bmake-ify mega_sas
[unleashed.git] / usr / src / uts / common / io / ecpp.c
blob5320d0086ea3b0cec8a07839b0365c493625ec03
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
29 * IEEE 1284 Parallel Port Device Driver
33 #include <sys/param.h>
34 #include <sys/errno.h>
35 #include <sys/file.h>
36 #include <sys/cmn_err.h>
37 #include <sys/stropts.h>
38 #include <sys/debug.h>
39 #include <sys/stream.h>
40 #include <sys/strsun.h>
41 #include <sys/kmem.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/conf.h> /* req. by dev_ops flags MTSAFE etc. */
45 #include <sys/modctl.h> /* for modldrv */
46 #include <sys/stat.h> /* ddi_create_minor_node S_IFCHR */
47 #include <sys/open.h>
48 #include <sys/ddi_impldefs.h>
49 #include <sys/kstat.h>
51 #include <sys/prnio.h>
52 #include <sys/ecppreg.h> /* hw description */
53 #include <sys/ecppio.h> /* ioctl description */
54 #include <sys/ecppvar.h> /* driver description */
55 #include <sys/dma_engine.h>
56 #include <sys/dma_i8237A.h>
59 * Background
60 * ==========
61 * IEEE 1284-1994 standard defines "a signalling method for asynchronous,
62 * fully interlocked, bidirectional parallel communications between hosts
63 * and printers or other peripherals." (1.1) The standard defines 5 modes
64 * of operation - Compatibility, Nibble, Byte, ECP and EPP - which differ
65 * in direction, bandwidth, pins assignment, DMA capability, etc.
67 * Negotiation is a mechanism for moving between modes. Compatibility mode
68 * is a default mode, from which negotiations to other modes occur and
69 * to which both host and peripheral break in case of interface errors.
70 * Compatibility mode provides a unidirectional (forward) channel for
71 * communicating with old pre-1284 peripherals.
73 * Each mode has a number of phases. [Mode, phase] pair represents the
74 * interface state. Host initiates all transfers, though peripheral can
75 * request backchannel transfer by asserting nErr pin.
77 * Ecpp driver implements an IEEE 1284-compliant host using a combination
78 * of hardware and software. Hardware part is represented by a controller,
79 * which is a part of the SuperIO chip. Ecpp supports the following SuperIOs:
80 * PC82332/PC82336 (U5/U10/U60), PC97317 (U100), M1553 (Grover).
81 * Struct ecpp_hw describes each SuperIO and is determined in ecpp_attach().
83 * Negotiation is performed in software. Transfer may be performed either
84 * in software by driving output pins for each byte (PIO method), or with
85 * hardware assistance - SuperIO has a 16-byte FIFO, which is filled by
86 * the driver (normally using DMA), while the chip performs the actual xfer.
87 * PIO is used for Nibble and Compat, DMA is used for ECP and Compat modes.
89 * Driver currently supports the following modes:
91 * - Compatibility mode: byte-wide forward channel ~50KB/sec;
92 * pp->io_mode defines PIO or DMA method of transfer;
93 * - Nibble mode: nibble-wide (4-bit) reverse channel ~30KB/sec;
94 * - ECP mode: byte-wide bidirectional channel (~1MB/sec);
96 * Theory of operation
97 * ===================
98 * The manner in which ecpp drives 1284 interface is that of a state machine.
99 * State is a combination of 1284 mode {ECPP_*_MODE}, 1284 phase {ECPP_PHASE_*}
100 * and transfer method {PIO, DMA}. State is a function of application actions
101 * {write(2), ioctl(2)} and peripheral reaction.
103 * 1284 interface state is described by the following variables:
104 * pp->current_mode -- 1284 mode used for forward transfers;
105 * pp->backchannel -- 1284 mode used for backward transfers;
106 * pp->curent_phase -- 1284 phase;
108 * Bidirectional operation in Compatibility mode is provided by a combination:
109 * pp->current_mode == ECPP_COMPAT_MODE && pp->backchannel == ECPP_NIBBLE_MODE
110 * ECPP_CENTRONICS means no backchannel
112 * Driver internal state is defined by pp->e_busy as follows:
113 * ECPP_IDLE -- idle, no active transfers;
114 * ECPP_BUSY -- transfer is in progress;
115 * ECPP_ERR -- have data to transfer, but peripheral can`t receive data;
116 * ECPP_FLUSH -- flushing the queues;
118 * When opened, driver is in ECPP_IDLE state, current mode is ECPP_CENTRONICS
119 * Default negotiation tries to negotiate to the best mode supported by printer,
120 * sets pp->current_mode and pp->backchannel accordingly.
122 * When output data arrives in M_DATA mblks ecpp_wput() puts them on the queue
123 * to let ecpp_wsrv() concatenate small blocks into one big transfer
124 * by copying them into pp->ioblock. If first the mblk data is bigger than
125 * pp->ioblock, then it is used instead of i/o block (pointed by pp->msg)
127 * Before starting the transfer the driver will check if peripheral is ready
128 * by calling ecpp_check_status() and if it is not, driver goes ECPP_ERR state
129 * and schedules ecpp_wsrv_timer() which would qenable() the wq, effectively
130 * rechecking the peripheral readiness and restarting itself until it is ready.
131 * The transfer is then started by calling ecpp_start(), driver goes ECPP_BUSY
133 * While transfer is in progress all arriving messages will be queued up.
134 * Transfer can end up in either of two ways:
135 * - interrupt occurs, ecpp_isr() checks if all the data was transferred, if so
136 * cleanup and go ECPP_IDLE, otherwise putback untransferred and qenable();
137 * - ecpp_xfer_timeout() cancels the transfer and puts back untransferred data;
139 * PIO transfer method is very CPU intensive: for each sent byte the peripheral
140 * state is checked, then the byte is transfered and driver waits for an nAck
141 * interrupt; ecpp_isr() will then look if there is more data and if so
142 * triggers the soft interrupt, which transfers the next byte. PIO method
143 * is needed only for legacy printers which are sensitive to strobe problem
144 * (Bugid 4192788).
146 * ecpp_wsrv() is responsible for both starting transfers (ecpp_start()) and
147 * going idle (ecpp_idle_phase()). Many routines qenable() the write queue,
148 * meaning "check if there are pending requests, process them and go idle".
150 * In it`s idle state the driver will always try to listen to the backchannel
151 * (as advised by 1284).
153 * The mechanism for handling backchannel requests is as follows:
154 * - when the peripheral has data to send it asserts nErr pin
155 * (and also nAck in Nibble Mode) which results in an interrupt on the host;
156 * - ISR creates M_CTL message containing an ECPP_BACKCHANNEL byte and
157 * puts it back on the write queue;
158 * - ecpp_wsrv() gets M_CTL and calls ecpp_peripheral2host(), which kicks off
159 * the transfer;
161 * This way Nibble and ECP mode backchannel are implemented.
162 * If the read queue gets full, backchannel request is rejected.
163 * As the application reads data and queue size falls below the low watermark,
164 * ecpp_rsrv() gets called and enables the backchannel again.
166 * Future enhancements
167 * ===================
169 * Support new modes: Byte and EPP.
172 #ifndef ECPP_DEBUG
173 #define ECPP_DEBUG 0
174 #endif /* ECPP_DEBUG */
175 int ecpp_debug = ECPP_DEBUG;
177 int noecp = 0; /* flag not to use ECP mode */
179 /* driver entry point fn definitions */
180 static int ecpp_open(queue_t *, dev_t *, int, int, cred_t *);
181 static int ecpp_close(queue_t *, int, cred_t *);
182 static uint_t ecpp_isr(caddr_t);
183 static uint_t ecpp_softintr(caddr_t);
185 /* configuration entry point fn definitions */
186 static int ecpp_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
187 static int ecpp_attach(dev_info_t *, ddi_attach_cmd_t);
188 static int ecpp_detach(dev_info_t *, ddi_detach_cmd_t);
189 static struct ecpp_hw_bind *ecpp_determine_sio_type(struct ecppunit *);
191 /* isr support routines */
192 static uint_t ecpp_nErr_ihdlr(struct ecppunit *);
193 static uint_t ecpp_pio_ihdlr(struct ecppunit *);
194 static uint_t ecpp_dma_ihdlr(struct ecppunit *);
195 static uint_t ecpp_M1553_intr(struct ecppunit *);
197 /* configuration support routines */
198 static void ecpp_get_props(struct ecppunit *);
200 /* Streams Routines */
201 static int ecpp_wput(queue_t *, mblk_t *);
202 static int ecpp_wsrv(queue_t *);
203 static int ecpp_rsrv(queue_t *);
204 static void ecpp_flush(struct ecppunit *, int);
205 static void ecpp_start(struct ecppunit *, caddr_t, size_t);
207 /* ioctl handling */
208 static void ecpp_putioc(queue_t *, mblk_t *);
209 static void ecpp_srvioc(queue_t *, mblk_t *);
210 static void ecpp_wput_iocdata_devid(queue_t *, mblk_t *, uintptr_t);
211 static void ecpp_putioc_copyout(queue_t *, mblk_t *, void *, int);
212 static void ecpp_putioc_stateful_copyin(queue_t *, mblk_t *, size_t);
213 static void ecpp_srvioc_devid(queue_t *, mblk_t *,
214 struct ecpp_device_id *, int *);
215 static void ecpp_srvioc_prnif(queue_t *, mblk_t *);
216 static void ecpp_ack_ioctl(queue_t *, mblk_t *);
217 static void ecpp_nack_ioctl(queue_t *, mblk_t *, int);
219 /* kstat routines */
220 static void ecpp_kstat_init(struct ecppunit *);
221 static int ecpp_kstat_update(kstat_t *, int);
222 static int ecpp_kstatintr_update(kstat_t *, int);
224 /* dma routines */
225 static void ecpp_putback_untransfered(struct ecppunit *, void *, uint_t);
226 static uint8_t ecpp_setup_dma_resources(struct ecppunit *, caddr_t, size_t);
227 static uint8_t ecpp_init_dma_xfer(struct ecppunit *, caddr_t, size_t);
229 /* pio routines */
230 static void ecpp_pio_writeb(struct ecppunit *);
231 static void ecpp_xfer_cleanup(struct ecppunit *);
232 static uint8_t ecpp_prep_pio_xfer(struct ecppunit *, caddr_t, size_t);
234 /* misc */
235 static uchar_t ecpp_reset_port_regs(struct ecppunit *);
236 static void ecpp_xfer_timeout(void *);
237 static void ecpp_fifo_timer(void *);
238 static void ecpp_wsrv_timer(void *);
239 static uchar_t dcr_write(struct ecppunit *, uint8_t);
240 static uchar_t ecr_write(struct ecppunit *, uint8_t);
241 static uchar_t ecpp_check_status(struct ecppunit *);
242 static int ecpp_backchan_req(struct ecppunit *);
243 static void ecpp_untimeout_unblock(struct ecppunit *, timeout_id_t *);
244 static uint_t ecpp_get_prn_ifcap(struct ecppunit *);
246 /* stubs */
247 static void empty_config_mode(struct ecppunit *);
248 static void empty_mask_intr(struct ecppunit *);
250 /* PC87332 support */
251 static int pc87332_map_regs(struct ecppunit *);
252 static void pc87332_unmap_regs(struct ecppunit *);
253 static int pc87332_config_chip(struct ecppunit *);
254 static void pc87332_config_mode(struct ecppunit *);
255 static uint8_t pc87332_read_config_reg(struct ecppunit *, uint8_t);
256 static void pc87332_write_config_reg(struct ecppunit *, uint8_t, uint8_t);
257 static void cheerio_mask_intr(struct ecppunit *);
258 static void cheerio_unmask_intr(struct ecppunit *);
259 static int cheerio_dma_start(struct ecppunit *);
260 static int cheerio_dma_stop(struct ecppunit *, size_t *);
261 static size_t cheerio_getcnt(struct ecppunit *);
262 static void cheerio_reset_dcsr(struct ecppunit *);
264 /* PC97317 support */
265 static int pc97317_map_regs(struct ecppunit *);
266 static void pc97317_unmap_regs(struct ecppunit *);
267 static int pc97317_config_chip(struct ecppunit *);
268 static void pc97317_config_mode(struct ecppunit *);
270 /* M1553 Southbridge support */
271 static int m1553_map_regs(struct ecppunit *pp);
272 static void m1553_unmap_regs(struct ecppunit *pp);
273 static int m1553_config_chip(struct ecppunit *);
274 static uint8_t m1553_read_config_reg(struct ecppunit *, uint8_t);
275 static void m1553_write_config_reg(struct ecppunit *, uint8_t, uint8_t);
277 /* M1553 Southbridge DMAC 8237 support routines */
278 static int dma8237_dma_start(struct ecppunit *);
279 static int dma8237_dma_stop(struct ecppunit *, size_t *);
280 static size_t dma8237_getcnt(struct ecppunit *);
281 static void dma8237_write_addr(struct ecppunit *, uint32_t);
282 static void dma8237_write_count(struct ecppunit *, uint32_t);
283 static uint32_t dma8237_read_count(struct ecppunit *);
284 static void dma8237_write(struct ecppunit *, int, uint8_t);
285 static uint8_t dma8237_read(struct ecppunit *, int);
286 #ifdef INCLUDE_DMA8237_READ_ADDR
287 static uint32_t dma8237_read_addr(struct ecppunit *);
288 #endif
290 /* i86 PC support rountines */
292 #if defined(__x86)
293 static int x86_dma_start(struct ecppunit *);
294 static int x86_dma_stop(struct ecppunit *, size_t *);
295 static int x86_map_regs(struct ecppunit *);
296 static void x86_unmap_regs(struct ecppunit *);
297 static int x86_config_chip(struct ecppunit *);
298 static size_t x86_getcnt(struct ecppunit *);
299 #endif
301 /* IEEE 1284 phase transitions */
302 static void ecpp_1284_init_interface(struct ecppunit *);
303 static int ecpp_1284_termination(struct ecppunit *);
304 static uchar_t ecpp_idle_phase(struct ecppunit *);
305 static int ecp_forward2reverse(struct ecppunit *);
306 static int ecp_reverse2forward(struct ecppunit *);
307 static int read_nibble_backchan(struct ecppunit *);
309 /* reverse transfers */
310 static uint_t ecpp_peripheral2host(struct ecppunit *);
311 static uchar_t ecp_peripheral2host(struct ecppunit *);
312 static uchar_t nibble_peripheral2host(struct ecppunit *pp, uint8_t *);
313 static int ecpp_getdevid(struct ecppunit *, uint8_t *, int *, int);
314 static void ecpp_ecp_read_timeout(void *);
315 static void ecpp_ecp_read_completion(struct ecppunit *);
317 /* IEEE 1284 mode transitions */
318 static void ecpp_default_negotiation(struct ecppunit *);
319 static int ecpp_mode_negotiation(struct ecppunit *, uchar_t);
320 static int ecpp_1284_negotiation(struct ecppunit *, uint8_t, uint8_t *);
321 static int ecp_negotiation(struct ecppunit *);
322 static int nibble_negotiation(struct ecppunit *);
323 static int devidnib_negotiation(struct ecppunit *);
325 /* IEEE 1284 utility routines */
326 static int wait_dsr(struct ecppunit *, uint8_t, uint8_t, int);
328 /* debugging functions */
329 static void ecpp_error(dev_info_t *, char *, ...);
330 static uchar_t ecpp_get_error_status(uchar_t);
333 * Chip-dependent structures
335 static ddi_dma_attr_t cheerio_dma_attr = {
336 DMA_ATTR_VERSION, /* version */
337 0x00000000ull, /* dlim_addr_lo */
338 0xfffffffeull, /* dlim_addr_hi */
339 0xffffff, /* DMA counter register */
340 1, /* DMA address alignment */
341 0x74, /* burst sizes */
342 0x0001, /* min effective DMA size */
343 0xffff, /* maximum transfer size */
344 0xffff, /* segment boundary */
345 1, /* s/g list length */
346 1, /* granularity of device */
347 0 /* DMA flags */
350 static struct ecpp_hw pc87332 = {
351 pc87332_map_regs,
352 pc87332_unmap_regs,
353 pc87332_config_chip,
354 pc87332_config_mode,
355 cheerio_mask_intr,
356 cheerio_unmask_intr,
357 cheerio_dma_start,
358 cheerio_dma_stop,
359 cheerio_getcnt,
360 &cheerio_dma_attr
363 static struct ecpp_hw pc97317 = {
364 pc97317_map_regs,
365 pc97317_unmap_regs,
366 pc97317_config_chip,
367 pc97317_config_mode,
368 cheerio_mask_intr,
369 cheerio_unmask_intr,
370 cheerio_dma_start,
371 cheerio_dma_stop,
372 cheerio_getcnt,
373 &cheerio_dma_attr
376 static ddi_dma_attr_t i8237_dma_attr = {
377 DMA_ATTR_VERSION, /* version */
378 0x00000000ull, /* dlim_addr_lo */
379 0xfffffffeull, /* dlim_addr_hi */
380 0xffff, /* DMA counter register */
381 1, /* DMA address alignment */
382 0x01, /* burst sizes */
383 0x0001, /* min effective DMA size */
384 0xffff, /* maximum transfer size */
385 0x7fff, /* segment boundary */
386 1, /* s/g list length */
387 1, /* granularity of device */
388 0 /* DMA flags */
391 static struct ecpp_hw m1553 = {
392 m1553_map_regs,
393 m1553_unmap_regs,
394 m1553_config_chip,
395 empty_config_mode, /* no config_mode */
396 empty_mask_intr, /* no mask_intr */
397 empty_mask_intr, /* no unmask_intr */
398 dma8237_dma_start,
399 dma8237_dma_stop,
400 dma8237_getcnt,
401 &i8237_dma_attr
404 #if defined(__x86)
405 static ddi_dma_attr_t sb_dma_attr = {
406 DMA_ATTR_VERSION, /* version */
407 0x00000000ull, /* dlim_addr_lo */
408 0xffffff, /* dlim_addr_hi */
409 0xffff, /* DMA counter register */
410 1, /* DMA address alignment */
411 0x01, /* burst sizes */
412 0x0001, /* min effective DMA size */
413 0xffffffff, /* maximum transfer size */
414 0xffff, /* segment boundary */
415 1, /* s/g list length */
416 1, /* granularity of device */
417 0 /* DMA flags */
420 static struct ecpp_hw x86 = {
421 x86_map_regs,
422 x86_unmap_regs,
423 x86_config_chip,
424 empty_config_mode, /* no config_mode */
425 empty_mask_intr, /* no mask_intr */
426 empty_mask_intr, /* no unmask_intr */
427 x86_dma_start,
428 x86_dma_stop,
429 x86_getcnt,
430 &sb_dma_attr
432 #endif
435 * list of supported devices
437 struct ecpp_hw_bind ecpp_hw_bind[] = {
438 { "ns87317-ecpp", &pc97317, "PC97317" },
439 { "pnpALI,1533,3", &m1553, "M1553" },
440 { "ecpp", &pc87332, "PC87332" },
441 #if defined(__x86)
442 { "lp", &x86, "i86pc"},
443 #endif
446 static ddi_device_acc_attr_t acc_attr = {
447 DDI_DEVICE_ATTR_V0,
448 DDI_STRUCTURE_LE_ACC,
449 DDI_STRICTORDER_ACC
452 static struct ecpp_transfer_parms default_xfer_parms = {
453 FWD_TIMEOUT_DEFAULT, /* write timeout in seconds */
454 ECPP_CENTRONICS /* supported mode */
457 /* prnio interface info string */
458 static const char prn_ifinfo[] = PRN_PARALLEL;
460 /* prnio timeouts */
461 static const struct prn_timeouts prn_timeouts_default = {
462 FWD_TIMEOUT_DEFAULT, /* forward timeout */
463 REV_TIMEOUT_DEFAULT /* reverse timeout */
466 static int ecpp_isr_max_delay = ECPP_ISR_MAX_DELAY;
467 static int ecpp_def_timeout = 90; /* left in for 2.7 compatibility */
469 static void *ecppsoft_statep;
472 * STREAMS framework manages locks for these structures
474 _NOTE(SCHEME_PROTECTS_DATA("unique per call", iocblk))
475 _NOTE(SCHEME_PROTECTS_DATA("unique per call", datab))
476 _NOTE(SCHEME_PROTECTS_DATA("unique per call", msgb))
477 _NOTE(SCHEME_PROTECTS_DATA("unique per call", queue))
478 _NOTE(SCHEME_PROTECTS_DATA("unique per call", copyreq))
479 _NOTE(SCHEME_PROTECTS_DATA("unique per call", stroptions))
481 struct module_info ecppinfo = {
482 /* id, name, min pkt siz, max pkt siz, hi water, low water */
483 42, "ecpp", 0, IO_BLOCK_SZ, ECPPHIWAT, ECPPLOWAT
486 static struct qinit ecpp_rinit = {
487 putq, ecpp_rsrv, ecpp_open, ecpp_close, NULL, &ecppinfo, NULL
490 static struct qinit ecpp_wint = {
491 ecpp_wput, ecpp_wsrv, ecpp_open, ecpp_close, NULL, &ecppinfo, NULL
494 struct streamtab ecpp_str_info = {
495 &ecpp_rinit, &ecpp_wint, NULL, NULL
498 static struct cb_ops ecpp_cb_ops = {
499 nodev, /* cb_open */
500 nodev, /* cb_close */
501 nodev, /* cb_strategy */
502 nodev, /* cb_print */
503 nodev, /* cb_dump */
504 nodev, /* cb_read */
505 nodev, /* cb_write */
506 nodev, /* cb_ioctl */
507 nodev, /* cb_devmap */
508 nodev, /* cb_mmap */
509 nodev, /* cb_segmap */
510 nochpoll, /* cb_chpoll */
511 ddi_prop_op, /* cb_prop_op */
512 &ecpp_str_info, /* cb_stream */
513 (D_NEW | D_MP | D_MTPERQ) /* cb_flag */
517 * Declare ops vectors for auto configuration.
519 struct dev_ops ecpp_ops = {
520 DEVO_REV, /* devo_rev */
521 0, /* devo_refcnt */
522 ecpp_getinfo, /* devo_getinfo */
523 nulldev, /* devo_identify */
524 nulldev, /* devo_probe */
525 ecpp_attach, /* devo_attach */
526 ecpp_detach, /* devo_detach */
527 nodev, /* devo_reset */
528 &ecpp_cb_ops, /* devo_cb_ops */
529 NULL, /* devo_bus_ops */
530 nulldev, /* devo_power */
531 ddi_quiesce_not_needed, /* devo_quiesce */
534 extern struct mod_ops mod_driverops;
536 static struct modldrv ecppmodldrv = {
537 &mod_driverops, /* type of module - driver */
538 "parallel port driver",
539 &ecpp_ops,
542 static struct modlinkage ecppmodlinkage = {
543 MODREV_1,
544 &ecppmodldrv,
551 * DDI/DKI entry points and supplementary routines
557 _init(void)
559 int error;
561 if ((error = mod_install(&ecppmodlinkage)) == 0) {
562 (void) ddi_soft_state_init(&ecppsoft_statep,
563 sizeof (struct ecppunit), 1);
566 return (error);
570 _fini(void)
572 int error;
574 if ((error = mod_remove(&ecppmodlinkage)) == 0) {
575 ddi_soft_state_fini(&ecppsoft_statep);
578 return (error);
582 _info(struct modinfo *modinfop)
584 return (mod_info(&ecppmodlinkage, modinfop));
587 static int
588 ecpp_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
590 int instance;
591 char name[16];
592 struct ecppunit *pp;
593 struct ecpp_hw_bind *hw_bind;
595 instance = ddi_get_instance(dip);
597 switch (cmd) {
598 case DDI_ATTACH:
599 break;
601 case DDI_RESUME:
602 if (!(pp = ddi_get_soft_state(ecppsoft_statep, instance))) {
603 return (DDI_FAILURE);
606 mutex_enter(&pp->umutex);
608 pp->suspended = FALSE;
611 * Initialize the chip and restore current mode if needed
613 (void) ECPP_CONFIG_CHIP(pp);
614 (void) ecpp_reset_port_regs(pp);
616 if (pp->oflag == TRUE) {
617 int current_mode = pp->current_mode;
619 (void) ecpp_1284_termination(pp);
620 (void) ecpp_mode_negotiation(pp, current_mode);
623 mutex_exit(&pp->umutex);
625 return (DDI_SUCCESS);
627 default:
628 return (DDI_FAILURE);
631 if (ddi_soft_state_zalloc(ecppsoft_statep, instance) != 0) {
632 ecpp_error(dip, "ddi_soft_state_zalloc failed\n");
633 goto fail;
636 pp = ddi_get_soft_state(ecppsoft_statep, instance);
638 pp->dip = dip;
639 pp->suspended = FALSE;
642 * Determine SuperIO type and set chip-dependent variables
644 hw_bind = ecpp_determine_sio_type(pp);
646 if (hw_bind == NULL) {
647 cmn_err(CE_NOTE, "parallel port controller not supported");
648 goto fail_sio;
649 } else {
650 pp->hw = hw_bind->hw;
651 ecpp_error(pp->dip, "SuperIO type: %s\n", hw_bind->info);
655 * Map registers
657 if (ECPP_MAP_REGS(pp) != SUCCESS) {
658 goto fail_map;
661 if (ddi_dma_alloc_handle(dip, pp->hw->attr, DDI_DMA_DONTWAIT,
662 NULL, &pp->dma_handle) != DDI_SUCCESS) {
663 ecpp_error(dip, "ecpp_attach: failed ddi_dma_alloc_handle\n");
664 goto fail_dma;
667 if (ddi_get_iblock_cookie(dip, 0,
668 &pp->ecpp_trap_cookie) != DDI_SUCCESS) {
669 ecpp_error(dip, "ecpp_attach: failed ddi_get_iblock_cookie\n");
670 goto fail_ibc;
673 mutex_init(&pp->umutex, NULL, MUTEX_DRIVER,
674 (void *)pp->ecpp_trap_cookie);
676 cv_init(&pp->pport_cv, NULL, CV_DRIVER, NULL);
678 if (ddi_add_intr(dip, 0, &pp->ecpp_trap_cookie, NULL, ecpp_isr,
679 (caddr_t)pp) != DDI_SUCCESS) {
680 ecpp_error(dip, "ecpp_attach: failed to add hard intr\n");
681 goto fail_intr;
684 if (ddi_add_softintr(dip, DDI_SOFTINT_LOW,
685 &pp->softintr_id, 0, 0, ecpp_softintr,
686 (caddr_t)pp) != DDI_SUCCESS) {
687 ecpp_error(dip, "ecpp_attach: failed to add soft intr\n");
688 goto fail_softintr;
691 (void) sprintf(name, "ecpp%d", instance);
693 if (ddi_create_minor_node(dip, name, S_IFCHR, instance,
694 DDI_NT_PRINTER, 0) == DDI_FAILURE) {
695 ecpp_error(dip, "ecpp_attach: create_minor_node failed\n");
696 goto fail_minor;
699 pp->ioblock = kmem_alloc(IO_BLOCK_SZ, KM_SLEEP);
700 if (pp->ioblock == NULL) {
701 ecpp_error(dip, "ecpp_attach: kmem_alloc failed\n");
702 goto fail_iob;
703 } else {
704 ecpp_error(pp->dip, "ecpp_attach: ioblock=0x%x\n", pp->ioblock);
707 ecpp_get_props(pp);
708 #if defined(__x86)
709 if (pp->hw == &x86 && pp->uh.x86.chn != 0xff) {
710 if (ddi_dmae_alloc(dip, pp->uh.x86.chn,
711 DDI_DMA_DONTWAIT, NULL) == DDI_SUCCESS)
712 ecpp_error(pp->dip, "dmae_alloc success!\n");
714 #endif
715 if (ECPP_CONFIG_CHIP(pp) == FAILURE) {
716 ecpp_error(pp->dip, "config_chip failed.\n");
717 goto fail_config;
720 ecpp_kstat_init(pp);
722 ddi_report_dev(dip);
724 return (DDI_SUCCESS);
726 fail_config:
727 ddi_prop_remove_all(dip);
728 kmem_free(pp->ioblock, IO_BLOCK_SZ);
729 fail_iob:
730 ddi_remove_minor_node(dip, NULL);
731 fail_minor:
732 ddi_remove_softintr(pp->softintr_id);
733 fail_softintr:
734 ddi_remove_intr(dip, 0, pp->ecpp_trap_cookie);
735 fail_intr:
736 mutex_destroy(&pp->umutex);
737 cv_destroy(&pp->pport_cv);
738 fail_ibc:
739 ddi_dma_free_handle(&pp->dma_handle);
740 fail_dma:
741 ECPP_UNMAP_REGS(pp);
742 fail_map:
743 fail_sio:
744 ddi_soft_state_free(ecppsoft_statep, instance);
745 fail:
746 ecpp_error(dip, "ecpp_attach: failed.\n");
748 return (DDI_FAILURE);
751 static int
752 ecpp_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
754 int instance;
755 struct ecppunit *pp;
757 instance = ddi_get_instance(dip);
759 switch (cmd) {
760 case DDI_DETACH:
761 break;
763 case DDI_SUSPEND:
764 if (!(pp = ddi_get_soft_state(ecppsoft_statep, instance))) {
765 return (DDI_FAILURE);
768 mutex_enter(&pp->umutex);
769 ASSERT(pp->suspended == FALSE);
771 pp->suspended = TRUE; /* prevent new transfers */
774 * Wait if there's any activity on the port
776 if ((pp->e_busy == ECPP_BUSY) || (pp->e_busy == ECPP_FLUSH)) {
777 (void) cv_reltimedwait(&pp->pport_cv, &pp->umutex,
778 SUSPEND_TOUT * drv_usectohz(1000000),
779 TR_CLOCK_TICK);
780 if ((pp->e_busy == ECPP_BUSY) ||
781 (pp->e_busy == ECPP_FLUSH)) {
782 pp->suspended = FALSE;
783 mutex_exit(&pp->umutex);
784 ecpp_error(pp->dip,
785 "ecpp_detach: suspend timeout\n");
786 return (DDI_FAILURE);
790 mutex_exit(&pp->umutex);
791 return (DDI_SUCCESS);
793 default:
794 return (DDI_FAILURE);
797 pp = ddi_get_soft_state(ecppsoft_statep, instance);
798 #if defined(__x86)
799 if (pp->hw == &x86 && pp->uh.x86.chn != 0xff)
800 (void) ddi_dmae_release(pp->dip, pp->uh.x86.chn);
801 #endif
802 if (pp->dma_handle != NULL)
803 ddi_dma_free_handle(&pp->dma_handle);
805 ddi_remove_minor_node(dip, NULL);
807 ddi_remove_softintr(pp->softintr_id);
809 ddi_remove_intr(dip, 0, pp->ecpp_trap_cookie);
811 if (pp->ksp) {
812 kstat_delete(pp->ksp);
814 if (pp->intrstats) {
815 kstat_delete(pp->intrstats);
818 cv_destroy(&pp->pport_cv);
820 mutex_destroy(&pp->umutex);
822 ECPP_UNMAP_REGS(pp);
824 kmem_free(pp->ioblock, IO_BLOCK_SZ);
826 ddi_prop_remove_all(dip);
828 ddi_soft_state_free(ecppsoft_statep, instance);
830 return (DDI_SUCCESS);
835 * ecpp_get_props() reads ecpp.conf for user defineable tuneables.
