(vp);
3351 if (error != ESTALE)
3352 goto out;
3355 ASSERT(error == 0);
3356 zone->zone_rootvp = vp; /* we hold a reference to vp */
3357 zone->zone_rootpath = path;
3358 zone->zone_rootpathlen = pathlen;
3359 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3360 zone->zone_flags |= ZF_IS_SCRATCH;
3361 return (0);
3363 out:
3364 pn_free(&pn);
3365 pn_free(&upn);
3366 return (error);
3369 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \
3370 ((c) >= 'a' && (c) <= 'z') || \
3371 ((c) >= 'A' && (c) <= 'Z'))
3373 static int
3374 zone_set_name(zone_t *zone, const char *uname)
3376 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3377 size_t len;
3378 int i, err;
3380 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3381 kmem_free(kname, ZONENAME_MAX);
3382 return (err); /* EFAULT or ENAMETOOLONG */
3385 /* must be less than ZONENAME_MAX */
3386 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3387 kmem_free(kname, ZONENAME_MAX);
3388 return (EINVAL);
3392 * Name must start with an alphanumeric and must contain only
3393 * alphanumerics, '-', '_' and '.'.
3395 if (!isalnum(kname[0])) {
3396 kmem_free(kname, ZONENAME_MAX);
3397 return (EINVAL);
3399 for (i = 1; i < len - 1; i++) {
3400 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3401 kname[i] != '.') {
3402 kmem_free(kname, ZONENAME_MAX);
3403 return (EINVAL);
3407 zone->zone_name = kname;
3408 return (0);
3412 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep'
3413 * is NULL or it points to a zone with no hostid emulation, then the machine's
3414 * hostid (i.e., the global zone's hostid) is returned. This function returns
3415 * zero if neither the zone nor the host machine (global zone) have hostids. It
3416 * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3417 * hostid and the machine's hostid is invalid.
3419 uint32_t
3420 zone_get_hostid(zone_t *zonep)
3422 unsigned long machine_hostid;
3424 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3425 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3426 return (HW_INVALID_HOSTID);
3427 return ((uint32_t)machine_hostid);
3429 return (zonep->zone_hostid);
3433 * Similar to thread_create(), but makes sure the thread is in the appropriate
3434 * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3436 /*ARGSUSED*/
3437 kthread_t *
3438 zthread_create(
3439 caddr_t stk,
3440 size_t stksize,
3441 void (*proc)(),
3442 void *arg,
3443 size_t len,
3444 pri_t pri)
3446 kthread_t *t;
3447 zone_t *zone = curproc->p_zone;
3448 proc_t *pp = zone->zone_zsched;
3450 zone_hold(zone); /* Reference to be dropped when thread exits */
3453 * No-one should be trying to create threads if the zone is shutting
3454 * down and there aren't any kernel threads around. See comment
3455 * in zthread_exit().
3457 ASSERT(!(zone->zone_kthreads == NULL &&
3458 zone_status_get(zone) >= ZONE_IS_EMPTY));
3460 * Create a thread, but don't let it run until we've finished setting
3461 * things up.
3463 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3464 ASSERT(t->t_forw == NULL);
3465 mutex_enter(&zone_status_lock);
3466 if (zone->zone_kthreads == NULL) {
3467 t->t_forw = t->t_back = t;
3468 } else {
3469 kthread_t *tx = zone->zone_kthreads;
3471 t->t_forw = tx;
3472 t->t_back = tx->t_back;
3473 tx->t_back->t_forw = t;
3474 tx->t_back = t;
3476 zone->zone_kthreads = t;
3477 mutex_exit(&zone_status_lock);
3479 mutex_enter(&pp->p_lock);
3480 t->t_proc_flag |= TP_ZTHREAD;
3481 project_rele(t->t_proj);
3482 t->t_proj = project_hold(pp->p_task->tk_proj);
3485 * Setup complete, let it run.
3487 thread_lock(t);
3488 t->t_schedflag |= TS_ALLSTART;
3489 setrun_locked(t);
3490 thread_unlock(t);
3492 mutex_exit(&pp->p_lock);
3494 return (t);
3498 * Similar to thread_exit(). Must be called by threads created via
3499 * zthread_exit().
3501 void
3502 zthread_exit(void)
3504 kthread_t *t = curthread;
3505 proc_t *pp = curproc;
3506 zone_t *zone = pp->p_zone;
3508 mutex_enter(&zone_status_lock);
3511 * Reparent to p0
3513 kpreempt_disable();
3514 mutex_enter(&pp->p_lock);
3515 t->t_proc_flag &= ~TP_ZTHREAD;
3516 t->t_procp = &p0;
3517 hat_thread_exit(t);
3518 mutex_exit(&pp->p_lock);
3519 kpreempt_enable();
3521 if (t->t_back == t) {
3522 ASSERT(t->t_forw == t);
3524 * If the zone is empty, once the thread count
3525 * goes to zero no further kernel threads can be
3526 * created. This is because if the creator is a process
3527 * in the zone, then it must have exited before the zone
3528 * state could be set to ZONE_IS_EMPTY.
3529 * Otherwise, if the creator is a kernel thread in the
3530 * zone, the thread count is non-zero.
3532 * This really means that non-zone kernel threads should
3533 * not create zone kernel threads.
3535 zone->zone_kthreads = NULL;
3536 if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3537 zone_status_set(zone, ZONE_IS_DOWN);
3539 * Remove any CPU caps on this zone.
3541 cpucaps_zone_remove(zone);
3543 } else {
3544 t->t_forw->t_back = t->t_back;
3545 t->t_back->t_forw = t->t_forw;
3546 if (zone->zone_kthreads == t)
3547 zone->zone_kthreads = t->t_forw;
3549 mutex_exit(&zone_status_lock);
3550 zone_rele(zone);
3551 thread_exit();
3552 /* NOTREACHED */
3555 static void
3556 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3558 vnode_t *oldvp;
3560 /* we're going to hold a reference here to the directory */
3561 VN_HOLD(vp);
3563 /* update abs cwd/root path see c2/audit.c */
3564 if (AU_AUDITING())
3565 audit_chdirec(vp, vpp);
3567 mutex_enter(&pp->p_lock);
3568 oldvp = *vpp;
3569 *vpp = vp;
3570 mutex_exit(&pp->p_lock);
3571 if (oldvp != NULL)
3572 VN_RELE(oldvp);
3576 * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3578 static int
3579 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3581 nvpair_t *nvp = NULL;
3582 boolean_t priv_set = B_FALSE;
3583 boolean_t limit_set = B_FALSE;
3584 boolean_t action_set = B_FALSE;
3586 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3587 const char *name;
3588 uint64_t ui64;
3590 name = nvpair_name(nvp);
3591 if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3592 return (EINVAL);
3593 (void) nvpair_value_uint64(nvp, &ui64);
3594 if (strcmp(name, "privilege") == 0) {
3596 * Currently only privileged values are allowed, but
3597 * this may change in the future.
3599 if (ui64 != RCPRIV_PRIVILEGED)
3600 return (EINVAL);
3601 rv->rcv_privilege = ui64;
3602 priv_set = B_TRUE;
3603 } else if (strcmp(name, "limit") == 0) {
3604 rv->rcv_value = ui64;
3605 limit_set = B_TRUE;
3606 } else if (strcmp(name, "action") == 0) {
3607 if (ui64 != RCTL_LOCAL_NOACTION &&
3608 ui64 != RCTL_LOCAL_DENY)
3609 return (EINVAL);
3610 rv->rcv_flagaction = ui64;
3611 action_set = B_TRUE;
3612 } else {
3613 return (EINVAL);
3617 if (!(priv_set && limit_set && action_set))
3618 return (EINVAL);
3619 rv->rcv_action_signal = 0;
3620 rv->rcv_action_recipient = NULL;
3621 rv->rcv_action_recip_pid = -1;
3622 rv->rcv_firing_time = 0;
3624 return (0);
3628 * Non-global zone version of start_init.
3630 void
3631 zone_start_init(void)
3633 proc_t *p = ttoproc(curthread);
3634 zone_t *z = p->p_zone;
3636 ASSERT(!INGLOBALZONE(curproc));
3639 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3640 * storing just the pid of init is sufficient.
3642 z->zone_proc_initpid = p->p_pid;
3645 * We maintain zone_boot_err so that we can return the cause of the
3646 * failure back to the caller of the zone_boot syscall.
3648 p->p_zone->zone_boot_err = start_init_common();
3651 * We will prevent booting zones from becoming running zones if the
3652 * global zone is shutting down.
3654 mutex_enter(&zone_status_lock);
3655 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3656 ZONE_IS_SHUTTING_DOWN) {
3658 * Make sure we are still in the booting state-- we could have
3659 * raced and already be shutting down, or even further along.
3661 if (zone_status_get(z) == ZONE_IS_BOOTING) {
3662 zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3664 mutex_exit(&zone_status_lock);
3665 /* It's gone bad, dispose of the process */
3666 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3667 mutex_enter(&p->p_lock);
3668 ASSERT(p->p_flag & SEXITLWPS);
3669 lwp_exit();
3671 } else {
3672 if (zone_status_get(z) == ZONE_IS_BOOTING)
3673 zone_status_set(z, ZONE_IS_RUNNING);
3674 mutex_exit(&zone_status_lock);
3675 /* cause the process to return to userland. */
3676 lwp_rtt();
3680 struct zsched_arg {
3681 zone_t *zone;
3682 nvlist_t *nvlist;
3686 * Per-zone "sched" workalike. The similarity to "sched" doesn't have
3687 * anything to do with scheduling, but rather with the fact that
3688 * per-zone kernel threads are parented to zsched, just like regular
3689 * kernel threads are parented to sched (p0).
3691 * zsched is also responsible for launching init for the zone.
3693 static void
3694 zsched(void *arg)
3696 struct zsched_arg *za = arg;
3697 proc_t *pp = curproc;
3698 proc_t *initp = proc_init;
3699 zone_t *zone = za->zone;
3700 cred_t *cr, *oldcred;
3701 rctl_set_t *set;
3702 rctl_alloc_gp_t *gp;
3703 contract_t *ct = NULL;
3704 task_t *tk, *oldtk;
3705 rctl_entity_p_t e;
3706 kproject_t *pj;
3708 nvlist_t *nvl = za->nvlist;
3709 nvpair_t *nvp = NULL;
3711 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3712 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3713 PTOU(pp)->u_argc = 0;
3714 PTOU(pp)->u_argv = (uintptr_t)NULL;
3715 PTOU(pp)->u_envp = (uintptr_t)NULL;
3716 PTOU(pp)->u_commpagep = (uintptr_t)NULL;
3717 closeall(P_FINFO(pp));
3720 * We are this zone's "zsched" process. As the zone isn't generally
3721 * visible yet we don't need to grab any locks before initializing its
3722 * zone_proc pointer.
3724 zone_hold(zone); /* this hold is released by zone_destroy() */
3725 zone->zone_zsched = pp;
3726 mutex_enter(&pp->p_lock);
3727 pp->p_zone = zone;
3728 mutex_exit(&pp->p_lock);
3731 * Disassociate process from its 'parent'; parent ourselves to init
3732 * (pid 1) and change other values as needed.
3734 sess_create();
3736 mutex_enter(&pidlock);
3737 proc_detach(pp);
3738 pp->p_ppid = 1;
3739 pp->p_flag |= SZONETOP;
3740 pp->p_ancpid = 1;
3741 pp->p_parent = initp;
3742 pp->p_psibling = NULL;
3743 if (initp->p_child)
3744 initp->p_child->p_psibling = pp;
3745 pp->p_sibling = initp->p_child;
3746 initp->p_child = pp;
3748 /* Decrement what newproc() incremented. */
3749 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3751 * Our credentials are about to become kcred-like, so we don't care
3752 * about the caller's ruid.
3754 upcount_inc(crgetruid(kcred), zone->zone_id);
3755 mutex_exit(&pidlock);
3758 * getting out of global zone, so decrement lwp and process counts
3760 pj = pp->p_task->tk_proj;
3761 mutex_enter(&global_zone->zone_nlwps_lock);
3762 pj->kpj_nlwps -= pp->p_lwpcnt;
3763 global_zone->zone_nlwps -= pp->p_lwpcnt;
3764 pj->kpj_nprocs--;
3765 global_zone->zone_nprocs--;
3766 mutex_exit(&global_zone->zone_nlwps_lock);
3769 * Decrement locked memory counts on old zone and project.
3771 mutex_enter(&global_zone->zone_mem_lock);
3772 global_zone->zone_locked_mem -= pp->p_locked_mem;
3773 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3774 mutex_exit(&global_zone->zone_mem_lock);
3777 * Create and join a new task in project '0' of this zone.
3779 * We don't need to call holdlwps() since we know we're the only lwp in
3780 * this process.
3782 * task_join() returns with p_lock held.
3784 tk = task_create(0, zone);
3785 mutex_enter(&cpu_lock);
3786 oldtk = task_join(tk, 0);
3788 pj = pp->p_task->tk_proj;
3790 mutex_enter(&zone->zone_mem_lock);
3791 zone->zone_locked_mem += pp->p_locked_mem;
3792 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3793 mutex_exit(&zone->zone_mem_lock);
3796 * add lwp and process counts to zsched's zone, and increment
3797 * project's task and process count due to the task created in
3798 * the above task_create.
3800 mutex_enter(&zone->zone_nlwps_lock);
3801 pj->kpj_nlwps += pp->p_lwpcnt;
3802 pj->kpj_ntasks += 1;
3803 zone->zone_nlwps += pp->p_lwpcnt;
3804 pj->kpj_nprocs++;
3805 zone->zone_nprocs++;
3806 mutex_exit(&zone->zone_nlwps_lock);
3808 mutex_exit(&curproc->p_lock);
3809 mutex_exit(&cpu_lock);
3810 task_rele(oldtk);
3813 * The process was created by a process in the global zone, hence the
3814 * credentials are wrong. We might as well have kcred-ish credentials.
