beadm: keep the symlink /usr/sbin/beadm
[unleashed.git] / kernel / os / exec.c
blob595ab26caf3890149e9de0db2775368a24418b63
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
26 /* Copyright (c) 1988 AT&T */
27 /* All Rights Reserved */
29 * Copyright 2017 Joyent, Inc.
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/sysmacros.h>
35 #include <sys/systm.h>
36 #include <sys/signal.h>
37 #include <sys/cred_impl.h>
38 #include <sys/policy.h>
39 #include <sys/user.h>
40 #include <sys/errno.h>
41 #include <sys/file.h>
42 #include <sys/vfs.h>
43 #include <sys/vnode.h>
44 #include <sys/mman.h>
45 #include <sys/acct.h>
46 #include <sys/cpuvar.h>
47 #include <sys/proc.h>
48 #include <sys/cmn_err.h>
49 #include <sys/debug.h>
50 #include <sys/pathname.h>
51 #include <sys/vm.h>
52 #include <sys/lgrp.h>
53 #include <sys/vtrace.h>
54 #include <sys/exec.h>
55 #include <sys/exechdr.h>
56 #include <sys/kmem.h>
57 #include <sys/prsystm.h>
58 #include <sys/modctl.h>
59 #include <sys/vmparam.h>
60 #include <sys/door.h>
61 #include <sys/schedctl.h>
62 #include <sys/utrap.h>
63 #include <sys/systeminfo.h>
64 #include <sys/stack.h>
65 #include <sys/rctl.h>
66 #include <sys/dtrace.h>
67 #include <sys/lwpchan_impl.h>
68 #include <sys/pool.h>
69 #include <sys/sdt.h>
70 #include <sys/brand.h>
71 #include <sys/klpd.h>
72 #include <sys/random.h>
74 #include <c2/audit.h>
76 #include <vm/hat.h>
77 #include <vm/anon.h>
78 #include <vm/as.h>
79 #include <vm/seg.h>
80 #include <vm/seg_vn.h>
81 #include <vm/seg_hole.h>
83 #define PRIV_RESET 0x01 /* needs to reset privs */
84 #define PRIV_SETID 0x02 /* needs to change uids */
85 #define PRIV_SETUGID 0x04 /* is setuid/setgid/forced privs */
86 #define PRIV_INCREASE 0x08 /* child runs with more privs */
87 #define PRIV_FORCED 0x20 /* has forced privileges */
89 static int execsetid(struct vnode *, struct vattr *, uid_t *, uid_t *,
90 priv_set_t *, cred_t *, const char *);
91 static int hold_execsw(struct execsw *);
93 uint_t auxv_hwcap = 0; /* auxv AT_SUN_HWCAP value; determined on the fly */
94 uint_t auxv_hwcap_2 = 0; /* AT_SUN_HWCAP2 */
95 #if defined(_SYSCALL32_IMPL)
96 uint_t auxv_hwcap32 = 0; /* 32-bit version of auxv_hwcap */
97 uint_t auxv_hwcap32_2 = 0; /* 32-bit version of auxv_hwcap2 */
98 #endif
100 #define PSUIDFLAGS (SNOCD|SUGID)
103 * These are consumed within the specific exec modules, but are defined here
104 * because
106 * 1) The exec modules are unloadable, which would make this near useless.
108 * 2) We want them to be common across all of them, should more than ELF come
109 * to support them.
111 * All must be powers of 2.
113 size_t aslr_max_brk_skew = 16 * 1024 * 1024; /* 16MB */
114 #pragma weak exec_stackgap = aslr_max_stack_skew /* Old, compatible name */
115 size_t aslr_max_stack_skew = 64 * 1024; /* 64KB */
118 * Size of guard segment for 64-bit processes and minimum size it can be shrunk
119 * to in the case of grow() operations. These are kept as variables in case
120 * they need to be tuned in an emergency.
122 size_t stack_guard_seg_sz = 256 * 1024 * 1024;
123 size_t stack_guard_min_sz = 64 * 1024 * 1024;
126 * exece() - system call wrapper around exec_common()
129 exece(const char *fname, const char **argp, const char **envp)
131 int error;
133 error = exec_common(fname, argp, envp, EBA_NONE);
134 return (error ? (set_errno(error)) : 0);
138 exec_common(const char *fname, const char **argp, const char **envp,
139 int brand_action)
141 vnode_t *vp = NULL, *dir = NULL, *tmpvp = NULL;
142 proc_t *p = ttoproc(curthread);
143 klwp_t *lwp = ttolwp(curthread);
144 struct user *up = PTOU(p);
145 long execsz; /* temporary count of exec size */
146 int i;
147 int error;
148 char exec_file[MAXCOMLEN+1];
149 struct pathname pn;
150 struct pathname resolvepn;
151 struct uarg args;
152 struct execa ua;
153 k_sigset_t savedmask;
154 lwpdir_t *lwpdir = NULL;
155 tidhash_t *tidhash;
156 lwpdir_t *old_lwpdir = NULL;
157 uint_t old_lwpdir_sz;
158 tidhash_t *old_tidhash;
159 uint_t old_tidhash_sz;
160 ret_tidhash_t *ret_tidhash;
161 lwpent_t *lep;
162 boolean_t brandme = B_FALSE;
165 * exec() is not supported for the /proc agent lwp.
167 if (curthread == p->p_agenttp)
168 return (ENOTSUP);
170 if (brand_action != EBA_NONE) {
172 * Brand actions are not supported for processes that are not
173 * running in a branded zone.
175 if (!ZONE_IS_BRANDED(p->p_zone))
176 return (ENOTSUP);
178 if (brand_action == EBA_NATIVE) {
179 /* Only branded processes can be unbranded */
180 if (!PROC_IS_BRANDED(p))
181 return (ENOTSUP);
182 } else {
183 /* Only unbranded processes can be branded */
184 if (PROC_IS_BRANDED(p))
185 return (ENOTSUP);
186 brandme = B_TRUE;
188 } else {
190 * If this is a native zone, or if the process is already
191 * branded, then we don't need to do anything. If this is
192 * a native process in a branded zone, we need to brand the
193 * process as it exec()s the new binary.