836 * If the file or a particular variable is not there, a default value
837 * is assigned.
840 static void
841 ecpp_get_props(struct ecppunit *pp)
843 char *prop;
844 #if defined(__x86)
845 int len;
846 int value;
847 #endif
849 * If fast_centronics is TRUE, non-compliant IEEE 1284
850 * peripherals ( Centronics peripherals) will operate in DMA mode.
851 * Transfers betwee main memory and the device will be via DMA;
852 * peripheral handshaking will be conducted by superio logic.
853 * If ecpp can not read the variable correctly fast_centronics will
854 * be set to FALSE. In this case, transfers and handshaking
855 * will be conducted by PIO for Centronics devices.
857 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pp->dip, 0,
858 "fast-centronics", &prop) == DDI_PROP_SUCCESS) {
859 pp->fast_centronics =
860 (strcmp(prop, "true") == 0) ? TRUE : FALSE;
861 ddi_prop_free(prop);
862 } else {
863 pp->fast_centronics = FALSE;
867 * If fast-1284-compatible is set to TRUE, when ecpp communicates
868 * with IEEE 1284 compliant peripherals, data transfers between
869 * main memory and the parallel port will be conducted by DMA.
870 * Handshaking between the port and peripheral will be conducted
871 * by superio logic. This is the default characteristic. If
872 * fast-1284-compatible is set to FALSE, transfers and handshaking
873 * will be conducted by PIO.
876 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pp->dip, 0,
877 "fast-1284-compatible", &prop) == DDI_PROP_SUCCESS) {
878 pp->fast_compat = (strcmp(prop, "true") == 0) ? TRUE : FALSE;
879 ddi_prop_free(prop);
880 } else {
881 pp->fast_compat = TRUE;
885 * Some centronics peripherals require the nInit signal to be
886 * toggled to reset the device. If centronics_init_seq is set
887 * to TRUE, ecpp will toggle the nInit signal upon every ecpp_open().
888 * Applications have the opportunity to toggle the nInit signal
889 * with ioctl(2) calls as well. The default is to set it to FALSE.
891 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pp->dip, 0,
892 "centronics-init-seq", &prop) == DDI_PROP_SUCCESS) {
893 pp->init_seq = (strcmp(prop, "true") == 0) ? TRUE : FALSE;
894 ddi_prop_free(prop);
895 } else {
896 pp->init_seq = FALSE;
900 * If one of the centronics status signals are in an erroneous
901 * state, ecpp_wsrv() will be reinvoked centronics-retry ms to
902 * check if the status is ok to transfer. If the property is not
903 * found, wsrv_retry will be set to CENTRONICS_RETRY ms.
905 pp->wsrv_retry = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
906 "centronics-retry", CENTRONICS_RETRY);
909 * In PIO mode, ecpp_isr() will loop for wait for the busy signal
910 * to be deasserted before transferring the next byte. wait_for_busy
911 * is specificied in microseconds. If the property is not found
912 * ecpp_isr() will wait for a maximum of WAIT_FOR_BUSY us.
914 pp->wait_for_busy = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
915 "centronics-wait-for-busy", WAIT_FOR_BUSY);
918 * In PIO mode, centronics transfers must hold the data signals
919 * for a data_setup_time milliseconds before the strobe is asserted.
921 pp->data_setup_time = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
922 "centronics-data-setup-time", DATA_SETUP_TIME);
925 * In PIO mode, centronics transfers asserts the strobe signal
926 * for a period of strobe_pulse_width milliseconds.
928 pp->strobe_pulse_width = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
929 "centronics-strobe-pulse-width", STROBE_PULSE_WIDTH);
932 * Upon a transfer the peripheral, ecpp waits write_timeout seconds
933 * for the transmission to complete.
935 default_xfer_parms.write_timeout = ddi_prop_get_int(DDI_DEV_T_ANY,
936 pp->dip, 0, "ecpp-transfer-timeout", ecpp_def_timeout);
938 pp->xfer_parms = default_xfer_parms;
941 * Get dma channel for M1553
943 if (pp->hw == &m1553) {
944 pp->uh.m1553.chn = ddi_prop_get_int(DDI_DEV_T_ANY,
945 pp->dip, 0, "dma-channel", 0x1);
946 ecpp_error(pp->dip, "ecpp_get_prop:chn=%x\n", pp->uh.m1553.chn);
948 #if defined(__x86)
949 len = sizeof (value);
950 /* Get dma channel for i86 pc */
951 if (pp->hw == &x86) {
952 if (ddi_prop_op(DDI_DEV_T_ANY, pp->dip, PROP_LEN_AND_VAL_BUF,
953 DDI_PROP_DONTPASS, "dma-channels", (caddr_t)&value, &len)
954 != DDI_PROP_SUCCESS) {
955 ecpp_error(pp->dip, "No dma channel found\n");
956 pp->uh.x86.chn = 0xff;
957 pp->fast_compat = FALSE;
958 pp->noecpregs = TRUE;
959 } else
960 pp->uh.x86.chn = (uint8_t)value;
962 #endif
964 * these properties are not yet public
966 pp->ecp_rev_speed = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
967 "ecp-rev-speed", ECP_REV_SPEED);
969 pp->rev_watchdog = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
970 "rev-watchdog", REV_WATCHDOG);
972 ecpp_error(pp->dip,
973 "ecpp_get_prop: fast_centronics=%x, fast-1284=%x\n"
974 "ecpp_get_prop: wsrv_retry=%d, wait_for_busy=%d\n"
975 "ecpp_get_prop: data_setup=%d, strobe_pulse=%d\n"
976 "ecpp_get_prop: transfer-timeout=%d\n",
977 pp->fast_centronics, pp->fast_compat,
978 pp->wsrv_retry, pp->wait_for_busy,
979 pp->data_setup_time, pp->strobe_pulse_width,
980 pp->xfer_parms.write_timeout);
983 /*ARGSUSED*/
985 ecpp_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
987 dev_t dev = (dev_t)arg;
988 struct ecppunit *pp;
989 int instance, ret;
991 instance = getminor(dev);
993 switch (infocmd) {
994 case DDI_INFO_DEVT2DEVINFO:
995 pp = ddi_get_soft_state(ecppsoft_statep, instance);
996 if (pp != NULL) {
997 *result = pp->dip;
998 ret = DDI_SUCCESS;
999 } else {
1000 ret = DDI_FAILURE;
1002 break;
1004 case DDI_INFO_DEVT2INSTANCE:
1005 *result = (void *)(uintptr_t)instance;
1006 ret = DDI_SUCCESS;
1007 break;
1009 default:
1010 ret = DDI_FAILURE;
1011 break;
1014 return (ret);
1017 /*ARGSUSED2*/
1018 static int
1019 ecpp_open(queue_t *q, dev_t *dev, int flag, int sflag, cred_t *credp)
1021 struct ecppunit *pp;
1022 int instance;
1023 struct stroptions *sop;
1024 mblk_t *mop;
1026 instance = getminor(*dev);
1028 if (instance < 0) {
1029 return (ENXIO);
1032 pp = (struct ecppunit *)ddi_get_soft_state(ecppsoft_statep, instance);
1034 if (pp == NULL) {
1035 return (ENXIO);
1038 mutex_enter(&pp->umutex);
1041 * Parallel port is an exclusive-use device
1042 * thus providing print job integrity
1044 if (pp->oflag == TRUE) {
1045 ecpp_error(pp->dip, "ecpp open failed");
1046 mutex_exit(&pp->umutex);
1047 return (EBUSY);
1050 pp->oflag = TRUE;
1052 /* initialize state variables */
1053 pp->prn_timeouts = prn_timeouts_default;
1054 pp->xfer_parms = default_xfer_parms;
1055 pp->current_mode = ECPP_CENTRONICS;
1056 pp->backchannel = ECPP_CENTRONICS;
1057 pp->current_phase = ECPP_PHASE_PO;
1058 pp->port = ECPP_PORT_DMA;
1059 pp->instance = instance;
1060 pp->timeout_error = 0;
1061 pp->saved_dsr = DSR_READ(pp);
1062 pp->ecpp_drain_counter = 0;
1063 pp->dma_cancelled = FALSE;
1064 pp->io_mode = ECPP_DMA;
1065 pp->joblen = 0;
1066 pp->tfifo_intr = 0;
1067 pp->softintr_pending = 0;
1068 pp->nread = 0;
1070 /* clear the state flag */
1071 pp->e_busy = ECPP_IDLE;
1073 pp->readq = RD(q);
1074 pp->writeq = WR(q);
1075 pp->msg = NULL;
1077 RD(q)->q_ptr = WR(q)->q_ptr = (caddr_t)pp;
1080 * Get ready: check host/peripheral, negotiate into default mode
1082 if (ecpp_reset_port_regs(pp) == FAILURE) {
1083 mutex_exit(&pp->umutex);
1084 return (EIO);
1087 mutex_exit(&pp->umutex);
1090 * Configure the Stream head and enable the Stream
1092 if (!(mop = allocb(sizeof (struct stroptions), BPRI_MED))) {
1093 return (EAGAIN);
1096 mop->b_datap->db_type = M_SETOPTS;
1097 mop->b_wptr += sizeof (struct stroptions);
1100 * if device is open with O_NONBLOCK flag set, let read(2) return 0
1101 * if no data waiting to be read. Writes will block on flow control.
1103 sop = (struct stroptions *)mop->b_rptr;
1104 sop->so_flags = SO_HIWAT | SO_LOWAT | SO_NDELON | SO_MREADON;
1105 sop->so_hiwat = ECPPHIWAT;
1106 sop->so_lowat = ECPPLOWAT;
1108 /* enable the stream */
1109 qprocson(q);
1111 putnext(q, mop);
1113 mutex_enter(&pp->umutex);
1115 ecpp_default_negotiation(pp);
1117 /* go revidle */
1118 (void) ecpp_idle_phase(pp);
1120 ecpp_error(pp->dip,
1121 "ecpp_open: mode=%x, phase=%x ecr=%x, dsr=%x, dcr=%x\n",
1122 pp->current_mode, pp->current_phase,
1123 ECR_READ(pp), DSR_READ(pp), DCR_READ(pp));
1125 mutex_exit(&pp->umutex);
1127 return (0);
1130 /*ARGSUSED1*/
1131 static int
1132 ecpp_close(queue_t *q, int flag, cred_t *cred_p)
1134 struct ecppunit *pp;
1135 timeout_id_t timeout_id, fifo_timer_id, wsrv_timer_id;
1137 pp = (struct ecppunit *)q->q_ptr;
1139 ecpp_error(pp->dip, "ecpp_close: entering ...\n");
1141 mutex_enter(&pp->umutex);
1144 * ecpp_close() will continue to loop until the
1145 * queue has been drained or if the thread
1146 * has received a SIG. Typically, when the queue
1147 * has data, the port will be ECPP_BUSY. However,
1148 * after a dma completes and before the wsrv
1149 * starts the next transfer, the port may be IDLE.
1150 * In this case, ecpp_close() will loop within this
1151 * while(qsize) segment. Since, ecpp_wsrv() runs
1152 * at software interupt level, this shouldn't loop
1153 * very long.
1155 while (pp->e_busy != ECPP_IDLE || qsize(WR(q))) {
1156 if (!cv_wait_sig(&pp->pport_cv, &pp->umutex)) {
1157 ecpp_error(pp->dip, "ecpp_close:B: received SIG\n");
1159 * Returning from a signal such as
1160 * SIGTERM or SIGKILL
1162 ecpp_flush(pp, FWRITE);
1163 break;
1164 } else {
1165 ecpp_error(pp->dip, "ecpp_close:rcvd cv-sig\n");
1169 ecpp_error(pp->dip, "ecpp_close: joblen=%d, ctx_cf=%d, "
1170 "qsize(WR(q))=%d, qsize(RD(q))=%d\n",
1171 pp->joblen, pp->ctx_cf, qsize(pp->writeq), qsize(q));
1174 * Cancel all timeouts, disable interrupts
1176 * Note that we can`t call untimeout(9F) with mutex held:
1177 * callout may be blocked on the same mutex, and untimeout() will
1178 * cv_wait() while callout is executing, thus creating a deadlock
1179 * So we zero the timeout id's inside mutex and call untimeout later
1181 timeout_id = pp->timeout_id;
1182 fifo_timer_id = pp->fifo_timer_id;
1183 wsrv_timer_id = pp->wsrv_timer_id;
1185 pp->timeout_id = pp->fifo_timer_id = pp->wsrv_timer_id = 0;
1187 pp->softintr_pending = 0;
1188 pp->dma_cancelled = TRUE;
1189 ECPP_MASK_INTR(pp);
1191 mutex_exit(&pp->umutex);
1193 qprocsoff(q);
1195 if (timeout_id) {
1196 (void) untimeout(timeout_id);
1198 if (fifo_timer_id) {
1199 (void) untimeout(fifo_timer_id);
1201 if (wsrv_timer_id) {
1202 (void) untimeout(wsrv_timer_id);
1205 mutex_enter(&pp->umutex);
1207 /* set link to Compatible mode */
1208 if ((pp->current_mode == ECPP_ECP_MODE) &&
1209 (pp->current_phase != ECPP_PHASE_ECP_FWD_IDLE)) {
1210 (void) ecp_reverse2forward(pp);
1213 (void) ecpp_1284_termination(pp);
1215 pp->oflag = FALSE;
1216 q->q_ptr = WR(q)->q_ptr = NULL;
1217 pp->readq = pp->writeq = NULL;
1218 pp->msg = NULL;
1220 ecpp_error(pp->dip, "ecpp_close: ecr=%x, dsr=%x, dcr=%x\n",
1221 ECR_READ(pp), DSR_READ(pp), DCR_READ(pp));
1223 mutex_exit(&pp->umutex);
1225 return (0);
1229 * standard put procedure for ecpp
1231 static int
1232 ecpp_wput(queue_t *q, mblk_t *mp)
1234 struct msgb *nmp;
1235 struct ecppunit *pp;
1237 pp = (struct ecppunit *)q->q_ptr;
1239 if (!mp) {
1240 return (0);
1243 if ((mp->b_wptr - mp->b_rptr) <= 0) {
1244 ecpp_error(pp->dip,
1245 "ecpp_wput:bogus packet recieved mp=%x\n", mp);
1246 freemsg(mp);
1247 return (0);
1250 switch (DB_TYPE(mp)) {
1251 case M_DATA:
1253 * This is a quick fix for multiple message block problem,
1254 * it will be changed later with better performance code.
1256 if (mp->b_cont) {
1258 * mblk has scattered data ... do msgpullup
1259 * if it fails, continue with the current mblk
1261 if ((nmp = msgpullup(mp, -1)) != NULL) {
1262 freemsg(mp);
1263 mp = nmp;
1264 ecpp_error(pp->dip,
1265 "ecpp_wput:msgpullup: mp=%p len=%d\n",
1266 mp, mp->b_wptr - mp->b_rptr);
1270 /* let ecpp_wsrv() concatenate small blocks */
1271 (void) putq(q, mp);
1273 break;
1275 case M_CTL:
1276 (void) putq(q, mp);
1278 break;
1280 case M_IOCTL: {
1281 struct iocblk *iocbp;
1283 iocbp = (struct iocblk *)mp->b_rptr;
1285 ecpp_error(pp->dip, "ecpp_wput:M_IOCTL %x\n", iocbp->ioc_cmd);
1287 mutex_enter(&pp->umutex);
1289 /* TESTIO and GET_STATUS can be used during transfer */
1290 if ((pp->e_busy == ECPP_BUSY) &&
1291 (iocbp->ioc_cmd != BPPIOC_TESTIO) &&
1292 (iocbp->ioc_cmd != PRNIOC_GET_STATUS)) {
1293 mutex_exit(&pp->umutex);
1294 (void) putq(q, mp);
1295 } else {
1296 mutex_exit(&pp->umutex);
1297 ecpp_putioc(q, mp);
1300 break;
1303 case M_IOCDATA: {
1304 struct copyresp *csp;
1306 ecpp_error(pp->dip, "ecpp_wput:M_IOCDATA\n");
1308 csp = (struct copyresp *)mp->b_rptr;
1311 * If copy request failed, quit now
1313 if (csp->cp_rval != 0) {
1314 freemsg(mp);
1315 return (0);
1318 switch (csp->cp_cmd) {
1319 case ECPPIOC_SETPARMS:
1320 case ECPPIOC_SETREGS:
1321 case ECPPIOC_SETPORT:
1322 case ECPPIOC_SETDATA:
1323 case PRNIOC_SET_IFCAP:
1324 case PRNIOC_SET_TIMEOUTS:
1326 * need to retrieve and use the data, but if the
1327 * device is busy, wait.
1329 (void) putq(q, mp);
1330 break;
1332 case ECPPIOC_GETPARMS:
1333 case ECPPIOC_GETREGS:
1334 case ECPPIOC_GETPORT:
1335 case ECPPIOC_GETDATA:
1336 case BPPIOC_GETERR:
1337 case BPPIOC_TESTIO:
1338 case PRNIOC_GET_IFCAP:
1339 case PRNIOC_GET_STATUS:
1340 case PRNIOC_GET_1284_STATUS:
1341 case PRNIOC_GET_TIMEOUTS:
1342 /* data transfered to user space okay */
1343 ecpp_ack_ioctl(q, mp);
1344 break;
1346 case ECPPIOC_GETDEVID:
1347 ecpp_wput_iocdata_devid(q, mp,
1348 offsetof(struct ecpp_device_id, rlen));
1349 break;
1351 case PRNIOC_GET_1284_DEVID:
1352 ecpp_wput_iocdata_devid(q, mp,
1353 offsetof(struct prn_1284_device_id, id_rlen));
1354 break;
1356 case PRNIOC_GET_IFINFO:
1357 ecpp_wput_iocdata_devid(q, mp,
1358 offsetof(struct prn_interface_info, if_rlen));
1359 break;
1361 default:
1362 ecpp_nack_ioctl(q, mp, EINVAL);
1363 break;
1366 break;
1369 case M_FLUSH:
1370 ecpp_error(pp->dip, "ecpp_wput:M_FLUSH\n");
1372 if (*mp->b_rptr & FLUSHW) {
1373 mutex_enter(&pp->umutex);
1374 ecpp_flush(pp, FWRITE);
1375 mutex_exit(&pp->umutex);
1378 if (*mp->b_rptr & FLUSHR) {
1379 mutex_enter(&pp->umutex);
1380 ecpp_flush(pp, FREAD);
1381 mutex_exit(&pp->umutex);
1382 qreply(q, mp);
1383 } else {
1384 freemsg(mp);
1387 break;
1389 case M_READ:
1391 * When the user calls read(2), M_READ message is sent to us,
1392 * first byte of which is the number of requested bytes
1393 * We add up user requests and use resulting number
1394 * to calculate the reverse transfer block size
1396 mutex_enter(&pp->umutex);
1397 if (pp->e_busy == ECPP_IDLE) {
1398 pp->nread += *(size_t *)mp->b_rptr;
1399 ecpp_error(pp->dip, "ecpp_wput: M_READ %d", pp->nread);
1400 freemsg(mp);
1401 } else {
1402 ecpp_error(pp->dip, "ecpp_wput: M_READ queueing");
1403 (void) putq(q, mp);
1405 mutex_exit(&pp->umutex);
1406 break;
1408 default:
1409 ecpp_error(pp->dip, "ecpp_wput: bad messagetype 0x%x\n",
1410 DB_TYPE(mp));
1411 freemsg(mp);
1412 break;
1415 return (0);
1419 * Process ECPPIOC_GETDEVID-like ioctls
1421 static void
1422 ecpp_wput_iocdata_devid(queue_t *q, mblk_t *mp, uintptr_t rlen_offset)
1424 struct copyresp *csp;
1425 struct ecpp_copystate *stp;
1426 mblk_t *datamp;
1428 csp = (struct copyresp *)mp->b_rptr;
1429 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr;
1431 /* determine the state of copyin/copyout process */
1432 switch (stp->state) {
1433 case ECPP_STRUCTIN:
1434 /* user structure has arrived */
1435 (void) putq(q, mp);
1436 break;
1438 case ECPP_ADDROUT:
1440 * data transfered to user space okay
1441 * now update user structure
1443 datamp = allocb(sizeof (int), BPRI_MED);
1444 if (datamp == NULL) {
1445 ecpp_nack_ioctl(q, mp, ENOSR);
1446 break;
1449 *(int *)datamp->b_rptr =
1450 *(int *)((char *)&stp->un + rlen_offset);
1451 stp->state = ECPP_STRUCTOUT;
1453 mcopyout(mp, csp->cp_private, sizeof (int),
1454 (char *)stp->uaddr + rlen_offset, datamp);
1455 qreply(q, mp);
1456 break;
1458 case ECPP_STRUCTOUT:
1459 /* user structure was updated okay */
1460 freemsg(csp->cp_private);
1461 ecpp_ack_ioctl(q, mp);
1462 break;
1464 default:
1465 ecpp_nack_ioctl(q, mp, EINVAL);
1466 break;
1470 static uchar_t
1471 ecpp_get_error_status(uchar_t status)
1473 uchar_t pin_status = 0;
1475 if (!(status & ECPP_nERR)) {
1476 pin_status |= BPP_ERR_ERR;
1479 if (status & ECPP_PE) {
1480 pin_status |= BPP_PE_ERR;
1483 if (!(status & ECPP_SLCT)) {
1484 pin_status |= BPP_SLCT_ERR;
1487 if (!(status & ECPP_nBUSY)) {
1488 pin_status |= BPP_SLCT_ERR;
1491 return (pin_status);
1495 * ioctl handler for output PUT procedure.
1497 static void
1498 ecpp_putioc(queue_t *q, mblk_t *mp)
1500 struct iocblk *iocbp;
1501 struct ecppunit *pp;
1503 pp = (struct ecppunit *)q->q_ptr;
1505 iocbp = (struct iocblk *)mp->b_rptr;
1507 /* I_STR ioctls are invalid */
1508 if (iocbp->ioc_count != TRANSPARENT) {
1509 ecpp_nack_ioctl(q, mp, EINVAL);
1510 return;
1513 switch (iocbp->ioc_cmd) {
1514 case ECPPIOC_SETPARMS: {
1515 mcopyin(mp, NULL, sizeof (struct ecpp_transfer_parms), NULL);
1516 qreply(q, mp);
1517 break;
1520 case ECPPIOC_GETPARMS: {
1521 struct ecpp_transfer_parms xfer_parms;
1523 mutex_enter(&pp->umutex);
1525 pp->xfer_parms.mode = pp->current_mode;
1526 xfer_parms = pp->xfer_parms;
1528 mutex_exit(&pp->umutex);
1530 ecpp_putioc_copyout(q, mp, &xfer_parms, sizeof (xfer_parms));
1531 break;
1534 case ECPPIOC_SETREGS: {
1535 mutex_enter(&pp->umutex);
1536 if (pp->current_mode != ECPP_DIAG_MODE) {
1537 mutex_exit(&pp->umutex);
1538 ecpp_nack_ioctl(q, mp, EINVAL);
1539 break;
1541 mutex_exit(&pp->umutex);
1543 mcopyin(mp, NULL, sizeof (struct ecpp_regs), NULL);
1544 qreply(q, mp);
1545 break;
1548 case ECPPIOC_GETREGS: {
1549 struct ecpp_regs rg;
1551 mutex_enter(&pp->umutex);
1553 if (pp->current_mode != ECPP_DIAG_MODE) {
1554 mutex_exit(&pp->umutex);
1555 ecpp_nack_ioctl(q, mp, EINVAL);
1556 break;
1559 rg.dsr = DSR_READ(pp);
1560 rg.dcr = DCR_READ(pp);
1562 mutex_exit(&pp->umutex);
1564 ecpp_error(pp->dip, "ECPPIOC_GETREGS: dsr=%x,dcr=%x\n",
1565 rg.dsr, rg.dcr);
1567 /* these bits must be 1 */
1568 rg.dsr |= ECPP_SETREGS_DSR_MASK;
1569 rg.dcr |= ECPP_SETREGS_DCR_MASK;
1571 ecpp_putioc_copyout(q, mp, &rg, sizeof (rg));
1572 break;
1575 case ECPPIOC_SETPORT:
1576 case ECPPIOC_SETDATA: {
1577 mutex_enter(&pp->umutex);
1578 if (pp->current_mode != ECPP_DIAG_MODE) {
1579 mutex_exit(&pp->umutex);
1580 ecpp_nack_ioctl(q, mp, EINVAL);
1581 break;
1583 mutex_exit(&pp->umutex);
1586 * each of the commands fetches a byte quantity.