3816 cr = zone->zone_kcred;
3817 crhold(cr);
3818 mutex_enter(&pp->p_crlock);
3819 oldcred = pp->p_cred;
3820 pp->p_cred = cr;
3821 mutex_exit(&pp->p_crlock);
3822 crfree(oldcred);
3825 * Hold credentials again (for thread)
3827 crhold(cr);
3830 * p_lwpcnt can't change since this is a kernel process.
3832 crset(pp, cr);
3835 * Chroot
3837 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3838 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3841 * Initialize zone's rctl set.
3843 set = rctl_set_create();
3844 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3845 mutex_enter(&pp->p_lock);
3846 e.rcep_p.zone = zone;
3847 e.rcep_t = RCENTITY_ZONE;
3848 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3849 mutex_exit(&pp->p_lock);
3850 rctl_prealloc_destroy(gp);
3853 * Apply the rctls passed in to zone_create(). This is basically a list
3854 * assignment: all of the old values are removed and the new ones
3855 * inserted. That is, if an empty list is passed in, all values are
3856 * removed.
3858 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3859 rctl_dict_entry_t *rde;
3860 rctl_hndl_t hndl;
3861 char *name;
3862 nvlist_t **nvlarray;
3863 uint_t i, nelem;
3864 int error; /* For ASSERT()s */
3866 name = nvpair_name(nvp);
3867 hndl = rctl_hndl_lookup(name);
3868 ASSERT(hndl != -1);
3869 rde = rctl_dict_lookup_hndl(hndl);
3870 ASSERT(rde != NULL);
3872 for (; /* ever */; ) {
3873 rctl_val_t oval;
3875 mutex_enter(&pp->p_lock);
3876 error = rctl_local_get(hndl, NULL, &oval, pp);
3877 mutex_exit(&pp->p_lock);
3878 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */
3879 ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3880 if (oval.rcv_privilege == RCPRIV_SYSTEM)
3881 break;
3882 mutex_enter(&pp->p_lock);
3883 error = rctl_local_delete(hndl, &oval, pp);
3884 mutex_exit(&pp->p_lock);
3885 ASSERT(error == 0);
3887 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3888 ASSERT(error == 0);
3889 for (i = 0; i < nelem; i++) {
3890 rctl_val_t *nvalp;
3892 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
3893 error = nvlist2rctlval(nvlarray[i], nvalp);
3894 ASSERT(error == 0);
3896 * rctl_local_insert can fail if the value being
3897 * inserted is a duplicate; this is OK.
3899 mutex_enter(&pp->p_lock);
3900 if (rctl_local_insert(hndl, nvalp, pp) != 0)
3901 kmem_cache_free(rctl_val_cache, nvalp);
3902 mutex_exit(&pp->p_lock);
3907 * Tell the world that we're done setting up.
3909 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
3910 * and atomically set the zone's processor set visibility. Once
3911 * we drop pool_lock() this zone will automatically get updated
3912 * to reflect any future changes to the pools configuration.
3914 * Note that after we drop the locks below (zonehash_lock in
3915 * particular) other operations such as a zone_getattr call can
3916 * now proceed and observe the zone. That is the reason for doing a
3917 * state transition to the INITIALIZED state.
3919 pool_lock();
3920 mutex_enter(&cpu_lock);
3921 mutex_enter(&zonehash_lock);
3922 zone_uniqid(zone);
3923 zone_zsd_configure(zone);
3924 if (pool_state == POOL_ENABLED)
3925 zone_pset_set(zone, pool_default->pool_pset->pset_id);
3926 mutex_enter(&zone_status_lock);
3927 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
3928 zone_status_set(zone, ZONE_IS_INITIALIZED);
3929 mutex_exit(&zone_status_lock);
3930 mutex_exit(&zonehash_lock);
3931 mutex_exit(&cpu_lock);
3932 pool_unlock();
3934 /* Now call the create callback for this key */
3935 zsd_apply_all_keys(zsd_apply_create, zone);
3937 /* The callbacks are complete. Mark ZONE_IS_READY */
3938 mutex_enter(&zone_status_lock);
3939 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
3940 zone_status_set(zone, ZONE_IS_READY);
3941 mutex_exit(&zone_status_lock);
3944 * Once we see the zone transition to the ZONE_IS_BOOTING state,
3945 * we launch init, and set the state to running.
3947 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
3949 if (zone_status_get(zone) == ZONE_IS_BOOTING) {
3950 id_t cid;
3953 * Ok, this is a little complicated. We need to grab the
3954 * zone's pool's scheduling class ID; note that by now, we
3955 * are already bound to a pool if we need to be (zoneadmd
3956 * will have done that to us while we're in the READY
3957 * state). *But* the scheduling class for the zone's 'init'
3958 * must be explicitly passed to newproc, which doesn't
3959 * respect pool bindings.
3961 * We hold the pool_lock across the call to newproc() to
3962 * close the obvious race: the pool's scheduling class
3963 * could change before we manage to create the LWP with
3964 * classid 'cid'.
3966 pool_lock();
3967 if (zone->zone_defaultcid > 0)
3968 cid = zone->zone_defaultcid;
3969 else
3970 cid = pool_get_class(zone->zone_pool);
3971 if (cid == -1)
3972 cid = defaultcid;
3975 * If this fails, zone_boot will ultimately fail. The
3976 * state of the zone will be set to SHUTTING_DOWN-- userland
3977 * will have to tear down the zone, and fail, or try again.
3979 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
3980 minclsyspri - 1, &ct, 0)) != 0) {
3981 mutex_enter(&zone_status_lock);
3982 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
3983 mutex_exit(&zone_status_lock);
3984 } else {
3985 zone->zone_boot_time = gethrestime_sec();
3988 pool_unlock();
3992 * Wait for zone_destroy() to be called. This is what we spend
3993 * most of our life doing.
3995 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
3997 if (ct)
3999 * At this point the process contract should be empty.
4000 * (Though if it isn't, it's not the end of the world.)
4002 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
4005 * Allow kcred to be freed when all referring processes
4006 * (including this one) go away. We can't just do this in
4007 * zone_free because we need to wait for the zone_cred_ref to
4008 * drop to 0 before calling zone_free, and the existence of
4009 * zone_kcred will prevent that. Thus, we call crfree here to
4010 * balance the crdup in zone_create. The crhold calls earlier
4011 * in zsched will be dropped when the thread and process exit.
4013 crfree(zone->zone_kcred);
4014 zone->zone_kcred = NULL;
4016 exit(CLD_EXITED, 0);
4020 * Helper function to determine if there are any submounts of the
4021 * provided path. Used to make sure the zone doesn't "inherit" any
4022 * mounts from before it is created.
4024 static uint_t
4025 zone_mount_count(const char *rootpath)
4027 vfs_t *vfsp;
4028 uint_t count = 0;
4029 size_t rootpathlen = strlen(rootpath);
4032 * Holding zonehash_lock prevents race conditions with
4033 * vfs_list_add()/vfs_list_remove() since we serialize with
4034 * zone_find_by_path().
4036 ASSERT(MUTEX_HELD(&zonehash_lock));
4038 * The rootpath must end with a '/'
4040 ASSERT(rootpath[rootpathlen - 1] == '/');
4043 * This intentionally does not count the rootpath itself if that
4044 * happens to be a mount point.
4046 vfs_list_read_lock();
4047 vfsp = rootvfs;
4048 do {
4049 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4050 rootpathlen) == 0)
4051 count++;
4052 vfsp = vfsp->vfs_next;
4053 } while (vfsp != rootvfs);
4054 vfs_list_unlock();
4055 return (count);
4059 * Helper function to make sure that a zone created on 'rootpath'
4060 * wouldn't end up containing other zones' rootpaths.
4062 static boolean_t
4063 zone_is_nested(const char *rootpath)
4065 zone_t *zone;
4066 size_t rootpathlen = strlen(rootpath);
4067 size_t len;
4069 ASSERT(MUTEX_HELD(&zonehash_lock));
4072 * zone_set_root() appended '/' and '\0' at the end of rootpath
4074 if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4075 (rootpath[1] == '/') && (rootpath[2] == '\0'))
4076 return (B_TRUE);
4078 for (zone = list_head(&zone_active); zone != NULL;
4079 zone = list_next(&zone_active, zone)) {
4080 if (zone == global_zone)
4081 continue;
4082 len = strlen(zone->zone_rootpath);
4083 if (strncmp(rootpath, zone->zone_rootpath,
4084 MIN(rootpathlen, len)) == 0)
4085 return (B_TRUE);
4087 return (B_FALSE);
4090 static int
4091 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4092 size_t zone_privssz)
4094 priv_set_t *privs;
4096 if (zone_privssz < sizeof (priv_set_t))
4097 return (ENOMEM);
4099 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4101 if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4102 kmem_free(privs, sizeof (priv_set_t));
4103 return (EFAULT);
4106 zone->zone_privset = privs;
4107 return (0);
4111 * We make creative use of nvlists to pass in rctls from userland. The list is
4112 * a list of the following structures:
4114 * (name = rctl_name, value = nvpair_list_array)
4116 * Where each element of the nvpair_list_array is of the form:
4118 * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4119 * (name = "limit", value = uint64_t),
4120 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4122 static int
4123 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4125 nvpair_t *nvp = NULL;
4126 nvlist_t *nvl = NULL;
4127 char *kbuf;
4128 int error;
4129 rctl_val_t rv;
4131 *nvlp = NULL;
4133 if (buflen == 0)
4134 return (0);
4136 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4137 return (ENOMEM);
4138 if (copyin(ubuf, kbuf, buflen)) {
4139 error = EFAULT;
4140 goto out;
4142 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4144 * nvl may have been allocated/free'd, but the value set to
4145 * non-NULL, so we reset it here.
4147 nvl = NULL;
4148 error = EINVAL;
4149 goto out;
4151 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4152 rctl_dict_entry_t *rde;
4153 rctl_hndl_t hndl;
4154 nvlist_t **nvlarray;
4155 uint_t i, nelem;
4156 char *name;
4158 error = EINVAL;
4159 name = nvpair_name(nvp);
4160 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4161 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4162 goto out;
4164 if ((hndl = rctl_hndl_lookup(name)) == -1) {
4165 goto out;
4167 rde = rctl_dict_lookup_hndl(hndl);
4168 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4169 ASSERT(error == 0);
4170 for (i = 0; i < nelem; i++) {
4171 if (error = nvlist2rctlval(nvlarray[i], &rv))
4172 goto out;
4174 if (rctl_invalid_value(rde, &rv)) {
4175 error = EINVAL;
4176 goto out;
4179 error = 0;
4180 *nvlp = nvl;
4181 out:
4182 kmem_free(kbuf, buflen);
4183 if (error && nvl != NULL)
4184 nvlist_free(nvl);
4185 return (error);
4189 zone_create_error(int er_error, int er_ext, int *er_out)
4191 if (er_out != NULL) {
4192 if (copyout(&er_ext, er_out, sizeof (int))) {
4193 return (set_errno(EFAULT));
4196 return (set_errno(er_error));
4200 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4202 static int
4203 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4205 char *kbuf;
4206 char *dataset, *next;
4207 zone_dataset_t *zd;
4208 size_t len;
4210 if (ubuf == NULL || buflen == 0)
4211 return (0);
4213 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4214 return (ENOMEM);
4216 if (copyin(ubuf, kbuf, buflen) != 0) {
4217 kmem_free(kbuf, buflen);
4218 return (EFAULT);
4221 dataset = next = kbuf;
4222 for (;;) {
4223 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4225 next = strchr(dataset, ',');
4227 if (next == NULL)
4228 len = strlen(dataset);
4229 else
4230 len = next - dataset;
4232 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4233 bcopy(dataset, zd->zd_dataset, len);
4234 zd->zd_dataset[len] = '\0';
4236 list_insert_head(&zone->zone_datasets, zd);
4238 if (next == NULL)
4239 break;
4241 dataset = next + 1;
4244 kmem_free(kbuf, buflen);
4245 return (0);
4249 * System call to create/initialize a new zone named 'zone_name', rooted
4250 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4251 * and initialized with the zone-wide rctls described in 'rctlbuf'.
4253 * If extended error is non-null, we may use it to return more detailed
4254 * error information.
4256 static zoneid_t
4257 zone_create(const char *zone_name, const char *zone_root,
4258 const priv_set_t *zone_privs, size_t zone_privssz,
4259 caddr_t rctlbuf, size_t rctlbufsz,
4260 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4261 int flags)
4263 struct zsched_arg zarg;
4264 nvlist_t *rctls = NULL;
4265 proc_t *pp = curproc;
4266 zone_t *zone, *ztmp;
4267 zoneid_t zoneid, start = GLOBAL_ZONEID;
4268 int error;
4269 int error2 = 0;
4270 char *str;
4271 cred_t *zkcr;
4273 if (secpolicy_zone_config(CRED()) != 0)
4274 return (set_errno(EPERM));
4276 /* can't boot zone from within chroot environment */
4277 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4278 return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4279 extended_error));
4281 * As the first step of zone creation, we want to allocate a zoneid.
4282 * This allocation is complicated by the fact that netstacks use the
4283 * zoneid to determine their stackid, but netstacks themselves are
4284 * freed asynchronously with respect to zone destruction. This means
4285 * that a netstack reference leak (or in principle, an extraordinarily
4286 * long netstack reference hold) could result in a zoneid being
4287 * allocated that in fact corresponds to a stackid from an active
4288 * (referenced) netstack -- unleashing all sorts of havoc when that
4289 * netstack is actually (re)used. (In the abstract, we might wish a
4290 * zoneid to not be deallocated until its last referencing netstack
4291 * has been released, but netstacks lack a backpointer into their
4292 * referencing zone -- and changing them to have such a pointer would
4293 * be substantial, to put it euphemistically.) To avoid this, we
4294 * detect this condition on allocation: if we have allocated a zoneid
4295 * that corresponds to a netstack that's still in use, we warn about
4296 * it (as it is much more likely to be a reference leak than an actual
4297 * netstack reference), free it, and allocate another. That these
4298 * identifers are allocated out of an ID space assures that we won't
4299 * see the identifier we just allocated.
