4756 metaslab_group_preload() could deadlock
[unleashed.git] / usr / src / uts / common / fs / zfs / metaslab.c
blobbba1dbf5148c94f882ac0d1a1d8dcbc6ea7a16ed
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
27 #include <sys/zfs_context.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/space_map.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio.h>
34 #include <sys/spa_impl.h>
37 * Allow allocations to switch to gang blocks quickly. We do this to
38 * avoid having to load lots of space_maps in a given txg. There are,
39 * however, some cases where we want to avoid "fast" ganging and instead
40 * we want to do an exhaustive search of all metaslabs on this device.
41 * Currently we don't allow any gang, slog, or dump device related allocations
42 * to "fast" gang.
44 #define CAN_FASTGANG(flags) \
45 (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
46 METASLAB_GANG_AVOID)))
48 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
49 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
50 #define METASLAB_ACTIVE_MASK \
51 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
53 uint64_t metaslab_aliquot = 512ULL << 10;
54 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
57 * The in-core space map representation is more compact than its on-disk form.
58 * The zfs_condense_pct determines how much more compact the in-core
59 * space_map representation must be before we compact it on-disk.
60 * Values should be greater than or equal to 100.
62 int zfs_condense_pct = 200;
65 * The zfs_mg_noalloc_threshold defines which metaslab groups should
66 * be eligible for allocation. The value is defined as a percentage of
67 * a free space. Metaslab groups that have more free space than
68 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
69 * a metaslab group's free space is less than or equal to the
70 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
71 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
72 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
73 * groups are allowed to accept allocations. Gang blocks are always
74 * eligible to allocate on any metaslab group. The default value of 0 means
75 * no metaslab group will be excluded based on this criterion.
77 int zfs_mg_noalloc_threshold = 0;
80 * When set will load all metaslabs when pool is first opened.
82 int metaslab_debug_load = 0;
85 * When set will prevent metaslabs from being unloaded.
87 int metaslab_debug_unload = 0;
90 * Minimum size which forces the dynamic allocator to change
91 * it's allocation strategy. Once the space map cannot satisfy
92 * an allocation of this size then it switches to using more
93 * aggressive strategy (i.e search by size rather than offset).
95 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
98 * The minimum free space, in percent, which must be available
99 * in a space map to continue allocations in a first-fit fashion.
100 * Once the space_map's free space drops below this level we dynamically
101 * switch to using best-fit allocations.
103 int metaslab_df_free_pct = 4;
106 * A metaslab is considered "free" if it contains a contiguous
107 * segment which is greater than metaslab_min_alloc_size.
109 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
112 * Percentage of all cpus that can be used by the metaslab taskq.
114 int metaslab_load_pct = 50;
117 * Determines how many txgs a metaslab may remain loaded without having any
118 * allocations from it. As long as a metaslab continues to be used we will
119 * keep it loaded.
121 int metaslab_unload_delay = TXG_SIZE * 2;
124 * Should we be willing to write data to degraded vdevs?
126 boolean_t zfs_write_to_degraded = B_FALSE;
129 * Max number of metaslabs per group to preload.
131 int metaslab_preload_limit = SPA_DVAS_PER_BP;
134 * Enable/disable preloading of metaslab.
136 boolean_t metaslab_preload_enabled = B_TRUE;
139 * Enable/disable additional weight factor for each metaslab.
141 boolean_t metaslab_weight_factor_enable = B_FALSE;
145 * ==========================================================================
146 * Metaslab classes
147 * ==========================================================================
149 metaslab_class_t *
150 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
152 metaslab_class_t *mc;
154 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
156 mc->mc_spa = spa;
157 mc->mc_rotor = NULL;
158 mc->mc_ops = ops;
160 return (mc);
163 void
164 metaslab_class_destroy(metaslab_class_t *mc)
166 ASSERT(mc->mc_rotor == NULL);
167 ASSERT(mc->mc_alloc == 0);
168 ASSERT(mc->mc_deferred == 0);
169 ASSERT(mc->mc_space == 0);
170 ASSERT(mc->mc_dspace == 0);
172 kmem_free(mc, sizeof (metaslab_class_t));
176 metaslab_class_validate(metaslab_class_t *mc)
178 metaslab_group_t *mg;
179 vdev_t *vd;
182 * Must hold one of the spa_config locks.
184 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
185 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
187 if ((mg = mc->mc_rotor) == NULL)
188 return (0);
190 do {
191 vd = mg->mg_vd;
192 ASSERT(vd->vdev_mg != NULL);
193 ASSERT3P(vd->vdev_top, ==, vd);
194 ASSERT3P(mg->mg_class, ==, mc);
195 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
196 } while ((mg = mg->mg_next) != mc->mc_rotor);
198 return (0);
201 void
202 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
203 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
205 atomic_add_64(&mc->mc_alloc, alloc_delta);
206 atomic_add_64(&mc->mc_deferred, defer_delta);
207 atomic_add_64(&mc->mc_space, space_delta);
208 atomic_add_64(&mc->mc_dspace, dspace_delta);
211 uint64_t
212 metaslab_class_get_alloc(metaslab_class_t *mc)
214 return (mc->mc_alloc);
217 uint64_t
218 metaslab_class_get_deferred(metaslab_class_t *mc)
220 return (mc->mc_deferred);
223 uint64_t
224 metaslab_class_get_space(metaslab_class_t *mc)
226 return (mc->mc_space);
229 uint64_t
230 metaslab_class_get_dspace(metaslab_class_t *mc)
232 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
236 * ==========================================================================
237 * Metaslab groups
238 * ==========================================================================
240 static int
241 metaslab_compare(const void *x1, const void *x2)
243 const metaslab_t *m1 = x1;
244 const metaslab_t *m2 = x2;
246 if (m1->ms_weight < m2->ms_weight)
247 return (1);
248 if (m1->ms_weight > m2->ms_weight)
249 return (-1);
252 * If the weights are identical, use the offset to force uniqueness.
254 if (m1->ms_start < m2->ms_start)
255 return (-1);
256 if (m1->ms_start > m2->ms_start)
257 return (1);
259 ASSERT3P(m1, ==, m2);
261 return (0);
265 * Update the allocatable flag and the metaslab group's capacity.
266 * The allocatable flag is set to true if the capacity is below
267 * the zfs_mg_noalloc_threshold. If a metaslab group transitions
268 * from allocatable to non-allocatable or vice versa then the metaslab
269 * group's class is updated to reflect the transition.
271 static void
272 metaslab_group_alloc_update(metaslab_group_t *mg)
274 vdev_t *vd = mg->mg_vd;
275 metaslab_class_t *mc = mg->mg_class;
276 vdev_stat_t *vs = &vd->vdev_stat;
277 boolean_t was_allocatable;
279 ASSERT(vd == vd->vdev_top);
281 mutex_enter(&mg->mg_lock);
282 was_allocatable = mg->mg_allocatable;
284 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
285 (vs->vs_space + 1);
287 mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold);
290 * The mc_alloc_groups maintains a count of the number of
291 * groups in this metaslab class that are still above the
292 * zfs_mg_noalloc_threshold. This is used by the allocating
293 * threads to determine if they should avoid allocations to
294 * a given group. The allocator will avoid allocations to a group
295 * if that group has reached or is below the zfs_mg_noalloc_threshold
296 * and there are still other groups that are above the threshold.
297 * When a group transitions from allocatable to non-allocatable or
298 * vice versa we update the metaslab class to reflect that change.
299 * When the mc_alloc_groups value drops to 0 that means that all
300 * groups have reached the zfs_mg_noalloc_threshold making all groups
301 * eligible for allocations. This effectively means that all devices
302 * are balanced again.