1588 mcopyin(mp, NULL, sizeof (uchar_t), NULL);
1589 qreply(q, mp);
1590 break;
1593 case ECPPIOC_GETDATA:
1594 case ECPPIOC_GETPORT: {
1595 uchar_t byte;
1597 mutex_enter(&pp->umutex);
1599 /* must be in diagnostic mode for these commands to work */
1600 if (pp->current_mode != ECPP_DIAG_MODE) {
1601 mutex_exit(&pp->umutex);
1602 ecpp_nack_ioctl(q, mp, EINVAL);
1603 break;
1606 if (iocbp->ioc_cmd == ECPPIOC_GETPORT) {
1607 byte = pp->port;
1608 } else if (iocbp->ioc_cmd == ECPPIOC_GETDATA) {
1609 switch (pp->port) {
1610 case ECPP_PORT_PIO:
1611 byte = DATAR_READ(pp);
1612 break;
1613 case ECPP_PORT_TDMA:
1614 byte = TFIFO_READ(pp);
1615 ecpp_error(pp->dip, "GETDATA=0x%x\n", byte);
1616 break;
1617 default:
1618 ecpp_nack_ioctl(q, mp, EINVAL);
1619 break;
1621 } else {
1622 mutex_exit(&pp->umutex);
1623 ecpp_error(pp->dip, "weird command");
1624 ecpp_nack_ioctl(q, mp, EINVAL);
1625 break;
1628 mutex_exit(&pp->umutex);
1630 ecpp_putioc_copyout(q, mp, &byte, sizeof (byte));
1632 break;
1635 case BPPIOC_GETERR: {
1636 struct bpp_error_status bpp_status;
1638 mutex_enter(&pp->umutex);
1640 bpp_status.timeout_occurred = pp->timeout_error;
1641 bpp_status.bus_error = 0; /* not used */
1642 bpp_status.pin_status = ecpp_get_error_status(pp->saved_dsr);
1644 mutex_exit(&pp->umutex);
1646 ecpp_putioc_copyout(q, mp, &bpp_status, sizeof (bpp_status));
1648 break;
1651 case BPPIOC_TESTIO: {
1652 mutex_enter(&pp->umutex);
1654 if (!((pp->current_mode == ECPP_CENTRONICS) ||
1655 (pp->current_mode == ECPP_COMPAT_MODE))) {
1656 ecpp_nack_ioctl(q, mp, EINVAL);
1657 } else {
1658 pp->saved_dsr = DSR_READ(pp);
1660 if ((pp->saved_dsr & ECPP_PE) ||
1661 !(pp->saved_dsr & ECPP_SLCT) ||
1662 !(pp->saved_dsr & ECPP_nERR)) {
1663 ecpp_nack_ioctl(q, mp, EIO);
1664 } else {
1665 ecpp_ack_ioctl(q, mp);
1669 mutex_exit(&pp->umutex);
1671 break;
1674 case PRNIOC_RESET:
1676 * Initialize interface only if no transfer is in progress
1678 mutex_enter(&pp->umutex);
1679 if (pp->e_busy == ECPP_BUSY) {
1680 mutex_exit(&pp->umutex);
1681 ecpp_nack_ioctl(q, mp, EIO);
1682 } else {
1683 (void) ecpp_mode_negotiation(pp, ECPP_CENTRONICS);
1685 DCR_WRITE(pp, ECPP_SLCTIN);
1686 drv_usecwait(2);
1687 DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT);
1689 ecpp_default_negotiation(pp);
1691 mutex_exit(&pp->umutex);
1692 ecpp_ack_ioctl(q, mp);
1694 break;
1696 case PRNIOC_GET_IFCAP: {
1697 uint_t ifcap;
1699 mutex_enter(&pp->umutex);
1701 ifcap = ecpp_get_prn_ifcap(pp);
1703 mutex_exit(&pp->umutex);
1705 ecpp_putioc_copyout(q, mp, &ifcap, sizeof (ifcap));
1706 break;
1709 case PRNIOC_SET_IFCAP: {
1710 mcopyin(mp, NULL, sizeof (uint_t), NULL);
1711 qreply(q, mp);
1712 break;
1715 case PRNIOC_GET_TIMEOUTS: {
1716 struct prn_timeouts timeouts;
1718 mutex_enter(&pp->umutex);
1719 timeouts = pp->prn_timeouts;
1720 mutex_exit(&pp->umutex);
1722 ecpp_putioc_copyout(q, mp, &timeouts, sizeof (timeouts));
1724 break;
1727 case PRNIOC_SET_TIMEOUTS:
1728 mcopyin(mp, NULL, sizeof (struct prn_timeouts),
1729 *(caddr_t *)(void *)mp->b_cont->b_rptr);
1730 qreply(q, mp);
1731 break;
1733 case PRNIOC_GET_STATUS: {
1734 uint8_t dsr;
1735 uint_t status;
1737 mutex_enter(&pp->umutex);
1739 /* DSR only makes sense in Centronics & Compat mode */
1740 if (pp->current_mode == ECPP_CENTRONICS ||
1741 pp->current_mode == ECPP_COMPAT_MODE) {
1742 dsr = DSR_READ(pp);
1743 if ((dsr & ECPP_PE) ||
1744 !(dsr & ECPP_SLCT) || !(dsr & ECPP_nERR)) {
1745 status = PRN_ONLINE;
1746 } else {
1747 status = PRN_ONLINE | PRN_READY;
1749 } else {
1750 status = PRN_ONLINE | PRN_READY;
1753 mutex_exit(&pp->umutex);
1755 ecpp_putioc_copyout(q, mp, &status, sizeof (status));
1756 break;
1759 case PRNIOC_GET_1284_STATUS: {
1760 uint8_t dsr;
1761 uchar_t status;
1763 mutex_enter(&pp->umutex);
1765 /* status only makes sense in Centronics & Compat mode */
1766 if (pp->current_mode != ECPP_COMPAT_MODE &&
1767 pp->current_mode != ECPP_CENTRONICS) {
1768 mutex_exit(&pp->umutex);
1769 ecpp_nack_ioctl(q, mp, EINVAL);
1770 break;
1773 dsr = DSR_READ(pp); /* read status */
1775 mutex_exit(&pp->umutex);
1777 ecpp_error(pp->dip, "PRNIOC_GET_STATUS: %x\n", dsr);
1779 status = (dsr & (ECPP_SLCT | ECPP_PE | ECPP_nERR)) |
1780 (~dsr & ECPP_nBUSY);
1782 ecpp_putioc_copyout(q, mp, &status, sizeof (status));
1783 break;
1786 case ECPPIOC_GETDEVID:
1787 ecpp_putioc_stateful_copyin(q, mp,
1788 sizeof (struct ecpp_device_id));
1789 break;
1791 case PRNIOC_GET_1284_DEVID:
1792 ecpp_putioc_stateful_copyin(q, mp,
1793 sizeof (struct prn_1284_device_id));
1794 break;
1796 case PRNIOC_GET_IFINFO:
1797 ecpp_putioc_stateful_copyin(q, mp,
1798 sizeof (struct prn_interface_info));
1799 break;
1801 default:
1802 ecpp_error(pp->dip, "putioc: unknown IOCTL: %x\n",
1803 iocbp->ioc_cmd);
1804 ecpp_nack_ioctl(q, mp, EINVAL);
1805 break;
1810 * allocate mblk and copyout the requested number of bytes
1812 static void
1813 ecpp_putioc_copyout(queue_t *q, mblk_t *mp, void *buf, int len)
1815 mblk_t *tmp;
1817 if ((tmp = allocb(len, BPRI_MED)) == NULL) {
1818 ecpp_nack_ioctl(q, mp, ENOSR);
1819 return;
1822 bcopy(buf, tmp->b_wptr, len);
1824 mcopyout(mp, NULL, len, NULL, tmp);
1825 qreply(q, mp);
1829 * copyin the structure using struct ecpp_copystate
1831 static void
1832 ecpp_putioc_stateful_copyin(queue_t *q, mblk_t *mp, size_t size)
1834 mblk_t *tmp;
1835 struct ecpp_copystate *stp;
1837 if ((tmp = allocb(sizeof (struct ecpp_copystate), BPRI_MED)) == NULL) {
1838 ecpp_nack_ioctl(q, mp, EAGAIN);
1839 return;
1842 stp = (struct ecpp_copystate *)tmp->b_rptr;
1843 stp->state = ECPP_STRUCTIN;
1844 stp->uaddr = *(caddr_t *)mp->b_cont->b_rptr;
1846 tmp->b_wptr += sizeof (struct ecpp_copystate);
1848 mcopyin(mp, tmp, size, stp->uaddr);
1849 qreply(q, mp);
1853 * read queue is only used when the peripheral sends data faster,
1854 * then the application consumes it;
1855 * once the low water mark is reached, this routine will be scheduled
1857 static int
1858 ecpp_rsrv(queue_t *q)
1860 struct msgb *mp;
1863 * send data upstream until next queue is full or the queue is empty
1865 while (canputnext(q) && (mp = getq(q))) {
1866 putnext(q, mp);
1870 * if there is still space on the queue, enable backchannel
1872 if (canputnext(q)) {
1873 struct ecppunit *pp = (struct ecppunit *)q->q_ptr;
1875 mutex_enter(&pp->umutex);
1877 if (pp->e_busy == ECPP_IDLE) {
1878 (void) ecpp_idle_phase(pp);
1879 cv_signal(&pp->pport_cv); /* signal ecpp_close() */
1882 mutex_exit(&pp->umutex);
1885 return (0);
1888 static int
1889 ecpp_wsrv(queue_t *q)
1891 struct ecppunit *pp = (struct ecppunit *)q->q_ptr;
1892 struct msgb *mp;
1893 size_t len, total_len;
1894 size_t my_ioblock_sz;
1895 caddr_t my_ioblock;
1896 caddr_t start_addr;
1898 mutex_enter(&pp->umutex);
1900 ecpp_error(pp->dip, "ecpp_wsrv: e_busy=%x\n", pp->e_busy);
1902 /* if channel is actively doing work, wait till completed */
1903 if (pp->e_busy == ECPP_BUSY || pp->e_busy == ECPP_FLUSH) {
1904 mutex_exit(&pp->umutex);
1905 return (0);
1906 } else if (pp->suspended == TRUE) {
1908 * if the system is about to suspend and ecpp_detach()
1909 * is blocked due to active transfers, wake it up and exit
1911 cv_signal(&pp->pport_cv);
1912 mutex_exit(&pp->umutex);
1913 return (0);
1916 /* peripheral status should be okay before starting transfer */
1917 if (pp->e_busy == ECPP_ERR) {
1918 if (ecpp_check_status(pp) == FAILURE) {
1919 if (pp->wsrv_timer_id == 0) {
1920 ecpp_error(pp->dip, "wsrv: start wrsv_timer\n");
1921 pp->wsrv_timer_id = timeout(ecpp_wsrv_timer,
1922 (caddr_t)pp,
1923 drv_usectohz(pp->wsrv_retry * 1000));
1924 } else {
1925 ecpp_error(pp->dip,
1926 "ecpp_wsrv: wrsv_timer is active\n");
1929 mutex_exit(&pp->umutex);
1930 return (0);
1931 } else {
1932 pp->e_busy = ECPP_IDLE;
1936 my_ioblock = pp->ioblock;
1937 my_ioblock_sz = IO_BLOCK_SZ;
1940 * it`s important to null pp->msg here,
1941 * cleaning up from the previous transfer attempts
1943 pp->msg = NULL;
1945 start_addr = NULL;
1946 len = total_len = 0;
1948 * The following loop is implemented to gather the
1949 * many small writes that the lp subsystem makes and
1950 * compile them into one large dma transfer. The len and
1951 * total_len variables are a running count of the number of
1952 * bytes that have been gathered. They are bcopied to the
1953 * ioblock buffer. The pp->e_busy is set to E_BUSY as soon as
1954 * we start gathering packets to indicate the following transfer.
1956 while (mp = getq(q)) {
1957 switch (DB_TYPE(mp)) {
1958 case M_DATA:
1959 pp->e_busy = ECPP_BUSY;
1960 len = mp->b_wptr - mp->b_rptr;
1962 if ((total_len == 0) && (len >= my_ioblock_sz)) {
1964 * if the first M_DATA is bigger than ioblock,
1965 * just use this mblk and start the transfer
1967 total_len = len;
1968 start_addr = (caddr_t)mp->b_rptr;
1969 pp->msg = mp;
1970 goto breakout;
1971 } else if (total_len + len > my_ioblock_sz) {
1973 * current M_DATA does not fit in ioblock,
1974 * put it back and start the transfer
1976 (void) putbq(q, mp);
1977 goto breakout;
1978 } else {
1980 * otherwise add data to ioblock and free mblk
1982 bcopy(mp->b_rptr, my_ioblock, len);
1983 my_ioblock += len;
1984 total_len += len;
1985 start_addr = (caddr_t)pp->ioblock;
1986 freemsg(mp);
1988 break;
1990 case M_IOCTL:
1992 * Assume a simple loopback test: an application
1993 * writes data into the TFIFO, reads it using
1994 * ECPPIOC_GETDATA and compares. If the transfer
1995 * times out (which is only possible on Grover),
1996 * the ioctl might be processed before the data
1997 * got to the TFIFO, which leads to miscompare.
1998 * So if we met ioctl, postpone it until after xfer.
2000 if (total_len > 0) {
2001 (void) putbq(q, mp);
2002 goto breakout;
2005 ecpp_error(pp->dip, "M_IOCTL.\n");
2007 mutex_exit(&pp->umutex);
2009 ecpp_putioc(q, mp);
2011 mutex_enter(&pp->umutex);
2013 break;
2015 case M_IOCDATA: {
2016 struct copyresp *csp = (struct copyresp *)mp->b_rptr;
2018 ecpp_error(pp->dip, "M_IOCDATA\n");
2021 * If copy request failed, quit now
2023 if (csp->cp_rval != 0) {
2024 freemsg(mp);
2025 break;
2028 switch (csp->cp_cmd) {
2029 case ECPPIOC_SETPARMS:
2030 case ECPPIOC_SETREGS:
2031 case ECPPIOC_SETPORT:
2032 case ECPPIOC_SETDATA:
2033 case ECPPIOC_GETDEVID:
2034 case PRNIOC_SET_IFCAP:
2035 case PRNIOC_GET_1284_DEVID:
2036 case PRNIOC_SET_TIMEOUTS:
2037 case PRNIOC_GET_IFINFO:
2038 ecpp_srvioc(q, mp);
2039 break;
2041 default:
2042 ecpp_nack_ioctl(q, mp, EINVAL);
2043 break;
2046 break;
2049 case M_CTL:
2050 if (pp->e_busy != ECPP_IDLE) {
2051 ecpp_error(pp->dip, "wsrv: M_CTL postponed\n");
2052 (void) putbq(q, mp);
2053 goto breakout;
2054 } else {
2055 ecpp_error(pp->dip, "wsrv: M_CTL\n");
2058 /* sanity check */
2059 if ((mp->b_wptr - mp->b_rptr != sizeof (int)) ||
2060 (*(int *)mp->b_rptr != ECPP_BACKCHANNEL)) {
2061 ecpp_error(pp->dip, "wsrv: bogus M_CTL");
2062 freemsg(mp);
2063 break;
2064 } else {
2065 freemsg(mp);
2068 /* This was a backchannel request */
2069 (void) ecpp_peripheral2host(pp);
2071 /* exit if transfer have been initiated */
2072 if (pp->e_busy == ECPP_BUSY) {
2073 goto breakout;
2075 break;
2077 case M_READ:
2078 pp->nread += *(size_t *)mp->b_rptr;
2079 freemsg(mp);
2080 ecpp_error(pp->dip, "wsrv: M_READ %d", pp->nread);
2081 break;
2083 default:
2084 ecpp_error(pp->dip, "wsrv: should never get here\n");
2085 freemsg(mp);
2086 break;
2089 breakout:
2091 * If total_len > 0 then start the transfer, otherwise goto idle state
2093 if (total_len > 0) {
2094 ecpp_error(pp->dip, "wsrv:starting: total_len=%d\n", total_len);
2095 pp->e_busy = ECPP_BUSY;
2096 ecpp_start(pp, start_addr, total_len);
2097 } else {
2098 ecpp_error(pp->dip, "wsrv:finishing: ebusy=%x\n", pp->e_busy);
2100 /* IDLE if xfer_timeout, or FIFO_EMPTY */
2101 if (pp->e_busy == ECPP_IDLE) {
2102 (void) ecpp_idle_phase(pp);
2103 cv_signal(&pp->pport_cv); /* signal ecpp_close() */
2107 mutex_exit(&pp->umutex);
2108 return (1);
2112 * Ioctl processor for queued ioctl data transfer messages.
2114 static void
2115 ecpp_srvioc(queue_t *q, mblk_t *mp)
2117 struct iocblk *iocbp;
2118 struct ecppunit *pp;
2120 iocbp = (struct iocblk *)mp->b_rptr;
2121 pp = (struct ecppunit *)q->q_ptr;
2123 switch (iocbp->ioc_cmd) {
2124 case ECPPIOC_SETPARMS: {
2125 struct ecpp_transfer_parms *xferp;
2127 xferp = (struct ecpp_transfer_parms *)mp->b_cont->b_rptr;
2129 if (xferp->write_timeout <= 0 ||
2130 xferp->write_timeout >= ECPP_MAX_TIMEOUT) {
2131 ecpp_nack_ioctl(q, mp, EINVAL);
2132 break;
2135 if (!((xferp->mode == ECPP_CENTRONICS) ||
2136 (xferp->mode == ECPP_COMPAT_MODE) ||
2137 (xferp->mode == ECPP_NIBBLE_MODE) ||
2138 (xferp->mode == ECPP_ECP_MODE) ||
2139 (xferp->mode == ECPP_DIAG_MODE))) {
2140 ecpp_nack_ioctl(q, mp, EINVAL);
2141 break;
2144 pp->xfer_parms = *xferp;
2145 pp->prn_timeouts.tmo_forward = pp->xfer_parms.write_timeout;
2147 ecpp_error(pp->dip, "srvioc: current_mode =%x new mode=%x\n",
2148 pp->current_mode, pp->xfer_parms.mode);
2150 if (ecpp_mode_negotiation(pp, pp->xfer_parms.mode) == FAILURE) {
2151 ecpp_nack_ioctl(q, mp, EPROTONOSUPPORT);
2152 } else {
2154 * mode nego was a success. If nibble mode check
2155 * back channel and set into REVIDLE.
2157 if ((pp->current_mode == ECPP_NIBBLE_MODE) &&
2158 (read_nibble_backchan(pp) == FAILURE)) {
2160 * problems reading the backchannel
2161 * returned to centronics;
2162 * ioctl fails.
2164 ecpp_nack_ioctl(q, mp, EPROTONOSUPPORT);
2165 break;
2168 ecpp_ack_ioctl(q, mp);
2170 if (pp->current_mode != ECPP_DIAG_MODE) {
2171 pp->port = ECPP_PORT_DMA;
2172 } else {
2173 pp->port = ECPP_PORT_PIO;
2176 pp->xfer_parms.mode = pp->current_mode;
2178 break;
2181 case ECPPIOC_SETREGS: {
2182 struct ecpp_regs *rg;
2183 uint8_t dcr;
2185 rg = (struct ecpp_regs *)mp->b_cont->b_rptr;
2187 /* must be in diagnostic mode for these commands to work */
2188 if (pp->current_mode != ECPP_DIAG_MODE) {
2189 ecpp_nack_ioctl(q, mp, EINVAL);
2190 break;
2193 /* bits 4-7 must be 1 or return EINVAL */
2194 if ((rg->dcr & ECPP_SETREGS_DCR_MASK) !=
2195 ECPP_SETREGS_DCR_MASK) {
2196 ecpp_nack_ioctl(q, mp, EINVAL);
2197 break;
2200 /* get the old dcr */
2201 dcr = DCR_READ(pp) & ~ECPP_REV_DIR;
2202 /* get the new dcr */
2203 dcr = (dcr & ECPP_SETREGS_DCR_MASK) |
2204 (rg->dcr & ~ECPP_SETREGS_DCR_MASK);
2205 DCR_WRITE(pp, dcr);
2206 ecpp_error(pp->dip, "ECPPIOC_SETREGS:dcr=%x\n", dcr);
2207 ecpp_ack_ioctl(q, mp);
2208 break;
2211 case ECPPIOC_SETPORT: {
2212 uchar_t *port;
2214 port = (uchar_t *)mp->b_cont->b_rptr;
2216 /* must be in diagnostic mode for these commands to work */
2217 if (pp->current_mode != ECPP_DIAG_MODE) {
2218 ecpp_nack_ioctl(q, mp, EINVAL);
2219 break;
2222 switch (*port) {
2223 case ECPP_PORT_PIO:
2224 /* put superio into PIO mode */
2225 ECR_WRITE(pp,
2226 ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV);
2227 pp->port = *port;
2228 ecpp_ack_ioctl(q, mp);
2229 break;
2231 case ECPP_PORT_TDMA:
2232 ecpp_error(pp->dip, "SETPORT: to TDMA\n");
2233 pp->tfifo_intr = 1;
2234 /* change to mode 110 */
2235 ECR_WRITE(pp,
2236 ECR_mode_110 | ECPP_INTR_MASK | ECPP_INTR_SRV);
2237 pp->port = *port;
2238 ecpp_ack_ioctl(q, mp);
2239 break;
2241 default:
2242 ecpp_nack_ioctl(q, mp, EINVAL);
2245 break;
2248 case ECPPIOC_SETDATA: {
2249 uchar_t *data;
2251 data = (uchar_t *)mp->b_cont->b_rptr;
2253 /* must be in diagnostic mode for these commands to work */
2254 if (pp->current_mode != ECPP_DIAG_MODE) {
2255 ecpp_nack_ioctl(q, mp, EINVAL);
2256 break;
2259 switch (pp->port) {
2260 case ECPP_PORT_PIO:
2261 DATAR_WRITE(pp, *data);
2262 ecpp_ack_ioctl(q, mp);
2263 break;
2265 case ECPP_PORT_TDMA:
2266 TFIFO_WRITE(pp, *data);
2267 ecpp_ack_ioctl(q, mp);
2268 break;
2270 default:
2271 ecpp_nack_ioctl(q, mp, EINVAL);
2274 break;
2277 case ECPPIOC_GETDEVID: {
2278 struct copyresp *csp;
2279 struct ecpp_copystate *stp;
2280 struct ecpp_device_id *dp;
2281 struct ecpp_device_id id;
2283 csp = (struct copyresp *)mp->b_rptr;
2284 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr;
2285 dp = (struct ecpp_device_id *)mp->b_cont->b_rptr;
2287 #ifdef _MULTI_DATAMODEL
2288 if (IOC_CONVERT_FROM(iocbp) == IOC_ILP32) {
2289 struct ecpp_device_id32 *dp32;
2291 dp32 = (struct ecpp_device_id32 *)dp;
2292 id.mode = dp32->mode;
2293 id.len = dp32->len;
2294 id.addr = (char *)(uintptr_t)dp32->addr;
2295 } else {
2296 #endif /* _MULTI_DATAMODEL */
2297 id = *dp;
2298 #ifdef _MULTI_DATAMODEL
2300 #endif /* _MULTI_DATAMODEL */
2302 ecpp_srvioc_devid(q, mp, &id, &stp->un.devid.rlen);
2303 break;
2306 case PRNIOC_GET_1284_DEVID: {
2307 struct copyresp *csp;
2308 struct ecpp_copystate *stp;
2309 struct prn_1284_device_id *dp;
2310 struct ecpp_device_id id;
2312 csp = (struct copyresp *)mp->b_rptr;
2313 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr;
2314 dp = (struct prn_1284_device_id *)mp->b_cont->b_rptr;
2316 /* imitate struct ecpp_device_id */
2317 id.mode = ECPP_NIBBLE_MODE;
2319 #ifdef _MULTI_DATAMODEL
2320 if (IOC_CONVERT_FROM(iocbp) == IOC_ILP32) {
2321 struct prn_1284_device_id32 *dp32;
2323 dp32 = (struct prn_1284_device_id32 *)dp;
2324 id.len = dp32->id_len;
2325 id.addr = (char *)(uintptr_t)dp32->id_data;
2326 } else {
2327 #endif /* _MULTI_DATAMODEL */
2328 id.len = dp->id_len;
2329 id.addr = (char *)dp->id_data;
2330 #ifdef _MULTI_DATAMODEL
2332 #endif /* _MULTI_DATAMODEL */
2334 ecpp_srvioc_devid(q, mp, &id,
2335 (int *)&stp->un.prn_devid.id_rlen);
2336 break;
2339 case PRNIOC_SET_IFCAP: {
2340 uint_t ifcap, new_ifcap;
2342 ifcap = ecpp_get_prn_ifcap(pp);
2343 new_ifcap = *(uint_t *)mp->b_cont->b_rptr;
2345 if (ifcap == new_ifcap) {
2346 ecpp_ack_ioctl(q, mp);
2347 break;
2350 /* only changing PRN_BIDI is supported */
2351 if ((ifcap ^ new_ifcap) & ~PRN_BIDI) {
2352 ecpp_nack_ioctl(q, mp, EINVAL);
2353 break;
2356 if (new_ifcap & PRN_BIDI) { /* go bidirectional */
2357 ecpp_default_negotiation(pp);
2358 } else { /* go unidirectional */
2359 (void) ecpp_mode_negotiation(pp, ECPP_CENTRONICS);
2362 ecpp_ack_ioctl(q, mp);
2363 break;
2366 case PRNIOC_SET_TIMEOUTS: {
2367 struct prn_timeouts *prn_timeouts;
2369 prn_timeouts = (struct prn_timeouts *)mp->b_cont->b_rptr;
2371 if (prn_timeouts->tmo_forward > ECPP_MAX_TIMEOUT) {
2372 ecpp_nack_ioctl(q, mp, EINVAL);
2373 break;
2376 pp->prn_timeouts = *prn_timeouts;
2377 pp->xfer_parms.write_timeout = (int)prn_timeouts->tmo_forward;
2379 ecpp_ack_ioctl(q, mp);
2380 break;
2383 case PRNIOC_GET_IFINFO:
2384 ecpp_srvioc_prnif(q, mp);
2385 break;
2387 default: /* unexpected ioctl type */
2388 ecpp_nack_ioctl(q, mp, EINVAL);
2389 break;
2393 static void
2394 ecpp_srvioc_devid(queue_t *q, mblk_t *mp, struct ecpp_device_id *id, int *rlen)
2396 struct ecppunit *pp;
2397 struct copyresp *csp;
2398 struct ecpp_copystate *stp;
2399 int error;
2400 int len;
2401 int mode;
2402 mblk_t *datamp;
2404 pp = (struct ecppunit *)q->q_ptr;
2405 csp = (struct copyresp *)mp->b_rptr;
2406 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr;
2407 mode = id->mode;
2409 /* check arguments */
2410 if ((mode < ECPP_CENTRONICS) || (mode > ECPP_ECP_MODE)) {
2411 ecpp_error(pp->dip, "ecpp_srvioc_devid: mode=%x, len=%x\n",
2412 mode, id->len);
2413 ecpp_nack_ioctl(q, mp, EINVAL);
2414 return;
2417 /* Currently only Nibble mode is supported */
2418 if (mode != ECPP_NIBBLE_MODE) {
2419 ecpp_nack_ioctl(q, mp, EPROTONOSUPPORT);
2420 return;
2423 if ((id->addr == NULL) && (id->len != 0)) {
2424 ecpp_nack_ioctl(q, mp, EFAULT);
2425 return;
2428 /* read device ID length */
2429 if (error = ecpp_getdevid(pp, NULL, &len, mode)) {
2430 ecpp_nack_ioctl(q, mp, error);
2431 goto breakout;
2434 /* don't take into account two length bytes */
2435 len -= 2;
2436 *rlen = len;
2438 /* limit transfer to user buffer length */
2439 if (id->len < len) {
2440 len = id->len;
2443 if (len == 0) {
2444 /* just return rlen */
2445 stp->state = ECPP_ADDROUT;
2446 ecpp_wput_iocdata_devid(q, mp,
2447 (uintptr_t)rlen - (uintptr_t)&stp->un);
2448 goto breakout;
2451 if ((datamp = allocb(len, BPRI_MED)) == NULL) {
2452 ecpp_nack_ioctl(q, mp, ENOSR);
2453 goto breakout;
2456 /* read ID string */
2457 error = ecpp_getdevid(pp, datamp->b_rptr, &len, mode);
2458 if (error) {
2459 freemsg(datamp);
2460 ecpp_nack_ioctl(q, mp, error);
2461 goto breakout;
2462 } else {
2463 datamp->b_wptr += len;
2465 stp->state = ECPP_ADDROUT;
2466 mcopyout(mp, csp->cp_private, len, id->addr, datamp);
2467 qreply(q, mp);
2470 return;
2472 breakout:
2473 (void) ecpp_1284_termination(pp);
2477 * PRNIOC_GET_IFINFO: return prnio interface info string
2479 static void
2480 ecpp_srvioc_prnif(queue_t *q, mblk_t *mp)
2482 struct copyresp *csp;
2483 struct ecpp_copystate *stp;
2484 uint_t len;
2485 struct prn_interface_info *ip;
2486 struct prn_interface_info info;
2487 mblk_t *datamp;
2488 #ifdef _MULTI_DATAMODEL
2489 struct iocblk *iocbp = (struct iocblk *)mp->b_rptr;
2490 #endif
2492 csp = (struct copyresp *)mp->b_rptr;
2493 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr;
2494 ip = (struct prn_interface_info *)mp->b_cont->b_rptr;
2496 #ifdef _MULTI_DATAMODEL
2497 if (IOC_CONVERT_FROM(iocbp) == IOC_ILP32) {
2498 struct prn_interface_info32 *ip32;
2500 ip32 = (struct prn_interface_info32 *)ip;
2501 info.if_len = ip32->if_len;
2502 info.if_data = (char *)(uintptr_t)ip32->if_data;
2503 } else {
2504 #endif /* _MULTI_DATAMODEL */
2505 info = *ip;
2506 #ifdef _MULTI_DATAMODEL
2508 #endif /* _MULTI_DATAMODEL */
2510 len = strlen(prn_ifinfo);
2511 stp->un.prn_if.if_rlen = len;
2512 stp->state = ECPP_ADDROUT;
2514 /* check arguments */
2515 if ((info.if_data == NULL) && (info.if_len != 0)) {
2516 ecpp_nack_ioctl(q, mp, EFAULT);
2517 return;
2520 if (info.if_len == 0) {
2521 /* just copyout rlen */
2522 ecpp_wput_iocdata_devid(q, mp,
2523 offsetof(struct prn_interface_info, if_rlen));
2524 return;
2527 /* if needed, trim to the buffer size */
2528 if (len > info.if_len) {
2529 len = info.if_len;
2532 if ((datamp = allocb(len, BPRI_MED)) == NULL) {
2533 ecpp_nack_ioctl(q, mp, ENOSR);
2534 return;
2537 bcopy(&prn_ifinfo[0], datamp->b_wptr, len);
2538 datamp->b_wptr += len;
2540 mcopyout(mp, csp->cp_private, len, info.if_data, datamp);
2541 qreply(q, mp);
2544 static void
2545 ecpp_flush(struct ecppunit *pp, int cmd)
2547 queue_t *q;
2548 uint8_t ecr, dcr;
2549 timeout_id_t timeout_id, fifo_timer_id, wsrv_timer_id;
2551 ASSERT(mutex_owned(&pp->umutex));
2553 if (!(cmd & FWRITE)) {
2554 return;
2557 q = pp->writeq;
2558 timeout_id = fifo_timer_id = wsrv_timer_id = 0;
2560 ecpp_error(pp->dip, "ecpp_flush e_busy=%x\n", pp->e_busy);
2562 /* if there is an ongoing DMA, it needs to be turned off. */
2563 switch (pp->e_busy) {
2564 case ECPP_BUSY:
2566 * Change the port status to ECPP_FLUSH to
2567 * indicate to ecpp_wsrv that the wq is being flushed.