4301 for (;;) {
4302 zoneid = id_alloc(zoneid_space);
4304 if (!netstack_inuse_by_stackid(zoneid_to_netstackid(zoneid)))
4305 break;
4307 id_free(zoneid_space, zoneid);
4309 if (start == GLOBAL_ZONEID) {
4310 start = zoneid;
4311 } else if (zoneid == start) {
4313 * We have managed to iterate over the entire available
4314 * zoneid space -- there are no identifiers available,
4315 * presumably due to some number of leaked netstack
4316 * references. While it's in principle possible for us
4317 * to continue to try, it seems wiser to give up at
4318 * this point to warn and fail explicitly with a
4319 * distinctive error.
4321 cmn_err(CE_WARN, "zone_create() failed: all available "
4322 "zone IDs have netstacks still in use");
4323 return (set_errno(ENFILE));
4326 cmn_err(CE_WARN, "unable to reuse zone ID %d; "
4327 "netstack still in use", zoneid);
4330 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4331 zone->zone_id = zoneid;
4332 zone->zone_status = ZONE_IS_UNINITIALIZED;
4333 zone->zone_pool = pool_default;
4334 zone->zone_pool_mod = gethrtime();
4335 zone->zone_psetid = ZONE_PS_INVAL;
4336 zone->zone_ncpus = 0;
4337 zone->zone_ncpus_online = 0;
4338 zone->zone_restart_init = B_TRUE;
4339 zone->zone_brand = &native_brand;
4340 zone->zone_initname = NULL;
4341 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4342 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4343 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4344 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4345 list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4346 offsetof(zone_ref_t, zref_linkage));
4347 list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4348 offsetof(struct zsd_entry, zsd_linkage));
4349 list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4350 offsetof(zone_dataset_t, zd_linkage));
4351 list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4352 offsetof(zone_dl_t, zdl_linkage));
4353 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4355 if (flags & ZCF_NET_EXCL) {
4356 zone->zone_flags |= ZF_NET_EXCL;
4359 if ((error = zone_set_name(zone, zone_name)) != 0) {
4360 zone_free(zone);
4361 return (zone_create_error(error, 0, extended_error));
4364 if ((error = zone_set_root(zone, zone_root)) != 0) {
4365 zone_free(zone);
4366 return (zone_create_error(error, 0, extended_error));
4368 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4369 zone_free(zone);
4370 return (zone_create_error(error, 0, extended_error));
4373 /* initialize node name to be the same as zone name */
4374 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4375 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4376 zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4378 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4379 zone->zone_domain[0] = '\0';
4380 zone->zone_hostid = HW_INVALID_HOSTID;
4381 zone->zone_shares = 1;
4382 zone->zone_shmmax = 0;
4383 zone->zone_ipc.ipcq_shmmni = 0;
4384 zone->zone_ipc.ipcq_semmni = 0;
4385 zone->zone_ipc.ipcq_msgmni = 0;
4386 zone->zone_bootargs = NULL;
4387 zone->zone_fs_allowed = NULL;
4389 secflags_zero(&zone0.zone_secflags.psf_lower);
4390 secflags_zero(&zone0.zone_secflags.psf_effective);
4391 secflags_zero(&zone0.zone_secflags.psf_inherit);
4392 secflags_fullset(&zone0.zone_secflags.psf_upper);
4394 zone->zone_initname =
4395 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4396 (void) strcpy(zone->zone_initname, zone_default_initname);
4397 zone->zone_nlwps = 0;
4398 zone->zone_nlwps_ctl = INT_MAX;
4399 zone->zone_nprocs = 0;
4400 zone->zone_nprocs_ctl = INT_MAX;
4401 zone->zone_locked_mem = 0;
4402 zone->zone_locked_mem_ctl = UINT64_MAX;
4403 zone->zone_max_swap = 0;
4404 zone->zone_max_swap_ctl = UINT64_MAX;
4405 zone->zone_max_lofi = 0;
4406 zone->zone_max_lofi_ctl = UINT64_MAX;
4407 zone0.zone_lockedmem_kstat = NULL;
4408 zone0.zone_swapresv_kstat = NULL;
4411 * Zsched initializes the rctls.
4413 zone->zone_rctls = NULL;
4415 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4416 zone_free(zone);
4417 return (zone_create_error(error, 0, extended_error));
4420 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4421 zone_free(zone);
4422 return (set_errno(error));
4426 * Stop all lwps since that's what normally happens as part of fork().
4427 * This needs to happen before we grab any locks to avoid deadlock
4428 * (another lwp in the process could be waiting for the held lock).
4430 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4431 zone_free(zone);
4432 nvlist_free(rctls);
4433 return (zone_create_error(error, 0, extended_error));
4436 if (block_mounts(zone) == 0) {
4437 mutex_enter(&pp->p_lock);
4438 if (curthread != pp->p_agenttp)
4439 continuelwps(pp);
4440 mutex_exit(&pp->p_lock);
4441 zone_free(zone);
4442 nvlist_free(rctls);
4443 return (zone_create_error(error, 0, extended_error));
4447 * Set up credential for kernel access. After this, any errors
4448 * should go through the dance in errout rather than calling
4449 * zone_free directly.
4451 zone->zone_kcred = crdup(kcred);
4452 crsetzone(zone->zone_kcred, zone);
4453 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4454 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4455 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4456 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4458 mutex_enter(&zonehash_lock);
4460 * Make sure zone doesn't already exist.
4462 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL) {
4463 zone_status_t status;
4465 status = zone_status_get(ztmp);
4466 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4467 error = EEXIST;
4468 else
4469 error = EBUSY;
4471 goto errout;
4475 * Don't allow zone creations which would cause one zone's rootpath to
4476 * be accessible from that of another (non-global) zone.
4478 if (zone_is_nested(zone->zone_rootpath)) {
4479 error = EBUSY;
4480 goto errout;
4483 ASSERT(zonecount != 0); /* check for leaks */
4484 if (zonecount + 1 > maxzones) {
4485 error = ENOMEM;
4486 goto errout;
4489 if (zone_mount_count(zone->zone_rootpath) != 0) {
4490 error = EBUSY;
4491 error2 = ZE_AREMOUNTS;
4492 goto errout;
4496 * Zone is still incomplete, but we need to drop all locks while
4497 * zsched() initializes this zone's kernel process. We
4498 * optimistically add the zone to the hashtable and associated
4499 * lists so a parallel zone_create() doesn't try to create the
4500 * same zone.
4502 zonecount++;
4503 (void) mod_hash_insert(zonehashbyid,
4504 (mod_hash_key_t)(uintptr_t)zone->zone_id,
4505 (mod_hash_val_t)(uintptr_t)zone);
4506 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4507 (void) strcpy(str, zone->zone_name);
4508 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4509 (mod_hash_val_t)(uintptr_t)zone);
4512 * Insert into active list. At this point there are no 'hold's
4513 * on the zone, but everyone else knows not to use it, so we can
4514 * continue to use it. zsched() will do a zone_hold() if the
4515 * newproc() is successful.
4517 list_insert_tail(&zone_active, zone);
4518 mutex_exit(&zonehash_lock);
4520 zarg.zone = zone;
4521 zarg.nvlist = rctls;
4523 * The process, task, and project rctls are probably wrong;
4524 * we need an interface to get the default values of all rctls,
4525 * and initialize zsched appropriately. I'm not sure that that
4526 * makes much of a difference, though.
4528 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4529 if (error != 0) {
4531 * We need to undo all globally visible state.
4533 mutex_enter(&zonehash_lock);
4534 list_remove(&zone_active, zone);
4535 (void) mod_hash_destroy(zonehashbyname,
4536 (mod_hash_key_t)(uintptr_t)zone->zone_name);
4537 (void) mod_hash_destroy(zonehashbyid,
4538 (mod_hash_key_t)(uintptr_t)zone->zone_id);
4539 ASSERT(zonecount > 1);
4540 zonecount--;
4541 goto errout;
4545 * Zone creation can't fail from now on.
4549 * Create zone kstats
4551 zone_kstat_create(zone);
4554 * Let the other lwps continue.
4556 mutex_enter(&pp->p_lock);
4557 if (curthread != pp->p_agenttp)
4558 continuelwps(pp);
4559 mutex_exit(&pp->p_lock);
4562 * Wait for zsched to finish initializing the zone.
4564 zone_status_wait(zone, ZONE_IS_READY);
4566 * The zone is fully visible, so we can let mounts progress.
4568 resume_mounts(zone);
4569 nvlist_free(rctls);
4571 return (zoneid);
4573 errout:
4574 mutex_exit(&zonehash_lock);
4576 * Let the other lwps continue.
4578 mutex_enter(&pp->p_lock);
4579 if (curthread != pp->p_agenttp)
4580 continuelwps(pp);
4581 mutex_exit(&pp->p_lock);
4583 resume_mounts(zone);
4584 nvlist_free(rctls);
4586 * There is currently one reference to the zone, a cred_ref from
4587 * zone_kcred. To free the zone, we call crfree, which will call
4588 * zone_cred_rele, which will call zone_free.
4590 ASSERT(zone->zone_cred_ref == 1);
4591 ASSERT(zone->zone_kcred->cr_ref == 1);
4592 ASSERT(zone->zone_ref == 0);
4593 zkcr = zone->zone_kcred;
4594 zone->zone_kcred = NULL;
4595 crfree(zkcr); /* triggers call to zone_free */
4596 return (zone_create_error(error, error2, extended_error));
4600 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do
4601 * the heavy lifting. initname is the path to the program to launch
4602 * at the "top" of the zone; if this is NULL, we use the system default,
4603 * which is stored at zone_default_initname.
4605 static int
4606 zone_boot(zoneid_t zoneid)
4608 int err;
4609 zone_t *zone;
4611 if (secpolicy_zone_config(CRED()) != 0)
4612 return (set_errno(EPERM));
4613 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4614 return (set_errno(EINVAL));
4616 mutex_enter(&zonehash_lock);
4618 * Look for zone under hash lock to prevent races with calls to
4619 * zone_shutdown, zone_destroy, etc.
4621 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4622 mutex_exit(&zonehash_lock);
4623 return (set_errno(EINVAL));
4626 mutex_enter(&zone_status_lock);
4627 if (zone_status_get(zone) != ZONE_IS_READY) {
4628 mutex_exit(&zone_status_lock);
4629 mutex_exit(&zonehash_lock);
4630 return (set_errno(EINVAL));
4632 zone_status_set(zone, ZONE_IS_BOOTING);
4633 mutex_exit(&zone_status_lock);
4635 zone_hold(zone); /* so we can use the zone_t later */
4636 mutex_exit(&zonehash_lock);
4638 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4639 zone_rele(zone);
4640 return (set_errno(EINTR));
4644 * Boot (starting init) might have failed, in which case the zone
4645 * will go to the SHUTTING_DOWN state; an appropriate errno will
4646 * be placed in zone->zone_boot_err, and so we return that.
4648 err = zone->zone_boot_err;
4649 zone_rele(zone);
4650 return (err ? set_errno(err) : 0);
4654 * Kills all user processes in the zone, waiting for them all to exit
4655 * before returning.
4657 static int
4658 zone_empty(zone_t *zone)
4660 int waitstatus;
4663 * We need to drop zonehash_lock before killing all
4664 * processes, otherwise we'll deadlock with zone_find_*
4665 * which can be called from the exit path.
4667 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4668 while ((waitstatus = zone_status_timedwait_sig(zone,
4669 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4670 killall(zone->zone_id);
4673 * return EINTR if we were signaled
4675 if (waitstatus == 0)
4676 return (EINTR);
4677 return (0);
4681 * This function implements the policy for zone visibility. A non-global zone
4682 * can only see itself.
4684 * Returns true if zone attributes are viewable, false otherwise.
4686 static boolean_t
4687 zone_list_access(zone_t *zone)
4690 if (curproc->p_zone == global_zone ||
4691 curproc->p_zone == zone) {
4692 return (B_TRUE);
4693 } else {
4694 return (B_FALSE);
4699 * Systemcall to start the zone's halt sequence. By the time this
4700 * function successfully returns, all user processes and kernel threads
4701 * executing in it will have exited, ZSD shutdown callbacks executed,
4702 * and the zone status set to ZONE_IS_DOWN.
4704 * It is possible that the call will interrupt itself if the caller is the
4705 * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4707 static int
4708 zone_shutdown(zoneid_t zoneid)
4710 int error;
4711 zone_t *zone;
4712 zone_status_t status;
4714 if (secpolicy_zone_config(CRED()) != 0)
4715 return (set_errno(EPERM));
4716 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4717 return (set_errno(EINVAL));
4719 mutex_enter(&zonehash_lock);
4721 * Look for zone under hash lock to prevent races with other
4722 * calls to zone_shutdown and zone_destroy.
4724 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4725 mutex_exit(&zonehash_lock);
4726 return (set_errno(EINVAL));
4730 * We have to drop zonehash_lock before calling block_mounts.
4731 * Hold the zone so we can continue to use the zone_t.
4733 zone_hold(zone);
4734 mutex_exit(&zonehash_lock);
4737 * Block mounts so that VFS_MOUNT() can get an accurate view of
4738 * the zone's status with regards to ZONE_IS_SHUTTING down.
4740 * e.g. NFS can fail the mount if it determines that the zone
4741 * has already begun the shutdown sequence.
4744 if (block_mounts(zone) == 0) {
4745 zone_rele(zone);
4746 return (set_errno(EINTR));
4749 mutex_enter(&zonehash_lock);
4750 mutex_enter(&zone_status_lock);
4751 status = zone_status_get(zone);
4753 * Fail if the zone isn't fully initialized yet.