304 if (was_allocatable && !mg->mg_allocatable)
305 mc->mc_alloc_groups--;
306 else if (!was_allocatable && mg->mg_allocatable)
307 mc->mc_alloc_groups++;
308 mutex_exit(&mg->mg_lock);
311 metaslab_group_t *
312 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
314 metaslab_group_t *mg;
316 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
317 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
318 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
319 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
320 mg->mg_vd = vd;
321 mg->mg_class = mc;
322 mg->mg_activation_count = 0;
324 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
325 minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
327 return (mg);
330 void
331 metaslab_group_destroy(metaslab_group_t *mg)
333 ASSERT(mg->mg_prev == NULL);
334 ASSERT(mg->mg_next == NULL);
336 * We may have gone below zero with the activation count
337 * either because we never activated in the first place or
338 * because we're done, and possibly removing the vdev.
340 ASSERT(mg->mg_activation_count <= 0);
342 taskq_destroy(mg->mg_taskq);
343 avl_destroy(&mg->mg_metaslab_tree);
344 mutex_destroy(&mg->mg_lock);
345 kmem_free(mg, sizeof (metaslab_group_t));
348 void
349 metaslab_group_activate(metaslab_group_t *mg)
351 metaslab_class_t *mc = mg->mg_class;
352 metaslab_group_t *mgprev, *mgnext;
354 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
356 ASSERT(mc->mc_rotor != mg);
357 ASSERT(mg->mg_prev == NULL);
358 ASSERT(mg->mg_next == NULL);
359 ASSERT(mg->mg_activation_count <= 0);
361 if (++mg->mg_activation_count <= 0)
362 return;
364 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
365 metaslab_group_alloc_update(mg);
367 if ((mgprev = mc->mc_rotor) == NULL) {
368 mg->mg_prev = mg;
369 mg->mg_next = mg;
370 } else {
371 mgnext = mgprev->mg_next;
372 mg->mg_prev = mgprev;
373 mg->mg_next = mgnext;
374 mgprev->mg_next = mg;
375 mgnext->mg_prev = mg;
377 mc->mc_rotor = mg;
380 void
381 metaslab_group_passivate(metaslab_group_t *mg)
383 metaslab_class_t *mc = mg->mg_class;
384 metaslab_group_t *mgprev, *mgnext;
386 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
388 if (--mg->mg_activation_count != 0) {
389 ASSERT(mc->mc_rotor != mg);
390 ASSERT(mg->mg_prev == NULL);
391 ASSERT(mg->mg_next == NULL);
392 ASSERT(mg->mg_activation_count < 0);
393 return;
396 taskq_wait(mg->mg_taskq);
398 mgprev = mg->mg_prev;
399 mgnext = mg->mg_next;
401 if (mg == mgnext) {
402 mc->mc_rotor = NULL;
403 } else {
404 mc->mc_rotor = mgnext;
405 mgprev->mg_next = mgnext;
406 mgnext->mg_prev = mgprev;
409 mg->mg_prev = NULL;
410 mg->mg_next = NULL;
413 static void
414 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
416 mutex_enter(&mg->mg_lock);
417 ASSERT(msp->ms_group == NULL);
418 msp->ms_group = mg;
419 msp->ms_weight = 0;
420 avl_add(&mg->mg_metaslab_tree, msp);
421 mutex_exit(&mg->mg_lock);
424 static void
425 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
427 mutex_enter(&mg->mg_lock);
428 ASSERT(msp->ms_group == mg);
429 avl_remove(&mg->mg_metaslab_tree, msp);
430 msp->ms_group = NULL;
431 mutex_exit(&mg->mg_lock);
434 static void
435 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
438 * Although in principle the weight can be any value, in
439 * practice we do not use values in the range [1, 510].
441 ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
442 ASSERT(MUTEX_HELD(&msp->ms_lock));
444 mutex_enter(&mg->mg_lock);
445 ASSERT(msp->ms_group == mg);
446 avl_remove(&mg->mg_metaslab_tree, msp);
447 msp->ms_weight = weight;
448 avl_add(&mg->mg_metaslab_tree, msp);
449 mutex_exit(&mg->mg_lock);
453 * Determine if a given metaslab group should skip allocations. A metaslab
454 * group should avoid allocations if its used capacity has crossed the
455 * zfs_mg_noalloc_threshold and there is at least one metaslab group
456 * that can still handle allocations.
458 static boolean_t
459 metaslab_group_allocatable(metaslab_group_t *mg)
461 vdev_t *vd = mg->mg_vd;
462 spa_t *spa = vd->vdev_spa;
463 metaslab_class_t *mc = mg->mg_class;
466 * A metaslab group is considered allocatable if its free capacity
467 * is greater than the set value of zfs_mg_noalloc_threshold, it's
468 * associated with a slog, or there are no other metaslab groups
469 * with free capacity greater than zfs_mg_noalloc_threshold.
471 return (mg->mg_free_capacity > zfs_mg_noalloc_threshold ||
472 mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
476 * ==========================================================================
477 * Range tree callbacks
478 * ==========================================================================
482 * Comparison function for the private size-ordered tree. Tree is sorted
483 * by size, larger sizes at the end of the tree.
485 static int
486 metaslab_rangesize_compare(const void *x1, const void *x2)
488 const range_seg_t *r1 = x1;
489 const range_seg_t *r2 = x2;
490 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
491 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
493 if (rs_size1 < rs_size2)
494 return (-1);
495 if (rs_size1 > rs_size2)
496 return (1);
498 if (r1->rs_start < r2->rs_start)
499 return (-1);
501 if (r1->rs_start > r2->rs_start)
502 return (1);
504 return (0);
508 * Create any block allocator specific components. The current allocators
509 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
511 static void
512 metaslab_rt_create(range_tree_t *rt, void *arg)
514 metaslab_t *msp = arg;
516 ASSERT3P(rt->rt_arg, ==, msp);
517 ASSERT(msp->ms_tree == NULL);
519 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
520 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
524 * Destroy the block allocator specific components.
526 static void
527 metaslab_rt_destroy(range_tree_t *rt, void *arg)
529 metaslab_t *msp = arg;
531 ASSERT3P(rt->rt_arg, ==, msp);
532 ASSERT3P(msp->ms_tree, ==, rt);
533 ASSERT0(avl_numnodes(&msp->ms_size_tree));
535 avl_destroy(&msp->ms_size_tree);
538 static void
539 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
541 metaslab_t *msp = arg;
543 ASSERT3P(rt->rt_arg, ==, msp);
544 ASSERT3P(msp->ms_tree, ==, rt);
545 VERIFY(!msp->ms_condensing);
546 avl_add(&msp->ms_size_tree, rs);
549 static void
550 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
552 metaslab_t *msp = arg;
554 ASSERT3P(rt->rt_arg, ==, msp);
555 ASSERT3P(msp->ms_tree, ==, rt);
556 VERIFY(!msp->ms_condensing);
557 avl_remove(&msp->ms_size_tree, rs);
560 static void
561 metaslab_rt_vacate(range_tree_t *rt, void *arg)
563 metaslab_t *msp = arg;
565 ASSERT3P(rt->rt_arg, ==, msp);
566 ASSERT3P(msp->ms_tree, ==, rt);
569 * Normally one would walk the tree freeing nodes along the way.
570 * Since the nodes are shared with the range trees we can avoid
571 * walking all nodes and just reinitialize the avl tree. The nodes
572 * will be freed by the range tree, so we don't want to free them here.
574 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
575 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
578 static range_tree_ops_t metaslab_rt_ops = {
579 metaslab_rt_create,
580 metaslab_rt_destroy,
581 metaslab_rt_add,
582 metaslab_rt_remove,
583 metaslab_rt_vacate
587 * ==========================================================================
588 * Metaslab block operations
589 * ==========================================================================
593 * Return the maximum contiguous segment within the metaslab.