2569 pp->e_busy = ECPP_FLUSH;
2572 * dma_cancelled indicates to ecpp_isr() that we have
2573 * turned off the DMA. Since the mutex is held, ecpp_isr()
2574 * may be blocked. Once ecpp_flush() finishes and ecpp_isr()
2575 * gains the mutex, ecpp_isr() will have a _reset_ DMAC. Most
2576 * significantly, the DMAC will be reset after ecpp_isr() was
2577 * invoked. Therefore we need to have a flag "dma_cancelled"
2578 * to signify when the described condition has occured. If
2579 * ecpp_isr() notes a dma_cancelled, it will ignore the DMAC csr
2580 * and simply claim the interupt.
2583 pp->dma_cancelled = TRUE;
2585 /* either DMA or PIO transfer */
2586 if (COMPAT_DMA(pp) ||
2587 (pp->current_mode == ECPP_ECP_MODE) ||
2588 (pp->current_mode == ECPP_DIAG_MODE)) {
2590 * if the bcr is zero, then DMA is complete and
2591 * we are waiting for the fifo to drain. Therefore,
2592 * turn off dma.
2594 if (ECPP_DMA_STOP(pp, NULL) == FAILURE) {
2595 ecpp_error(pp->dip,
2596 "ecpp_flush: dma_stop failed.\n");
2600 * If the status of the port is ECPP_BUSY,
2601 * the DMA is stopped by either explicitly above, or by
2602 * ecpp_isr() but the FIFO hasn't drained yet. In either
2603 * case, we need to unbind the dma mappings.
2605 if (ddi_dma_unbind_handle(
2606 pp->dma_handle) != DDI_SUCCESS)
2607 ecpp_error(pp->dip,
2608 "ecpp_flush: unbind failed.\n");
2610 if (pp->msg != NULL) {
2611 freemsg(pp->msg);
2612 pp->msg = NULL;
2614 } else {
2616 * PIO transfer: disable nAck interrups
2618 dcr = DCR_READ(pp);
2619 dcr &= ~(ECPP_REV_DIR | ECPP_INTR_EN);
2620 DCR_WRITE(pp, dcr);
2621 ECPP_MASK_INTR(pp);
2625 * The transfer is cleaned up. There may or may not be data
2626 * in the fifo. We don't care at this point. Ie. SuperIO may
2627 * transfer the remaining bytes in the fifo or not. it doesn't
2628 * matter. All that is important at this stage is that no more
2629 * fifo timers are started.
2632 timeout_id = pp->timeout_id;
2633 fifo_timer_id = pp->fifo_timer_id;
2634 pp->timeout_id = pp->fifo_timer_id = 0;
2635 pp->softintr_pending = 0;
2637 break;
2639 case ECPP_ERR:
2641 * Change the port status to ECPP_FLUSH to
2642 * indicate to ecpp_wsrv that the wq is being flushed.
2644 pp->e_busy = ECPP_FLUSH;
2647 * Most likely there are mblks in the queue,
2648 * but the driver can not transmit because
2649 * of the bad port status. In this case,
2650 * ecpp_flush() should make sure ecpp_wsrv_timer()
2651 * is turned off.
2653 wsrv_timer_id = pp->wsrv_timer_id;
2654 pp->wsrv_timer_id = 0;
2656 break;
2658 case ECPP_IDLE:
2659 /* No work to do. Ready to flush */
2660 break;
2662 default:
2663 ecpp_error(pp->dip,
2664 "ecpp_flush: illegal state %x\n", pp->e_busy);
2667 /* in DIAG mode clear TFIFO if needed */
2668 if (pp->current_mode == ECPP_DIAG_MODE) {
2669 ecr = ECR_READ(pp);
2670 if (!(ecr & ECPP_FIFO_EMPTY)) {
2671 ECR_WRITE(pp,
2672 ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001);
2673 ECR_WRITE(pp, ecr);
2677 /* Discard all messages on the output queue. */
2678 flushq(q, FLUSHDATA);
2680 /* The port is no longer flushing or dma'ing for that matter. */
2681 pp->e_busy = ECPP_IDLE;
2683 /* Set the right phase */
2684 if (pp->current_mode == ECPP_ECP_MODE) {
2685 if (pp->current_phase == ECPP_PHASE_ECP_REV_XFER) {
2686 pp->current_phase = ECPP_PHASE_ECP_REV_IDLE;
2687 } else {
2688 pp->current_phase = ECPP_PHASE_ECP_FWD_IDLE;
2692 /* cancel timeouts if any */
2693 mutex_exit(&pp->umutex);
2695 if (timeout_id) {
2696 (void) untimeout(timeout_id);
2698 if (fifo_timer_id) {
2699 (void) untimeout(fifo_timer_id);
2701 if (wsrv_timer_id) {
2702 (void) untimeout(wsrv_timer_id);
2705 mutex_enter(&pp->umutex);
2707 cv_signal(&pp->pport_cv); /* wake up ecpp_close() */
2710 static void
2711 ecpp_start(struct ecppunit *pp, caddr_t addr, size_t len)
2713 ASSERT(mutex_owned(&pp->umutex));
2714 ASSERT(pp->e_busy == ECPP_BUSY);
2716 ecpp_error(pp->dip,
2717 "ecpp_start:current_mode=%x,current_phase=%x,ecr=%x,len=%d\n",
2718 pp->current_mode, pp->current_phase, ECR_READ(pp), len);
2720 pp->dma_dir = DDI_DMA_WRITE; /* this is a forward transfer */
2722 switch (pp->current_mode) {
2723 case ECPP_NIBBLE_MODE:
2724 (void) ecpp_1284_termination(pp);
2726 /* After termination we are either Compatible or Centronics */
2728 /* FALLTHRU */
2730 case ECPP_CENTRONICS:
2731 case ECPP_COMPAT_MODE:
2732 if (pp->io_mode == ECPP_DMA) {
2733 if (ecpp_init_dma_xfer(pp, addr, len) == FAILURE) {
2734 return;
2736 } else {
2737 /* PIO mode */
2738 if (ecpp_prep_pio_xfer(pp, addr, len) == FAILURE) {
2739 return;
2741 (void) ecpp_pio_writeb(pp);
2743 break;
2745 case ECPP_DIAG_MODE: {
2746 int oldlen;
2748 /* put superio into TFIFO mode, if not already */
2749 ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_110);
2751 * DMA would block if the TFIFO is not empty
2752 * if by this moment nobody read these bytes, they`re gone
2754 drv_usecwait(1);
2755 if (!(ECR_READ(pp) & ECPP_FIFO_EMPTY)) {
2756 ecpp_error(pp->dip,
2757 "ecpp_start: TFIFO not empty, clearing\n");
2758 ECR_WRITE(pp,
2759 ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001);
2760 ECR_WRITE(pp,
2761 ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_110);
2764 /* we can DMA at most 16 bytes into TFIFO */
2765 oldlen = len;
2766 if (len > ECPP_FIFO_SZ) {
2767 len = ECPP_FIFO_SZ;
2770 if (ecpp_init_dma_xfer(pp, addr, len) == FAILURE) {
2771 return;
2774 /* put the rest of data back on the queue */
2775 if (oldlen > len) {
2776 ecpp_putback_untransfered(pp, addr + len, oldlen - len);
2779 break;
2782 case ECPP_ECP_MODE:
2783 ASSERT(pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE ||
2784 pp->current_phase == ECPP_PHASE_ECP_REV_IDLE);
2786 /* if in Reverse Phase negotiate to Forward */
2787 if (pp->current_phase == ECPP_PHASE_ECP_REV_IDLE) {
2788 if (ecp_reverse2forward(pp) == FAILURE) {
2789 if (pp->msg) {
2790 (void) putbq(pp->writeq, pp->msg);
2791 } else {
2792 ecpp_putback_untransfered(pp,
2793 addr, len);
2798 if (ecpp_init_dma_xfer(pp, addr, len) == FAILURE) {
2799 return;
2802 break;
2805 /* schedule transfer timeout */
2806 pp->timeout_id = timeout(ecpp_xfer_timeout, (caddr_t)pp,
2807 pp->xfer_parms.write_timeout * drv_usectohz(1000000));
2811 * Transfer a PIO "block" a byte at a time.
2812 * The block is starts at addr and ends at pp->last_byte
2814 static uint8_t
2815 ecpp_prep_pio_xfer(struct ecppunit *pp, caddr_t addr, size_t len)
2817 pp->next_byte = addr;
2818 pp->last_byte = (caddr_t)((ulong_t)addr + len);
2820 if (ecpp_check_status(pp) == FAILURE) {
2822 * if status signals are bad, do not start PIO,
2823 * put everything back on the queue.
2825 ecpp_error(pp->dip,
2826 "ecpp_prep_pio_xfer:suspend PIO len=%d\n", len);
2828 if (pp->msg != NULL) {
2830 * this circumstance we want to copy the
2831 * untransfered section of msg to a new mblk,
2832 * then free the orignal one.
2834 ecpp_putback_untransfered(pp,
2835 (void *)pp->msg->b_rptr, len);
2836 ecpp_error(pp->dip,
2837 "ecpp_prep_pio_xfer: len1=%d\n", len);
2839 freemsg(pp->msg);
2840 pp->msg = NULL;
2841 } else {
2842 ecpp_putback_untransfered(pp, pp->ioblock, len);
2843 ecpp_error(pp->dip,
2844 "ecpp_prep_pio_xfer: len2=%d\n", len);
2846 qenable(pp->writeq);
2848 return (FAILURE);
2851 pp->dma_cancelled = FALSE;
2853 /* pport must be in PIO mode */
2854 if (ecr_write(pp, ECR_mode_001 |
2855 ECPP_INTR_MASK | ECPP_INTR_SRV) != SUCCESS) {
2856 ecpp_error(pp->dip, "ecpp_prep_pio_xfer: failed w/ECR.\n");
2859 ecpp_error(pp->dip, "ecpp_prep_pio_xfer: dcr=%x ecr=%x\n",
2860 DCR_READ(pp), ECR_READ(pp));
2862 return (SUCCESS);
2865 static uint8_t
2866 ecpp_init_dma_xfer(struct ecppunit *pp, caddr_t addr, size_t len)
2868 uint8_t ecr_mode[] = {
2870 ECR_mode_010, /* Centronix */
2871 ECR_mode_010, /* Compat */
2872 0, /* Byte */
2873 0, /* Nibble */
2874 ECR_mode_011, /* ECP */
2875 0, /* Failure */
2876 ECR_mode_110, /* Diag */
2878 uint8_t ecr;
2880 ASSERT((pp->current_mode <= ECPP_DIAG_MODE) &&
2881 (ecr_mode[pp->current_mode] != 0));
2883 if (ecpp_setup_dma_resources(pp, addr, len) == FAILURE) {
2884 qenable(pp->writeq);
2885 return (FAILURE);
2888 if (ecpp_check_status(pp) == FAILURE) {
2890 * if status signals are bad, do not start DMA, but
2891 * rather put everything back on the queue.
2893 ecpp_error(pp->dip,
2894 "ecpp_init_dma_xfer: suspending DMA len=%d\n",
2895 pp->dma_cookie.dmac_size);
2897 if (pp->msg != NULL) {
2899 * this circumstance we want to copy the
2900 * untransfered section of msg to a new mblk,
2901 * then free the orignal one.
2903 ecpp_putback_untransfered(pp,
2904 (void *)pp->msg->b_rptr, len);
2905 ecpp_error(pp->dip,
2906 "ecpp_init_dma_xfer:a:len=%d\n", len);
2908 freemsg(pp->msg);
2909 pp->msg = NULL;
2910 } else {
2911 ecpp_putback_untransfered(pp, pp->ioblock, len);
2912 ecpp_error(pp->dip,
2913 "ecpp_init_dma_xfer:b:len=%d\n", len);
2916 if (ddi_dma_unbind_handle(pp->dma_handle) != DDI_SUCCESS) {
2917 ecpp_error(pp->dip,
2918 "ecpp_init_dma_xfer: unbind FAILURE.\n");
2920 qenable(pp->writeq);
2921 return (FAILURE);
2924 pp->xfercnt = pp->resid = len;
2925 pp->dma_cancelled = FALSE;
2926 pp->tfifo_intr = 0;
2928 /* set the right ECR mode and disable DMA */
2929 ecr = ecr_mode[pp->current_mode];
2930 (void) ecr_write(pp, ecr | ECPP_INTR_SRV | ECPP_INTR_MASK);
2932 /* prepare DMAC for a transfer */
2933 if (ECPP_DMA_START(pp) == FAILURE) {
2934 ecpp_error(pp->dip, "ecpp_init_dma_xfer: dma_start FAILED.\n");
2935 return (FAILURE);
2938 /* GO! */
2939 (void) ecr_write(pp, ecr | ECPP_DMA_ENABLE | ECPP_INTR_MASK);
2941 return (SUCCESS);
2944 static uint8_t
2945 ecpp_setup_dma_resources(struct ecppunit *pp, caddr_t addr, size_t len)
2947 int err;
2948 off_t woff;
2949 size_t wlen;
2951 ASSERT(pp->dma_dir == DDI_DMA_READ || pp->dma_dir == DDI_DMA_WRITE);
2953 err = ddi_dma_addr_bind_handle(pp->dma_handle, NULL,
2954 addr, len, pp->dma_dir | DDI_DMA_PARTIAL,
2955 DDI_DMA_DONTWAIT, NULL,
2956 &pp->dma_cookie, &pp->dma_cookie_count);
2958 switch (err) {
2959 case DDI_DMA_MAPPED:
2960 ecpp_error(pp->dip, "ecpp_setup_dma: DMA_MAPPED\n");
2962 pp->dma_nwin = 1;
2963 pp->dma_curwin = 1;
2964 break;
2966 case DDI_DMA_PARTIAL_MAP: {
2967 ecpp_error(pp->dip, "ecpp_setup_dma: DMA_PARTIAL_MAP\n");
2969 if (ddi_dma_numwin(pp->dma_handle,
2970 &pp->dma_nwin) != DDI_SUCCESS) {
2971 (void) ddi_dma_unbind_handle(pp->dma_handle);
2972 return (FAILURE);
2974 pp->dma_curwin = 1;
2977 * The very first window is returned by bind_handle,
2978 * but we must do this explicitly here, otherwise
2979 * next getwin would return wrong cookie dmac_size
2981 if (ddi_dma_getwin(pp->dma_handle, 0, &woff, &wlen,
2982 &pp->dma_cookie, &pp->dma_cookie_count) != DDI_SUCCESS) {
2983 ecpp_error(pp->dip,
2984 "ecpp_setup_dma: ddi_dma_getwin failed!");
2985 (void) ddi_dma_unbind_handle(pp->dma_handle);
2986 return (FAILURE);
2989 ecpp_error(pp->dip,
2990 "ecpp_setup_dma: cookies=%d, windows=%d"
2991 " addr=%lx len=%d\n",
2992 pp->dma_cookie_count, pp->dma_nwin,
2993 pp->dma_cookie.dmac_address, pp->dma_cookie.dmac_size);
2995 break;
2998 default:
2999 ecpp_error(pp->dip, "ecpp_setup_dma: err=%x\n", err);
3000 return (FAILURE);
3003 return (SUCCESS);
3006 static void
3007 ecpp_ack_ioctl(queue_t *q, mblk_t *mp)
3009 struct iocblk *iocbp;
3011 mp->b_datap->db_type = M_IOCACK;
3012 mp->b_wptr = mp->b_rptr + sizeof (struct iocblk);
3014 if (mp->b_cont) {
3015 freemsg(mp->b_cont);
3016 mp->b_cont = NULL;
3019 iocbp = (struct iocblk *)mp->b_rptr;
3020 iocbp->ioc_error = 0;
3021 iocbp->ioc_count = 0;
3022 iocbp->ioc_rval = 0;
3024 qreply(q, mp);
3027 static void
3028 ecpp_nack_ioctl(queue_t *q, mblk_t *mp, int err)
3030 struct iocblk *iocbp;
3032 mp->b_datap->db_type = M_IOCNAK;
3033 mp->b_wptr = mp->b_rptr + sizeof (struct iocblk);
3034 iocbp = (struct iocblk *)mp->b_rptr;
3035 iocbp->ioc_error = err;
3037 if (mp->b_cont) {
3038 freemsg(mp->b_cont);
3039 mp->b_cont = NULL;
3042 qreply(q, mp);
3045 uint_t
3046 ecpp_isr(caddr_t arg)
3048 struct ecppunit *pp = (struct ecppunit *)(void *)arg;
3049 uint32_t dcsr;
3050 uint8_t dsr;
3051 int cheerio_pend_counter;
3052 int retval = DDI_INTR_UNCLAIMED;
3053 hrtime_t now;
3055 mutex_enter(&pp->umutex);
3057 * interrupt may occur while other thread is holding the lock
3058 * and cancels DMA transfer (e.g. ecpp_flush())
3059 * since it cannot cancel the interrupt thread,
3060 * it just sets dma_cancelled to TRUE,
3061 * telling interrupt handler to exit immediately
3063 if (pp->dma_cancelled == TRUE) {
3064 ecpp_error(pp->dip, "dma-cancel isr\n");
3066 pp->intr_hard++;
3067 pp->dma_cancelled = FALSE;
3069 mutex_exit(&pp->umutex);
3070 return (DDI_INTR_CLAIMED);
3073 /* Southbridge interrupts are handled separately */
3074 #if defined(__x86)
3075 if (pp->hw == &x86)
3076 #else
3077 if (pp->hw == &m1553)
3078 #endif
3080 retval = ecpp_M1553_intr(pp);
3081 if (retval == DDI_INTR_UNCLAIMED) {
3082 goto unexpected;
3084 mutex_exit(&pp->umutex);
3085 return (DDI_INTR_CLAIMED);
3089 * the intr is through the motherboard. it is faster than PCI route.
3090 * sometimes ecpp_isr() is invoked before cheerio csr is updated.
3092 cheerio_pend_counter = ecpp_isr_max_delay;
3093 dcsr = GET_DMAC_CSR(pp);
3095 while (!(dcsr & DCSR_INT_PEND) && cheerio_pend_counter-- > 0) {
3096 drv_usecwait(1);
3097 dcsr = GET_DMAC_CSR(pp);
3101 * This is a workaround for what seems to be a timing problem
3102 * with the delivery of interrupts and CSR updating with the
3103 * ebus2 csr, superio and the n_ERR pin from the peripheral.