4755 if (status < ZONE_IS_READY) {
4756 mutex_exit(&zone_status_lock);
4757 mutex_exit(&zonehash_lock);
4758 resume_mounts(zone);
4759 zone_rele(zone);
4760 return (set_errno(EINVAL));
4763 * If conditions required for zone_shutdown() to return have been met,
4764 * return success.
4766 if (status >= ZONE_IS_DOWN) {
4767 mutex_exit(&zone_status_lock);
4768 mutex_exit(&zonehash_lock);
4769 resume_mounts(zone);
4770 zone_rele(zone);
4771 return (0);
4774 * If zone_shutdown() hasn't been called before, go through the motions.
4775 * If it has, there's nothing to do but wait for the kernel threads to
4776 * drain.
4778 if (status < ZONE_IS_EMPTY) {
4779 uint_t ntasks;
4781 mutex_enter(&zone->zone_lock);
4782 if ((ntasks = zone->zone_ntasks) != 1) {
4784 * There's still stuff running.
4786 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4788 mutex_exit(&zone->zone_lock);
4789 if (ntasks == 1) {
4791 * The only way to create another task is through
4792 * zone_enter(), which will block until we drop
4793 * zonehash_lock. The zone is empty.
4795 if (zone->zone_kthreads == NULL) {
4797 * Skip ahead to ZONE_IS_DOWN
4799 zone_status_set(zone, ZONE_IS_DOWN);
4800 } else {
4801 zone_status_set(zone, ZONE_IS_EMPTY);
4805 mutex_exit(&zone_status_lock);
4806 mutex_exit(&zonehash_lock);
4807 resume_mounts(zone);
4809 if (error = zone_empty(zone)) {
4810 zone_rele(zone);
4811 return (set_errno(error));
4814 * After the zone status goes to ZONE_IS_DOWN this zone will no
4815 * longer be notified of changes to the pools configuration, so
4816 * in order to not end up with a stale pool pointer, we point
4817 * ourselves at the default pool and remove all resource
4818 * visibility. This is especially important as the zone_t may
4819 * languish on the deathrow for a very long time waiting for
4820 * cred's to drain out.
4822 * This rebinding of the zone can happen multiple times
4823 * (presumably due to interrupted or parallel systemcalls)
4824 * without any adverse effects.
4826 if (pool_lock_intr() != 0) {
4827 zone_rele(zone);
4828 return (set_errno(EINTR));
4830 if (pool_state == POOL_ENABLED) {
4831 mutex_enter(&cpu_lock);
4832 zone_pool_set(zone, pool_default);
4834 * The zone no longer needs to be able to see any cpus.
4836 zone_pset_set(zone, ZONE_PS_INVAL);
4837 mutex_exit(&cpu_lock);
4839 pool_unlock();
4842 * ZSD shutdown callbacks can be executed multiple times, hence
4843 * it is safe to not be holding any locks across this call.
4845 zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
4847 mutex_enter(&zone_status_lock);
4848 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
4849 zone_status_set(zone, ZONE_IS_DOWN);
4850 mutex_exit(&zone_status_lock);
4853 * Wait for kernel threads to drain.
4855 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
4856 zone_rele(zone);
4857 return (set_errno(EINTR));
4861 * Zone can be become down/destroyable even if the above wait
4862 * returns EINTR, so any code added here may never execute.
4863 * (i.e. don't add code here)
4866 zone_rele(zone);
4867 return (0);
4871 * Log the specified zone's reference counts. The caller should not be
4872 * holding the zone's zone_lock.
4874 static void
4875 zone_log_refcounts(zone_t *zone)
4877 char *buffer;
4878 char *buffer_position;
4879 uint32_t buffer_size;
4880 uint32_t index;
4881 uint_t ref;
4882 uint_t cred_ref;
4885 * Construct a string representing the subsystem-specific reference
4886 * counts. The counts are printed in ascending order by index into the
4887 * zone_t::zone_subsys_ref array. The list will be surrounded by
4888 * square brackets [] and will only contain nonzero reference counts.
4890 * The buffer will hold two square bracket characters plus ten digits,
4891 * one colon, one space, one comma, and some characters for a
4892 * subsystem name per subsystem-specific reference count. (Unsigned 32-
4893 * bit integers have at most ten decimal digits.) The last
4894 * reference count's comma is replaced by the closing square
4895 * bracket and a NULL character to terminate the string.
4897 * NOTE: We have to grab the zone's zone_lock to create a consistent
4898 * snapshot of the zone's reference counters.
4900 * First, figure out how much space the string buffer will need.
4901 * The buffer's size is stored in buffer_size.
4903 buffer_size = 2; /* for the square brackets */
4904 mutex_enter(&zone->zone_lock);
4905 zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
4906 ref = zone->zone_ref;
4907 cred_ref = zone->zone_cred_ref;
4908 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
4909 if (zone->zone_subsys_ref[index] != 0)
4910 buffer_size += strlen(zone_ref_subsys_names[index]) +
4912 if (buffer_size == 2) {
4914 * No subsystems had nonzero reference counts. Don't bother
4915 * with allocating a buffer; just log the general-purpose and
4916 * credential reference counts.
4918 mutex_exit(&zone->zone_lock);
4919 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4920 "Zone '%s' (ID: %d) is shutting down, but %u zone "
4921 "references and %u credential references are still extant",
4922 zone->zone_name, zone->zone_id, ref, cred_ref);
4923 return;
4927 * buffer_size contains the exact number of characters that the
4928 * buffer will need. Allocate the buffer and fill it with nonzero
4929 * subsystem-specific reference counts. Surround the results with
4930 * square brackets afterwards.
4932 buffer = kmem_alloc(buffer_size, KM_SLEEP);
4933 buffer_position = &buffer[1];
4934 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
4936 * NOTE: The DDI's version of sprintf() returns a pointer to
4937 * the modified buffer rather than the number of bytes written
4938 * (as in snprintf(3C)). This is unfortunate and annoying.
4939 * Therefore, we'll use snprintf() with INT_MAX to get the
4940 * number of bytes written. Using INT_MAX is safe because
4941 * the buffer is perfectly sized for the data: we'll never
4942 * overrun the buffer.
4944 if (zone->zone_subsys_ref[index] != 0)
4945 buffer_position += snprintf(buffer_position, INT_MAX,
4946 "%s: %u,", zone_ref_subsys_names[index],
4947 zone->zone_subsys_ref[index]);
4949 mutex_exit(&zone->zone_lock);
4950 buffer[0] = '[';
4951 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
4952 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
4953 buffer_position[-1] = ']';
4956 * Log the reference counts and free the message buffer.
4958 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
4959 "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
4960 "%u credential references are still extant %s", zone->zone_name,
4961 zone->zone_id, ref, cred_ref, buffer);
4962 kmem_free(buffer, buffer_size);
4966 * Systemcall entry point to finalize the zone halt process. The caller
4967 * must have already successfully called zone_shutdown().
4969 * Upon successful completion, the zone will have been fully destroyed:
4970 * zsched will have exited, destructor callbacks executed, and the zone
4971 * removed from the list of active zones.
4973 static int
4974 zone_destroy(zoneid_t zoneid)
4976 uint64_t uniqid;
4977 zone_t *zone;
4978 zone_status_t status;
4979 clock_t wait_time;
4980 boolean_t log_refcounts;
4982 if (secpolicy_zone_config(CRED()) != 0)
4983 return (set_errno(EPERM));
4984 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4985 return (set_errno(EINVAL));
4987 mutex_enter(&zonehash_lock);
4989 * Look for zone under hash lock to prevent races with other
4990 * calls to zone_destroy.
4992 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4993 mutex_exit(&zonehash_lock);
4994 return (set_errno(EINVAL));
4997 if (zone_mount_count(zone->zone_rootpath) != 0) {
4998 mutex_exit(&zonehash_lock);
4999 return (set_errno(EBUSY));
5001 mutex_enter(&zone_status_lock);
5002 status = zone_status_get(zone);
5003 if (status < ZONE_IS_DOWN) {
5004 mutex_exit(&zone_status_lock);
5005 mutex_exit(&zonehash_lock);
5006 return (set_errno(EBUSY));
5007 } else if (status == ZONE_IS_DOWN) {
5008 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5010 mutex_exit(&zone_status_lock);
5011 zone_hold(zone);
5012 mutex_exit(&zonehash_lock);
5015 * wait for zsched to exit
5017 zone_status_wait(zone, ZONE_IS_DEAD);
5018 zone_zsd_callbacks(zone, ZSD_DESTROY);
5019 zone->zone_netstack = NULL;
5020 uniqid = zone->zone_uniqid;
5021 zone_rele(zone);
5022 zone = NULL; /* potentially free'd */
5024 log_refcounts = B_FALSE;
5025 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5026 mutex_enter(&zonehash_lock);
5027 for (; /* ever */; ) {
5028 boolean_t unref;
5029 boolean_t refs_have_been_logged;
5031 if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5032 zone->zone_uniqid != uniqid) {
5034 * The zone has gone away. Necessary conditions
5035 * are met, so we return success.
5037 mutex_exit(&zonehash_lock);
5038 return (0);
5040 mutex_enter(&zone->zone_lock);
5041 unref = ZONE_IS_UNREF(zone);
5042 refs_have_been_logged = (zone->zone_flags &
5043 ZF_REFCOUNTS_LOGGED);
5044 mutex_exit(&zone->zone_lock);
5045 if (unref) {
5047 * There is only one reference to the zone -- that
5048 * added when the zone was added to the hashtables --
5049 * and things will remain this way until we drop
5050 * zonehash_lock... we can go ahead and cleanup the
5051 * zone.
5053 break;
5057 * Wait for zone_rele_common() or zone_cred_rele() to signal
5058 * zone_destroy_cv. zone_destroy_cv is signaled only when
5059 * some zone's general-purpose reference count reaches one.
5060 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5061 * on zone_destroy_cv, then log the zone's reference counts and
5062 * continue to wait for zone_rele() and zone_cred_rele().
5064 if (!refs_have_been_logged) {
5065 if (!log_refcounts) {
5067 * This thread hasn't timed out waiting on
5068 * zone_destroy_cv yet. Wait wait_time clock
5069 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5070 * seconds) for the zone's references to clear.
5072 ASSERT(wait_time > 0);
5073 wait_time = cv_reltimedwait_sig(
5074 &zone_destroy_cv, &zonehash_lock, wait_time,
5075 TR_SEC);
5076 if (wait_time > 0) {
5078 * A thread in zone_rele() or
5079 * zone_cred_rele() signaled
5080 * zone_destroy_cv before this thread's
5081 * wait timed out. The zone might have
5082 * only one reference left; find out!
5084 continue;
5085 } else if (wait_time == 0) {
5086 /* The thread's process was signaled. */
5087 mutex_exit(&zonehash_lock);
5088 return (set_errno(EINTR));
5092 * The thread timed out while waiting on
5093 * zone_destroy_cv. Even though the thread
5094 * timed out, it has to check whether another
5095 * thread woke up from zone_destroy_cv and
5096 * destroyed the zone.
5098 * If the zone still exists and has more than
5099 * one unreleased general-purpose reference,
5100 * then log the zone's reference counts.
5102 log_refcounts = B_TRUE;
5103 continue;
5107 * The thread already timed out on zone_destroy_cv while
5108 * waiting for subsystems to release the zone's last
5109 * general-purpose references. Log the zone's reference
5110 * counts and wait indefinitely on zone_destroy_cv.
5112 zone_log_refcounts(zone);
5114 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5115 /* The thread's process was signaled. */
5116 mutex_exit(&zonehash_lock);
5117 return (set_errno(EINTR));
5122 * Remove CPU cap for this zone now since we're not going to
5123 * fail below this point.
5125 cpucaps_zone_remove(zone);
5127 /* Get rid of the zone's kstats */
5128 zone_kstat_delete(zone);
5130 /* remove the pfexecd doors */
5131 if (zone->zone_pfexecd != NULL) {
5132 klpd_freelist(&zone->zone_pfexecd);
5133 zone->zone_pfexecd = NULL;
5136 /* free brand specific data */
5137 if (ZONE_IS_BRANDED(zone))
5138 ZBROP(zone)->b_free_brand_data(zone);
5140 /* Say goodbye to brand framework. */
5141 brand_unregister_zone(zone->zone_brand);
5144 * It is now safe to let the zone be recreated; remove it from the
5145 * lists. The memory will not be freed until the last cred
5146 * reference goes away.
5148 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */
5149 zonecount--;
5150 /* remove from active list and hash tables */
5151 list_remove(&zone_active, zone);
5152 (void) mod_hash_destroy(zonehashbyname,
5153 (mod_hash_key_t)zone->zone_name);
5154 (void) mod_hash_destroy(zonehashbyid,
5155 (mod_hash_key_t)(uintptr_t)zone->zone_id);
5156 mutex_exit(&zonehash_lock);
5159 * Release the root vnode; we're not using it anymore. Nor should any
5160 * other thread that might access it exist.
5162 if (zone->zone_rootvp != NULL) {
5163 VN_RELE(zone->zone_rootvp);
5164 zone->zone_rootvp = NULL;
5167 /* add to deathrow list */
5168 mutex_enter(&zone_deathrow_lock);
5169 list_insert_tail(&zone_deathrow, zone);
5170 mutex_exit(&zone_deathrow_lock);
5173 * Drop last reference (which was added by zsched()), this will
5174 * free the zone unless there are outstanding cred references.
5176 zone_rele(zone);
5177 return (0);
5181 * Systemcall entry point for zone_getattr(2).