595 uint64_t
596 metaslab_block_maxsize(metaslab_t *msp)
598 avl_tree_t *t = &msp->ms_size_tree;
599 range_seg_t *rs;
601 if (t == NULL || (rs = avl_last(t)) == NULL)
602 return (0ULL);
604 return (rs->rs_end - rs->rs_start);
607 uint64_t
608 metaslab_block_alloc(metaslab_t *msp, uint64_t size)
610 uint64_t start;
611 range_tree_t *rt = msp->ms_tree;
613 VERIFY(!msp->ms_condensing);
615 start = msp->ms_ops->msop_alloc(msp, size);
616 if (start != -1ULL) {
617 vdev_t *vd = msp->ms_group->mg_vd;
619 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
620 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
621 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
622 range_tree_remove(rt, start, size);
624 return (start);
628 * ==========================================================================
629 * Common allocator routines
630 * ==========================================================================
634 * This is a helper function that can be used by the allocator to find
635 * a suitable block to allocate. This will search the specified AVL
636 * tree looking for a block that matches the specified criteria.
638 static uint64_t
639 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
640 uint64_t align)
642 range_seg_t *rs, rsearch;
643 avl_index_t where;
645 rsearch.rs_start = *cursor;
646 rsearch.rs_end = *cursor + size;
648 rs = avl_find(t, &rsearch, &where);
649 if (rs == NULL)
650 rs = avl_nearest(t, where, AVL_AFTER);
652 while (rs != NULL) {
653 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
655 if (offset + size <= rs->rs_end) {
656 *cursor = offset + size;
657 return (offset);
659 rs = AVL_NEXT(t, rs);
663 * If we know we've searched the whole map (*cursor == 0), give up.
664 * Otherwise, reset the cursor to the beginning and try again.
666 if (*cursor == 0)
667 return (-1ULL);
669 *cursor = 0;
670 return (metaslab_block_picker(t, cursor, size, align));
674 * ==========================================================================
675 * The first-fit block allocator
676 * ==========================================================================
678 static uint64_t
679 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
682 * Find the largest power of 2 block size that evenly divides the
683 * requested size. This is used to try to allocate blocks with similar
684 * alignment from the same area of the metaslab (i.e. same cursor
685 * bucket) but it does not guarantee that other allocations sizes
686 * may exist in the same region.
688 uint64_t align = size & -size;
689 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
690 avl_tree_t *t = &msp->ms_tree->rt_root;
692 return (metaslab_block_picker(t, cursor, size, align));
695 /* ARGSUSED */
696 static boolean_t
697 metaslab_ff_fragmented(metaslab_t *msp)
699 return (B_TRUE);
702 static metaslab_ops_t metaslab_ff_ops = {
703 metaslab_ff_alloc,
704 metaslab_ff_fragmented
708 * ==========================================================================
709 * Dynamic block allocator -
710 * Uses the first fit allocation scheme until space get low and then
711 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
712 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
713 * ==========================================================================
715 static uint64_t
716 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
719 * Find the largest power of 2 block size that evenly divides the
720 * requested size. This is used to try to allocate blocks with similar
721 * alignment from the same area of the metaslab (i.e. same cursor
722 * bucket) but it does not guarantee that other allocations sizes
723 * may exist in the same region.
725 uint64_t align = size & -size;
726 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
727 range_tree_t *rt = msp->ms_tree;
728 avl_tree_t *t = &rt->rt_root;
729 uint64_t max_size = metaslab_block_maxsize(msp);
730 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
732 ASSERT(MUTEX_HELD(&msp->ms_lock));
733 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
735 if (max_size < size)
736 return (-1ULL);
739 * If we're running low on space switch to using the size
740 * sorted AVL tree (best-fit).
742 if (max_size < metaslab_df_alloc_threshold ||
743 free_pct < metaslab_df_free_pct) {
744 t = &msp->ms_size_tree;
745 *cursor = 0;
748 return (metaslab_block_picker(t, cursor, size, 1ULL));
751 static boolean_t
752 metaslab_df_fragmented(metaslab_t *msp)
754 range_tree_t *rt = msp->ms_tree;
755 uint64_t max_size = metaslab_block_maxsize(msp);
756 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
758 if (max_size >= metaslab_df_alloc_threshold &&
759 free_pct >= metaslab_df_free_pct)
760 return (B_FALSE);
762 return (B_TRUE);
765 static metaslab_ops_t metaslab_df_ops = {
766 metaslab_df_alloc,
767 metaslab_df_fragmented
771 * ==========================================================================
772 * Cursor fit block allocator -
773 * Select the largest region in the metaslab, set the cursor to the beginning
774 * of the range and the cursor_end to the end of the range. As allocations
775 * are made advance the cursor. Continue allocating from the cursor until
776 * the range is exhausted and then find a new range.
777 * ==========================================================================
779 static uint64_t
780 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
782 range_tree_t *rt = msp->ms_tree;
783 avl_tree_t *t = &msp->ms_size_tree;
784 uint64_t *cursor = &msp->ms_lbas[0];
785 uint64_t *cursor_end = &msp->ms_lbas[1];
786 uint64_t offset = 0;
788 ASSERT(MUTEX_HELD(&msp->ms_lock));
789 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
791 ASSERT3U(*cursor_end, >=, *cursor);
793 if ((*cursor + size) > *cursor_end) {
794 range_seg_t *rs;
796 rs = avl_last(&msp->ms_size_tree);
797 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
798 return (-1ULL);
800 *cursor = rs->rs_start;
801 *cursor_end = rs->rs_end;
804 offset = *cursor;
805 *cursor += size;
807 return (offset);
810 static boolean_t
811 metaslab_cf_fragmented(metaslab_t *msp)
813 return (metaslab_block_maxsize(msp) < metaslab_min_alloc_size);
816 static metaslab_ops_t metaslab_cf_ops = {
817 metaslab_cf_alloc,
818 metaslab_cf_fragmented
822 * ==========================================================================
823 * New dynamic fit allocator -
824 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
825 * contiguous blocks. If no region is found then just use the largest segment
826 * that remains.
827 * ==========================================================================
831 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
832 * to request from the allocator.
834 uint64_t metaslab_ndf_clump_shift = 4;
836 static uint64_t
837 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
839 avl_tree_t *t = &msp->ms_tree->rt_root;
840 avl_index_t where;
841 range_seg_t *rs, rsearch;
842 uint64_t hbit = highbit64(size);
843 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
844 uint64_t max_size = metaslab_block_maxsize(msp);
846 ASSERT(MUTEX_HELD(&msp->ms_lock));
847 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
849 if (max_size < size)
850 return (-1ULL);
852 rsearch.rs_start = *cursor;
853 rsearch.rs_end = *cursor + size;
855 rs = avl_find(t, &rsearch, &where);
856 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
857 t = &msp->ms_size_tree;
859 rsearch.rs_start = 0;
860 rsearch.rs_end = MIN(max_size,
861 1ULL << (hbit + metaslab_ndf_clump_shift));
862 rs = avl_find(t, &rsearch, &where);
863 if (rs == NULL)
864 rs = avl_nearest(t, where, AVL_AFTER);
865 ASSERT(rs != NULL);
868 if ((rs->rs_end - rs->rs_start) >= size) {
869 *cursor = rs->rs_start + size;
870 return (rs->rs_start);
872 return (-1ULL);
875 static boolean_t
876 metaslab_ndf_fragmented(metaslab_t *msp)
878 return (metaslab_block_maxsize(msp) <=
879 (metaslab_min_alloc_size << metaslab_ndf_clump_shift));
882 static metaslab_ops_t metaslab_ndf_ops = {
883 metaslab_ndf_alloc,
884 metaslab_ndf_fragmented
887 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
890 * ==========================================================================
891 * Metaslabs
892 * ==========================================================================
896 * Wait for any in-progress metaslab loads to complete.