3105 * delay is not needed for PIO mode
3107 if (!COMPAT_PIO(pp)) {
3108 drv_usecwait(100);
3109 dcsr = GET_DMAC_CSR(pp);
3112 /* on 97317 in Extended mode IRQ_ST of DSR is deasserted when read */
3113 dsr = DSR_READ(pp);
3116 * check if interrupt is for this device:
3117 * it should be reflected either in cheerio DCSR register
3118 * or in IRQ_ST bit of DSR on 97317
3120 if ((dcsr & DCSR_INT_PEND) == 0) {
3121 if (pp->hw != &pc97317) {
3122 goto unclaimed;
3125 * on Excalibur, reading DSR will deassert SuperIO IRQx line
3126 * RIO's DCSR_INT_PEND seems to follow IRQx transitions,
3127 * so if DSR is read after interrupt occured, but before
3128 * we get here, IRQx and hence INT_PEND will be deasserted
3129 * as a result, we can miss a service interrupt in PIO mode
3131 * malicious DSR reader is BPPIOC_TESTIO, which is called
3132 * by LP in between data blocks to check printer status
3133 * this workaround lets us not to miss an interrupt
3135 * also, nErr interrupt (ECP mode) not always reflected in DCSR
3137 if (((dsr & ECPP_IRQ_ST) == 0) ||
3138 ((COMPAT_PIO(pp)) && (pp->e_busy == ECPP_BUSY)) ||
3139 (((dsr & ECPP_nERR) == 0) &&
3140 (pp->current_mode == ECPP_ECP_MODE))) {
3141 dcsr = 0;
3142 } else {
3143 goto unclaimed;
3147 pp->intr_hard++;
3149 /* the intr is for us - check all possible interrupt sources */
3150 if (dcsr & DCSR_ERR_PEND) {
3151 size_t bcr;
3153 /* we are expecting a data transfer interrupt */
3154 ASSERT(pp->e_busy == ECPP_BUSY);
3157 * some kind of DMA error
3159 if (ECPP_DMA_STOP(pp, &bcr) == FAILURE) {
3160 ecpp_error(pp->dip, "ecpp_isr: dma_stop failed\n");
3163 ecpp_error(pp->dip, "ecpp_isr: DMAC ERROR bcr=%d\n", bcr);
3165 ecpp_xfer_cleanup(pp);
3167 if (ddi_dma_unbind_handle(pp->dma_handle) != DDI_SUCCESS) {
3168 ecpp_error(pp->dip, "ecpp_isr(e): unbind failed\n");
3171 mutex_exit(&pp->umutex);
3172 return (DDI_INTR_CLAIMED);
3175 if (dcsr & DCSR_TC) {
3176 retval = ecpp_dma_ihdlr(pp);
3177 mutex_exit(&pp->umutex);
3178 return (DDI_INTR_CLAIMED);
3181 if (COMPAT_PIO(pp)) {
3182 retval = ecpp_pio_ihdlr(pp);
3183 mutex_exit(&pp->umutex);
3184 return (DDI_INTR_CLAIMED);
3187 /* does peripheral need attention? */
3188 if ((dsr & ECPP_nERR) == 0) {
3189 retval = ecpp_nErr_ihdlr(pp);
3190 mutex_exit(&pp->umutex);
3191 return (DDI_INTR_CLAIMED);
3194 pp->intr_hard--;
3196 unexpected:
3198 pp->intr_spurious++;
3201 * The following procedure tries to prevent soft hangs
3202 * in event of peripheral/superio misbehaviour:
3203 * if number of unexpected interrupts in the last SPUR_PERIOD ns
3204 * exceeded SPUR_CRITICAL, then shut up interrupts
3206 now = gethrtime();
3207 if (pp->lastspur == 0 || now - pp->lastspur > SPUR_PERIOD) {
3208 /* last unexpected interrupt was long ago */
3209 pp->lastspur = now;
3210 pp->nspur = 1;
3211 } else {
3212 /* last unexpected interrupt was recently */
3213 pp->nspur++;
3216 if (pp->nspur >= SPUR_CRITICAL) {
3217 ECPP_MASK_INTR(pp);
3218 ECR_WRITE(pp, ECR_READ(pp) | ECPP_INTR_MASK | ECPP_INTR_SRV);
3219 pp->nspur = 0;
3220 cmn_err(CE_NOTE, "%s%d: too many interrupt requests",
3221 ddi_get_name(pp->dip), ddi_get_instance(pp->dip));
3222 } else {
3223 ECR_WRITE(pp, ECR_READ(pp) | ECPP_INTR_SRV | ECPP_INTR_MASK);
3226 ecpp_error(pp->dip,
3227 "isr:unknown: dcsr=%x ecr=%x dsr=%x dcr=%x\nmode=%x phase=%x\n",
3228 dcsr, ECR_READ(pp), dsr, DCR_READ(pp),
3229 pp->current_mode, pp->current_phase);
3231 mutex_exit(&pp->umutex);
3232 return (DDI_INTR_CLAIMED);
3234 unclaimed:
3236 pp->intr_spurious++;
3238 ecpp_error(pp->dip,
3239 "isr:UNCL: dcsr=%x ecr=%x dsr=%x dcr=%x\nmode=%x phase=%x\n",
3240 dcsr, ECR_READ(pp), DSR_READ(pp), DCR_READ(pp),
3241 pp->current_mode, pp->current_phase);
3243 mutex_exit(&pp->umutex);
3244 return (DDI_INTR_UNCLAIMED);
3248 * M1553 intr handler
3250 static uint_t
3251 ecpp_M1553_intr(struct ecppunit *pp)
3253 int retval = DDI_INTR_UNCLAIMED;
3255 pp->intr_hard++;
3257 if (pp->e_busy == ECPP_BUSY) {
3258 /* Centronics or Compat PIO transfer */
3259 if (COMPAT_PIO(pp)) {
3260 return (ecpp_pio_ihdlr(pp));
3263 /* Centronics or Compat DMA transfer */
3264 if (COMPAT_DMA(pp) ||
3265 (pp->current_mode == ECPP_ECP_MODE) ||
3266 (pp->current_mode == ECPP_DIAG_MODE)) {
3267 return (ecpp_dma_ihdlr(pp));
3271 /* Nibble or ECP backchannel request? */
3272 if ((DSR_READ(pp) & ECPP_nERR) == 0) {
3273 return (ecpp_nErr_ihdlr(pp));
3276 return (retval);
3280 * DMA completion interrupt handler
3282 static uint_t
3283 ecpp_dma_ihdlr(struct ecppunit *pp)
3285 clock_t tm;
3287 ecpp_error(pp->dip, "ecpp_dma_ihdlr(%x): ecr=%x, dsr=%x, dcr=%x\n",
3288 pp->current_mode, ECR_READ(pp), DSR_READ(pp), DCR_READ(pp));
3290 /* we are expecting a data transfer interrupt */
3291 ASSERT(pp->e_busy == ECPP_BUSY);
3293 /* Intr generated while invoking TFIFO mode. Exit */
3294 if (pp->tfifo_intr == 1) {
3295 pp->tfifo_intr = 0;
3296 ecpp_error(pp->dip, "ecpp_dma_ihdlr: tfifo_intr is 1\n");
3297 return (DDI_INTR_CLAIMED);
3300 if (ECPP_DMA_STOP(pp, NULL) == FAILURE) {
3301 ecpp_error(pp->dip, "ecpp_dma_ihdlr: dma_stop failed\n");
3304 if (pp->current_mode == ECPP_ECP_MODE &&
3305 pp->current_phase == ECPP_PHASE_ECP_REV_XFER) {
3306 ecpp_ecp_read_completion(pp);
3307 } else {
3309 * fifo_timer() will do the cleanup when the FIFO drains
3311 if ((ECR_READ(pp) & ECPP_FIFO_EMPTY) ||
3312 (pp->current_mode == ECPP_DIAG_MODE)) {
3313 tm = 0; /* no use in waiting if FIFO is already empty */
3314 } else {
3315 tm = drv_usectohz(FIFO_DRAIN_PERIOD);
3317 pp->fifo_timer_id = timeout(ecpp_fifo_timer, (caddr_t)pp, tm);
3321 * Stop the DMA transfer timeout timer
3322 * this operation will temporarily give up the mutex,
3323 * so we do it in the end of the handler to avoid races
3325 ecpp_untimeout_unblock(pp, &pp->timeout_id);
3327 return (DDI_INTR_CLAIMED);
3331 * ecpp_pio_ihdlr() is a PIO interrupt processing routine
3332 * It masks interrupts, updates statistics and initiates next byte transfer
3334 static uint_t
3335 ecpp_pio_ihdlr(struct ecppunit *pp)
3337 ASSERT(mutex_owned(&pp->umutex));
3338 ASSERT(pp->e_busy == ECPP_BUSY);
3340 /* update statistics */
3341 pp->joblen++;
3342 pp->ctxpio_obytes++;
3344 /* disable nAck interrups */
3345 ECPP_MASK_INTR(pp);
3346 DCR_WRITE(pp, DCR_READ(pp) & ~(ECPP_REV_DIR | ECPP_INTR_EN));
3349 * If it was the last byte of the data block cleanup,
3350 * otherwise trigger a soft interrupt to send the next byte
3352 if (pp->next_byte >= pp->last_byte) {
3353 ecpp_xfer_cleanup(pp);
3354 ecpp_error(pp->dip,
3355 "ecpp_pio_ihdlr: pp->joblen=%d,pp->ctx_cf=%d,\n",
3356 pp->joblen, pp->ctx_cf);
3357 } else {
3358 if (pp->softintr_pending) {
3359 ecpp_error(pp->dip,
3360 "ecpp_pio_ihdlr:E: next byte in progress\n");
3361 } else {
3362 pp->softintr_flags = ECPP_SOFTINTR_PIONEXT;
3363 pp->softintr_pending = 1;
3364 ddi_trigger_softintr(pp->softintr_id);
3368 return (DDI_INTR_CLAIMED);
3372 * ecpp_pio_writeb() sends a byte using Centronics handshake
3374 static void
3375 ecpp_pio_writeb(struct ecppunit *pp)
3377 uint8_t dcr;
3379 dcr = DCR_READ(pp) & ~ECPP_REV_DIR;
3380 dcr |= ECPP_INTR_EN;
3382 /* send the next byte */
3383 DATAR_WRITE(pp, *(pp->next_byte++));
3385 drv_usecwait(pp->data_setup_time);
3387 /* Now Assert (neg logic) nStrobe */
3388 if (dcr_write(pp, dcr | ECPP_STB) == FAILURE) {
3389 ecpp_error(pp->dip, "ecpp_pio_writeb:1: failed w/DCR\n");
3392 /* Enable nAck interrupts */
3393 (void) DSR_READ(pp); /* ensure IRQ_ST is armed */
3394 ECPP_UNMASK_INTR(pp);
3396 drv_usecwait(pp->strobe_pulse_width);
3398 if (dcr_write(pp, dcr & ~ECPP_STB) == FAILURE) {
3399 ecpp_error(pp->dip, "ecpp_pio_writeb:2: failed w/DCR\n");
3404 * Backchannel request interrupt handler
3406 static uint_t
3407 ecpp_nErr_ihdlr(struct ecppunit *pp)
3409 ecpp_error(pp->dip, "ecpp_nErr_ihdlr: mode=%x, phase=%x\n",
3410 pp->current_mode, pp->current_phase);
3412 if (pp->oflag != TRUE) {
3413 ecpp_error(pp->dip, "ecpp_nErr_ihdlr: not open!\n");
3414 return (DDI_INTR_UNCLAIMED);
3417 if (pp->e_busy == ECPP_BUSY) {
3418 ecpp_error(pp->dip, "ecpp_nErr_ihdlr: busy\n");
3419 ECR_WRITE(pp, ECR_READ(pp) | ECPP_INTR_MASK);
3420 return (DDI_INTR_CLAIMED);
3423 /* mask nErr & nAck interrupts */
3424 ECPP_MASK_INTR(pp);
3425 DCR_WRITE(pp, DCR_READ(pp) & ~(ECPP_INTR_EN | ECPP_REV_DIR));
3426 ECR_WRITE(pp, ECR_READ(pp) | ECPP_INTR_MASK);
3428 /* going reverse */
3429 switch (pp->current_mode) {
3430 case ECPP_ECP_MODE:
3432 * Peripheral asserts nPeriphRequest (nFault)
3434 break;
3435 case ECPP_NIBBLE_MODE:
3437 * Event 18: Periph asserts nErr to indicate data avail
3438 * Event 19: After waiting minimum pulse width,
3439 * periph sets nAck high to generate an interrupt
3441 * Interface is in Interrupt Phase
3443 pp->current_phase = ECPP_PHASE_NIBT_REVINTR;
3445 break;
3446 default:
3447 ecpp_error(pp->dip, "ecpp_nErr_ihdlr: wrong mode!\n");
3448 return (DDI_INTR_UNCLAIMED);
3451 (void) ecpp_backchan_req(pp); /* put backchannel request on the wq */
3453 return (DDI_INTR_CLAIMED);
3457 * Softintr handler does work according to softintr_flags:
3458 * in case of ECPP_SOFTINTR_PIONEXT it sends next byte of PIO transfer
3460 static uint_t
3461 ecpp_softintr(caddr_t arg)
3463 struct ecppunit *pp = (struct ecppunit *)arg;
3464 uint32_t unx_len, ecpp_reattempts = 0;
3466 mutex_enter(&pp->umutex);
3468 pp->intr_soft++;
3470 if (!pp->softintr_pending) {
3471 mutex_exit(&pp->umutex);
3472 return (DDI_INTR_CLAIMED);
3473 } else {
3474 pp->softintr_pending = 0;
3477 if (pp->softintr_flags & ECPP_SOFTINTR_PIONEXT) {
3478 pp->softintr_flags &= ~ECPP_SOFTINTR_PIONEXT;
3480 * Sent next byte in PIO mode
3482 ecpp_reattempts = 0;
3483 do {
3484 if (ecpp_check_status(pp) == SUCCESS) {
3485 pp->e_busy = ECPP_BUSY;
3486 break;
3488 drv_usecwait(1);
3489 if (pp->isr_reattempt_high < ecpp_reattempts) {
3490 pp->isr_reattempt_high = ecpp_reattempts;
3492 } while (++ecpp_reattempts < pp->wait_for_busy);
3494 /* if the peripheral still not recovered suspend the transfer */
3495 if (pp->e_busy == ECPP_ERR) {
3496 ++pp->ctx_cf; /* check status fail */
3497 ecpp_error(pp->dip, "ecpp_softintr:check_status:F: "
3498 "dsr=%x jl=%d cf_isr=%d\n",
3499 DSR_READ(pp), pp->joblen, pp->ctx_cf);
3502 * if status signals are bad,
3503 * put everything back on the wq.
3505 unx_len = pp->last_byte - pp->next_byte;
3506 if (pp->msg != NULL) {
3507 ecpp_putback_untransfered(pp,
3508 (void *)pp->msg->b_rptr, unx_len);
3509 ecpp_error(pp->dip,
3510 "ecpp_softintr:e1:unx_len=%d\n", unx_len);
3512 freemsg(pp->msg);
3513 pp->msg = NULL;
3514 } else {
3515 ecpp_putback_untransfered(pp,
3516 pp->next_byte, unx_len);
3517 ecpp_error(pp->dip,
3518 "ecpp_softintr:e2:unx_len=%d\n", unx_len);
3521 ecpp_xfer_cleanup(pp);
3522 pp->e_busy = ECPP_ERR;
3523 qenable(pp->writeq);
3524 } else {
3525 /* send the next one */
3526 pp->e_busy = ECPP_BUSY;
3527 (void) ecpp_pio_writeb(pp);
3531 mutex_exit(&pp->umutex);
3532 return (DDI_INTR_CLAIMED);
3537 * Transfer clean-up:
3538 * shut down the DMAC
3539 * stop the transfer timer
3540 * enable write queue
3542 static void
3543 ecpp_xfer_cleanup(struct ecppunit *pp)
3545 ASSERT(mutex_owned(&pp->umutex));
3548 * if we did not use the ioblock, the mblk that
3549 * was used should be freed.
3551 if (pp->msg != NULL) {
3552 freemsg(pp->msg);
3553 pp->msg = NULL;
3556 /* The port is no longer active */
3557 pp->e_busy = ECPP_IDLE;
3559 /* Stop the transfer timeout timer */
3560 ecpp_untimeout_unblock(pp, &pp->timeout_id);
3562 qenable(pp->writeq);
3565 /*VARARGS*/
3566 static void
3567 ecpp_error(dev_info_t *dip, char *fmt, ...)
3569 static long last;
3570 static char *lastfmt;
3571 char msg_buffer[255];
3572 va_list ap;
3573 time_t now;
3575 if (!ecpp_debug) {
3576 return;
3580 * Don't print same error message too often.
3582 now = gethrestime_sec();
3583 if ((last == (now & ~1)) && (lastfmt == fmt))
3584 return;
3586 last = now & ~1;
3587 lastfmt = fmt;
3589 va_start(ap, fmt);
3590 (void) vsprintf(msg_buffer, fmt, ap);
3591 cmn_err(CE_CONT, "%s%d: %s", ddi_get_name(dip),
3592 ddi_get_instance(dip), msg_buffer);
3593 va_end(ap);
3597 * Forward transfer timeout
3599 static void
3600 ecpp_xfer_timeout(void *arg)
3602 struct ecppunit *pp = arg;
3603 void *unx_addr;
3604 size_t unx_len, xferd;
3605 uint8_t dcr;
3606 timeout_id_t fifo_timer_id;
3608 mutex_enter(&pp->umutex);
3610 if (pp->timeout_id == 0) {
3611 mutex_exit(&pp->umutex);
3612 return;
3613 } else {
3614 pp->timeout_id = 0;
3617 pp->xfer_tout++;
3619 pp->dma_cancelled = TRUE; /* prevent race with isr() */
3621 if (COMPAT_PIO(pp)) {
3623 * PIO mode timeout
3626 /* turn off nAck interrupts */
3627 dcr = DCR_READ(pp);
3628 (void) dcr_write(pp, dcr & ~(ECPP_REV_DIR | ECPP_INTR_EN));
3629 ECPP_MASK_INTR(pp);
3631 pp->softintr_pending = 0;
3632 unx_len = pp->last_byte - pp->next_byte;
3633 ecpp_error(pp->dip, "xfer_timeout: unx_len=%d\n", unx_len);
3635 if (unx_len > 0) {
3636 unx_addr = pp->next_byte;
3637 } else {
3638 ecpp_xfer_cleanup(pp);
3639 qenable(pp->writeq);
3640 mutex_exit(&pp->umutex);
3641 return;
3643 } else {
3645 * DMA mode timeout
3647 * If DMAC fails to shut off, continue anyways and attempt
3648 * to put untransfered data back on queue.
3650 if (ECPP_DMA_STOP(pp, &unx_len) == FAILURE) {
3651 ecpp_error(pp->dip,
3652 "ecpp_xfer_timeout: failed dma_stop\n");
3655 ecpp_error(pp->dip, "xfer_timeout: unx_len=%d\n", unx_len);
3657 if (ddi_dma_unbind_handle(pp->dma_handle) == DDI_FAILURE) {
3658 ecpp_error(pp->dip,
3659 "ecpp_xfer_timeout: failed unbind\n");
3663 * if the bcr is zero, then DMA is complete and
3664 * we are waiting for the fifo to drain. So let
3665 * ecpp_fifo_timer() look after the clean up.
3667 if (unx_len == 0) {
3668 qenable(pp->writeq);
3669 mutex_exit(&pp->umutex);
3670 return;
3671 } else {
3672 xferd = pp->dma_cookie.dmac_size - unx_len;
3673 pp->resid -= xferd;
3674 unx_len = pp->resid;
3676 /* update statistics */
3677 pp->obytes[pp->current_mode] += xferd;
3678 pp->joblen += xferd;
3680 if (pp->msg != NULL) {
3681 unx_addr = (caddr_t)pp->msg->b_wptr - unx_len;
3682 } else {
3683 unx_addr = pp->ioblock +
3684 (pp->xfercnt - unx_len);
3689 /* Following code is common for PIO and DMA modes */
3691 ecpp_putback_untransfered(pp, (caddr_t)unx_addr, unx_len);
3693 if (pp->msg != NULL) {
3694 freemsg(pp->msg);
3695 pp->msg = NULL;
3698 /* mark the error status structure */
3699 pp->timeout_error = 1;
3700 pp->e_busy = ECPP_ERR;
3701 fifo_timer_id = pp->fifo_timer_id;
3702 pp->fifo_timer_id = 0;
3704 qenable(pp->writeq);
3706 mutex_exit(&pp->umutex);
3708 if (fifo_timer_id) {
3709 (void) untimeout(fifo_timer_id);
3713 static void
3714 ecpp_putback_untransfered(struct ecppunit *pp, void *startp, uint_t len)
3716 mblk_t *new_mp;
3718 ecpp_error(pp->dip, "ecpp_putback_untrans=%d\n", len);
3720 if (len == 0) {
3721 return;
3724 new_mp = allocb(len, BPRI_MED);
3725 if (new_mp == NULL) {
3726 ecpp_error(pp->dip,
3727 "ecpp_putback_untransfered: allocb FAILURE.\n");
3728 return;
3731 bcopy(startp, new_mp->b_rptr, len);
3732 new_mp->b_wptr = new_mp->b_rptr + len;
3734 if (!putbq(pp->writeq, new_mp)) {
3735 freemsg(new_mp);
3739 static uchar_t
3740 ecr_write(struct ecppunit *pp, uint8_t ecr_byte)
3742 int i, current_ecr;
3744 for (i = ECPP_REG_WRITE_MAX_LOOP; i > 0; i--) {
3745 ECR_WRITE(pp, ecr_byte);
3747 current_ecr = ECR_READ(pp);
3749 /* mask off the lower two read-only bits */
3750 if ((ecr_byte & 0xFC) == (current_ecr & 0xFC))
3751 return (SUCCESS);
3753 return (FAILURE);
3756 static uchar_t
3757 dcr_write(struct ecppunit *pp, uint8_t dcr_byte)
3759 uint8_t current_dcr;
3760 int i;
3762 for (i = ECPP_REG_WRITE_MAX_LOOP; i > 0; i--) {
3763 DCR_WRITE(pp, dcr_byte);
3765 current_dcr = DCR_READ(pp);
3767 /* compare only bits 0-4 (direction bit return 1) */
3768 if ((dcr_byte & 0x1F) == (current_dcr & 0x1F))
3769 return (SUCCESS);
3771 ecpp_error(pp->dip,
3772 "(%d)dcr_write: dcr written =%x, dcr readback =%x\n",
3773 i, dcr_byte, current_dcr);
3775 return (FAILURE);
3778 static uchar_t
3779 ecpp_reset_port_regs(struct ecppunit *pp)
3781 DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT);
3782 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV);
3783 return (SUCCESS);
3787 * The data transferred by the DMA engine goes through the FIFO,
3788 * so that when the DMA counter reaches zero (and an interrupt occurs)
3789 * the FIFO can still contain data. If this is the case, the ISR will
3790 * schedule this callback to wait until the FIFO drains or a timeout occurs.
3792 static void
3793 ecpp_fifo_timer(void *arg)
3795 struct ecppunit *pp = arg;
3796 uint8_t ecr;
3797 timeout_id_t timeout_id;
3799 mutex_enter(&pp->umutex);
3802 * If the FIFO timer has been turned off, exit.
3804 if (pp->fifo_timer_id == 0) {
3805 ecpp_error(pp->dip, "ecpp_fifo_timer: untimedout\n");
3806 mutex_exit(&pp->umutex);
3807 return;
3808 } else {
3809 pp->fifo_timer_id = 0;
3813 * If the FIFO is not empty restart timer. Wait FIFO_DRAIN_PERIOD
3814 * (250 ms) and check FIFO_EMPTY bit again. Repeat until FIFO is
3815 * empty or until 10 * FIFO_DRAIN_PERIOD expires.
3817 ecr = ECR_READ(pp);
3819 if ((pp->current_mode != ECPP_DIAG_MODE) &&
3820 (((ecr & ECPP_FIFO_EMPTY) == 0) &&
3821 (pp->ecpp_drain_counter < 10))) {
3823 ecpp_error(pp->dip,
3824 "ecpp_fifo_timer(%d):FIFO not empty:ecr=%x\n",
3825 pp->ecpp_drain_counter, ecr);
3827 pp->fifo_timer_id = timeout(ecpp_fifo_timer,
3828 (caddr_t)pp, drv_usectohz(FIFO_DRAIN_PERIOD));
3829 ++pp->ecpp_drain_counter;
3831 mutex_exit(&pp->umutex);
3832 return;
3835 if (pp->current_mode != ECPP_DIAG_MODE) {
3837 * If the FIFO won't drain after 10 FIFO_DRAIN_PERIODs
3838 * then don't wait any longer. Simply clean up the transfer.
3840 if (pp->ecpp_drain_counter >= 10) {
3841 ecpp_error(pp->dip, "ecpp_fifo_timer(%d):"
3842 " clearing FIFO,can't wait:ecr=%x\n",
3843 pp->ecpp_drain_counter, ecr);
3844 } else {
3845 ecpp_error(pp->dip,
3846 "ecpp_fifo_timer(%d):FIFO empty:ecr=%x\n",
3847 pp->ecpp_drain_counter, ecr);
3850 pp->ecpp_drain_counter = 0;
3854 * Main section of routine:
3855 * - stop the DMA transfer timer
3856 * - program DMA with next cookie/window or unbind the DMA mapping
3857 * - update stats
3858 * - if last mblk in queue, signal to close() & return to idle state
3861 /* Stop the DMA transfer timeout timer */
3862 timeout_id = pp->timeout_id;
3863 pp->timeout_id = 0;
3865 /* data has drained from fifo, it is ok to free dma resource */
3866 if (pp->current_mode == ECPP_ECP_MODE ||
3867 pp->current_mode == ECPP_DIAG_MODE ||
3868 COMPAT_DMA(pp)) {
3869 off_t off;
3870 size_t len;
3872 /* update residual */
3873 pp->resid -= pp->dma_cookie.dmac_size;
3875 /* update statistics */
3876 pp->joblen += pp->dma_cookie.dmac_size;
3877 if (pp->dma_dir == DDI_DMA_WRITE) {
3878 pp->obytes[pp->current_mode] +=
3879 pp->dma_cookie.dmac_size;
3880 } else {
3881 pp->ibytes[pp->current_mode] +=
3882 pp->dma_cookie.dmac_size;
3886 * Look if any cookies/windows left
3888 if (--pp->dma_cookie_count > 0) {
3889 /* process the next cookie */
3890 ddi_dma_nextcookie(pp->dma_handle,
3891 &pp->dma_cookie);
3892 } else if (pp->dma_curwin < pp->dma_nwin) {
3893 /* process the next window */
3894 if (ddi_dma_getwin(pp->dma_handle,
3895 pp->dma_curwin, &off, &len,
3896 &pp->dma_cookie,
3897 &pp->dma_cookie_count) != DDI_SUCCESS) {
3898 ecpp_error(pp->dip,
3899 "ecpp_fifo_timer: ddi_dma_getwin failed\n");
3900 goto dma_done;
3903 pp->dma_curwin++;
3904 } else {
3905 goto dma_done;
3908 ecpp_error(pp->dip, "ecpp_fifo_timer: next addr=%llx len=%d\n",
3909 pp->dma_cookie.dmac_address,
3910 pp->dma_cookie.dmac_size);
3912 /* kick off new transfer */
3913 if (ECPP_DMA_START(pp) != SUCCESS) {
3914 ecpp_error(pp->dip,
3915 "ecpp_fifo_timer: dma_start failed\n");
3916 goto dma_done;
3919 (void) ecr_write(pp, (ecr & 0xe0) |
3920 ECPP_DMA_ENABLE | ECPP_INTR_MASK);
3922 mutex_exit(&pp->umutex);
3924 if (timeout_id) {
3925 (void) untimeout(timeout_id);
3927 return;
3929 dma_done:
3930 if (ddi_dma_unbind_handle(pp->dma_handle) != DDI_SUCCESS) {
3931 ecpp_error(pp->dip, "ecpp_fifo_timer: unbind failed\n");
3932 } else {
3933 ecpp_error(pp->dip, "ecpp_fifo_timer: unbind ok\n");
3938 * if we did not use the dmablock, the mblk that
3939 * was used should be freed.