195 if (ZONE_IS_BRANDED(p->p_zone) && !PROC_IS_BRANDED(p))
196 brandme = B_TRUE;
200 * Inform /proc that an exec() has started.
201 * Hold signals that are ignored by default so that we will
202 * not be interrupted by a signal that will be ignored after
203 * successful completion of gexec().
205 mutex_enter(&p->p_lock);
206 prexecstart();
207 schedctl_finish_sigblock(curthread);
208 savedmask = curthread->t_hold;
209 sigorset(&curthread->t_hold, &ignoredefault);
210 mutex_exit(&p->p_lock);
213 * Look up path name and remember last component for later.
214 * To help coreadm expand its %d token, we attempt to save
215 * the directory containing the executable in p_execdir. The
216 * first call to lookuppn() may fail and return EINVAL because
217 * dirvpp is non-NULL. In that case, we make a second call to
218 * lookuppn() with dirvpp set to NULL; p_execdir will be NULL,
219 * but coreadm is allowed to expand %d to the empty string and
220 * there are other cases in which that failure may occur.
222 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0)
223 goto out;
224 pn_alloc(&resolvepn);
225 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, &dir, &vp)) != 0) {
226 pn_free(&resolvepn);
227 pn_free(&pn);
228 if (error != EINVAL)
229 goto out;
231 dir = NULL;
232 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0)
233 goto out;
234 pn_alloc(&resolvepn);
235 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, NULLVPP,
236 &vp)) != 0) {
237 pn_free(&resolvepn);
238 pn_free(&pn);
239 goto out;
242 if (vp == NULL) {
243 if (dir != NULL)
244 VN_RELE(dir);
245 error = ENOENT;
246 pn_free(&resolvepn);
247 pn_free(&pn);
248 goto out;
251 if ((error = secpolicy_basic_exec(CRED(), vp)) != 0) {
252 if (dir != NULL)
253 VN_RELE(dir);
254 pn_free(&resolvepn);
255 pn_free(&pn);
256 VN_RELE(vp);
257 goto out;
261 * We do not allow executing files in attribute directories.
262 * We test this by determining whether the resolved path
263 * contains a "/" when we're in an attribute directory;
264 * only if the pathname does not contain a "/" the resolved path
265 * points to a file in the current working (attribute) directory.
267 if ((p->p_user.u_cdir->v_flag & V_XATTRDIR) != 0 &&
268 strchr(resolvepn.pn_path, '/') == NULL) {
269 if (dir != NULL)
270 VN_RELE(dir);
271 error = EACCES;
272 pn_free(&resolvepn);
273 pn_free(&pn);
274 VN_RELE(vp);
275 goto out;
278 bzero(exec_file, MAXCOMLEN+1);
279 (void) strncpy(exec_file, pn.pn_path, MAXCOMLEN);
280 bzero(&args, sizeof (args));
281 args.pathname = resolvepn.pn_path;
282 /* don't free resolvepn until we are done with args */
283 pn_free(&pn);
286 * If we're running in a profile shell, then call pfexecd.
288 if ((CR_FLAGS(p->p_cred) & PRIV_PFEXEC) != 0) {
289 error = pfexec_call(p->p_cred, &resolvepn, &args.pfcred,
290 &args.scrubenv);
292 /* Returning errno in case we're not allowed to execute. */
293 if (error > 0) {
294 if (dir != NULL)
295 VN_RELE(dir);
296 pn_free(&resolvepn);
297 VN_RELE(vp);
298 goto out;
301 /* Don't change the credentials when using old ptrace. */
302 if (args.pfcred != NULL &&
303 (p->p_proc_flag & P_PR_PTRACE) != 0) {
304 crfree(args.pfcred);
305 args.pfcred = NULL;
306 args.scrubenv = B_FALSE;
311 * Specific exec handlers, or policies determined via
312 * /etc/system may override the historical default.
314 args.stk_prot = PROT_ZFOD;
315 args.dat_prot = PROT_ZFOD;
317 CPU_STATS_ADD_K(sys, sysexec, 1);
318 DTRACE_PROC1(exec, char *, args.pathname);
320 ua.fname = fname;
321 ua.argp = argp;
322 ua.envp = envp;
324 /* If necessary, brand this process before we start the exec. */
325 if (brandme)
326 brand_setbrand(p);
328 if ((error = gexec(&vp, &ua, &args, NULL, 0, &execsz,
329 exec_file, p->p_cred, brand_action)) != 0) {
330 if (brandme)
331 brand_clearbrand(p, B_FALSE);
332 VN_RELE(vp);
333 if (dir != NULL)
334 VN_RELE(dir);
335 pn_free(&resolvepn);
336 goto fail;
340 * Free floating point registers (sun4u only)
342 ASSERT(lwp != NULL);
343 lwp_freeregs(lwp, 1);
346 * Free thread and process context ops.
348 if (curthread->t_ctx)
349 freectx(curthread, 1);
350 if (p->p_pctx)
351 freepctx(p, 1);
354 * Remember file name for accounting; clear any cached DTrace predicate.
356 up->u_acflag &= ~AFORK;
357 bcopy(exec_file, up->u_comm, MAXCOMLEN+1);
358 curthread->t_predcache = 0;
361 * Clear contract template state
363 lwp_ctmpl_clear(lwp);
366 * Save the directory in which we found the executable for expanding
367 * the %d token used in core file patterns.
369 mutex_enter(&p->p_lock);
370 tmpvp = p->p_execdir;
371 p->p_execdir = dir;
372 if (p->p_execdir != NULL)
373 VN_HOLD(p->p_execdir);
374 mutex_exit(&p->p_lock);
376 if (tmpvp != NULL)
377 VN_RELE(tmpvp);
380 * Reset stack state to the user stack, clear set of signals
381 * caught on the signal stack, and reset list of signals that
382 * restart system calls; the new program's environment should
383 * not be affected by detritus from the old program. Any
384 * pending held signals remain held, so don't clear t_hold.