5183 static ssize_t
5184 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5186 size_t size;
5187 int error = 0, err;
5188 zone_t *zone;
5189 char *zonepath;
5190 char *outstr;
5191 zone_status_t zone_status;
5192 pid_t initpid;
5193 boolean_t global = (curzone == global_zone);
5194 boolean_t inzone = (curzone->zone_id == zoneid);
5195 ushort_t flags;
5196 zone_net_data_t *zbuf;
5198 mutex_enter(&zonehash_lock);
5199 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5200 mutex_exit(&zonehash_lock);
5201 return (set_errno(EINVAL));
5203 zone_status = zone_status_get(zone);
5204 if (zone_status < ZONE_IS_INITIALIZED) {
5205 mutex_exit(&zonehash_lock);
5206 return (set_errno(EINVAL));
5208 zone_hold(zone);
5209 mutex_exit(&zonehash_lock);
5212 * If not in the global zone, don't show information about other zones.
5214 if (!zone_list_access(zone)) {
5215 zone_rele(zone);
5216 return (set_errno(EINVAL));
5219 switch (attr) {
5220 case ZONE_ATTR_ROOT:
5221 if (global) {
5223 * Copy the path to trim the trailing "/" (except for
5224 * the global zone).
5226 if (zone != global_zone)
5227 size = zone->zone_rootpathlen - 1;
5228 else
5229 size = zone->zone_rootpathlen;
5230 zonepath = kmem_alloc(size, KM_SLEEP);
5231 bcopy(zone->zone_rootpath, zonepath, size);
5232 zonepath[size - 1] = '\0';
5233 } else {
5234 if (inzone) {
5236 * Caller is not in the global zone. if the
5237 * query is on the current zone just return
5238 * faked-up path for current zone.
5240 zonepath = "/";
5241 size = 2;
5242 } else {
5244 * Return related path for current zone.
5246 int prefix_len = strlen(zone_prefix);
5247 int zname_len = strlen(zone->zone_name);
5249 size = prefix_len + zname_len + 1;
5250 zonepath = kmem_alloc(size, KM_SLEEP);
5251 bcopy(zone_prefix, zonepath, prefix_len);
5252 bcopy(zone->zone_name, zonepath +
5253 prefix_len, zname_len);
5254 zonepath[size - 1] = '\0';
5257 if (bufsize > size)
5258 bufsize = size;
5259 if (buf != NULL) {
5260 err = copyoutstr(zonepath, buf, bufsize, NULL);
5261 if (err != 0 && err != ENAMETOOLONG)
5262 error = EFAULT;
5264 if (global)
5265 kmem_free(zonepath, size);
5266 break;
5268 case ZONE_ATTR_NAME:
5269 size = strlen(zone->zone_name) + 1;
5270 if (bufsize > size)
5271 bufsize = size;
5272 if (buf != NULL) {
5273 err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5274 if (err != 0 && err != ENAMETOOLONG)
5275 error = EFAULT;
5277 break;
5279 case ZONE_ATTR_STATUS:
5281 * Since we're not holding zonehash_lock, the zone status
5282 * may be anything; leave it up to userland to sort it out.
5284 size = sizeof (zone_status);
5285 if (bufsize > size)
5286 bufsize = size;
5287 zone_status = zone_status_get(zone);
5288 if (buf != NULL &&
5289 copyout(&zone_status, buf, bufsize) != 0)
5290 error = EFAULT;
5291 break;
5292 case ZONE_ATTR_FLAGS:
5293 size = sizeof (zone->zone_flags);
5294 if (bufsize > size)
5295 bufsize = size;
5296 flags = zone->zone_flags;
5297 if (buf != NULL &&
5298 copyout(&flags, buf, bufsize) != 0)
5299 error = EFAULT;
5300 break;
5301 case ZONE_ATTR_PRIVSET:
5302 size = sizeof (priv_set_t);
5303 if (bufsize > size)
5304 bufsize = size;
5305 if (buf != NULL &&
5306 copyout(zone->zone_privset, buf, bufsize) != 0)
5307 error = EFAULT;
5308 break;
5309 case ZONE_ATTR_UNIQID:
5310 size = sizeof (zone->zone_uniqid);
5311 if (bufsize > size)
5312 bufsize = size;
5313 if (buf != NULL &&
5314 copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5315 error = EFAULT;
5316 break;
5317 case ZONE_ATTR_POOLID:
5319 pool_t *pool;
5320 poolid_t poolid;
5322 if (pool_lock_intr() != 0) {
5323 error = EINTR;
5324 break;
5326 pool = zone_pool_get(zone);
5327 poolid = pool->pool_id;
5328 pool_unlock();
5329 size = sizeof (poolid);
5330 if (bufsize > size)
5331 bufsize = size;
5332 if (buf != NULL && copyout(&poolid, buf, size) != 0)
5333 error = EFAULT;
5335 break;
5336 case ZONE_ATTR_INITPID:
5337 size = sizeof (initpid);
5338 if (bufsize > size)
5339 bufsize = size;
5340 initpid = zone->zone_proc_initpid;
5341 if (initpid == -1) {
5342 error = ESRCH;
5343 break;
5345 if (buf != NULL &&
5346 copyout(&initpid, buf, bufsize) != 0)
5347 error = EFAULT;
5348 break;
5349 case ZONE_ATTR_BRAND:
5350 size = strlen(zone->zone_brand->b_name) + 1;
5352 if (bufsize > size)
5353 bufsize = size;
5354 if (buf != NULL) {
5355 err = copyoutstr(zone->zone_brand->b_name, buf,
5356 bufsize, NULL);
5357 if (err != 0 && err != ENAMETOOLONG)
5358 error = EFAULT;
5360 break;
5361 case ZONE_ATTR_INITNAME:
5362 size = strlen(zone->zone_initname) + 1;
5363 if (bufsize > size)
5364 bufsize = size;
5365 if (buf != NULL) {
5366 err = copyoutstr(zone->zone_initname, buf, bufsize,
5367 NULL);
5368 if (err != 0 && err != ENAMETOOLONG)
5369 error = EFAULT;
5371 break;
5372 case ZONE_ATTR_BOOTARGS:
5373 if (zone->zone_bootargs == NULL)
5374 outstr = "";
5375 else
5376 outstr = zone->zone_bootargs;
5377 size = strlen(outstr) + 1;
5378 if (bufsize > size)
5379 bufsize = size;
5380 if (buf != NULL) {
5381 err = copyoutstr(outstr, buf, bufsize, NULL);
5382 if (err != 0 && err != ENAMETOOLONG)
5383 error = EFAULT;
5385 break;
5386 case ZONE_ATTR_PHYS_MCAP:
5387 size = sizeof (zone->zone_phys_mcap);
5388 if (bufsize > size)
5389 bufsize = size;
5390 if (buf != NULL &&
5391 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5392 error = EFAULT;
5393 break;
5394 case ZONE_ATTR_SCHED_CLASS:
5395 mutex_enter(&class_lock);
5397 if (zone->zone_defaultcid >= loaded_classes)
5398 outstr = "";
5399 else
5400 outstr = sclass[zone->zone_defaultcid].cl_name;
5401 size = strlen(outstr) + 1;
5402 if (bufsize > size)
5403 bufsize = size;
5404 if (buf != NULL) {
5405 err = copyoutstr(outstr, buf, bufsize, NULL);
5406 if (err != 0 && err != ENAMETOOLONG)
5407 error = EFAULT;
5410 mutex_exit(&class_lock);
5411 break;
5412 case ZONE_ATTR_HOSTID:
5413 if (zone->zone_hostid != HW_INVALID_HOSTID &&
5414 bufsize == sizeof (zone->zone_hostid)) {
5415 size = sizeof (zone->zone_hostid);
5416 if (buf != NULL && copyout(&zone->zone_hostid, buf,
5417 bufsize) != 0)
5418 error = EFAULT;
5419 } else {
5420 error = EINVAL;
5422 break;
5423 case ZONE_ATTR_FS_ALLOWED:
5424 if (zone->zone_fs_allowed == NULL)
5425 outstr = "";
5426 else
5427 outstr = zone->zone_fs_allowed;
5428 size = strlen(outstr) + 1;
5429 if (bufsize > size)
5430 bufsize = size;
5431 if (buf != NULL) {
5432 err = copyoutstr(outstr, buf, bufsize, NULL);
5433 if (err != 0 && err != ENAMETOOLONG)
5434 error = EFAULT;
5436 break;
5437 case ZONE_ATTR_SECFLAGS:
5438 size = sizeof (zone->zone_secflags);
5439 if (bufsize > size)
5440 bufsize = size;
5441 if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0)
5442 error = EFAULT;
5443 break;
5444 case ZONE_ATTR_NETWORK:
5445 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5446 if (copyin(buf, zbuf, bufsize) != 0) {
5447 error = EFAULT;
5448 } else {
5449 error = zone_get_network(zoneid, zbuf);
5450 if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5451 error = EFAULT;
5453 kmem_free(zbuf, bufsize);
5454 break;
5455 default:
5456 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5457 size = bufsize;
5458 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5459 } else {
5460 error = EINVAL;
5463 zone_rele(zone);
5465 if (error)
5466 return (set_errno(error));
5467 return ((ssize_t)size);
5471 * Systemcall entry point for zone_setattr(2).
5473 /*ARGSUSED*/
5474 static int
5475 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5477 zone_t *zone;
5478 zone_status_t zone_status;
5479 int err = -1;
5480 zone_net_data_t *zbuf;
5482 if (secpolicy_zone_config(CRED()) != 0)
5483 return (set_errno(EPERM));
5486 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5487 * global zone.
5489 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5490 return (set_errno(EINVAL));
5493 mutex_enter(&zonehash_lock);
5494 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5495 mutex_exit(&zonehash_lock);
5496 return (set_errno(EINVAL));
5498 zone_hold(zone);
5499 mutex_exit(&zonehash_lock);
5502 * At present most attributes can only be set on non-running,
5503 * non-global zones.
5505 zone_status = zone_status_get(zone);
5506 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5507 err = EINVAL;
5508 goto done;
5511 switch (attr) {
5512 case ZONE_ATTR_INITNAME:
5513 err = zone_set_initname(zone, (const char *)buf);
5514 break;
5515 case ZONE_ATTR_INITNORESTART:
5516 zone->zone_restart_init = B_FALSE;
5517 err = 0;
5518 break;
5519 case ZONE_ATTR_BOOTARGS:
5520 err = zone_set_bootargs(zone, (const char *)buf);
5521 break;
5522 case ZONE_ATTR_BRAND:
5523 err = zone_set_brand(zone, (const char *)buf);
5524 break;
5525 case ZONE_ATTR_FS_ALLOWED:
5526 err = zone_set_fs_allowed(zone, (const char *)buf);
5527 break;
5528 case ZONE_ATTR_SECFLAGS:
5529 err = zone_set_secflags(zone, (psecflags_t *)buf);
5530 break;
5531 case ZONE_ATTR_PHYS_MCAP:
5532 err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5533 break;
5534 case ZONE_ATTR_SCHED_CLASS:
5535 err = zone_set_sched_class(zone, (const char *)buf);
5536 break;
5537 case ZONE_ATTR_HOSTID:
5538 if (bufsize == sizeof (zone->zone_hostid)) {
5539 if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5540 err = 0;
5541 else
5542 err = EFAULT;
5543 } else {
5544 err = EINVAL;
5546 break;
5547 case ZONE_ATTR_NETWORK:
5548 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5549 err = EINVAL;
5550 break;
5552 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5553 if (copyin(buf, zbuf, bufsize) != 0) {
5554 kmem_free(zbuf, bufsize);
5555 err = EFAULT;
5556 break;
5558 err = zone_set_network(zoneid, zbuf);
5559 kmem_free(zbuf, bufsize);
5560 break;
5561 default:
5562 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5563 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5564 else
5565 err = EINVAL;
5568 done:
5569 zone_rele(zone);
5570 ASSERT(err != -1);
5571 return (err != 0 ? set_errno(err) : 0);
5575 * Return zero if the process has at least one vnode mapped in to its
5576 * address space which shouldn't be allowed to change zones.
5578 * Also return zero if the process has any shared mappings which reserve
5579 * swap. This is because the counting for zone.max-swap does not allow swap
5580 * reservation to be shared between zones. zone swap reservation is counted
5581 * on zone->zone_max_swap.
5583 static int
5584 as_can_change_zones(void)
5586 proc_t *pp = curproc;
5587 struct seg *seg;
5588 struct as *as = pp->p_as;
5589 vnode_t *vp;
5590 int allow = 1;
5592 ASSERT(pp->p_as != &kas);
5593 AS_LOCK_ENTER(as, RW_READER);
5594 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5597 * Cannot enter zone with shared anon memory which
5598 * reserves swap. See comment above.
5600 if (seg_can_change_zones(seg) == B_FALSE) {
5601 allow = 0;
5602 break;
5605 * if we can't get a backing vnode for this segment then skip
5606 * it.
5608 vp = NULL;
5609 if (segop_getvp(seg, seg->s_base, &vp) != 0 || vp == NULL)
5610 continue;
5611 if (!vn_can_change_zones(vp)) { /* bail on first match */
5612 allow = 0;
5613 break;
5616 AS_LOCK_EXIT(as);
5617 return (allow);
5621 * Count swap reserved by curproc's address space
5623 static size_t
5624 as_swresv(void)
5626 proc_t *pp = curproc;
5627 struct seg *seg;
5628 struct as *as = pp->p_as;
5629 size_t swap = 0;
5631 ASSERT(pp->p_as != &kas);
5632 ASSERT(AS_WRITE_HELD(as));
5633 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5634 swap += seg_swresv(seg);
5636 return (swap);
5640 * Systemcall entry point for zone_enter().
5642 * The current process is injected into said zone. In the process
5643 * it will change its project membership, privileges, rootdir/cwd,
5644 * zone-wide rctls, and pool association to match those of the zone.
5646 * The first zone_enter() called while the zone is in the ZONE_IS_READY
5647 * state will transition it to ZONE_IS_RUNNING. Processes may only
5648 * enter a zone that is "ready" or "running".