898 void
899 metaslab_load_wait(metaslab_t *msp)
901 ASSERT(MUTEX_HELD(&msp->ms_lock));
903 while (msp->ms_loading) {
904 ASSERT(!msp->ms_loaded);
905 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
910 metaslab_load(metaslab_t *msp)
912 int error = 0;
914 ASSERT(MUTEX_HELD(&msp->ms_lock));
915 ASSERT(!msp->ms_loaded);
916 ASSERT(!msp->ms_loading);
918 msp->ms_loading = B_TRUE;
921 * If the space map has not been allocated yet, then treat
922 * all the space in the metaslab as free and add it to the
923 * ms_tree.
925 if (msp->ms_sm != NULL)
926 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
927 else
928 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
930 msp->ms_loaded = (error == 0);
931 msp->ms_loading = B_FALSE;
933 if (msp->ms_loaded) {
934 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
935 range_tree_walk(msp->ms_defertree[t],
936 range_tree_remove, msp->ms_tree);
939 cv_broadcast(&msp->ms_load_cv);
940 return (error);
943 void
944 metaslab_unload(metaslab_t *msp)
946 ASSERT(MUTEX_HELD(&msp->ms_lock));
947 range_tree_vacate(msp->ms_tree, NULL, NULL);
948 msp->ms_loaded = B_FALSE;
949 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
952 metaslab_t *
953 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg)
955 vdev_t *vd = mg->mg_vd;
956 objset_t *mos = vd->vdev_spa->spa_meta_objset;
957 metaslab_t *msp;
959 msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
960 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
961 cv_init(&msp->ms_load_cv, NULL, CV_DEFAULT, NULL);
962 msp->ms_id = id;
963 msp->ms_start = id << vd->vdev_ms_shift;
964 msp->ms_size = 1ULL << vd->vdev_ms_shift;
967 * We only open space map objects that already exist. All others
968 * will be opened when we finally allocate an object for it.
970 if (object != 0) {
971 VERIFY0(space_map_open(&msp->ms_sm, mos, object, msp->ms_start,
972 msp->ms_size, vd->vdev_ashift, &msp->ms_lock));
973 ASSERT(msp->ms_sm != NULL);
977 * We create the main range tree here, but we don't create the
978 * alloctree and freetree until metaslab_sync_done(). This serves
979 * two purposes: it allows metaslab_sync_done() to detect the
980 * addition of new space; and for debugging, it ensures that we'd
981 * data fault on any attempt to use this metaslab before it's ready.
983 msp->ms_tree = range_tree_create(&metaslab_rt_ops, msp, &msp->ms_lock);
984 metaslab_group_add(mg, msp);
986 msp->ms_ops = mg->mg_class->mc_ops;
989 * If we're opening an existing pool (txg == 0) or creating
990 * a new one (txg == TXG_INITIAL), all space is available now.
991 * If we're adding space to an existing pool, the new space
992 * does not become available until after this txg has synced.
994 if (txg <= TXG_INITIAL)
995 metaslab_sync_done(msp, 0);
998 * If metaslab_debug_load is set and we're initializing a metaslab
999 * that has an allocated space_map object then load the its space
1000 * map so that can verify frees.
1002 if (metaslab_debug_load && msp->ms_sm != NULL) {
1003 mutex_enter(&msp->ms_lock);
1004 VERIFY0(metaslab_load(msp));
1005 mutex_exit(&msp->ms_lock);
1008 if (txg != 0) {
1009 vdev_dirty(vd, 0, NULL, txg);
1010 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1013 return (msp);
1016 void
1017 metaslab_fini(metaslab_t *msp)
1019 metaslab_group_t *mg = msp->ms_group;
1021 metaslab_group_remove(mg, msp);
1023 mutex_enter(&msp->ms_lock);
1025 VERIFY(msp->ms_group == NULL);
1026 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1027 0, -msp->ms_size);
1028 space_map_close(msp->ms_sm);
1030 metaslab_unload(msp);
1031 range_tree_destroy(msp->ms_tree);
1033 for (int t = 0; t < TXG_SIZE; t++) {
1034 range_tree_destroy(msp->ms_alloctree[t]);
1035 range_tree_destroy(msp->ms_freetree[t]);
1038 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1039 range_tree_destroy(msp->ms_defertree[t]);
1042 ASSERT0(msp->ms_deferspace);
1044 mutex_exit(&msp->ms_lock);
1045 cv_destroy(&msp->ms_load_cv);
1046 mutex_destroy(&msp->ms_lock);
1048 kmem_free(msp, sizeof (metaslab_t));
1052 * Apply a weighting factor based on the histogram information for this
1053 * metaslab. The current weighting factor is somewhat arbitrary and requires
1054 * additional investigation. The implementation provides a measure of
1055 * "weighted" free space and gives a higher weighting for larger contiguous
1056 * regions. The weighting factor is determined by counting the number of
1057 * sm_shift sectors that exist in each region represented by the histogram.
1058 * That value is then multiplied by the power of 2 exponent and the sm_shift
1059 * value.
1061 * For example, assume the 2^21 histogram bucket has 4 2MB regions and the
1062 * metaslab has an sm_shift value of 9 (512B):
1064 * 1) calculate the number of sm_shift sectors in the region:
1065 * 2^21 / 2^9 = 2^12 = 4096 * 4 (number of regions) = 16384
1066 * 2) multiply by the power of 2 exponent and the sm_shift value:
1067 * 16384 * 21 * 9 = 3096576
1068 * This value will be added to the weighting of the metaslab.
1070 static uint64_t
1071 metaslab_weight_factor(metaslab_t *msp)
1073 uint64_t factor = 0;
1074 uint64_t sectors;
1075 int i;
1078 * A null space map means that the entire metaslab is free,
1079 * calculate a weight factor that spans the entire size of the
1080 * metaslab.
1082 if (msp->ms_sm == NULL) {
1083 vdev_t *vd = msp->ms_group->mg_vd;
1085 i = highbit64(msp->ms_size) - 1;
1086 sectors = msp->ms_size >> vd->vdev_ashift;
1087 return (sectors * i * vd->vdev_ashift);
1090 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
1091 return (0);
1093 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE(msp->ms_sm); i++) {
1094 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1095 continue;
1098 * Determine the number of sm_shift sectors in the region
1099 * indicated by the histogram. For example, given an
1100 * sm_shift value of 9 (512 bytes) and i = 4 then we know
1101 * that we're looking at an 8K region in the histogram
1102 * (i.e. 9 + 4 = 13, 2^13 = 8192). To figure out the
1103 * number of sm_shift sectors (512 bytes in this example),
1104 * we would take 8192 / 512 = 16. Since the histogram
1105 * is offset by sm_shift we can simply use the value of
1106 * of i to calculate this (i.e. 2^i = 16 where i = 4).
1108 sectors = msp->ms_sm->sm_phys->smp_histogram[i] << i;
1109 factor += (i + msp->ms_sm->sm_shift) * sectors;
1111 return (factor * msp->ms_sm->sm_shift);
1114 static uint64_t
1115 metaslab_weight(metaslab_t *msp)
1117 metaslab_group_t *mg = msp->ms_group;
1118 vdev_t *vd = mg->mg_vd;
1119 uint64_t weight, space;
1121 ASSERT(MUTEX_HELD(&msp->ms_lock));
1124 * This vdev is in the process of being removed so there is nothing
1125 * for us to do here.