386 mutex_enter(&p->p_lock);
387 lwp->lwp_oldcontext = 0;
388 lwp->lwp_ustack = 0;
389 lwp->lwp_old_stk_ctl = 0;
390 sigemptyset(&up->u_signodefer);
391 sigemptyset(&up->u_sigonstack);
392 sigemptyset(&up->u_sigresethand);
393 lwp->lwp_sigaltstack.ss_sp = 0;
394 lwp->lwp_sigaltstack.ss_size = 0;
395 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE;
398 * Make saved resource limit == current resource limit.
400 for (i = 0; i < RLIM_NLIMITS; i++) {
401 /*CONSTCOND*/
402 if (RLIM_SAVED(i)) {
403 (void) rctl_rlimit_get(rctlproc_legacy[i], p,
404 &up->u_saved_rlimit[i]);
409 * If the action was to catch the signal, then the action
410 * must be reset to SIG_DFL.
412 sigdefault(p);
413 p->p_flag &= ~(SNOWAIT|SJCTL);
414 p->p_flag |= (SEXECED|SMSACCT|SMSFORK);
415 up->u_signal[SIGCLD - 1] = SIG_DFL;
418 * Delete the dot4 sigqueues/signotifies.
420 sigqfree(p);
422 mutex_exit(&p->p_lock);
424 mutex_enter(&p->p_pflock);
425 p->p_prof.pr_base = NULL;
426 p->p_prof.pr_size = 0;
427 p->p_prof.pr_off = 0;
428 p->p_prof.pr_scale = 0;
429 p->p_prof.pr_samples = 0;
430 mutex_exit(&p->p_pflock);
432 ASSERT(curthread->t_schedctl == NULL);
436 * Close all close-on-exec files.
438 close_exec(P_FINFO(p));
439 TRACE_2(TR_FAC_PROC, TR_PROC_EXEC, "proc_exec:p %p up %p", p, up);
441 /* Unbrand ourself if necessary. */
442 if (PROC_IS_BRANDED(p) && (brand_action == EBA_NATIVE))
443 brand_clearbrand(p, B_FALSE);
445 setregs(&args);
447 /* Mark this as an executable vnode */
448 mutex_enter(&vp->v_lock);
449 vp->v_flag |= VVMEXEC;
450 mutex_exit(&vp->v_lock);
452 VN_RELE(vp);
453 if (dir != NULL)
454 VN_RELE(dir);
455 pn_free(&resolvepn);
458 * Allocate a new lwp directory and lwpid hash table if necessary.
460 if (curthread->t_tid != 1 || p->p_lwpdir_sz != 2) {
461 lwpdir = kmem_zalloc(2 * sizeof (lwpdir_t), KM_SLEEP);
462 lwpdir->ld_next = lwpdir + 1;
463 tidhash = kmem_zalloc(2 * sizeof (tidhash_t), KM_SLEEP);
464 if (p->p_lwpdir != NULL)
465 lep = p->p_lwpdir[curthread->t_dslot].ld_entry;
466 else
467 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP);
470 if (PROC_IS_BRANDED(p))
471 BROP(p)->b_exec();
473 mutex_enter(&p->p_lock);
474 prbarrier(p);
477 * Reset lwp id to the default value of 1.
478 * This is a single-threaded process now
479 * and lwp #1 is lwp_wait()able by default.
480 * The t_unpark flag should not be inherited.
482 ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0);
483 curthread->t_tid = 1;
484 kpreempt_disable();
485 ASSERT(curthread->t_lpl != NULL);
486 p->p_t1_lgrpid = curthread->t_lpl->lpl_lgrpid;
487 kpreempt_enable();
488 if (p->p_tr_lgrpid != LGRP_NONE && p->p_tr_lgrpid != p->p_t1_lgrpid) {
489 lgrp_update_trthr_migrations(1);
491 curthread->t_unpark = 0;
492 curthread->t_proc_flag |= TP_TWAIT;
493 curthread->t_proc_flag &= ~TP_DAEMON; /* daemons shouldn't exec */
494 p->p_lwpdaemon = 0; /* but oh well ... */
495 p->p_lwpid = 1;
498 * Install the newly-allocated lwp directory and lwpid hash table
499 * and insert the current thread into the new hash table.
501 if (lwpdir != NULL) {
502 old_lwpdir = p->p_lwpdir;
503 old_lwpdir_sz = p->p_lwpdir_sz;
504 old_tidhash = p->p_tidhash;
505 old_tidhash_sz = p->p_tidhash_sz;
506 p->p_lwpdir = p->p_lwpfree = lwpdir;
507 p->p_lwpdir_sz = 2;
508 lep->le_thread = curthread;
509 lep->le_lwpid = curthread->t_tid;
510 lep->le_start = curthread->t_start;
511 lwp_hash_in(p, lep, tidhash, 2, 0);
512 p->p_tidhash = tidhash;
513 p->p_tidhash_sz = 2;
515 ret_tidhash = p->p_ret_tidhash;
516 p->p_ret_tidhash = NULL;
519 * Restore the saved signal mask and
520 * inform /proc that the exec() has finished.
522 curthread->t_hold = savedmask;
523 prexecend();
524 mutex_exit(&p->p_lock);
525 if (old_lwpdir) {
526 kmem_free(old_lwpdir, old_lwpdir_sz * sizeof (lwpdir_t));
527 kmem_free(old_tidhash, old_tidhash_sz * sizeof (tidhash_t));
529 while (ret_tidhash != NULL) {
530 ret_tidhash_t *next = ret_tidhash->rth_next;
531 kmem_free(ret_tidhash->rth_tidhash,
532 ret_tidhash->rth_tidhash_sz * sizeof (tidhash_t));
533 kmem_free(ret_tidhash, sizeof (*ret_tidhash));
534 ret_tidhash = next;
537 ASSERT(error == 0);
538 DTRACE_PROC(exec__success);
539 return (0);
541 fail:
542 DTRACE_PROC1(exec__failure, int, error);
543 out: /* error return */
544 mutex_enter(&p->p_lock);
545 curthread->t_hold = savedmask;
546 prexecend();
547 mutex_exit(&p->p_lock);
548 ASSERT(error != 0);
549 return (error);
554 * Perform generic exec duties and switchout to object-file specific
555 * handler.