5650 static int
5651 zone_enter(zoneid_t zoneid)
5653 zone_t *zone;
5654 vnode_t *vp;
5655 proc_t *pp = curproc;
5656 contract_t *ct;
5657 cont_process_t *ctp;
5658 task_t *tk, *oldtk;
5659 kproject_t *zone_proj0;
5660 cred_t *cr, *newcr;
5661 pool_t *oldpool, *newpool;
5662 sess_t *sp;
5663 uid_t uid;
5664 zone_status_t status;
5665 int err = 0;
5666 rctl_entity_p_t e;
5667 size_t swap;
5668 kthread_id_t t;
5670 if (secpolicy_zone_config(CRED()) != 0)
5671 return (set_errno(EPERM));
5672 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5673 return (set_errno(EINVAL));
5676 * Stop all lwps so we don't need to hold a lock to look at
5677 * curproc->p_zone. This needs to happen before we grab any
5678 * locks to avoid deadlock (another lwp in the process could
5679 * be waiting for the held lock).
5681 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5682 return (set_errno(EINTR));
5685 * Make sure we're not changing zones with files open or mapped in
5686 * to our address space which shouldn't be changing zones.
5688 if (!files_can_change_zones()) {
5689 err = EBADF;
5690 goto out;
5692 if (!as_can_change_zones()) {
5693 err = EFAULT;
5694 goto out;
5697 mutex_enter(&zonehash_lock);
5698 if (pp->p_zone != global_zone) {
5699 mutex_exit(&zonehash_lock);
5700 err = EINVAL;
5701 goto out;
5704 zone = zone_find_all_by_id(zoneid);
5705 if (zone == NULL) {
5706 mutex_exit(&zonehash_lock);
5707 err = EINVAL;
5708 goto out;
5712 * To prevent processes in a zone from holding contracts on
5713 * extrazonal resources, and to avoid process contract
5714 * memberships which span zones, contract holders and processes
5715 * which aren't the sole members of their encapsulating process
5716 * contracts are not allowed to zone_enter.
5718 ctp = pp->p_ct_process;
5719 ct = &ctp->conp_contract;
5720 mutex_enter(&ct->ct_lock);
5721 mutex_enter(&pp->p_lock);
5722 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5723 mutex_exit(&pp->p_lock);
5724 mutex_exit(&ct->ct_lock);
5725 mutex_exit(&zonehash_lock);
5726 err = EINVAL;
5727 goto out;
5731 * Moreover, we don't allow processes whose encapsulating
5732 * process contracts have inherited extrazonal contracts.
5733 * While it would be easier to eliminate all process contracts
5734 * with inherited contracts, we need to be able to give a
5735 * restarted init (or other zone-penetrating process) its
5736 * predecessor's contracts.
5738 if (ctp->conp_ninherited != 0) {
5739 contract_t *next;
5740 for (next = list_head(&ctp->conp_inherited); next;
5741 next = list_next(&ctp->conp_inherited, next)) {
5742 if (contract_getzuniqid(next) != zone->zone_uniqid) {
5743 mutex_exit(&pp->p_lock);
5744 mutex_exit(&ct->ct_lock);
5745 mutex_exit(&zonehash_lock);
5746 err = EINVAL;
5747 goto out;
5752 mutex_exit(&pp->p_lock);
5753 mutex_exit(&ct->ct_lock);
5755 status = zone_status_get(zone);
5756 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5758 * Can't join
5760 mutex_exit(&zonehash_lock);
5761 err = EINVAL;
5762 goto out;
5766 * Make sure new priv set is within the permitted set for caller
5768 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5769 mutex_exit(&zonehash_lock);
5770 err = EPERM;
5771 goto out;
5774 * We want to momentarily drop zonehash_lock while we optimistically
5775 * bind curproc to the pool it should be running in. This is safe
5776 * since the zone can't disappear (we have a hold on it).
5778 zone_hold(zone);
5779 mutex_exit(&zonehash_lock);
5782 * Grab pool_lock to keep the pools configuration from changing
5783 * and to stop ourselves from getting rebound to another pool
5784 * until we join the zone.
5786 if (pool_lock_intr() != 0) {
5787 zone_rele(zone);
5788 err = EINTR;
5789 goto out;
5791 ASSERT(secpolicy_pool(CRED()) == 0);
5793 * Bind ourselves to the pool currently associated with the zone.
5795 oldpool = curproc->p_pool;
5796 newpool = zone_pool_get(zone);
5797 if (pool_state == POOL_ENABLED && newpool != oldpool &&
5798 (err = pool_do_bind(newpool, P_PID, P_MYID,
5799 POOL_BIND_ALL)) != 0) {
5800 pool_unlock();
5801 zone_rele(zone);
5802 goto out;
5806 * Grab cpu_lock now; we'll need it later when we call
5807 * task_join().
5809 mutex_enter(&cpu_lock);
5810 mutex_enter(&zonehash_lock);
5812 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
5814 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
5816 * Can't join anymore.
5818 mutex_exit(&zonehash_lock);
5819 mutex_exit(&cpu_lock);
5820 if (pool_state == POOL_ENABLED &&
5821 newpool != oldpool)
5822 (void) pool_do_bind(oldpool, P_PID, P_MYID,
5823 POOL_BIND_ALL);
5824 pool_unlock();
5825 zone_rele(zone);
5826 err = EINVAL;
5827 goto out;
5831 * a_lock must be held while transfering locked memory and swap
5832 * reservation from the global zone to the non global zone because
5833 * asynchronous faults on the processes' address space can lock
5834 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
5835 * segments respectively.
5837 AS_LOCK_ENTER(pp->p_as, RW_WRITER);
5838 swap = as_swresv();
5839 mutex_enter(&pp->p_lock);
5840 zone_proj0 = zone->zone_zsched->p_task->tk_proj;
5841 /* verify that we do not exceed and task or lwp limits */
5842 mutex_enter(&zone->zone_nlwps_lock);
5843 /* add new lwps to zone and zone's proj0 */
5844 zone_proj0->kpj_nlwps += pp->p_lwpcnt;
5845 zone->zone_nlwps += pp->p_lwpcnt;
5846 /* add 1 task to zone's proj0 */
5847 zone_proj0->kpj_ntasks += 1;
5849 zone_proj0->kpj_nprocs++;
5850 zone->zone_nprocs++;
5851 mutex_exit(&zone->zone_nlwps_lock);
5853 mutex_enter(&zone->zone_mem_lock);
5854 zone->zone_locked_mem += pp->p_locked_mem;
5855 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
5856 zone->zone_max_swap += swap;
5857 mutex_exit(&zone->zone_mem_lock);
5859 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
5860 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
5861 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
5863 /* remove lwps and process from proc's old zone and old project */
5864 mutex_enter(&pp->p_zone->zone_nlwps_lock);
5865 pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
5866 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
5867 pp->p_task->tk_proj->kpj_nprocs--;
5868 pp->p_zone->zone_nprocs--;
5869 mutex_exit(&pp->p_zone->zone_nlwps_lock);
5871 mutex_enter(&pp->p_zone->zone_mem_lock);
5872 pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
5873 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
5874 pp->p_zone->zone_max_swap -= swap;
5875 mutex_exit(&pp->p_zone->zone_mem_lock);
5877 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5878 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
5879 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5881 pp->p_flag |= SZONETOP;
5882 pp->p_zone = zone;
5883 mutex_exit(&pp->p_lock);
5884 AS_LOCK_EXIT(pp->p_as);
5887 * Joining the zone cannot fail from now on.
5889 * This means that a lot of the following code can be commonized and
5890 * shared with zsched().
5894 * If the process contract fmri was inherited, we need to
5895 * flag this so that any contract status will not leak
5896 * extra zone information, svc_fmri in this case
5898 if (ctp->conp_svc_ctid != ct->ct_id) {
5899 mutex_enter(&ct->ct_lock);
5900 ctp->conp_svc_zone_enter = ct->ct_id;
5901 mutex_exit(&ct->ct_lock);
5905 * Reset the encapsulating process contract's zone.
5907 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
5908 contract_setzuniqid(ct, zone->zone_uniqid);
5911 * Create a new task and associate the process with the project keyed
5912 * by (projid,zoneid).
5914 * We might as well be in project 0; the global zone's projid doesn't
5915 * make much sense in a zone anyhow.
5917 * This also increments zone_ntasks, and returns with p_lock held.
5919 tk = task_create(0, zone);
5920 oldtk = task_join(tk, 0);
5921 mutex_exit(&cpu_lock);
5924 * call RCTLOP_SET functions on this proc
5926 e.rcep_p.zone = zone;
5927 e.rcep_t = RCENTITY_ZONE;
5928 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
5929 RCD_CALLBACK);
5930 mutex_exit(&pp->p_lock);
5933 * We don't need to hold any of zsched's locks here; not only do we know
5934 * the process and zone aren't going away, we know its session isn't
5935 * changing either.
5937 * By joining zsched's session here, we mimic the behavior in the
5938 * global zone of init's sid being the pid of sched. We extend this
5939 * to all zlogin-like zone_enter()'ing processes as well.
5941 mutex_enter(&pidlock);
5942 sp = zone->zone_zsched->p_sessp;
5943 sess_hold(zone->zone_zsched);
5944 mutex_enter(&pp->p_lock);
5945 pgexit(pp);
5946 sess_rele(pp->p_sessp, B_TRUE);
5947 pp->p_sessp = sp;
5948 pgjoin(pp, zone->zone_zsched->p_pidp);
5951 * If any threads are scheduled to be placed on zone wait queue they
5952 * should abandon the idea since the wait queue is changing.
5953 * We need to be holding pidlock & p_lock to do this.
5955 if ((t = pp->p_tlist) != NULL) {
5956 do {
5957 thread_lock(t);
5959 * Kick this thread so that it doesn't sit
5960 * on a wrong wait queue.
5962 if (ISWAITING(t))
5963 setrun_locked(t);
5965 if (t->t_schedflag & TS_ANYWAITQ)
5966 t->t_schedflag &= ~ TS_ANYWAITQ;
5968 thread_unlock(t);
5969 } while ((t = t->t_forw) != pp->p_tlist);
5973 * If there is a default scheduling class for the zone and it is not
5974 * the class we are currently in, change all of the threads in the
5975 * process to the new class. We need to be holding pidlock & p_lock
5976 * when we call parmsset so this is a good place to do it.
5978 if (zone->zone_defaultcid > 0 &&
5979 zone->zone_defaultcid != curthread->t_cid) {
5980 pcparms_t pcparms;
5982 pcparms.pc_cid = zone->zone_defaultcid;
5983 pcparms.pc_clparms[0] = 0;
5986 * If setting the class fails, we still want to enter the zone.
5988 if ((t = pp->p_tlist) != NULL) {
5989 do {
5990 (void) parmsset(&pcparms, t);
5991 } while ((t = t->t_forw) != pp->p_tlist);
5995 mutex_exit(&pp->p_lock);
5996 mutex_exit(&pidlock);
5998 mutex_exit(&zonehash_lock);
6000 * We're firmly in the zone; let pools progress.
6002 pool_unlock();
6003 task_rele(oldtk);
6005 * We don't need to retain a hold on the zone since we already
6006 * incremented zone_ntasks, so the zone isn't going anywhere.
6008 zone_rele(zone);
6011 * Chroot
6013 vp = zone->zone_rootvp;
6014 zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6015 zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6018 * Change process security flags. Note that the _effective_ flags
6019 * cannot change
6021 secflags_copy(&pp->p_secflags.psf_lower,
6022 &zone->zone_secflags.psf_lower);
6023 secflags_copy(&pp->p_secflags.psf_upper,
6024 &zone->zone_secflags.psf_upper);
6025 secflags_copy(&pp->p_secflags.psf_inherit,
6026 &zone->zone_secflags.psf_inherit);
6029 * Change process credentials
6031 newcr = cralloc();
6032 mutex_enter(&pp->p_crlock);
6033 cr = pp->p_cred;
6034 crcopy_to(cr, newcr);
6035 crsetzone(newcr, zone);
6036 pp->p_cred = newcr;
6039 * Restrict all process privilege sets to zone limit
6041 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6042 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6043 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6044 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6045 mutex_exit(&pp->p_crlock);
6046 crset(pp, newcr);
6049 * Adjust upcount to reflect zone entry.
6051 uid = crgetruid(newcr);
6052 mutex_enter(&pidlock);
6053 upcount_dec(uid, GLOBAL_ZONEID);
6054 upcount_inc(uid, zoneid);
6055 mutex_exit(&pidlock);
6058 * Set up core file path and content.
6060 set_core_defaults();
6062 out:
6064 * Let the other lwps continue.
6066 mutex_enter(&pp->p_lock);
6067 if (curthread != pp->p_agenttp)
6068 continuelwps(pp);
6069 mutex_exit(&pp->p_lock);
6071 return (err != 0 ? set_errno(err) : 0);
6075 * Systemcall entry point for zone_list(2).
6077 * Processes running in a (non-global) zone only see themselves.
6079 static int
6080 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6082 zoneid_t *zoneids;
6083 zone_t *zone, *myzone;
6084 uint_t user_nzones, real_nzones;
6085 uint_t domi_nzones;
6086 int error;
6088 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6089 return (set_errno(EFAULT));
6091 myzone = curproc->p_zone;
6092 if (myzone != global_zone) {
6093 /* just return current zone */
6094 real_nzones = domi_nzones = 1;
6095 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6096 zoneids[0] = myzone->zone_id;
6097 } else {
6098 mutex_enter(&zonehash_lock);
6099 real_nzones = zonecount;
6100 domi_nzones = 0;
6101 if (real_nzones > 0) {
6102 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
6103 KM_SLEEP);
6104 for (zone = list_head(&zone_active); zone != NULL;
6105 zone = list_next(&zone_active, zone))
6106 zoneids[domi_nzones++] = zone->zone_id;
6107 ASSERT(domi_nzones == real_nzones);
6109 mutex_exit(&zonehash_lock);
6113 * If user has allocated space for fewer entries than we found, then
6114 * return only up to their limit. Either way, tell them exactly how
6115 * many we found.