3941 if (pp->msg != NULL) {
3942 freemsg(pp->msg);
3943 pp->msg = NULL;
3946 /* The port is no longer active */
3947 pp->e_busy = ECPP_IDLE;
3949 qenable(pp->writeq);
3951 mutex_exit(&pp->umutex);
3953 if (timeout_id) {
3954 (void) untimeout(timeout_id);
3959 * In Compatibility mode, check if the peripheral is ready to accept data
3961 static uint8_t
3962 ecpp_check_status(struct ecppunit *pp)
3964 uint8_t dsr;
3965 uint8_t statmask;
3967 if (pp->current_mode == ECPP_ECP_MODE ||
3968 pp->current_mode == ECPP_DIAG_MODE)
3969 return (SUCCESS);
3971 statmask = ECPP_nERR | ECPP_SLCT | ECPP_nBUSY | ECPP_nACK;
3973 dsr = DSR_READ(pp);
3974 if ((dsr & ECPP_PE) || ((dsr & statmask) != statmask)) {
3975 pp->e_busy = ECPP_ERR;
3976 return (FAILURE);
3977 } else {
3978 return (SUCCESS);
3983 * if the peripheral is not ready to accept data, write service routine
3984 * periodically reschedules itself to recheck peripheral status
3985 * and start data transfer as soon as possible
3987 static void
3988 ecpp_wsrv_timer(void *arg)
3990 struct ecppunit *pp = arg;
3992 ecpp_error(pp->dip, "ecpp_wsrv_timer: starting\n");
3994 mutex_enter(&pp->umutex);
3996 if (pp->wsrv_timer_id == 0) {
3997 mutex_exit(&pp->umutex);
3998 return;
3999 } else {
4000 pp->wsrv_timer_id = 0;
4003 ecpp_error(pp->dip, "ecpp_wsrv_timer: qenabling...\n");
4005 qenable(pp->writeq);
4007 mutex_exit(&pp->umutex);
4011 * Allocate a message indicating a backchannel request
4012 * and put it on the write queue
4014 static int
4015 ecpp_backchan_req(struct ecppunit *pp)
4017 mblk_t *mp;
4019 if ((mp = allocb(sizeof (int), BPRI_MED)) == NULL) {
4020 ecpp_error(pp->dip, "ecpp_backchan_req: allocb failed\n");
4021 return (FAILURE);
4022 } else {
4023 mp->b_datap->db_type = M_CTL;
4024 *(int *)mp->b_rptr = ECPP_BACKCHANNEL;
4025 mp->b_wptr = mp->b_rptr + sizeof (int);
4026 if (!putbq(pp->writeq, mp)) {
4027 ecpp_error(pp->dip, "ecpp_backchan_req:putbq failed\n");
4028 freemsg(mp);
4029 return (FAILURE);
4031 return (SUCCESS);
4036 * Cancel the function scheduled with timeout(9F)
4037 * This function is to be called with the mutex held
4039 static void
4040 ecpp_untimeout_unblock(struct ecppunit *pp, timeout_id_t *id)
4042 timeout_id_t saved_id;
4044 ASSERT(mutex_owned(&pp->umutex));
4046 if (*id) {
4047 saved_id = *id;
4048 *id = 0;
4049 mutex_exit(&pp->umutex);
4050 (void) untimeout(saved_id);
4051 mutex_enter(&pp->umutex);
4056 * get prnio interface capabilities
4058 static uint_t
4059 ecpp_get_prn_ifcap(struct ecppunit *pp)
4061 uint_t ifcap;
4063 ifcap = PRN_1284_DEVID | PRN_TIMEOUTS | PRN_STREAMS;
4065 /* status (DSR) only makes sense in Centronics & Compat modes */
4066 if (pp->current_mode == ECPP_CENTRONICS ||
4067 pp->current_mode == ECPP_COMPAT_MODE) {
4068 ifcap |= PRN_1284_STATUS;
4069 } else if (pp->current_mode == ECPP_NIBBLE_MODE ||
4070 pp->current_mode == ECPP_ECP_MODE) {
4071 ifcap |= PRN_BIDI;
4074 return (ifcap);
4078 * Determine SuperI/O type
4080 static struct ecpp_hw_bind *
4081 ecpp_determine_sio_type(struct ecppunit *pp)
4083 struct ecpp_hw_bind *hw_bind;
4084 char *name;
4085 int i;
4087 name = ddi_binding_name(pp->dip);
4089 for (hw_bind = NULL, i = 0; i < NELEM(ecpp_hw_bind); i++) {
4090 if (strcmp(name, ecpp_hw_bind[i].name) == 0) {
4091 hw_bind = &ecpp_hw_bind[i];
4092 break;
4096 return (hw_bind);
4102 * IEEE 1284 support routines:
4103 * negotiation and termination;
4104 * phase transitions;
4105 * device ID;
4110 * Interface initialization, abnormal termination into Compatibility mode
4112 * Peripheral may be non-1284, so we set current mode to ECPP_CENTRONICS
4114 static void
4115 ecpp_1284_init_interface(struct ecppunit *pp)
4117 ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001);
4120 * Toggle the nInit signal if configured in ecpp.conf
4121 * for most peripherals it is not needed
4123 if (pp->init_seq == TRUE) {
4124 DCR_WRITE(pp, ECPP_SLCTIN);
4125 drv_usecwait(50); /* T(ER) = 50us */
4128 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN);
4130 pp->current_mode = pp->backchannel = ECPP_CENTRONICS;
4131 pp->current_phase = ECPP_PHASE_C_IDLE;
4132 ECPP_CONFIG_MODE(pp);
4133 pp->to_mode[pp->current_mode]++;
4135 ecpp_error(pp->dip, "ecpp_1284_init_interface: ok\n");
4139 * ECP mode negotiation
4141 static int
4142 ecp_negotiation(struct ecppunit *pp)
4144 uint8_t dsr;
4146 /* ECP mode negotiation */
4148 if (ecpp_1284_negotiation(pp, ECPP_XREQ_ECP, &dsr) == FAILURE)
4149 return (FAILURE);
4151 /* Event 5: peripheral deasserts PError and Busy, asserts Select */
4152 if ((dsr & (ECPP_PE | ECPP_nBUSY | ECPP_SLCT)) !=
4153 (ECPP_nBUSY | ECPP_SLCT)) {
4154 ecpp_error(pp->dip,
4155 "ecp_negotiation: failed event 5 %x\n", DSR_READ(pp));
4156 (void) ecpp_1284_termination(pp);
4157 return (FAILURE);
4160 /* entered Setup Phase */
4161 pp->current_phase = ECPP_PHASE_ECP_SETUP;
4163 /* Event 30: host asserts nAutoFd */
4164 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX);
4166 /* Event 31: peripheral asserts PError */
4167 if (wait_dsr(pp, ECPP_PE, ECPP_PE, 35000) < 0) {
4168 ecpp_error(pp->dip,
4169 "ecp_negotiation: failed event 31 %x\n", DSR_READ(pp));
4170 (void) ecpp_1284_termination(pp);
4171 return (FAILURE);
4174 /* entered Forward Idle Phase */
4175 pp->current_phase = ECPP_PHASE_ECP_FWD_IDLE;
4177 /* successful negotiation into ECP mode */
4178 pp->current_mode = ECPP_ECP_MODE;
4179 pp->backchannel = ECPP_ECP_MODE;
4181 ecpp_error(pp->dip, "ecp_negotiation: ok\n");
4183 return (SUCCESS);
4187 * Nibble mode negotiation
4189 static int
4190 nibble_negotiation(struct ecppunit *pp)
4192 uint8_t dsr;
4194 if (ecpp_1284_negotiation(pp, ECPP_XREQ_NIBBLE, &dsr) == FAILURE) {
4195 return (FAILURE);
4199 * If peripheral has data available, PE and nErr will
4200 * be set low at Event 5 & 6.
4202 if ((dsr & (ECPP_PE | ECPP_nERR)) == 0) {
4203 pp->current_phase = ECPP_PHASE_NIBT_AVAIL;
4204 } else {
4205 pp->current_phase = ECPP_PHASE_NIBT_NAVAIL;
4208 /* successful negotiation into Nibble mode */
4209 pp->current_mode = ECPP_NIBBLE_MODE;
4210 pp->backchannel = ECPP_NIBBLE_MODE;
4212 ecpp_error(pp->dip, "nibble_negotiation: ok (phase=%x)\n",
4213 pp->current_phase);
4215 return (SUCCESS);
4220 * Wait ptimeout usec for periph to set 'mask' bits to 'val' state
4222 * return value < 0 indicates timeout
4224 static int
4225 wait_dsr(struct ecppunit *pp, uint8_t mask, uint8_t val, int ptimeout)
4227 while (((DSR_READ(pp) & mask) != val) && ptimeout--) {
4228 drv_usecwait(1);
4231 return (ptimeout);
4235 * 1284 negotiation Events 0..6
4236 * required mode is indicated by extensibility request value
4238 * After successful negotiation SUCCESS is returned and
4239 * current mode is set according to xreq,
4240 * otherwise FAILURE is returned and current mode is set to
4241 * either COMPAT (1284 periph) or CENTRONICS (non-1284 periph)
4243 * Current phase must be set by the caller (mode-specific negotiation)
4245 * If rdsr is not NULL, DSR value after Event 6 is stored here
4247 static int
4248 ecpp_1284_negotiation(struct ecppunit *pp, uint8_t xreq, uint8_t *rdsr)
4250 int xflag;
4252 ecpp_error(pp->dip, "nego(%x): entering...\n", xreq);
4254 /* negotiation should start in Compatibility mode */
4255 (void) ecpp_1284_termination(pp);
4257 /* Set host into Compat mode */
4258 ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001);
4260 pp->current_phase = ECPP_PHASE_NEGO;
4262 /* Event 0: host sets extensibility request on data lines */
4263 DATAR_WRITE(pp, xreq);
4265 /* Event 1: host deassert nSelectin and assert nAutoFd */
4266 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX);
4268 drv_usecwait(1); /* Tp(ecp) == 0.5us */
4271 * Event 2: peripheral asserts nAck, deasserts nFault,
4272 * asserts Select, asserts PError
4274 if (wait_dsr(pp, ECPP_nERR | ECPP_SLCT | ECPP_PE | ECPP_nACK,
4275 ECPP_nERR | ECPP_SLCT | ECPP_PE, 35000) < 0) {
4276 /* peripheral is not 1284-compliant */
4277 ecpp_error(pp->dip,
4278 "nego(%x): failed event 2 %x\n", xreq, DSR_READ(pp));
4279 (void) ecpp_1284_termination(pp);
4280 return (FAILURE);
4284 * Event 3: host asserts nStrobe, latching extensibility value into
4285 * peripherals input latch.
4287 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX | ECPP_STB);
4289 drv_usecwait(2); /* Tp(ecp) = 0.5us */
4292 * Event 4: hosts deasserts nStrobe and nAutoFD to acknowledge that
4293 * it has recognized an 1284 compatible peripheral
4295 DCR_WRITE(pp, ECPP_nINIT);
4298 * Event 5: Peripheral confirms it supports requested extension
4299 * For Nibble mode Xflag must be low, otherwise it must be high
4301 xflag = (xreq == ECPP_XREQ_NIBBLE) ? 0 : ECPP_SLCT;
4304 * Event 6: Peripheral sets nAck high
4305 * indicating that status lines are valid
4307 if (wait_dsr(pp, ECPP_nACK, ECPP_nACK, 35000) < 0) {
4308 /* Something wrong with peripheral */
4309 ecpp_error(pp->dip,
4310 "nego(%x): failed event 6 %x\n", xreq, DSR_READ(pp));
4311 (void) ecpp_1284_termination(pp);
4312 return (FAILURE);
4315 if ((DSR_READ(pp) & ECPP_SLCT) != xflag) {
4316 /* Extensibility value is not supported */
4317 ecpp_error(pp->dip,
4318 "nego(%x): failed event 5 %x\n", xreq, DSR_READ(pp));
4319 (void) ecpp_1284_termination(pp);
4320 return (FAILURE);
4323 if (rdsr) {
4324 *rdsr = DSR_READ(pp);
4327 return (SUCCESS);
4331 * 1284 Termination: Events 22..28 - set link to Compatibility mode
4333 * This routine is not designed for Immediate termination,
4334 * caller must take care of waiting for a valid state,
4335 * (in particular, in ECP mode current phase must be Forward Idle)
4336 * otherwise interface will be reinitialized
4338 * In case of Valid state termination SUCCESS is returned and
4339 * current_mode is ECPP_COMPAT_MODE, current phase is ECPP_PHASE_C_IDLE
4340 * Otherwise interface is reinitialized, FAILURE is returned and
4341 * current mode is ECPP_CENTRONICS, current phase is ECPP_PHASE_C_IDLE
4343 static int
4344 ecpp_1284_termination(struct ecppunit *pp)
4346 int previous_mode = pp->current_mode;
4348 if (((pp->current_mode == ECPP_COMPAT_MODE ||
4349 pp->current_mode == ECPP_CENTRONICS) &&
4350 pp->current_phase == ECPP_PHASE_C_IDLE) ||
4351 pp->current_mode == ECPP_DIAG_MODE) {
4352 ecpp_error(pp->dip, "termination: not needed\n");
4353 return (SUCCESS);
4356 /* Set host into Compat mode, interrupts disabled */
4357 ECPP_MASK_INTR(pp);
4358 ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001);
4360 pp->current_mode = ECPP_COMPAT_MODE; /* needed by next function */
4362 ECPP_CONFIG_MODE(pp);
4365 * EPP mode uses simple nInit pulse for termination
4367 if (previous_mode == ECPP_EPP_MODE) {
4368 /* Event 68: host sets nInit low */
4369 DCR_WRITE(pp, 0);
4371 drv_usecwait(55); /* T(ER) = 50us */
4373 /* Event 69: host sets nInit high */
4374 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN);
4376 goto endterm;
4379 /* terminate peripheral to Compat mode */
4380 pp->current_phase = ECPP_PHASE_TERM;
4382 /* Event 22: hosts sets nSelectIn low and nAutoFd high */
4383 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN);
4385 /* Event 23: peripheral deasserts nFault and nBusy */
4386 /* Event 24: peripheral asserts nAck */
4387 if (wait_dsr(pp, ECPP_nERR | ECPP_nBUSY | ECPP_nACK,
4388 ECPP_nERR, 35000) < 0) {
4389 ecpp_error(pp->dip,
4390 "termination: failed events 23,24 %x\n", DSR_READ(pp));
4391 ecpp_1284_init_interface(pp);
4392 return (FAILURE);
4395 drv_usecwait(1); /* Tp = 0.5us */
4397 /* Event 25: hosts sets nAutoFd low */
4398 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN | ECPP_AFX);
4400 /* Event 26: the peripheral puts itself in Compatible mode */
4402 /* Event 27: peripheral deasserts nAck */
4403 if (wait_dsr(pp, ECPP_nACK, ECPP_nACK, 35000) < 0) {
4404 ecpp_error(pp->dip,
4405 "termination: failed event 27 %x\n", DSR_READ(pp));
4406 ecpp_1284_init_interface(pp);
4407 return (FAILURE);
4410 drv_usecwait(1); /* Tp = 0.5us */
4412 /* Event 28: hosts deasserts nAutoFd */
4413 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN);
4415 drv_usecwait(1); /* Tp = 0.5us */
4417 endterm:
4418 /* Compatible mode Idle Phase */
4419 pp->current_phase = ECPP_PHASE_C_IDLE;
4421 ecpp_error(pp->dip, "termination: completed %x %x\n",
4422 DSR_READ(pp), DCR_READ(pp));
4424 return (SUCCESS);
4428 * Initiate ECP backchannel DMA transfer
4430 static uchar_t
4431 ecp_peripheral2host(struct ecppunit *pp)
4433 mblk_t *mp = NULL;
4434 size_t len;
4435 uint32_t xfer_time;
4437 ASSERT(pp->current_mode == ECPP_ECP_MODE &&
4438 pp->current_phase == ECPP_PHASE_ECP_REV_IDLE);
4441 * hardware generates cycles to receive data from the peripheral
4442 * we only need to read from FIFO
4446 * If user issued read(2) of rev_resid bytes, xfer exactly this amount
4447 * unless it exceeds ECP_REV_BLKSZ_MAX; otherwise try to read
4448 * ECP_REV_BLKSZ_MAX or at least ECP_REV_BLKSZ bytes
4450 if (pp->nread > 0) {
4451 len = min(pp->nread, ECP_REV_BLKSZ_MAX);
4452 } else {
4453 len = ECP_REV_BLKSZ_MAX;
4456 pp->nread = 0; /* clear after use */
4459 * Allocate mblk for data, make max 2 attepmts:
4460 * if len bytes block fails, try our block size
4462 while ((mp = allocb(len, BPRI_MED)) == NULL) {
4463 ecpp_error(pp->dip,
4464 "ecp_periph2host: failed allocb(%d)\n", len);
4465 if (len > ECP_REV_BLKSZ) {
4466 len = ECP_REV_BLKSZ;
4467 } else {
4468 break;
4472 if (mp == NULL) {
4473 goto fail;
4476 pp->msg = mp;
4477 pp->e_busy = ECPP_BUSY;
4478 pp->dma_dir = DDI_DMA_READ;
4479 pp->current_phase = ECPP_PHASE_ECP_REV_XFER;
4481 if (ecpp_init_dma_xfer(pp, (caddr_t)mp->b_rptr, len) == FAILURE) {
4482 goto fail;
4486 * there are two problems with defining ECP backchannel xfer timeout
4488 * a) IEEE 1284 allows infinite time between backchannel bytes,
4489 * but we must stop at some point to send the data upstream,
4490 * look if any forward transfer requests are pending, etc;
4491 * all that done, we can continue with backchannel data;
4493 * b) we don`t know how much data peripheral has;
4494 * DMA counter is set to our buffer size, which can be bigger
4495 * than needed - in this case a timeout must detect this;
4497 * The timeout we schedule here serves as both the transfer timeout
4498 * and a means of detecting backchannel stalls; in fact, there are
4499 * two timeouts in one:
4501 * - transfer timeout is based on the ECP bandwidth of ~1MB/sec and
4502 * equals the time needed to transfer the whole buffer
4503 * (but not less than ECP_REV_MINTOUT ms); if it occurs,
4504 * DMA is stopped and the data is sent upstream;
4506 * - backchannel watchdog, which would look at DMA counter
4507 * every rev_watchdog ms and stop the transfer only
4508 * if the counter hasn`t changed since the last time;
4509 * otherwise it would save DMA counter value and restart itself;
4511 * transfer timeout is a multiple of rev_watchdog
4512 * and implemented as a downward counter
4514 * on Grover, we can`t access DMAC registers while DMA is in flight,
4515 * so we can`t have watchdog on Grover, only timeout
4518 /* calculate number of watchdog invocations equal to the xfer timeout */
4519 xfer_time = max((1000 * len) / pp->ecp_rev_speed, ECP_REV_MINTOUT);
4520 #if defined(__x86)
4521 pp->rev_timeout_cnt = (pp->hw == &x86) ? 1 :
4522 max(xfer_time / pp->rev_watchdog, 1);
4523 #else
4524 pp->rev_timeout_cnt = (pp->hw == &m1553) ? 1 :
4525 max(xfer_time / pp->rev_watchdog, 1);
4526 #endif
4528 pp->last_dmacnt = len; /* nothing xferred yet */
4530 pp->timeout_id = timeout(ecpp_ecp_read_timeout, (caddr_t)pp,
4531 drv_usectohz(pp->rev_watchdog * 1000));
4533 ecpp_error(pp->dip, "ecp_periph2host: DMA started len=%d\n"
4534 "xfer_time=%d wdog=%d cnt=%d\n",
4535 len, xfer_time, pp->rev_watchdog, pp->rev_timeout_cnt);
4537 return (SUCCESS);
4539 fail:
4540 if (mp) {
4541 freemsg(mp);
4543 pp->e_busy = ECPP_IDLE;
4544 pp->current_phase = ECPP_PHASE_ECP_REV_IDLE;
4546 return (FAILURE);
4550 * ECP backchannel read timeout
4551 * implements both backchannel watchdog and transfer timeout in ECP mode
4552 * if the transfer is still in progress, reschedule itself,
4553 * otherwise call completion routine
4555 static void
4556 ecpp_ecp_read_timeout(void *arg)
4558 struct ecppunit *pp = arg;
4559 size_t dmacnt;
4561 mutex_enter(&pp->umutex);
4563 if (pp->timeout_id == 0) {
4564 mutex_exit(&pp->umutex);
4565 return;
4566 } else {
4567 pp->timeout_id = 0;
4570 if (--pp->rev_timeout_cnt == 0) {
4572 * Transfer timed out
4574 ecpp_error(pp->dip, "ecp_read_timeout: timeout\n");
4575 pp->xfer_tout++;
4576 ecpp_ecp_read_completion(pp);
4577 } else {
4579 * Backchannel watchdog:
4580 * look if DMA made any progress from the last time
4582 dmacnt = ECPP_DMA_GETCNT(pp);
4583 if (dmacnt - pp->last_dmacnt == 0) {
4585 * No progress - stop the transfer and send
4586 * whatever has been read so far up the stream
4588 ecpp_error(pp->dip, "ecp_read_timeout: no progress\n");
4589 pp->xfer_tout++;
4590 ecpp_ecp_read_completion(pp);
4591 } else {
4593 * Something was transferred - restart ourselves
4595 ecpp_error(pp->dip, "ecp_read_timeout: restarting\n");
4596 pp->last_dmacnt = dmacnt;
4597 pp->timeout_id = timeout(ecpp_ecp_read_timeout,
4598 (caddr_t)pp,
4599 drv_usectohz(pp->rev_watchdog * 1000));
4603 mutex_exit(&pp->umutex);
4607 * ECP backchannel read completion:
4608 * stop the DMA, free DMA resources and send read data upstream
4610 static void
4611 ecpp_ecp_read_completion(struct ecppunit *pp)
4613 size_t xfer_len, unx_len;
4614 mblk_t *mp;
4616 ASSERT(mutex_owned(&pp->umutex));
4617 ASSERT(pp->current_mode == ECPP_ECP_MODE &&
4618 pp->current_phase == ECPP_PHASE_ECP_REV_XFER);
4619 ASSERT(pp->msg != NULL);
4622 * Stop the transfer and unbind DMA handle
4624 if (ECPP_DMA_STOP(pp, &unx_len) == FAILURE) {
4625 unx_len = pp->resid;
4626 ecpp_error(pp->dip, "ecp_read_completion: failed dma_stop\n");
4629 mp = pp->msg;
4630 xfer_len = pp->resid - unx_len; /* how much data was transferred */
4632 if (ddi_dma_unbind_handle(pp->dma_handle) != DDI_SUCCESS) {
4633 ecpp_error(pp->dip, "ecp_read_completion: unbind failed.\n");
4636 ecpp_error(pp->dip, "ecp_read_completion: xfered %d bytes of %d\n",
4637 xfer_len, pp->resid);
4639 /* clean up and update statistics */
4640 pp->msg = NULL;
4641 pp->resid -= xfer_len;
4642 pp->ibytes[pp->current_mode] += xfer_len;
4643 pp->e_busy = ECPP_IDLE;
4644 pp->current_phase = ECPP_PHASE_ECP_REV_IDLE;
4647 * Send the read data up the stream
4649 mp->b_wptr += xfer_len;
4650 if (canputnext(pp->readq)) {
4651 mutex_exit(&pp->umutex);
4652 putnext(pp->readq, mp);
4653 mutex_enter(&pp->umutex);
4654 } else {
4655 ecpp_error(pp->dip, "ecp_read_completion: fail canputnext\n");
4656 if (!putq(pp->readq, mp)) {
4657 freemsg(mp);
4661 /* if bytes left in the FIFO another transfer is needed */
4662 if (!(ECR_READ(pp) & ECPP_FIFO_EMPTY)) {
4663 (void) ecpp_backchan_req(pp);
4666 qenable(pp->writeq);
4670 * Read one byte in the Nibble mode
4672 static uchar_t
4673 nibble_peripheral2host(struct ecppunit *pp, uint8_t *byte)
4675 uint8_t n[2]; /* two nibbles */
4676 int i;
4679 * One byte is made of two nibbles
4681 for (i = 0; i < 2; i++) {
4682 /* Event 7, 12: host asserts nAutoFd to move to read a nibble */
4683 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX);
4685 /* Event 8: peripheral puts data on the status lines */
4687 /* Event 9: peripheral asserts nAck, data available */
4688 if (wait_dsr(pp, ECPP_nACK, 0, 35000) < 0) {
4689 ecpp_error(pp->dip,
4690 "nibble_periph2host(%d): failed event 9 %x\n",
4691 i + 1, DSR_READ(pp));
4692 (void) ecpp_1284_termination(pp);
4693 return (FAILURE);
4696 n[i] = DSR_READ(pp); /* get a nibble */
4698 /* Event 10: host deasserts nAutoFd to say it grabbed data */
4699 DCR_WRITE(pp, ECPP_nINIT);
4701 /* (2) Event 13: peripheral asserts PE - end of data phase */
4703 /* Event 11: peripheral deasserts nAck to finish handshake */
4704 if (wait_dsr(pp, ECPP_nACK, ECPP_nACK, 35000) < 0) {
4705 ecpp_error(pp->dip,
4706 "nibble_periph2host(%d): failed event 11 %x\n",
4707 i + 1, DSR_READ(pp));
4708 (void) ecpp_1284_termination(pp);
4709 return (FAILURE);
4713 /* extract data byte from two nibbles - optimized formula */
4714 *byte = ((((n[1] & ~ECPP_nACK) << 1) | (~n[1] & ECPP_nBUSY)) & 0xf0) |
4715 ((((n[0] & ~ECPP_nACK) >> 3) | ((~n[0] & ECPP_nBUSY) >> 4)) & 0x0f);
4717 pp->ibytes[ECPP_NIBBLE_MODE]++;
4718 return (SUCCESS);
4722 * process data transfers requested by the peripheral
4724 static uint_t
4725 ecpp_peripheral2host(struct ecppunit *pp)
4727 if (!canputnext(pp->readq)) {
4728 ecpp_error(pp->dip, "ecpp_peripheral2host: readq full\n");
4729 return (SUCCESS);
4732 switch (pp->backchannel) {
4733 case ECPP_CENTRONICS:
4734 /* no backchannel */
4735 return (SUCCESS);
4737 case ECPP_NIBBLE_MODE:
4738 ASSERT(pp->current_mode == ECPP_NIBBLE_MODE);
4741 * Event 20: Host sets nAutoFd high to ack request
4743 DCR_WRITE(pp, ECPP_nINIT);
4745 /* Event 21: Periph sets PError low to ack host */
4746 if (wait_dsr(pp, ECPP_PE, 0, 35000) < 0) {
4747 ecpp_error(pp->dip,
4748 "ecpp_periph2host: failed event 21 %x\n",
4749 DSR_READ(pp));
4750 (void) ecpp_1284_termination(pp);
4751 return (FAILURE);
4754 pp->current_phase = ECPP_PHASE_NIBT_AVAIL;
4756 /* this routine will read the data in Nibble mode */
4757 return (ecpp_idle_phase(pp));
4759 case ECPP_ECP_MODE:
4760 if ((pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE) &&
4761 (ecp_forward2reverse(pp) == FAILURE)) {
4762 return (FAILURE);
4765 return (ecp_peripheral2host(pp)); /* start the transfer */
4767 case ECPP_DIAG_MODE: {
4768 mblk_t *mp;
4769 int i;
4771 if (ECR_READ(pp) & ECPP_FIFO_EMPTY) {
4772 ecpp_error(pp->dip, "ecpp_periph2host: fifo empty\n");
4773 return (SUCCESS);
4776 /* allocate the FIFO size */
4777 if ((mp = allocb(ECPP_FIFO_SZ, BPRI_MED)) == NULL) {
4778 ecpp_error(pp->dip,
4779 "ecpp_periph2host: allocb FAILURE.\n");
4780 return (FAILURE);
4784 * For the time being just read it byte by byte
4786 i = ECPP_FIFO_SZ;
4787 while (i-- && (!(ECR_READ(pp) & ECPP_FIFO_EMPTY))) {
4788 *mp->b_wptr++ = TFIFO_READ(pp);
4789 drv_usecwait(1); /* ECR is sometimes slow to update */
4792 if (canputnext(pp->readq)) {
4793 mutex_exit(&pp->umutex);
4794 mp->b_datap->db_type = M_DATA;
4795 ecpp_error(pp->dip,
4796 "ecpp_periph2host: sending %d bytes\n",
4797 mp->b_wptr - mp->b_rptr);
4798 putnext(pp->readq, mp);
4799 mutex_enter(&pp->umutex);
4800 return (SUCCESS);
4801 } else {
4802 ecpp_error(pp->dip,
4803 "ecpp_periph2host: !canputnext data lost\n");
4804 freemsg(mp);
4805 return (FAILURE);
4809 default:
4810 ecpp_error(pp->dip, "ecpp_peripheraltohost: illegal back");
4811 return (FAILURE);
4816 * Negotiate from ECP Forward Idle to Reverse Idle Phase
4818 * (manipulations with dcr/ecr are according to ECP Specification)
4820 static int
4821 ecp_forward2reverse(struct ecppunit *pp)
4823 ASSERT(pp->current_mode == ECPP_ECP_MODE &&
4824 pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE);
4826 /* place port into PS2 mode */
4827 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_SRV | ECPP_INTR_MASK);
4829 /* set direction bit (DCR3-0 must be 0100 - National) */
4830 DCR_WRITE(pp, ECPP_REV_DIR | ECPP_nINIT);
4832 /* enable hardware assist */
4833 ECR_WRITE(pp, ECR_mode_011 | ECPP_INTR_SRV | ECPP_INTR_MASK);
4835 drv_usecwait(1); /* Tp(ecp) = 0.5us */
4837 /* Event 39: host sets nInit low */
4838 DCR_WRITE(pp, ECPP_REV_DIR);
4840 /* Event 40: peripheral sets PError low */
4842 pp->current_phase = ECPP_PHASE_ECP_REV_IDLE;
4844 ecpp_error(pp->dip, "ecp_forward2reverse ok\n");
4846 return (SUCCESS);
4850 * Negotiate from ECP Reverse Idle to Forward Idle Phase
4852 * (manipulations with dcr/ecr are according to ECP Specification)
4854 static int
4855 ecp_reverse2forward(struct ecppunit *pp)
4857 ASSERT(pp->current_mode == ECPP_ECP_MODE &&
4858 pp->current_phase == ECPP_PHASE_ECP_REV_IDLE);
4860 /* Event 47: host deasserts nInit */
4861 DCR_WRITE(pp, ECPP_REV_DIR | ECPP_nINIT);
4864 * Event 48: peripheral deasserts nAck
4865 * Event 49: peripheral asserts PError
4867 if (wait_dsr(pp, ECPP_PE, ECPP_PE, 35000) < 0) {
4868 ecpp_error(pp->dip,
4869 "ecp_reverse2forward: failed event 49 %x\n", DSR_READ(pp));
4870 (void) ecpp_1284_termination(pp);
4871 return (FAILURE);
4874 /* place port into PS2 mode */
4875 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_SRV | ECPP_INTR_MASK);
4877 /* clear direction bit */
4878 DCR_WRITE(pp, ECPP_nINIT);
4880 /* reenable hardware assist */
4881 ECR_WRITE(pp, ECR_mode_011 | ECPP_INTR_SRV | ECPP_INTR_MASK);
4883 pp->current_phase = ECPP_PHASE_ECP_FWD_IDLE;
4885 ecpp_error(pp->dip, "ecp_reverse2forward ok\n");
4887 return (SUCCESS);
4891 * Default negotiation chooses the best mode supported by peripheral
4892 * Note that backchannel mode may be different from forward mode
4894 static void
4895 ecpp_default_negotiation(struct ecppunit *pp)
4897 if (!noecp && (ecpp_mode_negotiation(pp, ECPP_ECP_MODE) == SUCCESS)) {
4898 /* 1284 compatible device */
4899 pp->io_mode = (pp->fast_compat == TRUE) ? ECPP_DMA : ECPP_PIO;
4900 return;
4901 } else if (ecpp_mode_negotiation(pp, ECPP_NIBBLE_MODE) == SUCCESS) {
4902 /* 1284 compatible device */
4903 pp->io_mode = (pp->fast_compat == TRUE) ? ECPP_DMA : ECPP_PIO;
4904 } else {
4905 /* Centronics device */
4906 pp->io_mode =
4907 (pp->fast_centronics == TRUE) ? ECPP_DMA : ECPP_PIO;
4909 ECPP_CONFIG_MODE(pp);
4913 * Negotiate to the mode indicated by newmode
4915 static int
4916 ecpp_mode_negotiation(struct ecppunit *pp, uchar_t newmode)
4918 /* any other mode is impossible */
4919 ASSERT(pp->current_mode == ECPP_CENTRONICS ||
4920 pp->current_mode == ECPP_COMPAT_MODE ||
4921 pp->current_mode == ECPP_NIBBLE_MODE ||
4922 pp->current_mode == ECPP_ECP_MODE ||
4923 pp->current_mode == ECPP_DIAG_MODE);
4925 if (pp->current_mode == newmode) {
4926 return (SUCCESS);
4929 /* termination from ECP is only allowed from the Forward Idle Phase */
4930 if ((pp->current_mode == ECPP_ECP_MODE) &&
4931 (pp->current_phase != ECPP_PHASE_ECP_FWD_IDLE)) {
4932 /* this may break into Centronics */
4933 (void) ecp_reverse2forward(pp);
4936 switch (newmode) {
4937 case ECPP_CENTRONICS:
4938 (void) ecpp_1284_termination(pp);
4940 /* put superio into PIO mode */
4941 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV);
4943 pp->current_mode = ECPP_CENTRONICS;
4944 pp->backchannel = ECPP_CENTRONICS;
4945 ECPP_CONFIG_MODE(pp);
4947 pp->to_mode[pp->current_mode]++;
4948 return (SUCCESS);
4950 case ECPP_COMPAT_MODE:
4951 /* ECPP_COMPAT_MODE should support Nibble as a backchannel */
4952 if (pp->current_mode == ECPP_NIBBLE_MODE) {
4953 if (ecpp_1284_termination(pp) == SUCCESS) {
4954 pp->current_mode = ECPP_COMPAT_MODE;
4955 pp->backchannel = ECPP_NIBBLE_MODE;
4956 ECPP_CONFIG_MODE(pp);
4957 pp->to_mode[pp->current_mode]++;
4958 return (SUCCESS);
4959 } else {
4960 return (FAILURE);
4964 if ((nibble_negotiation(pp) == SUCCESS) &&
4965 (ecpp_1284_termination(pp) == SUCCESS)) {
4966 pp->backchannel = ECPP_NIBBLE_MODE;
4967 pp->current_mode = ECPP_COMPAT_MODE;
4968 ECPP_CONFIG_MODE(pp);
4969 pp->to_mode[pp->current_mode]++;
4970 return (SUCCESS);
4971 } else {
4972 return (FAILURE);
4975 case ECPP_NIBBLE_MODE:
4976 if (nibble_negotiation(pp) == FAILURE) {
4977 return (FAILURE);
4980 pp->backchannel = ECPP_NIBBLE_MODE;
4981 ECPP_CONFIG_MODE(pp);
4982 pp->to_mode[pp->current_mode]++;
4984 return (SUCCESS);
4986 case ECPP_ECP_MODE:
4987 if (pp->noecpregs)
4988 return (FAILURE);
4989 if (ecp_negotiation(pp) == FAILURE) {
4990 return (FAILURE);
4994 * National says CTR[3:0] should be 0100b before moving to 011
4996 DCR_WRITE(pp, ECPP_nINIT);
4998 if (ecr_write(pp, ECR_mode_011 |
4999 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) {
5000 ecpp_error(pp->dip, "mode_nego:ECP: failed w/ecr\n");
5001 return (FAILURE);
5004 ECPP_CONFIG_MODE(pp);
5005 pp->to_mode[pp->current_mode]++;
5007 return (SUCCESS);
5009 case ECPP_DIAG_MODE:
5011 * In DIAG mode application can do nasty things(e.g drive pins)
5012 * To keep peripheral sane, terminate to Compatibility mode
5014 (void) ecpp_1284_termination(pp);
5016 /* put superio into TFIFO mode */
5017 if (ecr_write(pp, ECR_mode_001 |
5018 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) {
5019 ecpp_error(pp->dip, "put to TFIFO: failed w/ecr\n");
5020 return (FAILURE);
5023 pp->current_mode = ECPP_DIAG_MODE;
5024 pp->backchannel = ECPP_DIAG_MODE;
5025 ECPP_CONFIG_MODE(pp);
5026 pp->to_mode[pp->current_mode]++;
5028 return (SUCCESS);
5030 default:
5031 ecpp_error(pp->dip,
5032 "ecpp_mode_negotiation: mode %d not supported\n", newmode);
5033 return (FAILURE);
5038 * Standard (9.1): Peripheral data is available only when the host places
5039 * the interface in a mode capable of peripheral-to-host data transfer.