558 gexec(
559 struct vnode **vpp,
560 struct execa *uap,
561 struct uarg *args,
562 struct intpdata *idatap,
563 int level,
564 long *execsz,
565 caddr_t exec_file,
566 struct cred *cred,
567 int brand_action)
569 struct vnode *vp, *execvp = NULL;
570 proc_t *pp = ttoproc(curthread);
571 struct execsw *eswp;
572 int error = 0;
573 int suidflags = 0;
574 ssize_t resid;
575 uid_t uid, gid;
576 struct vattr vattr;
577 char magbuf[MAGIC_BYTES];
578 int setid;
579 cred_t *oldcred, *newcred = NULL;
580 int privflags = 0;
581 int setidfl;
582 priv_set_t fset;
583 secflagset_t old_secflags;
585 secflags_copy(&old_secflags, &pp->p_secflags.psf_effective);
588 * If the SNOCD or SUGID flag is set, turn it off and remember the
589 * previous setting so we can restore it if we encounter an error.
591 if (level == 0 && (pp->p_flag & PSUIDFLAGS)) {
592 mutex_enter(&pp->p_lock);
593 suidflags = pp->p_flag & PSUIDFLAGS;
594 pp->p_flag &= ~PSUIDFLAGS;
595 mutex_exit(&pp->p_lock);
598 if ((error = execpermissions(*vpp, &vattr, args)) != 0)
599 goto bad_noclose;
601 /* need to open vnode for stateful file systems */
602 if ((error = fop_open(vpp, FREAD, CRED(), NULL)) != 0)
603 goto bad_noclose;
604 vp = *vpp;
607 * Note: to support binary compatibility with SunOS a.out
608 * executables, we read in the first four bytes, as the
609 * magic number is in bytes 2-3.
611 if (error = vn_rdwr(UIO_READ, vp, magbuf, sizeof (magbuf),
612 0, UIO_SYSSPACE, 0, 0, CRED(), &resid))
613 goto bad;
614 if (resid != 0)
615 goto bad;
617 if ((eswp = findexec_by_hdr(magbuf)) == NULL)
618 goto bad;
620 if (level == 0 &&
621 (privflags = execsetid(vp, &vattr, &uid, &gid, &fset,
622 args->pfcred == NULL ? cred : args->pfcred, args->pathname)) != 0) {
624 /* Pfcred is a credential with a ref count of 1 */
626 if (args->pfcred != NULL) {
627 privflags |= PRIV_INCREASE|PRIV_RESET;
628 newcred = cred = args->pfcred;
629 } else {
630 newcred = cred = crdup(cred);
633 /* If we can, drop the PA bit */
634 if ((privflags & PRIV_RESET) != 0)
635 priv_adjust_PA(cred);
637 if (privflags & PRIV_SETID) {
638 cred->cr_uid = uid;
639 cred->cr_gid = gid;
640 cred->cr_suid = uid;
641 cred->cr_sgid = gid;
645 * Implement the privilege updates:
647 * Restrict with L:
649 * I' = I & L
651 * E' = P' = (I' + F) & A
653 * But if running under ptrace, we cap I and F with P.
655 if ((privflags & (PRIV_RESET|PRIV_FORCED)) != 0) {
656 if ((privflags & PRIV_INCREASE) != 0 &&
657 (pp->p_proc_flag & P_PR_PTRACE) != 0) {
658 priv_intersect(&CR_OPPRIV(cred),
659 &CR_IPRIV(cred));
660 priv_intersect(&CR_OPPRIV(cred), &fset);
662 priv_intersect(&CR_LPRIV(cred), &CR_IPRIV(cred));
663 CR_EPRIV(cred) = CR_PPRIV(cred) = CR_IPRIV(cred);
664 if (privflags & PRIV_FORCED) {
665 priv_set_PA(cred);
666 priv_union(&fset, &CR_EPRIV(cred));
667 priv_union(&fset, &CR_PPRIV(cred));
669 priv_adjust_PA(cred);
671 } else if (level == 0 && args->pfcred != NULL) {
672 newcred = cred = args->pfcred;
673 privflags |= PRIV_INCREASE;
674 /* pfcred is not forced to adhere to these settings */
675 priv_intersect(&CR_LPRIV(cred), &CR_IPRIV(cred));
676 CR_EPRIV(cred) = CR_PPRIV(cred) = CR_IPRIV(cred);
677 priv_adjust_PA(cred);
680 /* The new image gets the inheritable secflags as its secflags */
681 secflags_promote(pp);
683 /* SunOS 4.x buy-back */
684 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) &&
685 (vattr.va_mode & (VSUID|VSGID))) {
686 char path[MAXNAMELEN];
687 refstr_t *mntpt = NULL;
688 int ret = -1;
690 bzero(path, sizeof (path));
691 zone_hold(pp->p_zone);
693 ret = vnodetopath(pp->p_zone->zone_rootvp, vp, path,
694 sizeof (path), cred);
696 /* fallback to mountpoint if a path can't be found */
697 if ((ret != 0) || (ret == 0 && path[0] == '\0'))
698 mntpt = vfs_getmntpoint(vp->v_vfsp);
700 if (mntpt == NULL)
701 zcmn_err(pp->p_zone->zone_id, CE_NOTE,
702 "!uid %d: setuid execution not allowed, "
703 "file=%s", cred->cr_uid, path);
704 else
705 zcmn_err(pp->p_zone->zone_id, CE_NOTE,
706 "!uid %d: setuid execution not allowed, "
707 "fs=%s, file=%s", cred->cr_uid,
708 ZONE_PATH_TRANSLATE(refstr_value(mntpt),
709 pp->p_zone), exec_file);
711 if (!INGLOBALZONE(pp)) {
712 /* zone_rootpath always has trailing / */
713 if (mntpt == NULL)
714 cmn_err(CE_NOTE, "!zone: %s, uid: %d "
715 "setuid execution not allowed, file=%s%s",
716 pp->p_zone->zone_name, cred->cr_uid,
717 pp->p_zone->zone_rootpath, path + 1);
718 else
719 cmn_err(CE_NOTE, "!zone: %s, uid: %d "
720 "setuid execution not allowed, fs=%s, "
721 "file=%s", pp->p_zone->zone_name,
722 cred->cr_uid, refstr_value(mntpt),
723 exec_file);
726 if (mntpt != NULL)
727 refstr_rele(mntpt);
729 zone_rele(pp->p_zone);
733 * execsetid() told us whether or not we had to change the
734 * credentials of the process. In privflags, it told us
735 * whether we gained any privileges or executed a set-uid executable.