1127 if (vd->vdev_removing) {
1128 ASSERT0(space_map_allocated(msp->ms_sm));
1129 ASSERT0(vd->vdev_ms_shift);
1130 return (0);
1134 * The baseline weight is the metaslab's free space.
1136 space = msp->ms_size - space_map_allocated(msp->ms_sm);
1137 weight = space;
1140 * Modern disks have uniform bit density and constant angular velocity.
1141 * Therefore, the outer recording zones are faster (higher bandwidth)
1142 * than the inner zones by the ratio of outer to inner track diameter,
1143 * which is typically around 2:1. We account for this by assigning
1144 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1145 * In effect, this means that we'll select the metaslab with the most
1146 * free bandwidth rather than simply the one with the most free space.
1148 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1149 ASSERT(weight >= space && weight <= 2 * space);
1151 msp->ms_factor = metaslab_weight_factor(msp);
1152 if (metaslab_weight_factor_enable)
1153 weight += msp->ms_factor;
1155 if (msp->ms_loaded && !msp->ms_ops->msop_fragmented(msp)) {
1157 * If this metaslab is one we're actively using, adjust its
1158 * weight to make it preferable to any inactive metaslab so
1159 * we'll polish it off.
1161 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1164 return (weight);
1167 static int
1168 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1170 ASSERT(MUTEX_HELD(&msp->ms_lock));
1172 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1173 metaslab_load_wait(msp);
1174 if (!msp->ms_loaded) {
1175 int error = metaslab_load(msp);
1176 if (error) {
1177 metaslab_group_sort(msp->ms_group, msp, 0);
1178 return (error);
1182 metaslab_group_sort(msp->ms_group, msp,
1183 msp->ms_weight | activation_weight);
1185 ASSERT(msp->ms_loaded);
1186 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1188 return (0);
1191 static void
1192 metaslab_passivate(metaslab_t *msp, uint64_t size)
1195 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1196 * this metaslab again. In that case, it had better be empty,
1197 * or we would be leaving space on the table.
1199 ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0);
1200 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
1201 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1204 static void
1205 metaslab_preload(void *arg)
1207 metaslab_t *msp = arg;
1208 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1210 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
1212 mutex_enter(&msp->ms_lock);
1213 metaslab_load_wait(msp);
1214 if (!msp->ms_loaded)
1215 (void) metaslab_load(msp);
1218 * Set the ms_access_txg value so that we don't unload it right away.
1220 msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1;
1221 mutex_exit(&msp->ms_lock);
1224 static void
1225 metaslab_group_preload(metaslab_group_t *mg)
1227 spa_t *spa = mg->mg_vd->vdev_spa;
1228 metaslab_t *msp;
1229 avl_tree_t *t = &mg->mg_metaslab_tree;
1230 int m = 0;
1232 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1233 taskq_wait(mg->mg_taskq);
1234 return;
1237 mutex_enter(&mg->mg_lock);
1239 * Load the next potential metaslabs
1241 msp = avl_first(t);
1242 while (msp != NULL) {
1243 metaslab_t *msp_next = AVL_NEXT(t, msp);
1245 /* If we have reached our preload limit then we're done */
1246 if (++m > metaslab_preload_limit)
1247 break;
1250 * We must drop the metaslab group lock here to preserve
1251 * lock ordering with the ms_lock (when grabbing both
1252 * the mg_lock and the ms_lock, the ms_lock must be taken
1253 * first). As a result, it is possible that the ordering
1254 * of the metaslabs within the avl tree may change before
1255 * we reacquire the lock. The metaslab cannot be removed from
1256 * the tree while we're in syncing context so it is safe to
1257 * drop the mg_lock here. If the metaslabs are reordered
1258 * nothing will break -- we just may end up loading a
1259 * less than optimal one.
1261 mutex_exit(&mg->mg_lock);
1262 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
1263 msp, TQ_SLEEP) != NULL);
1264 mutex_enter(&mg->mg_lock);
1265 msp = msp_next;
1267 mutex_exit(&mg->mg_lock);
1271 * Determine if the space map's on-disk footprint is past our tolerance
1272 * for inefficiency. We would like to use the following criteria to make
1273 * our decision:
1275 * 1. The size of the space map object should not dramatically increase as a
1276 * result of writing out the free space range tree.
1278 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
1279 * times the size than the free space range tree representation
1280 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
1282 * Checking the first condition is tricky since we don't want to walk
1283 * the entire AVL tree calculating the estimated on-disk size. Instead we
1284 * use the size-ordered range tree in the metaslab and calculate the
1285 * size required to write out the largest segment in our free tree. If the
1286 * size required to represent that segment on disk is larger than the space
1287 * map object then we avoid condensing this map.
1289 * To determine the second criterion we use a best-case estimate and assume
1290 * each segment can be represented on-disk as a single 64-bit entry. We refer
1291 * to this best-case estimate as the space map's minimal form.
1293 static boolean_t
1294 metaslab_should_condense(metaslab_t *msp)
1296 space_map_t *sm = msp->ms_sm;
1297 range_seg_t *rs;
1298 uint64_t size, entries, segsz;
1300 ASSERT(MUTEX_HELD(&msp->ms_lock));
1301 ASSERT(msp->ms_loaded);
1304 * Use the ms_size_tree range tree, which is ordered by size, to
1305 * obtain the largest segment in the free tree. If the tree is empty
1306 * then we should condense the map.
1308 rs = avl_last(&msp->ms_size_tree);
1309 if (rs == NULL)
1310 return (B_TRUE);
1313 * Calculate the number of 64-bit entries this segment would
1314 * require when written to disk. If this single segment would be
1315 * larger on-disk than the entire current on-disk structure, then
1316 * clearly condensing will increase the on-disk structure size.
1318 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
1319 entries = size / (MIN(size, SM_RUN_MAX));
1320 segsz = entries * sizeof (uint64_t);
1322 return (segsz <= space_map_length(msp->ms_sm) &&
1323 space_map_length(msp->ms_sm) >= (zfs_condense_pct *
1324 sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root)) / 100);
1328 * Condense the on-disk space map representation to its minimized form.
1329 * The minimized form consists of a small number of allocations followed by
1330 * the entries of the free range tree.
1332 static void
1333 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1335 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1336 range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK];
1337 range_tree_t *condense_tree;
1338 space_map_t *sm = msp->ms_sm;
1340 ASSERT(MUTEX_HELD(&msp->ms_lock));
1341 ASSERT3U(spa_sync_pass(spa), ==, 1);
1342 ASSERT(msp->ms_loaded);
1344 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
1345 "smp size %llu, segments %lu", txg, msp->ms_id, msp,
1346 space_map_length(msp->ms_sm), avl_numnodes(&msp->ms_tree->rt_root));
1349 * Create an range tree that is 100% allocated. We remove segments
1350 * that have been freed in this txg, any deferred frees that exist,
1351 * and any allocation in the future. Removing segments should be
1352 * a relatively inexpensive operation since we expect these trees to
1353 * have a small number of nodes.
1355 condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
1356 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
1359 * Remove what's been freed in this txg from the condense_tree.
1360 * Since we're in sync_pass 1, we know that all the frees from
1361 * this txg are in the freetree.
1363 range_tree_walk(freetree, range_tree_remove, condense_tree);
1365 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1366 range_tree_walk(msp->ms_defertree[t],
1367 range_tree_remove, condense_tree);
1370 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
1371 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
1372 range_tree_remove, condense_tree);
1376 * We're about to drop the metaslab's lock thus allowing
1377 * other consumers to change it's content. Set the
1378 * metaslab's ms_condensing flag to ensure that
1379 * allocations on this metaslab do not occur while we're
1380 * in the middle of committing it to disk. This is only critical
1381 * for the ms_tree as all other range trees use per txg
1382 * views of their content.