5040 * This requires the host periodically to place the interface in such a mode.
5041 * Polling can be eliminated by leaving the interface in an 1284 idle phase.
5043 static uchar_t
5044 ecpp_idle_phase(struct ecppunit *pp)
5046 uchar_t rval = FAILURE;
5049 * If there is no space on the read queue, do not reverse channel
5051 if (!canputnext(pp->readq)) {
5052 ecpp_error(pp->dip, "ecpp_idle_phase: readq full\n");
5053 return (SUCCESS);
5056 switch (pp->backchannel) {
5057 case ECPP_CENTRONICS:
5058 case ECPP_COMPAT_MODE:
5059 case ECPP_DIAG_MODE:
5060 /* nothing */
5061 ecpp_error(pp->dip, "ecpp_idle_phase: compat idle\n");
5062 return (SUCCESS);
5064 case ECPP_NIBBLE_MODE:
5066 * read as much data as possible, ending up in either
5067 * Reverse Idle or Host Busy Data Available phase
5069 ecpp_error(pp->dip, "ecpp_idle_phase: nibble backchannel\n");
5070 if ((pp->current_mode != ECPP_NIBBLE_MODE) &&
5071 (ecpp_mode_negotiation(pp, ECPP_NIBBLE_MODE) == FAILURE)) {
5072 break;
5075 rval = read_nibble_backchan(pp);
5077 /* put interface into Reverse Idle phase */
5078 if (pp->current_phase == ECPP_PHASE_NIBT_NAVAIL &&
5079 canputnext(pp->readq)) {
5080 ecpp_error(pp->dip, "ecpp_idle_phase: going revidle\n");
5083 * Event 7: host asserts nAutoFd
5084 * enable nAck interrupt to get a backchannel request
5086 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX | ECPP_INTR_EN);
5088 ECPP_UNMASK_INTR(pp);
5091 break;
5093 case ECPP_ECP_MODE:
5095 * if data is already available, request the backchannel xfer
5096 * otherwise stay in Forward Idle and enable nErr interrupts
5098 ecpp_error(pp->dip, "ecpp_idle_phase: ECP forward\n");
5100 ASSERT(pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE ||
5101 pp->current_phase == ECPP_PHASE_ECP_REV_IDLE);
5103 /* put interface into Forward Idle phase */
5104 if ((pp->current_phase == ECPP_PHASE_ECP_REV_IDLE) &&
5105 (ecp_reverse2forward(pp) == FAILURE)) {
5106 return (FAILURE);
5110 * if data already available, put backchannel request on the wq
5111 * otherwise enable nErr interrupts
5113 if ((DSR_READ(pp) & ECPP_nERR) == 0) {
5114 (void) ecpp_backchan_req(pp);
5115 } else {
5116 ECR_WRITE(pp,
5117 ECR_READ(pp) & ~ECPP_INTR_MASK | ECPP_INTR_SRV);
5119 ECPP_UNMASK_INTR(pp);
5122 return (SUCCESS);
5124 default:
5125 ecpp_error(pp->dip, "ecpp_idle_phase: illegal backchannel");
5128 return (rval);
5132 * This routine will leave the port in ECPP_PHASE_NIBT_REVIDLE
5133 * Due to flow control, though, it may stop at ECPP_PHASE_NIBT_AVAIL,
5134 * and continue later as the user consumes data from the read queue
5136 * The current phase should be NIBT_AVAIL or NIBT_NAVAIL
5137 * If some events fail during transfer, termination puts link
5138 * to Compatibility mode and FAILURE is returned
5140 static int
5141 read_nibble_backchan(struct ecppunit *pp)
5143 mblk_t *mp;
5144 int i;
5145 int rval = SUCCESS;
5147 ASSERT(pp->current_mode == ECPP_NIBBLE_MODE);
5149 pp->current_phase = (DSR_READ(pp) & (ECPP_nERR | ECPP_PE))
5150 ? ECPP_PHASE_NIBT_NAVAIL : ECPP_PHASE_NIBT_AVAIL;
5152 ecpp_error(pp->dip, "read_nibble_backchan: %x\n", DSR_READ(pp));
5155 * While data is available, read it in NIBBLE_REV_BLKSZ byte chunks
5156 * and send up the stream
5158 while (pp->current_phase == ECPP_PHASE_NIBT_AVAIL && rval == SUCCESS) {
5159 /* see if there's space on the queue */
5160 if (!canputnext(pp->readq)) {
5161 ecpp_error(pp->dip,
5162 "read_nibble_backchan: canputnext failed\n");
5163 return (SUCCESS);
5166 if ((mp = allocb(NIBBLE_REV_BLKSZ, BPRI_MED)) == NULL) {
5167 ecpp_error(pp->dip,
5168 "read_nibble_backchan: allocb failed\n");
5169 return (SUCCESS);
5172 /* read a chunk of data from the peripheral byte by byte */
5173 i = NIBBLE_REV_BLKSZ;
5174 while (i-- && !(DSR_READ(pp) & ECPP_nERR)) {
5175 if (nibble_peripheral2host(pp, mp->b_wptr) != SUCCESS) {
5176 rval = FAILURE;
5177 break;
5179 mp->b_wptr++;
5182 pp->current_phase = (DSR_READ(pp) & (ECPP_nERR | ECPP_PE))
5183 ? ECPP_PHASE_NIBT_NAVAIL
5184 : ECPP_PHASE_NIBT_AVAIL;
5186 if (mp->b_wptr - mp->b_rptr > 0) {
5187 ecpp_error(pp->dip,
5188 "read_nibble_backchan: sending %d bytes\n",
5189 mp->b_wptr - mp->b_rptr);
5190 pp->nread = 0;
5191 mutex_exit(&pp->umutex);
5192 putnext(pp->readq, mp);
5193 mutex_enter(&pp->umutex);
5194 } else {
5195 freemsg(mp);
5199 return (rval);
5203 * 'Request Device ID using nibble mode' negotiation
5205 static int
5206 devidnib_negotiation(struct ecppunit *pp)
5208 uint8_t dsr;
5210 if (ecpp_1284_negotiation(pp,
5211 ECPP_XREQ_NIBBLE | ECPP_XREQ_ID, &dsr) == FAILURE) {
5212 return (FAILURE);
5216 * If peripheral has data available, PE and nErr will
5217 * be set low at Event 5 & 6.
5219 if ((dsr & (ECPP_PE | ECPP_nERR)) == 0) {
5220 pp->current_phase = ECPP_PHASE_NIBT_AVAIL;
5221 } else {
5222 pp->current_phase = ECPP_PHASE_NIBT_NAVAIL;
5225 ecpp_error(pp->dip, "ecpp_devidnib_nego: current_phase=%x\n",
5226 pp->current_phase);
5228 /* successful negotiation into Nibble mode */
5229 pp->current_mode = ECPP_NIBBLE_MODE;
5230 pp->backchannel = ECPP_NIBBLE_MODE;
5232 ecpp_error(pp->dip, "ecpp_devidnib_nego: ok\n");
5234 return (SUCCESS);
5238 * Read 1284 device ID sequence
5240 * This function should be called two times:
5241 * 1) ecpp_getdevid(pp, NULL, &len) - to retrieve ID length;
5242 * 2) ecpp_getdevid(pp, buffer, &len) - to read len bytes into buffer
5244 * After 2) port is in Compatible mode
5245 * If the caller fails to make second call, it must reset port to Centronics
5248 static int
5249 ecpp_getdevid(struct ecppunit *pp, uint8_t *id, int *lenp, int mode)
5251 uint8_t lenhi, lenlo;
5252 uint8_t dsr;
5253 int i;
5255 switch (mode) {
5256 case ECPP_NIBBLE_MODE:
5257 /* negotiate only if neccessary */
5258 if ((pp->current_mode != mode) || (id == NULL)) {
5259 if (devidnib_negotiation(pp) == FAILURE) {
5260 return (EIO);
5264 if (pp->current_phase != ECPP_PHASE_NIBT_AVAIL) {
5265 return (EIO);
5269 * Event 14: Host tristates data bus, peripheral
5270 * asserts nERR if data available, usually the
5271 * status bits (7-0) and requires two reads since
5272 * only nibbles are transfered.
5274 dsr = DSR_READ(pp);
5276 if (id == NULL) {
5278 * first two bytes are the length of the sequence
5279 * (incl. these bytes)
5280 * first byte is MSB
5282 if ((dsr & ECPP_nERR) ||
5283 (nibble_peripheral2host(pp, &lenhi) == FAILURE) ||
5284 (dsr & ECPP_nERR) ||
5285 (nibble_peripheral2host(pp, &lenlo) == FAILURE)) {
5286 ecpp_error(pp->dip,
5287 "ecpp_getdevid: id length read error\n");
5288 return (EIO);
5291 *lenp = (lenhi << 8) | (lenlo);
5293 ecpp_error(pp->dip,
5294 "ecpp_getdevid: id length = %d\n", *lenp);
5296 if (*lenp < 2) {
5297 return (EIO);
5299 } else {
5301 * read the rest of the data
5303 i = *lenp;
5304 while (i && ((dsr & ECPP_nERR) == 0)) {
5305 if (nibble_peripheral2host(pp, id++) == FAILURE)
5306 break;
5308 i--;
5309 dsr = DSR_READ(pp);
5311 ecpp_error(pp->dip,
5312 "ecpp_getdevid: read %d bytes\n", *lenp - i);
5315 * 1284: After receiving the sequence, the host is
5316 * required to return the link to the Compatibility mode
5318 (void) ecpp_1284_termination(pp);
5321 break;
5323 /* Other modes are not yet supported */
5324 default:
5325 return (EINVAL);
5328 return (0);
5332 * Various hardware support
5334 * First define some stubs for functions that do nothing
5337 /*ARGSUSED*/
5338 static void
5339 empty_config_mode(struct ecppunit *pp)
5343 /*ARGSUSED*/
5344 static void
5345 empty_mask_intr(struct ecppunit *pp)
5349 #if defined(__x86)
5350 static size_t
5351 x86_getcnt(struct ecppunit *pp)
5353 int count;
5355 (void) ddi_dmae_getcnt(pp->dip, pp->uh.x86.chn, &count);
5356 return (count);
5358 #endif
5362 * National PC87332 and PC97317 SuperIOs support routines
5363 * These chips are used in PCI-based Darwin, Quark, Quasar, Excalibur
5364 * and use EBus DMA facilities (Cheerio or RIO)
5368 static int
5369 pc87332_map_regs(struct ecppunit *pp)
5371 if (ddi_regs_map_setup(pp->dip, 1, (caddr_t *)&pp->uh.ebus.c_reg, 0,
5372 sizeof (struct config_reg), &acc_attr,
5373 &pp->uh.ebus.c_handle) != DDI_SUCCESS) {
5374 ecpp_error(pp->dip, "pc87332_map_regs: failed c_reg\n");
5375 goto fail;
5378 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->i_reg, 0,
5379 sizeof (struct info_reg), &acc_attr, &pp->i_handle)
5380 != DDI_SUCCESS) {
5381 ecpp_error(pp->dip, "pc87332_map_regs: failed i_reg\n");
5382 goto fail;
5385 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->f_reg, 0x400,
5386 sizeof (struct fifo_reg), &acc_attr, &pp->f_handle)
5387 != DDI_SUCCESS) {
5388 ecpp_error(pp->dip, "pc87332_map_regs: failed f_reg\n");
5389 goto fail;
5392 if (ddi_regs_map_setup(pp->dip, 2, (caddr_t *)&pp->uh.ebus.dmac, 0,
5393 sizeof (struct cheerio_dma_reg), &acc_attr,
5394 &pp->uh.ebus.d_handle) != DDI_SUCCESS) {
5395 ecpp_error(pp->dip, "pc87332_map_regs: failed dmac\n");
5396 goto fail;
5399 return (SUCCESS);
5401 fail:
5402 pc87332_unmap_regs(pp);
5403 return (FAILURE);
5406 static void
5407 pc87332_unmap_regs(struct ecppunit *pp)
5409 if (pp->uh.ebus.c_handle) {
5410 ddi_regs_map_free(&pp->uh.ebus.c_handle);
5412 if (pp->uh.ebus.d_handle) {
5413 ddi_regs_map_free(&pp->uh.ebus.d_handle);
5415 if (pp->i_handle) {
5416 ddi_regs_map_free(&pp->i_handle);
5418 if (pp->f_handle) {
5419 ddi_regs_map_free(&pp->f_handle);
5423 static uint8_t
5424 pc87332_read_config_reg(struct ecppunit *pp, uint8_t reg_num)
5426 uint8_t retval;
5428 PP_PUTB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->index, reg_num);
5429 retval = PP_GETB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->data);
5431 return (retval);
5434 static void
5435 pc87332_write_config_reg(struct ecppunit *pp, uint8_t reg_num, uint8_t val)
5437 PP_PUTB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->index, reg_num);
5438 PP_PUTB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->data, val);
5441 * second write to this register is needed. the register behaves as
5442 * a fifo. the first value written goes to the data register. the
5443 * second write pushes the initial value to the register indexed.
5446 PP_PUTB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->data, val);
5449 static int
5450 pc87332_config_chip(struct ecppunit *pp)
5452 uint8_t pmc, fcr;
5454 pp->current_phase = ECPP_PHASE_INIT;
5456 /* ECP DMA configuration bit (PMC4) must be set */
5457 pmc = pc87332_read_config_reg(pp, PMC);
5458 if (!(pmc & PC87332_PMC_ECP_DMA_CONFIG)) {
5459 pc87332_write_config_reg(pp, PMC,
5460 pmc | PC87332_PMC_ECP_DMA_CONFIG);
5464 * The Parallel Port Multiplexor pins must be driven.
5465 * Check to see if FCR3 is zero, if not clear FCR3.
5467 fcr = pc87332_read_config_reg(pp, FCR);
5468 if (fcr & PC87332_FCR_PPM_FLOAT_CTL) {
5469 pc87332_write_config_reg(pp, FCR,
5470 fcr & ~PC87332_FCR_PPM_FLOAT_CTL);
5474 * clear bits 3-0 in CTR (aka DCR) prior to enabling ECP mode
5475 * CTR5 can not be cleared in SPP mode, CTR5 will return 1.
5476 * "FAILURE" in this case is ok. Better to use dcr_write()
5477 * to ensure reliable writing to DCR.
5479 if (dcr_write(pp, ECPP_DCR_SET | ECPP_nINIT) == FAILURE) {
5480 ecpp_error(pp->dip, "ecpp_config_87332: DCR config\n");
5483 /* enable ECP mode, level intr (note that DCR bits 3-0 == 0x0) */
5484 pc87332_write_config_reg(pp, PCR,
5485 PC87332_PCR_INTR_LEVL | PC87332_PCR_ECP_EN);
5487 /* put SuperIO in initial state */
5488 if (ecr_write(pp, ECR_mode_001 |
5489 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) {
5490 ecpp_error(pp->dip, "ecpp_config_87332: ECR\n");
5493 if (dcr_write(pp, ECPP_DCR_SET | ECPP_SLCTIN | ECPP_nINIT) == FAILURE) {
5494 ecpp_error(pp->dip, "ecpp_config_87332: w/DCR failed2.\n");
5495 return (FAILURE);
5498 /* we are in centronic mode */
5499 pp->current_mode = ECPP_CENTRONICS;
5501 /* in compatible mode with no data transfer in progress */
5502 pp->current_phase = ECPP_PHASE_C_IDLE;
5504 return (SUCCESS);
5508 * A new mode was set, do some mode specific reconfiguration
5509 * in this case - set interrupt characteristic
5511 static void
5512 pc87332_config_mode(struct ecppunit *pp)
5514 if (COMPAT_PIO(pp)) {
5515 pc87332_write_config_reg(pp, PCR, 0x04);
5516 } else {
5517 pc87332_write_config_reg(pp, PCR, 0x14);
5521 static int
5522 pc97317_map_regs(struct ecppunit *pp)
5524 if (pc87332_map_regs(pp) != SUCCESS) {
5525 return (FAILURE);
5528 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->uh.ebus.c2_reg,
5529 0x403, sizeof (struct config2_reg), &acc_attr,
5530 &pp->uh.ebus.c2_handle) != DDI_SUCCESS) {
5531 ecpp_error(pp->dip, "pc97317_map_regs: failed c2_reg\n");
5532 pc87332_unmap_regs(pp);
5533 return (FAILURE);
5534 } else {
5535 return (SUCCESS);
5539 static void
5540 pc97317_unmap_regs(struct ecppunit *pp)
5542 if (pp->uh.ebus.c2_handle) {
5543 ddi_regs_map_free(&pp->uh.ebus.c2_handle);
5546 pc87332_unmap_regs(pp);
5550 * OBP should configure the PC97317 such that it does not need further
5551 * configuration. Upon sustaining, it may be necessary to examine
5552 * or change the configuration registers. This routine is left in
5553 * the file for that purpose.
5555 static int
5556 pc97317_config_chip(struct ecppunit *pp)
5558 uint8_t conreg;
5560 /* set the logical device name */
5561 pc87332_write_config_reg(pp, PC97317_CONFIG_DEV_NO, 0x4);
5563 /* SPP Compatibility */
5564 PP_PUTB(pp->uh.ebus.c2_handle,
5565 &pp->uh.ebus.c2_reg->eir, PC97317_CONFIG2_CONTROL2);
5566 PP_PUTB(pp->uh.ebus.c2_handle, &pp->uh.ebus.c2_reg->edr, 0x80);
5568 /* low interrupt polarity */
5569 pc87332_write_config_reg(pp, PC97317_CONFIG_INTR_TYPE, 0x00);
5571 /* ECP mode */
5572 pc87332_write_config_reg(pp, PC97317_CONFIG_PP_CONFIG, 0xf2);
5574 if (dcr_write(pp, ECPP_SLCTIN | ECPP_nINIT) == FAILURE) {
5575 ecpp_error(pp->dip, "pc97317_config_chip: failed w/DCR\n");
5578 if (ecr_write(pp, ECR_mode_001 |
5579 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) {
5580 ecpp_error(pp->dip, "pc97317_config_chip: failed w/ECR\n");
5583 #ifdef DEBUG
5584 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_DEV_NO);
5585 ecpp_error(pp->dip, "97317:conreg7(logical dev)=%x\n", conreg);
5587 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_BASE_ADDR_MSB);
5588 ecpp_error(pp->dip, "97317:conreg60(addrHi)=%x\n", conreg);
5590 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_BASE_ADDR_LSB);
5591 ecpp_error(pp->dip, "97317:conreg61(addrLo)=%x\n", conreg);
5593 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_INTR_SEL);
5594 ecpp_error(pp->dip, "97317:conreg70(IRQL)=%x\n", conreg);
5596 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_INTR_TYPE);
5597 ecpp_error(pp->dip, "97317:conreg71(intr type)=%x\n", conreg);
5599 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_ACTIVATE);
5600 ecpp_error(pp->dip, "97317:conreg30(Active)=%x\n", conreg);
5602 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_IO_RANGE);
5603 ecpp_error(pp->dip, "97317:conreg31(IO Range Check)=%x\n", conreg);
5605 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_DMA0_CHAN);
5606 ecpp_error(pp->dip, "97317:conreg74(DMA0 Chan)=%x\n", conreg);
5607 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_DMA1_CHAN);
5608 ecpp_error(pp->dip, "97317:conreg75(DMA1 Chan)=%x\n", conreg);
5610 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_PP_CONFIG);
5611 ecpp_error(pp->dip, "97317:conregFO(pport conf)=%x\n", conreg);
5613 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_PP_CONFIG);
5614 ecpp_error(pp->dip, "97317:conregFO(pport conf)=%x\n", conreg);
5615 #endif /* DEBUG */
5617 return (SUCCESS);
5621 * A new mode was set, do some mode specific reconfiguration
5622 * in this case - set interrupt polarity
5624 static void
5625 pc97317_config_mode(struct ecppunit *pp)
5627 /* set the logical device name */
5628 pc87332_write_config_reg(pp, PC97317_CONFIG_DEV_NO, 0x4);
5630 if (COMPAT_PIO(pp) || pp->current_mode == ECPP_NIBBLE_MODE) {
5631 pc87332_write_config_reg(pp, PC97317_CONFIG_INTR_TYPE, 0x02);
5632 } else {
5633 pc87332_write_config_reg(pp, PC97317_CONFIG_INTR_TYPE, 0x00);
5637 static void
5638 cheerio_mask_intr(struct ecppunit *pp)
5640 /* mask Cheerio interrupts */
5641 AND_SET_LONG_R(pp->uh.ebus.d_handle,
5642 &pp->uh.ebus.dmac->csr, ~DCSR_INT_EN);
5645 static void
5646 cheerio_unmask_intr(struct ecppunit *pp)
5648 /* unmask Cheerio interrupts */
5649 OR_SET_LONG_R(pp->uh.ebus.d_handle,
5650 &pp->uh.ebus.dmac->csr, DCSR_INT_EN | DCSR_TCI_DIS);
5653 static int
5654 cheerio_dma_start(struct ecppunit *pp)
5656 cheerio_reset_dcsr(pp);
5657 SET_DMAC_BCR(pp, pp->dma_cookie.dmac_size);
5658 SET_DMAC_ACR(pp, pp->dma_cookie.dmac_address);
5660 if (pp->dma_dir == DDI_DMA_READ) {
5661 SET_DMAC_CSR(pp, DCSR_INT_EN | DCSR_EN_CNT | DCSR_EN_DMA |
5662 DCSR_CSR_DRAIN | DCSR_BURST_1 | DCSR_BURST_0 | DCSR_WRITE);
5663 } else {
5664 SET_DMAC_CSR(pp, DCSR_INT_EN | DCSR_EN_CNT | DCSR_EN_DMA |
5665 DCSR_CSR_DRAIN | DCSR_BURST_1 | DCSR_BURST_0);
5668 return (SUCCESS);
5672 * Note: BCR is reset to 0, so counter should always be read before dma_stop
5674 static int
5675 cheerio_dma_stop(struct ecppunit *pp, size_t *countp)
5677 uint8_t ecr;
5679 /* disable DMA and byte counter */
5680 AND_SET_LONG_R(pp->uh.ebus.d_handle, &pp->uh.ebus.dmac->csr,
5681 ~(DCSR_EN_DMA | DCSR_EN_CNT| DCSR_INT_EN));
5683 /* ACK and disable the TC interrupt */
5684 OR_SET_LONG_R(pp->uh.ebus.d_handle, &pp->uh.ebus.dmac->csr,
5685 DCSR_TC | DCSR_TCI_DIS);
5687 /* read DMA count if requested */
5688 if (countp) {
5689 *countp = cheerio_getcnt(pp);
5692 cheerio_reset_dcsr(pp);
5693 SET_DMAC_BCR(pp, 0);
5695 /* turn off SuperIO's DMA */
5696 ecr = ECR_READ(pp);
5697 if (ecr_write(pp, ecr & ~ECPP_DMA_ENABLE) == FAILURE) {
5698 return (FAILURE);
5701 /* Disable SuperIO interrupts and DMA */
5702 ecr = ECR_READ(pp);
5704 return (ecr_write(pp, ecr | ECPP_INTR_SRV));
5707 static size_t
5708 cheerio_getcnt(struct ecppunit *pp)
5710 return (GET_DMAC_BCR(pp));
5714 * Reset the DCSR by first setting the RESET bit to 1. Poll the
5715 * DCSR_CYC_PEND bit to make sure there are no more pending DMA cycles.