737 setid = (privflags & (PRIV_SETUGID|PRIV_INCREASE|PRIV_FORCED));
740 * Use /etc/system variable to determine if the stack
741 * should be marked as executable by default.
743 if ((noexec_user_stack != 0) ||
744 secflag_enabled(pp, PROC_SEC_NOEXECSTACK))
745 args->stk_prot &= ~PROT_EXEC;
747 args->execswp = eswp; /* Save execsw pointer in uarg for exec_func */
748 args->ex_vp = vp;
751 * Traditionally, the setid flags told the sub processes whether
752 * the file just executed was set-uid or set-gid; this caused
753 * some confusion as the 'setid' flag did not match the SUGID
754 * process flag which is only set when the uids/gids do not match.
755 * A script set-gid/set-uid to the real uid/gid would start with
756 * /dev/fd/X but an executable would happily trust LD_LIBRARY_PATH.
757 * Now we flag those cases where the calling process cannot
758 * be trusted to influence the newly exec'ed process, either
759 * because it runs with more privileges or when the uids/gids
760 * do in fact not match.
761 * This also makes the runtime linker agree with the on exec
762 * values of SNOCD and SUGID.
764 setidfl = 0;
765 if (cred->cr_uid != cred->cr_ruid || (cred->cr_rgid != cred->cr_gid &&
766 !supgroupmember(cred->cr_gid, cred))) {
767 setidfl |= EXECSETID_UGIDS;
769 if (setid & PRIV_SETUGID)
770 setidfl |= EXECSETID_SETID;
771 if (setid & PRIV_FORCED)
772 setidfl |= EXECSETID_PRIVS;
774 execvp = pp->p_exec;
775 if (execvp)
776 VN_HOLD(execvp);
778 error = (*eswp->exec_func)(vp, uap, args, idatap, level, execsz,
779 setidfl, exec_file, cred, brand_action);
780 rw_exit(eswp->exec_lock);
781 if (error != 0) {
782 if (execvp)
783 VN_RELE(execvp);
785 * If this process's p_exec has been set to the vp of
786 * the executable by exec_func, we will return without
787 * calling fop_close because proc_exit will close it
788 * on exit.
790 if (pp->p_exec == vp)
791 goto bad_noclose;
792 else
793 goto bad;
796 if (level == 0) {
797 uid_t oruid;
799 if (execvp != NULL) {
801 * Close the previous executable only if we are
802 * at level 0.
804 (void) fop_close(execvp, FREAD, 1, 0,
805 cred, NULL);
808 mutex_enter(&pp->p_crlock);
810 oruid = pp->p_cred->cr_ruid;
812 if (newcred != NULL) {
814 * Free the old credentials, and set the new ones.
815 * Do this for both the process and the (single) thread.
817 crfree(pp->p_cred);
818 pp->p_cred = cred; /* cred already held for proc */
819 crhold(cred); /* hold new cred for thread */
821 * DTrace accesses t_cred in probe context. t_cred
822 * must always be either NULL, or point to a valid,
823 * allocated cred structure.
825 oldcred = curthread->t_cred;
826 curthread->t_cred = cred;
827 crfree(oldcred);
829 if (priv_basic_test >= 0 &&
830 !PRIV_ISMEMBER(&CR_IPRIV(newcred),
831 priv_basic_test)) {
832 pid_t pid = pp->p_pid;
833 char *fn = PTOU(pp)->u_comm;
835 cmn_err(CE_WARN, "%s[%d]: exec: basic_test "
836 "privilege removed from E/I", fn, pid);
840 * On emerging from a successful exec(), the saved
841 * uid and gid equal the effective uid and gid.
843 cred->cr_suid = cred->cr_uid;
844 cred->cr_sgid = cred->cr_gid;
847 * If the real and effective ids do not match, this
848 * is a setuid process that should not dump core.
849 * The group comparison is tricky; we prevent the code
850 * from flagging SNOCD when executing with an effective gid
851 * which is a supplementary group.
853 if (cred->cr_ruid != cred->cr_uid ||
854 (cred->cr_rgid != cred->cr_gid &&
855 !supgroupmember(cred->cr_gid, cred)) ||
856 (privflags & PRIV_INCREASE) != 0)
857 suidflags = PSUIDFLAGS;
858 else
859 suidflags = 0;
861 mutex_exit(&pp->p_crlock);
862 if (newcred != NULL && oruid != newcred->cr_ruid) {
863 /* Note that the process remains in the same zone. */
864 mutex_enter(&pidlock);
865 upcount_dec(oruid, crgetzoneid(newcred));
866 upcount_inc(newcred->cr_ruid, crgetzoneid(newcred));
867 mutex_exit(&pidlock);
869 if (suidflags) {
870 mutex_enter(&pp->p_lock);
871 pp->p_flag |= suidflags;
872 mutex_exit(&pp->p_lock);
874 if (setid && (pp->p_proc_flag & P_PR_PTRACE) == 0) {
876 * If process is traced via /proc, arrange to
877 * invalidate the associated /proc vnode.