6117 if (domi_nzones < user_nzones)
6118 user_nzones = domi_nzones;
6119 error = 0;
6120 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6121 error = EFAULT;
6122 } else if (zoneidlist != NULL && user_nzones != 0) {
6123 if (copyout(zoneids, zoneidlist,
6124 user_nzones * sizeof (zoneid_t)) != 0)
6125 error = EFAULT;
6128 if (real_nzones > 0)
6129 kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6131 if (error != 0)
6132 return (set_errno(error));
6133 else
6134 return (0);
6138 * Systemcall entry point for zone_lookup(2).
6140 * Non-global zones are only able to see themselves.
6142 static zoneid_t
6143 zone_lookup(const char *zone_name)
6145 char *kname;
6146 zone_t *zone;
6147 zoneid_t zoneid;
6148 int err;
6150 if (zone_name == NULL) {
6151 /* return caller's zone id */
6152 return (getzoneid());
6155 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6156 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6157 kmem_free(kname, ZONENAME_MAX);
6158 return (set_errno(err));
6161 mutex_enter(&zonehash_lock);
6162 zone = zone_find_all_by_name(kname);
6163 kmem_free(kname, ZONENAME_MAX);
6164 /* In a non-global zone, can only lookup global and own name. */
6165 if (zone == NULL ||
6166 zone_status_get(zone) < ZONE_IS_READY ||
6167 !zone_list_access(zone)) {
6168 mutex_exit(&zonehash_lock);
6169 return (set_errno(EINVAL));
6170 } else {
6171 zoneid = zone->zone_id;
6172 mutex_exit(&zonehash_lock);
6173 return (zoneid);
6177 static int
6178 zone_version(int *version_arg)
6180 int version = ZONE_SYSCALL_API_VERSION;
6182 if (copyout(&version, version_arg, sizeof (int)) != 0)
6183 return (set_errno(EFAULT));
6184 return (0);
6187 /* ARGSUSED */
6188 long
6189 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6191 zone_def zs;
6192 int err;
6194 switch (cmd) {
6195 case ZONE_CREATE:
6196 if (get_udatamodel() == DATAMODEL_NATIVE) {
6197 if (copyin(arg1, &zs, sizeof (zone_def))) {
6198 return (set_errno(EFAULT));
6200 } else {
6201 #ifdef _SYSCALL32_IMPL
6202 zone_def32 zs32;
6204 if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6205 return (set_errno(EFAULT));
6207 zs.zone_name =
6208 (const char *)(unsigned long)zs32.zone_name;
6209 zs.zone_root =
6210 (const char *)(unsigned long)zs32.zone_root;
6211 zs.zone_privs =
6212 (const struct priv_set *)
6213 (unsigned long)zs32.zone_privs;
6214 zs.zone_privssz = zs32.zone_privssz;
6215 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6216 zs.rctlbufsz = zs32.rctlbufsz;
6217 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6218 zs.zfsbufsz = zs32.zfsbufsz;
6219 zs.extended_error =
6220 (int *)(unsigned long)zs32.extended_error;
6221 zs.flags = zs32.flags;
6222 #else
6223 panic("get_udatamodel() returned bogus result\n");
6224 #endif
6227 return (zone_create(zs.zone_name, zs.zone_root,
6228 zs.zone_privs, zs.zone_privssz,
6229 (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6230 (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6231 zs.extended_error, zs.flags));
6232 case ZONE_BOOT:
6233 return (zone_boot((zoneid_t)(uintptr_t)arg1));
6234 case ZONE_DESTROY:
6235 return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6236 case ZONE_GETATTR:
6237 return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6238 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6239 case ZONE_SETATTR:
6240 return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6241 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6242 case ZONE_ENTER:
6243 return (zone_enter((zoneid_t)(uintptr_t)arg1));
6244 case ZONE_LIST:
6245 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6246 case ZONE_SHUTDOWN:
6247 return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6248 case ZONE_LOOKUP:
6249 return (zone_lookup((const char *)arg1));
6250 case ZONE_VERSION:
6251 return (zone_version((int *)arg1));
6252 case ZONE_ADD_DATALINK:
6253 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6254 (datalink_id_t)(uintptr_t)arg2));
6255 case ZONE_DEL_DATALINK:
6256 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6257 (datalink_id_t)(uintptr_t)arg2));
6258 case ZONE_CHECK_DATALINK: {
6259 zoneid_t zoneid;
6260 boolean_t need_copyout;
6262 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6263 return (EFAULT);
6264 need_copyout = (zoneid == ALL_ZONES);
6265 err = zone_check_datalink(&zoneid,
6266 (datalink_id_t)(uintptr_t)arg2);
6267 if (err == 0 && need_copyout) {
6268 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6269 err = EFAULT;
6271 return (err == 0 ? 0 : set_errno(err));
6273 case ZONE_LIST_DATALINK:
6274 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6275 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6276 default:
6277 return (set_errno(EINVAL));
6281 struct zarg {
6282 zone_t *zone;
6283 zone_cmd_arg_t arg;
6286 static int
6287 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6289 char *buf;
6290 size_t buflen;
6291 int error;
6293 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6294 buf = kmem_alloc(buflen, KM_SLEEP);
6295 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6296 error = door_ki_open(buf, doorp);
6297 kmem_free(buf, buflen);
6298 return (error);
6301 static void
6302 zone_release_door(door_handle_t *doorp)
6304 door_ki_rele(*doorp);
6305 *doorp = NULL;
6308 static void
6309 zone_ki_call_zoneadmd(struct zarg *zargp)
6311 door_handle_t door = NULL;
6312 door_arg_t darg, save_arg;
6313 char *zone_name;
6314 size_t zone_namelen;
6315 zoneid_t zoneid;
6316 zone_t *zone;
6317 zone_cmd_arg_t arg;
6318 uint64_t uniqid;
6319 size_t size;
6320 int error;
6321 int retry;
6323 zone = zargp->zone;
6324 arg = zargp->arg;
6325 kmem_free(zargp, sizeof (*zargp));
6327 zone_namelen = strlen(zone->zone_name) + 1;
6328 zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6329 bcopy(zone->zone_name, zone_name, zone_namelen);
6330 zoneid = zone->zone_id;
6331 uniqid = zone->zone_uniqid;
6333 * zoneadmd may be down, but at least we can empty out the zone.
6334 * We can ignore the return value of zone_empty() since we're called
6335 * from a kernel thread and know we won't be delivered any signals.
6337 ASSERT(curproc == &p0);
6338 (void) zone_empty(zone);
6339 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6340 zone_rele(zone);
6342 size = sizeof (arg);
6343 darg.rbuf = (char *)&arg;
6344 darg.data_ptr = (char *)&arg;
6345 darg.rsize = size;
6346 darg.data_size = size;
6347 darg.desc_ptr = NULL;
6348 darg.desc_num = 0;
6350 save_arg = darg;
6352 * Since we're not holding a reference to the zone, any number of
6353 * things can go wrong, including the zone disappearing before we get a
6354 * chance to talk to zoneadmd.
6356 for (retry = 0; /* forever */; retry++) {
6357 if (door == NULL &&
6358 (error = zone_lookup_door(zone_name, &door)) != 0) {
6359 goto next;
6361 ASSERT(door != NULL);
6363 if ((error = door_ki_upcall_limited(door, &darg, NULL,
6364 SIZE_MAX, 0)) == 0) {
6365 break;
6367 switch (error) {
6368 case EINTR:
6369 /* FALLTHROUGH */
6370 case EAGAIN: /* process may be forking */
6372 * Back off for a bit
6374 break;
6375 case EBADF:
6376 zone_release_door(&door);
6377 if (zone_lookup_door(zone_name, &door) != 0) {
6379 * zoneadmd may be dead, but it may come back to
6380 * life later.
6382 break;
6384 break;
6385 default:
6386 cmn_err(CE_WARN,
6387 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6388 error);
6389 goto out;
6391 next:
6393 * If this isn't the same zone_t that we originally had in mind,
6394 * then this is the same as if two kadmin requests come in at
6395 * the same time: the first one wins. This means we lose, so we
6396 * bail.
6398 if ((zone = zone_find_by_id(zoneid)) == NULL) {
6400 * Problem is solved.
6402 break;
6404 if (zone->zone_uniqid != uniqid) {
6406 * zoneid recycled
6408 zone_rele(zone);
6409 break;
6412 * We could zone_status_timedwait(), but there doesn't seem to
6413 * be much point in doing that (plus, it would mean that
6414 * zone_free() isn't called until this thread exits).
6416 zone_rele(zone);
6417 ddi_sleep(1);
6418 darg = save_arg;
6420 out:
6421 if (door != NULL) {
6422 zone_release_door(&door);
6424 kmem_free(zone_name, zone_namelen);
6425 thread_exit();
6429 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to
6430 * kadmin(). The caller is a process in the zone.
6432 * In order to shutdown the zone, we will hand off control to zoneadmd
6433 * (running in the global zone) via a door. We do a half-hearted job at
6434 * killing all processes in the zone, create a kernel thread to contact
6435 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is
6436 * a form of generation number used to let zoneadmd (as well as
6437 * zone_destroy()) know exactly which zone they're re talking about.
6440 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6442 struct zarg *zargp;
6443 zone_cmd_t zcmd;
6444 zone_t *zone;
6446 zone = curproc->p_zone;
6447 ASSERT(getzoneid() != GLOBAL_ZONEID);
6449 switch (cmd) {
6450 case A_SHUTDOWN:
6451 switch (fcn) {
6452 case AD_HALT:
6453 case AD_POWEROFF:
6454 zcmd = Z_HALT;
6455 break;
6456 case AD_BOOT:
6457 zcmd = Z_REBOOT;
6458 break;
6459 case AD_IBOOT:
6460 case AD_SBOOT:
6461 case AD_SIBOOT:
6462 case AD_NOSYNC:
6463 return (ENOTSUP);
6464 default:
6465 return (EINVAL);
6467 break;
6468 case A_REBOOT:
6469 zcmd = Z_REBOOT;
6470 break;
6471 case A_FTRACE:
6472 case A_REMOUNT:
6473 case A_FREEZE:
6474 case A_DUMP:
6475 case A_CONFIG:
6476 return (ENOTSUP);
6477 default:
6478 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */
6479 return (EINVAL);
6482 if (secpolicy_zone_admin(credp, B_FALSE))
6483 return (EPERM);
6484 mutex_enter(&zone_status_lock);
6487 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6488 * is in the zone.
6490 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6491 if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6493 * This zone is already on its way down.
6495 mutex_exit(&zone_status_lock);
6496 return (0);
6499 * Prevent future zone_enter()s
6501 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6502 mutex_exit(&zone_status_lock);
6505 * Kill everyone now and call zoneadmd later.
6506 * zone_ki_call_zoneadmd() will do a more thorough job of this
6507 * later.
6509 killall(zone->zone_id);
6511 * Now, create the thread to contact zoneadmd and do the rest of the
6512 * work. This thread can't be created in our zone otherwise
6513 * zone_destroy() would deadlock.
6515 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6516 zargp->arg.cmd = zcmd;
6517 zargp->arg.uniqid = zone->zone_uniqid;
6518 zargp->zone = zone;
6519 (void) strcpy(zargp->arg.locale, "C");
6520 /* mdep was already copied in for us by uadmin */
6521 if (mdep != NULL)
6522 (void) strlcpy(zargp->arg.bootbuf, mdep,
6523 sizeof (zargp->arg.bootbuf));
6524 zone_hold(zone);
6526 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6527 TS_RUN, minclsyspri);
6528 exit(CLD_EXITED, 0);
6530 return (EINVAL);
6534 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6535 * status to ZONE_IS_SHUTTING_DOWN.
6537 * This function also shuts down all running zones to ensure that they won't
6538 * fork new processes.
6540 void
6541 zone_shutdown_global(void)
6543 zone_t *current_zonep;
6545 ASSERT(INGLOBALZONE(curproc));
6546 mutex_enter(&zonehash_lock);
6547 mutex_enter(&zone_status_lock);
6549 /* Modify the global zone's status first. */
6550 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6551 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6554 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6555 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6556 * could cause assertions to fail (e.g., assertions about a zone's
6557 * state during initialization, readying, or booting) or produce races.
6558 * We'll let threads continue to initialize and ready new zones: they'll
6559 * fail to boot the new zones when they see that the global zone is
6560 * shutting down.
6562 for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6563 current_zonep = list_next(&zone_active, current_zonep)) {
6564 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6565 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6567 mutex_exit(&zone_status_lock);
6568 mutex_exit(&zonehash_lock);
6572 * Returns true if the named dataset is visible in the current zone.
6573 * The 'write' parameter is set to 1 if the dataset is also writable.
6576 zone_dataset_visible(const char *dataset, int *write)
6578 static int zfstype = -1;
6579 zone_dataset_t *zd;
6580 size_t len;
6581 zone_t *zone = curproc->p_zone;
6582 const char *name = NULL;
6583 vfs_t *vfsp = NULL;
6585 if (dataset[0] == '\0')
6586 return (0);
6589 * Walk the list once, looking for datasets which match exactly, or
6590 * specify a dataset underneath an exported dataset. If found, return
6591 * true and note that it is writable.
6593 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6594 zd = list_next(&zone->zone_datasets, zd)) {
6596 len = strlen(zd->zd_dataset);
6597 if (strlen(dataset) >= len &&
6598 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6599 (dataset[len] == '\0' || dataset[len] == '/' ||
6600 dataset[len] == '@')) {
6601 if (write)
6602 *write = 1;
6603 return (1);
6608 * Walk the list a second time, searching for datasets which are parents
6609 * of exported datasets. These should be visible, but read-only.
6611 * Note that we also have to support forms such as 'pool/dataset/', with
6612 * a trailing slash.