1384 msp->ms_condensing = B_TRUE;
1386 mutex_exit(&msp->ms_lock);
1387 space_map_truncate(sm, tx);
1388 mutex_enter(&msp->ms_lock);
1391 * While we would ideally like to create a space_map representation
1392 * that consists only of allocation records, doing so can be
1393 * prohibitively expensive because the in-core free tree can be
1394 * large, and therefore computationally expensive to subtract
1395 * from the condense_tree. Instead we sync out two trees, a cheap
1396 * allocation only tree followed by the in-core free tree. While not
1397 * optimal, this is typically close to optimal, and much cheaper to
1398 * compute.
1400 space_map_write(sm, condense_tree, SM_ALLOC, tx);
1401 range_tree_vacate(condense_tree, NULL, NULL);
1402 range_tree_destroy(condense_tree);
1404 space_map_write(sm, msp->ms_tree, SM_FREE, tx);
1405 msp->ms_condensing = B_FALSE;
1409 * Write a metaslab to disk in the context of the specified transaction group.
1411 void
1412 metaslab_sync(metaslab_t *msp, uint64_t txg)
1414 metaslab_group_t *mg = msp->ms_group;
1415 vdev_t *vd = mg->mg_vd;
1416 spa_t *spa = vd->vdev_spa;
1417 objset_t *mos = spa_meta_objset(spa);
1418 range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
1419 range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK];
1420 range_tree_t **freed_tree =
1421 &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1422 dmu_tx_t *tx;
1423 uint64_t object = space_map_object(msp->ms_sm);
1425 ASSERT(!vd->vdev_ishole);
1428 * This metaslab has just been added so there's no work to do now.
1430 if (*freetree == NULL) {
1431 ASSERT3P(alloctree, ==, NULL);
1432 return;
1435 ASSERT3P(alloctree, !=, NULL);
1436 ASSERT3P(*freetree, !=, NULL);
1437 ASSERT3P(*freed_tree, !=, NULL);
1439 if (range_tree_space(alloctree) == 0 &&
1440 range_tree_space(*freetree) == 0)
1441 return;
1444 * The only state that can actually be changing concurrently with
1445 * metaslab_sync() is the metaslab's ms_tree. No other thread can
1446 * be modifying this txg's alloctree, freetree, freed_tree, or
1447 * space_map_phys_t. Therefore, we only hold ms_lock to satify
1448 * space_map ASSERTs. We drop it whenever we call into the DMU,
1449 * because the DMU can call down to us (e.g. via zio_free()) at
1450 * any time.
1453 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1455 if (msp->ms_sm == NULL) {
1456 uint64_t new_object;
1458 new_object = space_map_alloc(mos, tx);
1459 VERIFY3U(new_object, !=, 0);
1461 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
1462 msp->ms_start, msp->ms_size, vd->vdev_ashift,
1463 &msp->ms_lock));
1464 ASSERT(msp->ms_sm != NULL);
1467 mutex_enter(&msp->ms_lock);
1469 if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
1470 metaslab_should_condense(msp)) {
1471 metaslab_condense(msp, txg, tx);
1472 } else {
1473 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
1474 space_map_write(msp->ms_sm, *freetree, SM_FREE, tx);
1477 range_tree_vacate(alloctree, NULL, NULL);
1479 if (msp->ms_loaded) {
1481 * When the space map is loaded, we have an accruate
1482 * histogram in the range tree. This gives us an opportunity
1483 * to bring the space map's histogram up-to-date so we clear
1484 * it first before updating it.
1486 space_map_histogram_clear(msp->ms_sm);
1487 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
1488 } else {
1490 * Since the space map is not loaded we simply update the
1491 * exisiting histogram with what was freed in this txg. This
1492 * means that the on-disk histogram may not have an accurate
1493 * view of the free space but it's close enough to allow
1494 * us to make allocation decisions.
1496 space_map_histogram_add(msp->ms_sm, *freetree, tx);
1500 * For sync pass 1, we avoid traversing this txg's free range tree
1501 * and instead will just swap the pointers for freetree and
1502 * freed_tree. We can safely do this since the freed_tree is
1503 * guaranteed to be empty on the initial pass.
1505 if (spa_sync_pass(spa) == 1) {
1506 range_tree_swap(freetree, freed_tree);
1507 } else {
1508 range_tree_vacate(*freetree, range_tree_add, *freed_tree);
1511 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1512 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1514 mutex_exit(&msp->ms_lock);
1516 if (object != space_map_object(msp->ms_sm)) {
1517 object = space_map_object(msp->ms_sm);
1518 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
1519 msp->ms_id, sizeof (uint64_t), &object, tx);
1521 dmu_tx_commit(tx);
1525 * Called after a transaction group has completely synced to mark
1526 * all of the metaslab's free space as usable.
1528 void
1529 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1531 metaslab_group_t *mg = msp->ms_group;
1532 vdev_t *vd = mg->mg_vd;
1533 range_tree_t **freed_tree;
1534 range_tree_t **defer_tree;
1535 int64_t alloc_delta, defer_delta;
1537 ASSERT(!vd->vdev_ishole);
1539 mutex_enter(&msp->ms_lock);
1542 * If this metaslab is just becoming available, initialize its
1543 * alloctrees, freetrees, and defertree and add its capacity to
1544 * the vdev.
1546 if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) {
1547 for (int t = 0; t < TXG_SIZE; t++) {
1548 ASSERT(msp->ms_alloctree[t] == NULL);
1549 ASSERT(msp->ms_freetree[t] == NULL);
1551 msp->ms_alloctree[t] = range_tree_create(NULL, msp,
1552 &msp->ms_lock);
1553 msp->ms_freetree[t] = range_tree_create(NULL, msp,
1554 &msp->ms_lock);
1557 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1558 ASSERT(msp->ms_defertree[t] == NULL);
1560 msp->ms_defertree[t] = range_tree_create(NULL, msp,
1561 &msp->ms_lock);
1564 vdev_space_update(vd, 0, 0, msp->ms_size);
1567 freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1568 defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
1570 alloc_delta = space_map_alloc_delta(msp->ms_sm);
1571 defer_delta = range_tree_space(*freed_tree) -
1572 range_tree_space(*defer_tree);
1574 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1576 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1577 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1580 * If there's a metaslab_load() in progress, wait for it to complete
1581 * so that we have a consistent view of the in-core space map.
1583 metaslab_load_wait(msp);
1586 * Move the frees from the defer_tree back to the free
1587 * range tree (if it's loaded). Swap the freed_tree and the
1588 * defer_tree -- this is safe to do because we've just emptied out
1589 * the defer_tree.
1591 range_tree_vacate(*defer_tree,
1592 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
1593 range_tree_swap(freed_tree, defer_tree);
1595 space_map_update(msp->ms_sm);
1597 msp->ms_deferspace += defer_delta;
1598 ASSERT3S(msp->ms_deferspace, >=, 0);
1599 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
1600 if (msp->ms_deferspace != 0) {
1602 * Keep syncing this metaslab until all deferred frees
1603 * are back in circulation.