879 if (pp->p_plist || (pp->p_proc_flag & P_PR_TRACE))
880 args->traceinval = 1;
882 if (pp->p_proc_flag & P_PR_PTRACE)
883 psignal(pp, SIGTRAP);
884 if (args->traceinval)
885 prinvalidate(&pp->p_user);
887 if (execvp)
888 VN_RELE(execvp);
889 return (0);
891 bad:
892 (void) fop_close(vp, FREAD, 1, 0, cred, NULL);
894 bad_noclose:
895 if (newcred != NULL)
896 crfree(newcred);
897 if (error == 0)
898 error = ENOEXEC;
900 mutex_enter(&pp->p_lock);
901 if (suidflags) {
902 pp->p_flag |= suidflags;
905 * Restore the effective secflags, to maintain the invariant they
906 * never change for a given process
908 secflags_copy(&pp->p_secflags.psf_effective, &old_secflags);
909 mutex_exit(&pp->p_lock);
911 return (error);
914 extern char *execswnames[];
916 struct execsw *
917 allocate_execsw(char *name, char *magic, size_t magic_size)
919 int i, j;
920 char *ename;
921 char *magicp;
923 mutex_enter(&execsw_lock);
924 for (i = 0; i < nexectype; i++) {
925 if (execswnames[i] == NULL) {
926 ename = kmem_alloc(strlen(name) + 1, KM_SLEEP);
927 (void) strcpy(ename, name);
928 execswnames[i] = ename;
930 * Set the magic number last so that we
931 * don't need to hold the execsw_lock in
932 * findexectype().
934 magicp = kmem_alloc(magic_size, KM_SLEEP);
935 for (j = 0; j < magic_size; j++)
936 magicp[j] = magic[j];
937 execsw[i].exec_magic = magicp;
938 mutex_exit(&execsw_lock);
939 return (&execsw[i]);
942 mutex_exit(&execsw_lock);
943 return (NULL);
947 * Find the exec switch table entry with the corresponding magic string.
949 struct execsw *
950 findexecsw(char *magic)
952 struct execsw *eswp;
954 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) {
955 ASSERT(eswp->exec_maglen <= MAGIC_BYTES);
956 if (magic && eswp->exec_maglen != 0 &&
957 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0)
958 return (eswp);
960 return (NULL);
964 * Find the execsw[] index for the given exec header string by looking for the
965 * magic string at a specified offset and length for each kind of executable
966 * file format until one matches. If no execsw[] entry is found, try to
967 * autoload a module for this magic string.
969 struct execsw *
970 findexec_by_hdr(char *header)
972 struct execsw *eswp;
974 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) {
975 ASSERT(eswp->exec_maglen <= MAGIC_BYTES);
976 if (header && eswp->exec_maglen != 0 &&
977 bcmp(&header[eswp->exec_magoff], eswp->exec_magic,
978 eswp->exec_maglen) == 0) {
979 if (hold_execsw(eswp) != 0)
980 return (NULL);
981 return (eswp);
984 return (NULL); /* couldn't find the type */
988 * Find the execsw[] index for the given magic string. If no execsw[] entry
989 * is found, try to autoload a module for this magic string.
991 struct execsw *
992 findexec_by_magic(char *magic)
994 struct execsw *eswp;
996 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) {
997 ASSERT(eswp->exec_maglen <= MAGIC_BYTES);
998 if (magic && eswp->exec_maglen != 0 &&
999 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) {
1000 if (hold_execsw(eswp) != 0)
1001 return (NULL);
1002 return (eswp);
1005 return (NULL); /* couldn't find the type */
1008 static int
1009 hold_execsw(struct execsw *eswp)
1011 char *name;
1013 rw_enter(eswp->exec_lock, RW_READER);
1014 while (!LOADED_EXEC(eswp)) {
1015 rw_exit(eswp->exec_lock);
1016 name = execswnames[eswp-execsw];
1017 ASSERT(name);
1018 if (modload("exec", name) == -1)
1019 return (-1);
1020 rw_enter(eswp->exec_lock, RW_READER);
1022 return (0);
1025 static int
1026 execsetid(struct vnode *vp, struct vattr *vattrp, uid_t *uidp, uid_t *gidp,
1027 priv_set_t *fset, cred_t *cr, const char *pathname)
1029 proc_t *pp = ttoproc(curthread);
1030 uid_t uid, gid;
1031 int privflags = 0;
1034 * Remember credentials.
1036 uid = cr->cr_uid;
1037 gid = cr->cr_gid;
1039 /* Will try to reset the PRIV_AWARE bit later. */
1040 if ((CR_FLAGS(cr) & (PRIV_AWARE|PRIV_AWARE_INHERIT)) == PRIV_AWARE)
1041 privflags |= PRIV_RESET;
1043 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) == 0) {
1045 * If it's a set-uid root program we perform the
1046 * forced privilege look-aside. This has three possible
1047 * outcomes:
1048 * no look aside information -> treat as before
1049 * look aside in Limit set -> apply forced privs
1050 * look aside not in Limit set -> ignore set-uid root
1052 * Ordinary set-uid root execution only allowed if the limit
1053 * set holds all unsafe privileges.
1055 if (vattrp->va_mode & VSUID) {
1056 if (vattrp->va_uid == 0) {
1057 int res = get_forced_privs(cr, pathname, fset);
1059 switch (res) {
1060 case -1:
1061 if (priv_issubset(&priv_unsafe,
1062 &CR_LPRIV(cr))) {
1063 uid = vattrp->va_uid;
1064 privflags |= PRIV_SETUGID;
1066 break;
1067 case 0:
1068 privflags |= PRIV_FORCED|PRIV_INCREASE;
1069 break;
1070 default:
1071 break;
1073 } else {
1074 uid = vattrp->va_uid;
1075 privflags |= PRIV_SETUGID;
1078 if (vattrp->va_mode & VSGID) {
1079 gid = vattrp->va_gid;
1080 privflags |= PRIV_SETUGID;
1085 * Do we need to change our credential anyway?
1086 * This is the case when E != I or P != I, as
1087 * we need to do the assignments (with F empty and A full)
1088 * Or when I is not a subset of L; in that case we need to
1089 * enforce L.