6614 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6615 zd = list_next(&zone->zone_datasets, zd)) {
6617 len = strlen(dataset);
6618 if (dataset[len - 1] == '/')
6619 len--; /* Ignore trailing slash */
6620 if (len < strlen(zd->zd_dataset) &&
6621 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6622 zd->zd_dataset[len] == '/') {
6623 if (write)
6624 *write = 0;
6625 return (1);
6630 * We reach here if the given dataset is not found in the zone_dataset
6631 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6632 * instead of delegation. For this we search for the dataset in the
6633 * zone_vfslist of this zone. If found, return true and note that it is
6634 * not writable.
6638 * Initialize zfstype if it is not initialized yet.
6640 if (zfstype == -1) {
6641 struct vfssw *vswp = vfs_getvfssw("zfs");
6642 zfstype = vswp - vfssw;
6643 vfs_unrefvfssw(vswp);
6646 vfs_list_read_lock();
6647 vfsp = zone->zone_vfslist;
6648 do {
6649 ASSERT(vfsp);
6650 if (vfsp->vfs_fstype == zfstype) {
6651 name = refstr_value(vfsp->vfs_resource);
6654 * Check if we have an exact match.
6656 if (strcmp(dataset, name) == 0) {
6657 vfs_list_unlock();
6658 if (write)
6659 *write = 0;
6660 return (1);
6663 * We need to check if we are looking for parents of
6664 * a dataset. These should be visible, but read-only.
6666 len = strlen(dataset);
6667 if (dataset[len - 1] == '/')
6668 len--;
6670 if (len < strlen(name) &&
6671 bcmp(dataset, name, len) == 0 && name[len] == '/') {
6672 vfs_list_unlock();
6673 if (write)
6674 *write = 0;
6675 return (1);
6678 vfsp = vfsp->vfs_zone_next;
6679 } while (vfsp != zone->zone_vfslist);
6681 vfs_list_unlock();
6682 return (0);
6686 * zone_find_by_any_path() -
6688 * kernel-private routine similar to zone_find_by_path(), but which
6689 * effectively compares against zone paths rather than zonerootpath
6690 * (i.e., the last component of zonerootpaths, which should be "root/",
6691 * are not compared.) This is done in order to accurately identify all
6692 * paths, whether zone-visible or not, including those which are parallel
6693 * to /root/, such as /dev/, /home/, etc...
6695 * If the specified path does not fall under any zone path then global
6696 * zone is returned.
6698 * The treat_abs parameter indicates whether the path should be treated as
6699 * an absolute path although it does not begin with "/". (This supports
6700 * nfs mount syntax such as host:any/path.)
6702 * The caller is responsible for zone_rele of the returned zone.
6704 zone_t *
6705 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6707 zone_t *zone;
6708 int path_offset = 0;
6710 if (path == NULL) {
6711 zone_hold(global_zone);
6712 return (global_zone);
6715 if (*path != '/') {
6716 ASSERT(treat_abs);
6717 path_offset = 1;
6720 mutex_enter(&zonehash_lock);
6721 for (zone = list_head(&zone_active); zone != NULL;
6722 zone = list_next(&zone_active, zone)) {
6723 char *c;
6724 size_t pathlen;
6725 char *rootpath_start;
6727 if (zone == global_zone) /* skip global zone */
6728 continue;
6730 /* scan backwards to find start of last component */
6731 c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6732 do {
6733 c--;
6734 } while (*c != '/');
6736 pathlen = c - zone->zone_rootpath + 1 - path_offset;
6737 rootpath_start = (zone->zone_rootpath + path_offset);
6738 if (strncmp(path, rootpath_start, pathlen) == 0)
6739 break;
6741 if (zone == NULL)
6742 zone = global_zone;
6743 zone_hold(zone);
6744 mutex_exit(&zonehash_lock);
6745 return (zone);
6749 * Finds a zone_dl_t with the given linkid in the given zone. Returns the
6750 * zone_dl_t pointer if found, and NULL otherwise.
6752 static zone_dl_t *
6753 zone_find_dl(zone_t *zone, datalink_id_t linkid)
6755 zone_dl_t *zdl;
6757 ASSERT(mutex_owned(&zone->zone_lock));
6758 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6759 zdl = list_next(&zone->zone_dl_list, zdl)) {
6760 if (zdl->zdl_id == linkid)
6761 break;
6763 return (zdl);
6766 static boolean_t
6767 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
6769 boolean_t exists;
6771 mutex_enter(&zone->zone_lock);
6772 exists = (zone_find_dl(zone, linkid) != NULL);
6773 mutex_exit(&zone->zone_lock);
6774 return (exists);
6778 * Add an data link name for the zone.
6780 static int
6781 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
6783 zone_dl_t *zdl;
6784 zone_t *zone;
6785 zone_t *thiszone;
6787 if ((thiszone = zone_find_by_id(zoneid)) == NULL)
6788 return (set_errno(ENXIO));
6790 /* Verify that the datalink ID doesn't already belong to a zone. */
6791 mutex_enter(&zonehash_lock);
6792 for (zone = list_head(&zone_active); zone != NULL;
6793 zone = list_next(&zone_active, zone)) {
6794 if (zone_dl_exists(zone, linkid)) {
6795 mutex_exit(&zonehash_lock);
6796 zone_rele(thiszone);
6797 return (set_errno((zone == thiszone) ? EEXIST : EPERM));
6801 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
6802 zdl->zdl_id = linkid;
6803 zdl->zdl_net = NULL;
6804 mutex_enter(&thiszone->zone_lock);
6805 list_insert_head(&thiszone->zone_dl_list, zdl);
6806 mutex_exit(&thiszone->zone_lock);
6807 mutex_exit(&zonehash_lock);
6808 zone_rele(thiszone);
6809 return (0);
6812 static int
6813 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
6815 zone_dl_t *zdl;
6816 zone_t *zone;
6817 int err = 0;
6819 if ((zone = zone_find_by_id(zoneid)) == NULL)
6820 return (set_errno(EINVAL));
6822 mutex_enter(&zone->zone_lock);
6823 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
6824 err = ENXIO;
6825 } else {
6826 list_remove(&zone->zone_dl_list, zdl);
6827 nvlist_free(zdl->zdl_net);
6828 kmem_free(zdl, sizeof (zone_dl_t));
6830 mutex_exit(&zone->zone_lock);
6831 zone_rele(zone);
6832 return (err == 0 ? 0 : set_errno(err));
6836 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
6837 * the linkid. Otherwise we just check if the specified zoneidp has been
6838 * assigned the supplied linkid.
6841 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
6843 zone_t *zone;
6844 int err = ENXIO;
6846 if (*zoneidp != ALL_ZONES) {
6847 if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
6848 if (zone_dl_exists(zone, linkid))
6849 err = 0;
6850 zone_rele(zone);
6852 return (err);
6855 mutex_enter(&zonehash_lock);
6856 for (zone = list_head(&zone_active); zone != NULL;
6857 zone = list_next(&zone_active, zone)) {
6858 if (zone_dl_exists(zone, linkid)) {
6859 *zoneidp = zone->zone_id;
6860 err = 0;
6861 break;
6864 mutex_exit(&zonehash_lock);
6865 return (err);
6869 * Get the list of datalink IDs assigned to a zone.
6871 * On input, *nump is the number of datalink IDs that can fit in the supplied
6872 * idarray. Upon return, *nump is either set to the number of datalink IDs
6873 * that were placed in the array if the array was large enough, or to the
6874 * number of datalink IDs that the function needs to place in the array if the
6875 * array is too small.
6877 static int
6878 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
6880 uint_t num, dlcount;
6881 zone_t *zone;
6882 zone_dl_t *zdl;
6883 datalink_id_t *idptr = idarray;
6885 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
6886 return (set_errno(EFAULT));
6887 if ((zone = zone_find_by_id(zoneid)) == NULL)
6888 return (set_errno(ENXIO));
6890 num = 0;
6891 mutex_enter(&zone->zone_lock);
6892 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6893 zdl = list_next(&zone->zone_dl_list, zdl)) {
6895 * If the list is bigger than what the caller supplied, just
6896 * count, don't do copyout.
6898 if (++num > dlcount)
6899 continue;
6900 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
6901 mutex_exit(&zone->zone_lock);
6902 zone_rele(zone);
6903 return (set_errno(EFAULT));
6905 idptr++;
6907 mutex_exit(&zone->zone_lock);
6908 zone_rele(zone);
6910 /* Increased or decreased, caller should be notified. */
6911 if (num != dlcount) {
6912 if (copyout(&num, nump, sizeof (num)) != 0)
6913 return (set_errno(EFAULT));
6915 return (0);
6919 * Public interface for looking up a zone by zoneid. It's a customized version
6920 * for netstack_zone_create(). It can only be called from the zsd create
6921 * callbacks, since it doesn't have reference on the zone structure hence if
6922 * it is called elsewhere the zone could disappear after the zonehash_lock
6923 * is dropped.
6925 * Furthermore it
6926 * 1. Doesn't check the status of the zone.
6927 * 2. It will be called even before zone_init is called, in that case the
6928 * address of zone0 is returned directly, and netstack_zone_create()
6929 * will only assign a value to zone0.zone_netstack, won't break anything.
6930 * 3. Returns without the zone being held.
6932 zone_t *
6933 zone_find_by_id_nolock(zoneid_t zoneid)
6935 zone_t *zone;
6937 mutex_enter(&zonehash_lock);
6938 if (zonehashbyid == NULL)
6939 zone = &zone0;
6940 else
6941 zone = zone_find_all_by_id(zoneid);
6942 mutex_exit(&zonehash_lock);
6943 return (zone);
6947 * Walk the datalinks for a given zone
6950 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
6951 void *data)
6953 zone_t *zone;
6954 zone_dl_t *zdl;
6955 datalink_id_t *idarray;
6956 uint_t idcount = 0;
6957 int i, ret = 0;
6959 if ((zone = zone_find_by_id(zoneid)) == NULL)
6960 return (ENOENT);
6963 * We first build an array of linkid's so that we can walk these and
6964 * execute the callback with the zone_lock dropped.
6966 mutex_enter(&zone->zone_lock);
6967 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6968 zdl = list_next(&zone->zone_dl_list, zdl)) {
6969 idcount++;
6972 if (idcount == 0) {
6973 mutex_exit(&zone->zone_lock);
6974 zone_rele(zone);
6975 return (0);
6978 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
6979 if (idarray == NULL) {
6980 mutex_exit(&zone->zone_lock);
6981 zone_rele(zone);
6982 return (ENOMEM);
6985 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6986 i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
6987 idarray[i] = zdl->zdl_id;
6990 mutex_exit(&zone->zone_lock);
6992 for (i = 0; i < idcount && ret == 0; i++) {
6993 if ((ret = (*cb)(idarray[i], data)) != 0)
6994 break;
6997 zone_rele(zone);
6998 kmem_free(idarray, sizeof (datalink_id_t) * idcount);
6999 return (ret);
7002 static char *
7003 zone_net_type2name(int type)
7005 switch (type) {
7006 case ZONE_NETWORK_ADDRESS:
7007 return (ZONE_NET_ADDRNAME);
7008 case ZONE_NETWORK_DEFROUTER:
7009 return (ZONE_NET_RTRNAME);
7010 default:
7011 return (NULL);
7015 static int
7016 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7018 zone_t *zone;
7019 zone_dl_t *zdl;
7020 nvlist_t *nvl;
7021 int err = 0;
7022 uint8_t *new = NULL;
7023 char *nvname;
7024 int bufsize;
7025 datalink_id_t linkid = znbuf->zn_linkid;
7027 if (secpolicy_zone_config(CRED()) != 0)
7028 return (set_errno(EPERM));
7030 if (zoneid == GLOBAL_ZONEID)
7031 return (set_errno(EINVAL));
7033 nvname = zone_net_type2name(znbuf->zn_type);
7034 bufsize = znbuf->zn_len;
7035 new = znbuf->zn_val;
7036 if (nvname == NULL)
7037 return (set_errno(EINVAL));
7039 if ((zone = zone_find_by_id(zoneid)) == NULL) {
7040 return (set_errno(EINVAL));
7043 mutex_enter(&zone->zone_lock);
7044 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7045 err = ENXIO;
7046 goto done;
7048 if ((nvl = zdl->zdl_net) == NULL) {
7049 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7050 err = ENOMEM;
7051 goto done;
7052 } else {
7053 zdl->zdl_net = nvl;
7056 if (nvlist_exists(nvl, nvname)) {
7057 err = EINVAL;
7058 goto done;
7060 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7061 ASSERT(err == 0);
7062 done:
7063 mutex_exit(&zone->zone_lock);
7064 zone_rele(zone);
7065 if (err != 0)
7066 return (set_errno(err));
7067 else
7068 return (0);
7071 static int
7072 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7074 zone_t *zone;
7075 zone_dl_t *zdl;
7076 nvlist_t *nvl;
7077 uint8_t *ptr;
7078 uint_t psize;
7079 int err = 0;
7080 char *nvname;
7081 int bufsize;
7082 void *buf;
7083 datalink_id_t linkid = znbuf->zn_linkid;
7085 if (zoneid == GLOBAL_ZONEID)
7086 return (set_errno(EINVAL));
7088 nvname = zone_net_type2name(znbuf->zn_type);
7089 bufsize = znbuf->zn_len;
7090 buf = znbuf->zn_val;
7092 if (nvname == NULL)
7093 return (set_errno(EINVAL));
7094 if ((zone = zone_find_by_id(zoneid)) == NULL)
7095 return (set_errno(EINVAL));
7097 mutex_enter(&zone->zone_lock);
7098 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7099 err = ENXIO;
7100 goto done;
7102 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7103 err = ENOENT;
7104 goto done;
7106 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7107 ASSERT(err == 0);
7109 if (psize > bufsize) {
7110 err = ENOBUFS;
7111 goto done;
7113 znbuf->zn_len = psize;
7114 bcopy(ptr, buf, psize);
7115 done:
7116 mutex_exit(&zone->zone_lock);
7117 zone_rele(zone);
7118 if (err != 0)
7119 return (set_errno(err));
7120 else
7121 return (0);