1605 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1608 if (msp->ms_loaded && msp->ms_access_txg < txg) {
1609 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
1610 VERIFY0(range_tree_space(
1611 msp->ms_alloctree[(txg + t) & TXG_MASK]));
1614 if (!metaslab_debug_unload)
1615 metaslab_unload(msp);
1618 metaslab_group_sort(mg, msp, metaslab_weight(msp));
1619 mutex_exit(&msp->ms_lock);
1623 void
1624 metaslab_sync_reassess(metaslab_group_t *mg)
1626 metaslab_group_alloc_update(mg);
1629 * Preload the next potential metaslabs
1631 metaslab_group_preload(mg);
1634 static uint64_t
1635 metaslab_distance(metaslab_t *msp, dva_t *dva)
1637 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
1638 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
1639 uint64_t start = msp->ms_id;
1641 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
1642 return (1ULL << 63);
1644 if (offset < start)
1645 return ((start - offset) << ms_shift);
1646 if (offset > start)
1647 return ((offset - start) << ms_shift);
1648 return (0);
1651 static uint64_t
1652 metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
1653 uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
1655 spa_t *spa = mg->mg_vd->vdev_spa;
1656 metaslab_t *msp = NULL;
1657 uint64_t offset = -1ULL;
1658 avl_tree_t *t = &mg->mg_metaslab_tree;
1659 uint64_t activation_weight;
1660 uint64_t target_distance;
1661 int i;
1663 activation_weight = METASLAB_WEIGHT_PRIMARY;
1664 for (i = 0; i < d; i++) {
1665 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
1666 activation_weight = METASLAB_WEIGHT_SECONDARY;
1667 break;
1671 for (;;) {
1672 boolean_t was_active;
1674 mutex_enter(&mg->mg_lock);
1675 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
1676 if (msp->ms_weight < asize) {
1677 spa_dbgmsg(spa, "%s: failed to meet weight "
1678 "requirement: vdev %llu, txg %llu, mg %p, "
1679 "msp %p, psize %llu, asize %llu, "
1680 "weight %llu", spa_name(spa),
1681 mg->mg_vd->vdev_id, txg,
1682 mg, msp, psize, asize, msp->ms_weight);
1683 mutex_exit(&mg->mg_lock);
1684 return (-1ULL);
1688 * If the selected metaslab is condensing, skip it.
1690 if (msp->ms_condensing)
1691 continue;
1693 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
1694 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
1695 break;
1697 target_distance = min_distance +
1698 (space_map_allocated(msp->ms_sm) != 0 ? 0 :
1699 min_distance >> 1);
1701 for (i = 0; i < d; i++)
1702 if (metaslab_distance(msp, &dva[i]) <
1703 target_distance)
1704 break;
1705 if (i == d)
1706 break;
1708 mutex_exit(&mg->mg_lock);
1709 if (msp == NULL)
1710 return (-1ULL);
1712 mutex_enter(&msp->ms_lock);
1715 * Ensure that the metaslab we have selected is still
1716 * capable of handling our request. It's possible that
1717 * another thread may have changed the weight while we
1718 * were blocked on the metaslab lock.
1720 if (msp->ms_weight < asize || (was_active &&
1721 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
1722 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
1723 mutex_exit(&msp->ms_lock);
1724 continue;
1727 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
1728 activation_weight == METASLAB_WEIGHT_PRIMARY) {
1729 metaslab_passivate(msp,
1730 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
1731 mutex_exit(&msp->ms_lock);
1732 continue;
1735 if (metaslab_activate(msp, activation_weight) != 0) {
1736 mutex_exit(&msp->ms_lock);
1737 continue;
1741 * If this metaslab is currently condensing then pick again as
1742 * we can't manipulate this metaslab until it's committed
1743 * to disk.
1745 if (msp->ms_condensing) {
1746 mutex_exit(&msp->ms_lock);
1747 continue;
1750 if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL)
1751 break;
1753 metaslab_passivate(msp, metaslab_block_maxsize(msp));
1754 mutex_exit(&msp->ms_lock);
1757 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
1758 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
1760 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize);
1761 msp->ms_access_txg = txg + metaslab_unload_delay;
1763 mutex_exit(&msp->ms_lock);
1765 return (offset);
1769 * Allocate a block for the specified i/o.
1771 static int
1772 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
1773 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
1775 metaslab_group_t *mg, *rotor;
1776 vdev_t *vd;
1777 int dshift = 3;
1778 int all_zero;
1779 int zio_lock = B_FALSE;
1780 boolean_t allocatable;
1781 uint64_t offset = -1ULL;
1782 uint64_t asize;
1783 uint64_t distance;
1785 ASSERT(!DVA_IS_VALID(&dva[d]));
1788 * For testing, make some blocks above a certain size be gang blocks.
1790 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
1791 return (SET_ERROR(ENOSPC));
1794 * Start at the rotor and loop through all mgs until we find something.
1795 * Note that there's no locking on mc_rotor or mc_aliquot because
1796 * nothing actually breaks if we miss a few updates -- we just won't
1797 * allocate quite as evenly. It all balances out over time.
1799 * If we are doing ditto or log blocks, try to spread them across
1800 * consecutive vdevs. If we're forced to reuse a vdev before we've
1801 * allocated all of our ditto blocks, then try and spread them out on
1802 * that vdev as much as possible. If it turns out to not be possible,
1803 * gradually lower our standards until anything becomes acceptable.
1804 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
1805 * gives us hope of containing our fault domains to something we're
1806 * able to reason about. Otherwise, any two top-level vdev failures
1807 * will guarantee the loss of data. With consecutive allocation,
1808 * only two adjacent top-level vdev failures will result in data loss.
1810 * If we are doing gang blocks (hintdva is non-NULL), try to keep
1811 * ourselves on the same vdev as our gang block header. That
1812 * way, we can hope for locality in vdev_cache, plus it makes our
1813 * fault domains something tractable.
1815 if (hintdva) {
1816 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
1819 * It's possible the vdev we're using as the hint no
1820 * longer exists (i.e. removed). Consult the rotor when
1821 * all else fails.
1823 if (vd != NULL) {
1824 mg = vd->vdev_mg;
1826 if (flags & METASLAB_HINTBP_AVOID &&
1827 mg->mg_next != NULL)
1828 mg = mg->mg_next;
1829 } else {
1830 mg = mc->mc_rotor;
1832 } else if (d != 0) {
1833 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
1834 mg = vd->vdev_mg->mg_next;
1835 } else {
1836 mg = mc->mc_rotor;
1840 * If the hint put us into the wrong metaslab class, or into a
1841 * metaslab group that has been passivated, just follow the rotor.
1843 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
1844 mg = mc->mc_rotor;
1846 rotor = mg;
1847 top:
1848 all_zero = B_TRUE;
1849 do {
1850 ASSERT(mg->mg_activation_count == 1);
1852 vd = mg->mg_vd;
1855 * Don't allocate from faulted devices.
1857 if (zio_lock) {
1858 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
1859 allocatable = vdev_allocatable(vd);
1860 spa_config_exit(spa, SCL_ZIO, FTAG);
1861 } else {
1862 allocatable = vdev_allocatable(vd);
1866 * Determine if the selected metaslab group is eligible
1867 * for allocations. If we're ganging or have requested
1868 * an allocation for the smallest gang block size
1869 * then we don't want to avoid allocating to the this
1870 * metaslab group. If we're in this condition we should
1871 * try to allocate from any device possible so that we
1872 * don't inadvertently return ENOSPC and suspend the pool
1873 * even though space is still available.
1875 if (allocatable && CAN_FASTGANG(flags) &&
1876 psize > SPA_GANGBLOCKSIZE)
1877 allocatable = metaslab_group_allocatable(mg);
1879 if (!allocatable)
1880 goto next;
1883 * Avoid writing single-copy data to a failing vdev
1884 * unless the user instructs us that it is okay.
1886 if ((vd->vdev_stat.vs_write_errors > 0 ||
1887 vd->vdev_state < VDEV_STATE_HEALTHY) &&
1888 d == 0 && dshift == 3 &&
1889 !(zfs_write_to_degraded && vd->vdev_state ==
1890 VDEV_STATE_DEGRADED)) {
1891 all_zero = B_FALSE;
1892 goto next;
1895 ASSERT(mg->mg_class == mc);
1897 distance = vd->vdev_asize >> dshift;
1898 if (distance <= (1ULL << vd->vdev_ms_shift))
1899 distance = 0;
1900 else
1901 all_zero = B_FALSE;
1903 asize = vdev_psize_to_asize(vd, psize);
1904 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
1906 offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
1907 dva, d);
1908 if (offset != -1ULL) {
1910 * If we've just selected this metaslab group,
1911 * figure out whether the corresponding vdev is
1912 * over- or under-used relative to the pool,
1913 * and set an allocation bias to even it out.