1091 * I' = L & I
1093 * E' = P' = (I' + F) & A
1094 * or
1095 * E' = P' = I'
1097 if (!priv_isequalset(&CR_EPRIV(cr), &CR_IPRIV(cr)) ||
1098 !priv_issubset(&CR_IPRIV(cr), &CR_LPRIV(cr)) ||
1099 !priv_isequalset(&CR_PPRIV(cr), &CR_IPRIV(cr)))
1100 privflags |= PRIV_RESET;
1102 /* Child has more privileges than parent */
1103 if (!priv_issubset(&CR_IPRIV(cr), &CR_PPRIV(cr)))
1104 privflags |= PRIV_INCREASE;
1107 * Set setuid/setgid protections if no ptrace() compatibility.
1108 * For privileged processes, honor setuid/setgid even in
1109 * the presence of ptrace() compatibility.
1111 if (((pp->p_proc_flag & P_PR_PTRACE) == 0 ||
1112 PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, (uid == 0))) &&
1113 (cr->cr_uid != uid ||
1114 cr->cr_gid != gid ||
1115 cr->cr_suid != uid ||
1116 cr->cr_sgid != gid)) {
1117 *uidp = uid;
1118 *gidp = gid;
1119 privflags |= PRIV_SETID;
1121 return (privflags);
1125 execpermissions(struct vnode *vp, struct vattr *vattrp, struct uarg *args)
1127 int error;
1128 proc_t *p = ttoproc(curthread);
1130 vattrp->va_mask = AT_MODE | AT_UID | AT_GID | AT_SIZE;
1131 if (error = fop_getattr(vp, vattrp, ATTR_EXEC, p->p_cred, NULL))
1132 return (error);
1134 * Check the access mode.
1135 * If VPROC, ask /proc if the file is an object file.
1137 if ((error = fop_access(vp, VEXEC, 0, p->p_cred, NULL)) != 0 ||
1138 !(vp->v_type == VREG || (vp->v_type == VPROC && pr_isobject(vp))) ||
1139 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0 ||
1140 (vattrp->va_mode & (VEXEC|(VEXEC>>3)|(VEXEC>>6))) == 0) {
1141 if (error == 0)
1142 error = EACCES;
1143 return (error);
1146 if ((p->p_plist || (p->p_proc_flag & (P_PR_PTRACE|P_PR_TRACE))) &&
1147 (error = fop_access(vp, VREAD, 0, p->p_cred, NULL))) {
1149 * If process is under ptrace(2) compatibility,
1150 * fail the exec(2).
1152 if (p->p_proc_flag & P_PR_PTRACE)
1153 goto bad;
1155 * Process is traced via /proc.
1156 * Arrange to invalidate the /proc vnode.
1158 args->traceinval = 1;
1160 return (0);
1161 bad:
1162 if (error == 0)
1163 error = ENOEXEC;
1164 return (error);
1168 * Map a section of an executable file into the user's
1169 * address space.
1172 execmap(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen,
1173 off_t offset, int prot, int page, uint_t szc)
1175 int error = 0;
1176 off_t oldoffset;
1177 caddr_t zfodbase, oldaddr;
1178 size_t end, oldlen;
1179 size_t zfoddiff;
1180 label_t ljb;
1181 proc_t *p = ttoproc(curthread);
1183 oldaddr = addr;
1184 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1185 if (len) {
1186 oldlen = len;
1187 len += ((size_t)oldaddr - (size_t)addr);
1188 oldoffset = offset;
1189 offset = (off_t)((uintptr_t)offset & PAGEMASK);
1190 if (page) {
1191 spgcnt_t prefltmem, availm, npages;
1192 int preread;
1193 uint_t mflag = MAP_PRIVATE | MAP_FIXED;
1195 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) {
1196 mflag |= MAP_TEXT;
1197 } else {
1198 mflag |= MAP_INITDATA;
1201 if (valid_usr_range(addr, len, prot, p->p_as,
1202 p->p_as->a_userlimit) != RANGE_OKAY) {
1203 error = ENOMEM;
1204 goto bad;
1206 if (error = fop_map(vp, (offset_t)offset,
1207 p->p_as, &addr, len, prot, PROT_ALL,
1208 mflag, CRED(), NULL))
1209 goto bad;
1212 * If the segment can fit, then we prefault
1213 * the entire segment in. This is based on the
1214 * model that says the best working set of a
1215 * small program is all of its pages.
1217 npages = (spgcnt_t)btopr(len);
1218 prefltmem = freemem - desfree;
1219 preread =
1220 (npages < prefltmem && len < PGTHRESH) ? 1 : 0;
1223 * If we aren't prefaulting the segment,
1224 * increment "deficit", if necessary to ensure
1225 * that pages will become available when this
1226 * process starts executing.
1228 availm = freemem - lotsfree;
1229 if (preread == 0 && npages > availm &&
1230 deficit < lotsfree) {
1231 deficit += MIN((pgcnt_t)(npages - availm),
1232 lotsfree - deficit);
1235 if (preread) {
1236 TRACE_2(TR_FAC_PROC, TR_EXECMAP_PREREAD,
1237 "execmap preread:freemem %d size %lu",
1238 freemem, len);
1239 (void) as_fault(p->p_as->a_hat, p->p_as,
1240 (caddr_t)addr, len, F_INVAL, S_READ);
1242 } else {
1243 if (valid_usr_range(addr, len, prot, p->p_as,
1244 p->p_as->a_userlimit) != RANGE_OKAY) {
1245 error = ENOMEM;
1246 goto bad;
1249 if (error = as_map(p->p_as, addr, len,
1250 segvn_create, zfod_argsp))
1251 goto bad;
1253 * Read in the segment in one big chunk.
1255 if (error = vn_rdwr(UIO_READ, vp, (caddr_t)oldaddr,
1256 oldlen, (offset_t)oldoffset, UIO_USERSPACE, 0,
1257 0, CRED(), NULL))
1258 goto bad;
1260 * Now set protections.