5716 * If there are no more pending cycles, clear the RESET bit.
5718 static void
5719 cheerio_reset_dcsr(struct ecppunit *pp)
5721 int timeout = DMAC_RESET_TIMEOUT;
5723 SET_DMAC_CSR(pp, DCSR_RESET);
5725 while (GET_DMAC_CSR(pp) & DCSR_CYC_PEND) {
5726 if (timeout == 0) {
5727 ecpp_error(pp->dip, "cheerio_reset_dcsr: timeout\n");
5728 break;
5729 } else {
5730 drv_usecwait(1);
5731 timeout--;
5735 SET_DMAC_CSR(pp, 0);
5740 * Grover Southbridge (M1553) support routines
5741 * Southbridge contains an Intel 8237 DMAC onboard which is used
5742 * to transport data to/from PCI space to superio parallel port
5747 static int
5748 m1553_map_regs(struct ecppunit *pp)
5750 if (ddi_regs_map_setup(pp->dip, 1, (caddr_t *)&pp->uh.m1553.isa_space,
5751 0, sizeof (struct isaspace), &acc_attr,
5752 &pp->uh.m1553.d_handle) != DDI_SUCCESS) {
5753 ecpp_error(pp->dip, "m1553_map_regs: failed isa space\n");
5754 goto fail;
5757 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->i_reg, 0,
5758 sizeof (struct info_reg), &acc_attr, &pp->i_handle)
5759 != DDI_SUCCESS) {
5760 ecpp_error(pp->dip, "m1553_map_regs: failed i_reg\n");
5761 goto fail;
5764 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->f_reg, 0x400,
5765 sizeof (struct fifo_reg), &acc_attr, &pp->f_handle)
5766 != DDI_SUCCESS) {
5767 ecpp_error(pp->dip, "m1553_map_regs: failed f_reg\n");
5768 goto fail;
5771 return (SUCCESS);
5773 fail:
5774 m1553_unmap_regs(pp);
5775 return (FAILURE);
5778 static void
5779 m1553_unmap_regs(struct ecppunit *pp)
5781 if (pp->uh.m1553.d_handle) {
5782 ddi_regs_map_free(&pp->uh.m1553.d_handle);
5784 if (pp->i_handle) {
5785 ddi_regs_map_free(&pp->i_handle);
5787 if (pp->f_handle) {
5788 ddi_regs_map_free(&pp->f_handle);
5792 #if defined(__x86)
5793 static int
5794 x86_map_regs(struct ecppunit *pp)
5796 int nregs = 0;
5798 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->i_reg, 0,
5799 sizeof (struct info_reg), &acc_attr, &pp->i_handle)
5800 != DDI_SUCCESS) {
5801 ecpp_error(pp->dip, "x86_map_regs: failed i_reg\n");
5802 goto fail;
5804 if (ddi_dev_nregs(pp->dip, &nregs) == DDI_SUCCESS && nregs == 2) {
5805 if (ddi_regs_map_setup(pp->dip, 1, (caddr_t *)&pp->f_reg, 0,
5806 sizeof (struct fifo_reg), &acc_attr, &pp->f_handle)
5807 != DDI_SUCCESS) {
5808 ecpp_error(pp->dip, "x86_map_regs: failed f_reg\n");
5809 goto fail;
5810 } else
5811 pp->noecpregs = FALSE;
5812 } else {
5813 pp->noecpregs = TRUE;
5815 return (SUCCESS);
5816 fail:
5817 x86_unmap_regs(pp);
5818 return (FAILURE);
5821 static void
5822 x86_unmap_regs(struct ecppunit *pp)
5824 if (pp->i_handle) {
5825 ddi_regs_map_free(&pp->i_handle);
5827 if (pp->f_handle) {
5828 ddi_regs_map_free(&pp->f_handle);
5831 #endif
5833 static uint8_t
5834 m1553_read_config_reg(struct ecppunit *pp, uint8_t reg_num)
5836 uint8_t retval;
5838 dma8237_write(pp, 0x3F0, reg_num);
5839 retval = dma8237_read(pp, 0x3F1);
5841 return (retval);
5844 static void
5845 m1553_write_config_reg(struct ecppunit *pp, uint8_t reg_num, uint8_t val)
5847 dma8237_write(pp, 0x3F0, reg_num);
5848 dma8237_write(pp, 0x3F1, val);
5851 static int
5852 m1553_config_chip(struct ecppunit *pp)
5854 uint8_t conreg;
5856 /* Unlock configuration regs with "key sequence" */
5857 dma8237_write(pp, 0x3F0, 0x51);
5858 dma8237_write(pp, 0x3F0, 0x23);
5860 m1553_write_config_reg(pp, PnP_CONFIG_DEV_NO, 0x3);
5861 conreg = m1553_read_config_reg(pp, PnP_CONFIG_DEV_NO);
5862 ecpp_error(pp->dip, "M1553:conreg7(logical dev)=%x\n", conreg);
5864 conreg = m1553_read_config_reg(pp, PnP_CONFIG_ACTIVATE);
5865 ecpp_error(pp->dip, "M1553:conreg30(Active)=%x\n", conreg);
5867 conreg = m1553_read_config_reg(pp, PnP_CONFIG_BASE_ADDR_MSB);
5868 ecpp_error(pp->dip, "M1553:conreg60(addrHi)=%x\n", conreg);
5869 conreg = m1553_read_config_reg(pp, PnP_CONFIG_BASE_ADDR_LSB);
5870 ecpp_error(pp->dip, "M1553:conreg61(addrLo)=%x\n", conreg);
5872 conreg = m1553_read_config_reg(pp, PnP_CONFIG_INTR_SEL);
5873 ecpp_error(pp->dip, "M1553:conreg70(IRQL)=%x\n", conreg);
5875 conreg = m1553_read_config_reg(pp, PnP_CONFIG_DMA0_CHAN);
5876 ecpp_error(pp->dip, "M1553:conreg74(DMA0 Chan)=%x\n", conreg);
5878 /* set FIFO threshold 1 and ECP mode, preserve bit 7 (IRQ polarity) */
5879 conreg = m1553_read_config_reg(pp, PnP_CONFIG_PP_CONFIG0);
5880 conreg = (conreg & ~0x7F) | 0x0A;
5881 m1553_write_config_reg(pp, PnP_CONFIG_PP_CONFIG0, conreg);
5882 conreg = m1553_read_config_reg(pp, PnP_CONFIG_PP_CONFIG0);
5883 ecpp_error(pp->dip, "M1553:conregFO(pport conf)=%x\n", conreg);
5885 m1553_write_config_reg(pp, PnP_CONFIG_PP_CONFIG1, 0x04);
5886 conreg = m1553_read_config_reg(pp, PnP_CONFIG_PP_CONFIG1);
5887 ecpp_error(pp->dip, "M1553:conregF1(outconf)=%x\n", conreg);
5889 /* lock configuration regs with key */
5890 dma8237_write(pp, 0x3F0, 0xBB);
5892 /* Set ECR, DCR in known state */
5893 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV);
5894 DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT);
5896 ecpp_error(pp->dip, "m1553_config_chip: ecr=%x, dsr=%x, dcr=%x\n",
5897 ECR_READ(pp), DSR_READ(pp), DCR_READ(pp));
5899 return (SUCCESS);
5902 #if defined(__x86)
5903 static int
5904 x86_config_chip(struct ecppunit *pp)
5906 if (ecr_write(pp, ECR_mode_001 |
5907 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) {
5908 ecpp_error(pp->dip, "config chip: failed w/ecr\n");
5909 pp->noecpregs = TRUE;
5911 if (pp->noecpregs)
5912 pp->fast_compat = FALSE;
5913 DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT);
5914 ecpp_error(pp->dip, "x86_config_chip: ecr=%x, dsr=%x, dcr=%x\n",
5915 ECR_READ(pp), DSR_READ(pp), DCR_READ(pp));
5916 return (SUCCESS);
5918 #endif
5921 * dma8237_dma_start() programs the selected 8 bit channel
5922 * of DMAC1 with the dma cookie. pp->dma_cookie must
5923 * be set before this routine is called.
5925 static int
5926 dma8237_dma_start(struct ecppunit *pp)
5928 uint8_t chn;
5930 chn = pp->uh.m1553.chn;
5932 ASSERT(chn <= DMAE_CH3 &&
5933 pp->dma_cookie.dmac_size != 0 &&
5934 pp->dma_cookie.dmac_address != (uintptr_t)NULL);
5936 /* At this point Southbridge has not yet asserted DREQ */
5938 /* set mode to read-from-memory. */
5939 dma8237_write(pp, DMAC2_MODE, DMAMODE_CASC);
5940 if (pp->dma_dir == DDI_DMA_READ) {
5941 dma8237_write(pp, DMAC1_MODE, DMAMODE_SINGLE |
5942 DMAMODE_READ | chn);
5943 } else {
5944 dma8237_write(pp, DMAC1_MODE, DMAMODE_SINGLE |
5945 DMAMODE_WRITE | chn);
5948 dma8237_write_addr(pp, pp->dma_cookie.dmac_address);
5949 dma8237_write_count(pp, pp->dma_cookie.dmac_size - 1);
5952 * M1553 chip does not permit to access DMA register banks
5953 * while DMA is in flight. As a result, ecpp and floppy drivers
5954 * can potentially corrupt each other's DMA. The interlocking mechanism
5955 * is provided by a parent nexus driver (isadma), which is enabled
5956 * indirectly through a DMAC1_ALLMASK register access:
5958 * writing a non-zero value to this register enters a lock,
5959 * writing zero releases the lock.
5961 * DMA transfer must only occur after entering a lock.
5962 * If the lock is already owned by other driver, we will block.
5964 * The following operation unmasks our channel and masks all others
5966 dma8237_write(pp, DMAC1_ALLMASK, ~(1 << chn));
5967 pp->uh.m1553.isadma_entered = 1;
5969 return (SUCCESS);
5972 static int
5973 dma8237_dma_stop(struct ecppunit *pp, size_t *countp)
5975 uint8_t ecr;
5977 /* stop DMA */
5978 ecr = (ECR_READ(pp) & 0xe0) | ECPP_INTR_MASK | ECPP_INTR_SRV;
5979 (void) ecr_write(pp, ecr);
5981 if (pp->uh.m1553.isadma_entered) {
5982 /* reset the channel mask so we can issue PIO's to our device */
5983 dma8237_write(pp, DMAC1_ALLMASK, 0);
5984 pp->uh.m1553.isadma_entered = 0;
5988 /* read DMA count if requested */
5989 if (countp) {
5990 *countp = dma8237_getcnt(pp);
5991 if (pp->dma_dir == DDI_DMA_READ && *countp > 0) {
5992 (*countp)++; /* need correction for reverse xfers */
5995 return (SUCCESS);
5997 #if defined(__x86)
5998 static int
5999 x86_dma_start(struct ecppunit *pp)
6001 uint8_t chn;
6002 struct ddi_dmae_req dmaereq;
6004 chn = pp->uh.x86.chn;
6005 ASSERT(chn <= DMAE_CH3 &&
6006 pp->dma_cookie.dmac_size != 0 &&
6007 pp->dma_cookie.dmac_address != (uintptr_t)NULL);
6008 bzero(&dmaereq, sizeof (struct ddi_dmae_req));
6009 dmaereq.der_command =
6010 (pp->dma_dir & DDI_DMA_READ) ? DMAE_CMD_READ : DMAE_CMD_WRITE;
6011 if (ddi_dmae_prog(pp->dip, &dmaereq, &pp->dma_cookie, chn)
6012 != DDI_SUCCESS)
6013 ecpp_error(pp->dip, "prog failed !!!\n");
6014 ecpp_error(pp->dip, "dma_started..\n");
6015 return (SUCCESS);
6018 static int
6019 x86_dma_stop(struct ecppunit *pp, size_t *countp)
6021 uint8_t ecr;
6023 /* stop DMA */
6024 if (pp->uh.x86.chn == 0xff)
6025 return (FAILURE);
6026 ecr = (ECR_READ(pp) & 0xe0) | ECPP_INTR_MASK | ECPP_INTR_SRV;
6027 (void) ecr_write(pp, ecr);
6028 ecpp_error(pp->dip, "dma_stop\n");
6030 /* read DMA count if requested */
6031 if (countp) {
6032 *countp = x86_getcnt(pp);
6034 ecpp_error(pp->dip, "dma_stoped..\n");
6035 return (SUCCESS);
6037 #endif
6039 /* channel must be masked */
6040 static void
6041 dma8237_write_addr(struct ecppunit *pp, uint32_t addr)
6043 uint8_t c_addr, c_lpage;
6044 uint16_t c_hpage, *p;
6046 switch (pp->uh.m1553.chn) {
6047 case DMAE_CH0:
6048 c_addr = DMA_0ADR;
6049 c_lpage = DMA_0PAGE;
6050 c_hpage = DMA_0HPG;
6051 break;
6053 case DMAE_CH1:
6054 c_addr = DMA_1ADR;
6055 c_lpage = DMA_1PAGE;
6056 c_hpage = DMA_1HPG;
6057 break;
6059 case DMAE_CH2:
6060 c_addr = DMA_2ADR;
6061 c_lpage = DMA_2PAGE;
6062 c_hpage = DMA_2HPG;
6063 break;
6065 case DMAE_CH3:
6066 c_addr = DMA_3ADR;
6067 c_lpage = DMA_3PAGE;
6068 c_hpage = DMA_3HPG;
6069 break;
6071 default:
6072 return;
6075 p = (uint16_t *)&pp->uh.m1553.isa_space->isa_reg[c_addr];
6076 ddi_put16(pp->uh.m1553.d_handle, p, addr & 0xFFFF);
6078 dma8237_write(pp, c_lpage, (addr & 0xFF0000) >> 16);
6079 dma8237_write(pp, c_hpage, (addr & 0xFF000000) >> 24);
6084 * This function may be useful during debugging,
6085 * so we leave it in, but do not include in the binary
6087 #ifdef INCLUDE_DMA8237_READ_ADDR
6088 static uint32_t
6089 dma8237_read_addr(struct ecppunit *pp)
6091 uint8_t rval3, rval4;
6092 uint16_t rval16;
6093 uint32_t rval;
6094 uint8_t c_addr, c_lpage;
6095 uint16_t c_hpage, *p;
6097 switch (pp->uh.m1553.chn) {
6098 case DMAE_CH0:
6099 c_addr = DMA_0ADR;
6100 c_lpage = DMA_0PAGE;
6101 c_hpage = DMA_0HPG;
6102 break;
6104 case DMAE_CH1:
6105 c_addr = DMA_1ADR;
6106 c_lpage = DMA_1PAGE;
6107 c_hpage = DMA_1HPG;
6108 break;
6110 case DMAE_CH2:
6111 c_addr = DMA_2ADR;
6112 c_lpage = DMA_2PAGE;
6113 c_hpage = DMA_2HPG;
6114 break;
6116 case DMAE_CH3:
6117 c_addr = DMA_3ADR;
6118 c_lpage = DMA_3PAGE;
6119 c_hpage = DMA_3HPG;
6120 break;
6122 default:
6123 return (NULL);
6126 p = (uint16_t *)&pp->uh.m1553.isa_space->isa_reg[c_addr];
6127 rval16 = ddi_get16(pp->uh.m1553.d_handle, p);
6129 rval3 = dma8237_read(pp, c_lpage);
6130 rval4 = dma8237_read(pp, c_hpage);
6132 rval = rval16 | (rval3 << 16) | (rval4 <<24);
6134 return (rval);
6136 #endif
6138 static void
6139 dma8237_write_count(struct ecppunit *pp, uint32_t count)
6141 uint8_t c_wcnt;
6142 uint16_t *p;
6144 switch (pp->uh.m1553.chn) {
6145 case DMAE_CH0:
6146 c_wcnt = DMA_0WCNT;
6147 break;
6149 case DMAE_CH1:
6150 c_wcnt = DMA_1WCNT;
6151 break;
6153 case DMAE_CH2:
6154 c_wcnt = DMA_2WCNT;
6155 break;
6157 case DMAE_CH3:
6158 c_wcnt = DMA_3WCNT;
6159 break;
6161 default:
6162 return;
6165 p = (uint16_t *)&pp->uh.m1553.isa_space->isa_reg[c_wcnt];
6166 ddi_put16(pp->uh.m1553.d_handle, p, count & 0xFFFF);
6170 static uint32_t
6171 dma8237_read_count(struct ecppunit *pp)
6173 uint8_t c_wcnt;
6174 uint16_t *p;
6176 switch (pp->uh.m1553.chn) {
6177 case DMAE_CH0:
6178 c_wcnt = DMA_0WCNT;
6179 break;
6181 case DMAE_CH1:
6182 c_wcnt = DMA_1WCNT;
6183 break;
6185 case DMAE_CH2:
6186 c_wcnt = DMA_2WCNT;
6187 break;
6189 case DMAE_CH3:
6190 c_wcnt = DMA_3WCNT;
6191 break;
6193 default:
6194 return (0);
6197 p = (uint16_t *)&pp->uh.m1553.isa_space->isa_reg[c_wcnt];
6198 return (ddi_get16(pp->uh.m1553.d_handle, p));
6202 static void
6203 dma8237_write(struct ecppunit *pp, int reg_num, uint8_t val)
6205 ddi_put8(pp->uh.m1553.d_handle,
6206 &pp->uh.m1553.isa_space->isa_reg[reg_num], val);
6209 static uint8_t
6210 dma8237_read(struct ecppunit *pp, int reg_num)
6212 return (ddi_get8(pp->uh.m1553.d_handle,
6213 &pp->uh.m1553.isa_space->isa_reg[reg_num]));
6216 static size_t
6217 dma8237_getcnt(struct ecppunit *pp)
6219 uint32_t cnt;
6221 if ((cnt = dma8237_read_count(pp)) == 0xffff)
6222 cnt = 0;
6223 else
6224 cnt++;
6225 return (cnt);
6231 * Kstat support routines
6234 static void
6235 ecpp_kstat_init(struct ecppunit *pp)
6237 struct ecppkstat *ekp;
6238 char buf[16];
6241 * Allocate, initialize and install interrupt counter kstat
6243 (void) sprintf(buf, "ecppc%d", pp->instance);
6244 pp->intrstats = kstat_create("ecpp", pp->instance, buf, "controller",
6245 KSTAT_TYPE_INTR, 1, KSTAT_FLAG_PERSISTENT);
6246 if (pp->intrstats == NULL) {
6247 ecpp_error(pp->dip, "ecpp_kstat_init:1: kstat_create failed");
6248 } else {
6249 pp->intrstats->ks_update = ecpp_kstatintr_update;
6250 pp->intrstats->ks_private = (void *) pp;
6251 kstat_install(pp->intrstats);
6255 * Allocate, initialize and install misc stats kstat
6257 pp->ksp = kstat_create("ecpp", pp->instance, NULL, "misc",
6258 KSTAT_TYPE_NAMED,
6259 sizeof (struct ecppkstat) / sizeof (kstat_named_t),
6260 KSTAT_FLAG_PERSISTENT);
6261 if (pp->ksp == NULL) {
6262 ecpp_error(pp->dip, "ecpp_kstat_init:2: kstat_create failed");
6263 return;
6266 ekp = (struct ecppkstat *)pp->ksp->ks_data;
6268 #define EK_NAMED_INIT(name) \
6269 kstat_named_init(&ekp->ek_##name, #name, KSTAT_DATA_UINT32)
6271 EK_NAMED_INIT(ctx_obytes);
6272 EK_NAMED_INIT(ctxpio_obytes);
6273 EK_NAMED_INIT(nib_ibytes);
6274 EK_NAMED_INIT(ecp_obytes);
6275 EK_NAMED_INIT(ecp_ibytes);
6276 EK_NAMED_INIT(epp_obytes);
6277 EK_NAMED_INIT(epp_ibytes);
6278 EK_NAMED_INIT(diag_obytes);
6279 EK_NAMED_INIT(to_ctx);
6280 EK_NAMED_INIT(to_nib);
6281 EK_NAMED_INIT(to_ecp);
6282 EK_NAMED_INIT(to_epp);
6283 EK_NAMED_INIT(to_diag);
6284 EK_NAMED_INIT(xfer_tout);
6285 EK_NAMED_INIT(ctx_cf);
6286 EK_NAMED_INIT(joblen);
6287 EK_NAMED_INIT(isr_reattempt_high);
6288 EK_NAMED_INIT(mode);
6289 EK_NAMED_INIT(phase);
6290 EK_NAMED_INIT(backchan);
6291 EK_NAMED_INIT(iomode);
6292 EK_NAMED_INIT(state);
6294 pp->ksp->ks_update = ecpp_kstat_update;
6295 pp->ksp->ks_private = (void *) pp;
6296 kstat_install(pp->ksp);
6299 static int
6300 ecpp_kstat_update(kstat_t *ksp, int rw)
6302 struct ecppunit *pp;
6303 struct ecppkstat *ekp;
6306 * For the time being there is no point
6307 * in supporting writable kstats
6309 if (rw == KSTAT_WRITE) {
6310 return (EACCES);
6313 pp = (struct ecppunit *)ksp->ks_private;
6314 ekp = (struct ecppkstat *)ksp->ks_data;
6316 mutex_enter(&pp->umutex);
6318 ekp->ek_ctx_obytes.value.ui32 = pp->obytes[ECPP_CENTRONICS] +
6319 pp->obytes[ECPP_COMPAT_MODE];
6320 ekp->ek_ctxpio_obytes.value.ui32 = pp->ctxpio_obytes;
6321 ekp->ek_nib_ibytes.value.ui32 = pp->ibytes[ECPP_NIBBLE_MODE];
6322 ekp->ek_ecp_obytes.value.ui32 = pp->obytes[ECPP_ECP_MODE];
6323 ekp->ek_ecp_ibytes.value.ui32 = pp->ibytes[ECPP_ECP_MODE];
6324 ekp->ek_epp_obytes.value.ui32 = pp->obytes[ECPP_EPP_MODE];
6325 ekp->ek_epp_ibytes.value.ui32 = pp->ibytes[ECPP_EPP_MODE];
6326 ekp->ek_diag_obytes.value.ui32 = pp->obytes[ECPP_DIAG_MODE];
6327 ekp->ek_to_ctx.value.ui32 = pp->to_mode[ECPP_CENTRONICS] +
6328 pp->to_mode[ECPP_COMPAT_MODE];
6329 ekp->ek_to_nib.value.ui32 = pp->to_mode[ECPP_NIBBLE_MODE];
6330 ekp->ek_to_ecp.value.ui32 = pp->to_mode[ECPP_ECP_MODE];
6331 ekp->ek_to_epp.value.ui32 = pp->to_mode[ECPP_EPP_MODE];
6332 ekp->ek_to_diag.value.ui32 = pp->to_mode[ECPP_DIAG_MODE];
6333 ekp->ek_xfer_tout.value.ui32 = pp->xfer_tout;
6334 ekp->ek_ctx_cf.value.ui32 = pp->ctx_cf;
6335 ekp->ek_joblen.value.ui32 = pp->joblen;
6336 ekp->ek_isr_reattempt_high.value.ui32 = pp->isr_reattempt_high;
6337 ekp->ek_mode.value.ui32 = pp->current_mode;
6338 ekp->ek_phase.value.ui32 = pp->current_phase;
6339 ekp->ek_backchan.value.ui32 = pp->backchannel;
6340 ekp->ek_iomode.value.ui32 = pp->io_mode;
6341 ekp->ek_state.value.ui32 = pp->e_busy;
6343 mutex_exit(&pp->umutex);
6345 return (0);
6348 static int
6349 ecpp_kstatintr_update(kstat_t *ksp, int rw)
6351 struct ecppunit *pp;
6354 * For the time being there is no point
6355 * in supporting writable kstats
6357 if (rw == KSTAT_WRITE) {
6358 return (EACCES);
6361 pp = (struct ecppunit *)ksp->ks_private;
6363 mutex_enter(&pp->umutex);
6365 KSTAT_INTR_PTR(ksp)->intrs[KSTAT_INTR_HARD] = pp->intr_hard;
6366 KSTAT_INTR_PTR(ksp)->intrs[KSTAT_INTR_SPURIOUS] = pp->intr_spurious;
6367 KSTAT_INTR_PTR(ksp)->intrs[KSTAT_INTR_SOFT] = pp->intr_soft;
6369 mutex_exit(&pp->umutex);
6371 return (0);