1915 if (mc->mc_aliquot == 0) {
1916 vdev_stat_t *vs = &vd->vdev_stat;
1917 int64_t vu, cu;
1919 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
1920 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
1923 * Calculate how much more or less we should
1924 * try to allocate from this device during
1925 * this iteration around the rotor.
1926 * For example, if a device is 80% full
1927 * and the pool is 20% full then we should
1928 * reduce allocations by 60% on this device.
1930 * mg_bias = (20 - 80) * 512K / 100 = -307K
1932 * This reduces allocations by 307K for this
1933 * iteration.
1935 mg->mg_bias = ((cu - vu) *
1936 (int64_t)mg->mg_aliquot) / 100;
1939 if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
1940 mg->mg_aliquot + mg->mg_bias) {
1941 mc->mc_rotor = mg->mg_next;
1942 mc->mc_aliquot = 0;
1945 DVA_SET_VDEV(&dva[d], vd->vdev_id);
1946 DVA_SET_OFFSET(&dva[d], offset);
1947 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
1948 DVA_SET_ASIZE(&dva[d], asize);
1950 return (0);
1952 next:
1953 mc->mc_rotor = mg->mg_next;
1954 mc->mc_aliquot = 0;
1955 } while ((mg = mg->mg_next) != rotor);
1957 if (!all_zero) {
1958 dshift++;
1959 ASSERT(dshift < 64);
1960 goto top;
1963 if (!allocatable && !zio_lock) {
1964 dshift = 3;
1965 zio_lock = B_TRUE;
1966 goto top;
1969 bzero(&dva[d], sizeof (dva_t));
1971 return (SET_ERROR(ENOSPC));
1975 * Free the block represented by DVA in the context of the specified
1976 * transaction group.
1978 static void
1979 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
1981 uint64_t vdev = DVA_GET_VDEV(dva);
1982 uint64_t offset = DVA_GET_OFFSET(dva);
1983 uint64_t size = DVA_GET_ASIZE(dva);
1984 vdev_t *vd;
1985 metaslab_t *msp;
1987 ASSERT(DVA_IS_VALID(dva));
1989 if (txg > spa_freeze_txg(spa))
1990 return;
1992 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1993 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
1994 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
1995 (u_longlong_t)vdev, (u_longlong_t)offset);
1996 ASSERT(0);
1997 return;
2000 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2002 if (DVA_GET_GANG(dva))
2003 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2005 mutex_enter(&msp->ms_lock);
2007 if (now) {
2008 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
2009 offset, size);
2011 VERIFY(!msp->ms_condensing);
2012 VERIFY3U(offset, >=, msp->ms_start);
2013 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
2014 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
2015 msp->ms_size);
2016 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2017 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2018 range_tree_add(msp->ms_tree, offset, size);
2019 } else {
2020 if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0)
2021 vdev_dirty(vd, VDD_METASLAB, msp, txg);
2022 range_tree_add(msp->ms_freetree[txg & TXG_MASK],
2023 offset, size);
2026 mutex_exit(&msp->ms_lock);
2030 * Intent log support: upon opening the pool after a crash, notify the SPA
2031 * of blocks that the intent log has allocated for immediate write, but
2032 * which are still considered free by the SPA because the last transaction
2033 * group didn't commit yet.
2035 static int
2036 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
2038 uint64_t vdev = DVA_GET_VDEV(dva);
2039 uint64_t offset = DVA_GET_OFFSET(dva);
2040 uint64_t size = DVA_GET_ASIZE(dva);
2041 vdev_t *vd;
2042 metaslab_t *msp;
2043 int error = 0;
2045 ASSERT(DVA_IS_VALID(dva));
2047 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2048 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
2049 return (SET_ERROR(ENXIO));
2051 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2053 if (DVA_GET_GANG(dva))
2054 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2056 mutex_enter(&msp->ms_lock);
2058 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
2059 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
2061 if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
2062 error = SET_ERROR(ENOENT);
2064 if (error || txg == 0) { /* txg == 0 indicates dry run */
2065 mutex_exit(&msp->ms_lock);
2066 return (error);
2069 VERIFY(!msp->ms_condensing);
2070 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2071 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2072 VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
2073 range_tree_remove(msp->ms_tree, offset, size);
2075 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
2076 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2077 vdev_dirty(vd, VDD_METASLAB, msp, txg);
2078 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
2081 mutex_exit(&msp->ms_lock);
2083 return (0);
2087 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
2088 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
2090 dva_t *dva = bp->blk_dva;
2091 dva_t *hintdva = hintbp->blk_dva;
2092 int error = 0;
2094 ASSERT(bp->blk_birth == 0);
2095 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
2097 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2099 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
2100 spa_config_exit(spa, SCL_ALLOC, FTAG);
2101 return (SET_ERROR(ENOSPC));
2104 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
2105 ASSERT(BP_GET_NDVAS(bp) == 0);
2106 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
2108 for (int d = 0; d < ndvas; d++) {
2109 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
2110 txg, flags);
2111 if (error != 0) {
2112 for (d--; d >= 0; d--) {
2113 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
2114 bzero(&dva[d], sizeof (dva_t));
2116 spa_config_exit(spa, SCL_ALLOC, FTAG);
2117 return (error);
2120 ASSERT(error == 0);
2121 ASSERT(BP_GET_NDVAS(bp) == ndvas);
2123 spa_config_exit(spa, SCL_ALLOC, FTAG);
2125 BP_SET_BIRTH(bp, txg, txg);
2127 return (0);
2130 void
2131 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
2133 const dva_t *dva = bp->blk_dva;
2134 int ndvas = BP_GET_NDVAS(bp);
2136 ASSERT(!BP_IS_HOLE(bp));
2137 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
2139 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
2141 for (int d = 0; d < ndvas; d++)
2142 metaslab_free_dva(spa, &dva[d], txg, now);
2144 spa_config_exit(spa, SCL_FREE, FTAG);
2148 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
2150 const dva_t *dva = bp->blk_dva;
2151 int ndvas = BP_GET_NDVAS(bp);
2152 int error = 0;
2154 ASSERT(!BP_IS_HOLE(bp));
2156 if (txg != 0) {
2158 * First do a dry run to make sure all DVAs are claimable,
2159 * so we don't have to unwind from partial failures below.
2161 if ((error = metaslab_claim(spa, bp, 0)) != 0)
2162 return (error);
2165 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2167 for (int d = 0; d < ndvas; d++)
2168 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
2169 break;
2171 spa_config_exit(spa, SCL_ALLOC, FTAG);
2173 ASSERT(error == 0 || txg == 0);
2175 return (error);
2178 void
2179 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
2181 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
2182 return;
2184 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2185 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
2186 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
2187 vdev_t *vd = vdev_lookup_top(spa, vdev);
2188 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
2189 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
2190 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2192 if (msp->ms_loaded)
2193 range_tree_verify(msp->ms_tree, offset, size);
2195 for (int j = 0; j < TXG_SIZE; j++)
2196 range_tree_verify(msp->ms_freetree[j], offset, size);
2197 for (int j = 0; j < TXG_DEFER_SIZE; j++)
2198 range_tree_verify(msp->ms_defertree[j], offset, size);
2200 spa_config_exit(spa, SCL_VDEV, FTAG);