1262 if (prot != PROT_ZFOD) {
1263 (void) as_setprot(p->p_as, (caddr_t)addr,
1264 len, prot);
1269 if (zfodlen) {
1270 struct as *as = curproc->p_as;
1271 struct seg *seg;
1272 uint_t zprot = 0;
1274 end = (size_t)addr + len;
1275 zfodbase = (caddr_t)roundup(end, PAGESIZE);
1276 zfoddiff = (uintptr_t)zfodbase - end;
1277 if (zfoddiff) {
1279 * Before we go to zero the remaining space on the last
1280 * page, make sure we have write permission.
1282 * Normal illumos binaries don't even hit the case
1283 * where we have to change permission on the last page
1284 * since their protection is typically either
1285 * PROT_USER | PROT_WRITE | PROT_READ
1286 * or
1287 * PROT_ZFOD (same as PROT_ALL).
1289 * We need to be careful how we zero-fill the last page
1290 * if the segment protection does not include
1291 * PROT_WRITE. Using as_setprot() can cause the VM
1292 * segment code to call segvn_vpage(), which must
1293 * allocate a page struct for each page in the segment.
1294 * If we have a very large segment, this may fail, so
1295 * we have to check for that, even though we ignore
1296 * other return values from as_setprot.
1299 AS_LOCK_ENTER(as, RW_READER);
1300 seg = as_segat(curproc->p_as, (caddr_t)end);
1301 if (seg != NULL)
1302 (void) segop_getprot(seg, (caddr_t)end,
1303 zfoddiff - 1, &zprot);
1304 AS_LOCK_EXIT(as);
1306 if (seg != NULL && (zprot & PROT_WRITE) == 0) {
1307 if (as_setprot(as, (caddr_t)end, zfoddiff - 1,
1308 zprot | PROT_WRITE) == ENOMEM) {
1309 error = ENOMEM;
1310 goto bad;
1314 if (on_fault(&ljb)) {
1315 no_fault();
1316 if (seg != NULL && (zprot & PROT_WRITE) == 0)
1317 (void) as_setprot(as, (caddr_t)end,
1318 zfoddiff - 1, zprot);
1319 error = EFAULT;
1320 goto bad;
1322 uzero((void *)end, zfoddiff);
1323 no_fault();
1324 if (seg != NULL && (zprot & PROT_WRITE) == 0)
1325 (void) as_setprot(as, (caddr_t)end,
1326 zfoddiff - 1, zprot);
1328 if (zfodlen > zfoddiff) {
1329 struct segvn_crargs crargs =
1330 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
1332 zfodlen -= zfoddiff;
1333 if (valid_usr_range(zfodbase, zfodlen, prot, p->p_as,
1334 p->p_as->a_userlimit) != RANGE_OKAY) {
1335 error = ENOMEM;
1336 goto bad;
1338 if (szc > 0) {
1340 * ASSERT alignment because the mapelfexec()
1341 * caller for the szc > 0 case extended zfod
1342 * so it's end is pgsz aligned.
1344 size_t pgsz = page_get_pagesize(szc);
1345 ASSERT(IS_P2ALIGNED(zfodbase + zfodlen, pgsz));
1347 if (IS_P2ALIGNED(zfodbase, pgsz)) {
1348 crargs.szc = szc;
1349 } else {
1350 crargs.szc = AS_MAP_HEAP;
1352 } else {
1353 crargs.szc = AS_MAP_NO_LPOOB;
1355 if (error = as_map(p->p_as, (caddr_t)zfodbase,
1356 zfodlen, segvn_create, &crargs))
1357 goto bad;
1358 if (prot != PROT_ZFOD) {
1359 (void) as_setprot(p->p_as, (caddr_t)zfodbase,
1360 zfodlen, prot);
1364 return (0);
1365 bad:
1366 return (error);
1369 void
1370 setexecenv(struct execenv *ep)
1372 proc_t *p = ttoproc(curthread);
1373 klwp_t *lwp = ttolwp(curthread);
1374 struct vnode *vp;
1376 p->p_bssbase = ep->ex_bssbase;
1377 p->p_brkbase = ep->ex_brkbase;
1378 p->p_brksize = ep->ex_brksize;
1379 if (p->p_exec)
1380 VN_RELE(p->p_exec); /* out with the old */
1381 vp = p->p_exec = ep->ex_vp;
1382 if (vp != NULL)
1383 VN_HOLD(vp); /* in with the new */
1385 lwp->lwp_sigaltstack.ss_sp = 0;
1386 lwp->lwp_sigaltstack.ss_size = 0;
1387 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE;
1391 execopen(struct vnode **vpp, int *fdp)
1393 struct vnode *vp = *vpp;
1394 file_t *fp;
1395 int error = 0;
1396 int filemode = FREAD;
1398 VN_HOLD(vp); /* open reference */
1399 if (error = falloc(NULL, filemode, &fp, fdp)) {
1400 VN_RELE(vp);
1401 *fdp = -1; /* just in case falloc changed value */
1402 return (error);
1404 if (error = fop_open(&vp, filemode, CRED(), NULL)) {
1405 VN_RELE(vp);
1406 setf(*fdp, NULL);
1407 unfalloc(fp);
1408 *fdp = -1;
1409 return (error);
1411 *vpp = vp; /* vnode should not have changed */
1412 fp->f_vnode = vp;
1413 mutex_exit(&fp->f_tlock);
1414 setf(*fdp, fp);
1415 return (0);
1419 execclose(int fd)
1421 return (closeandsetf(fd, NULL));
1426 * noexec stub function.
1428 /*ARGSUSED*/
1430 noexec(
1431 struct vnode *vp,
1432 struct execa *uap,
1433 struct uarg *args,
1434 struct intpdata *idatap,
1435 int level,
1436 long *execsz,
1437 int setid,
1438 caddr_t exec_file,
1439 struct cred *cred)
1441 cmn_err(CE_WARN, "missing exec capability for %s", uap->fname);
1442 return (ENOEXEC);
1446 * Support routines for building a user stack.
1448 * execve(path, argv, envp) must construct a new stack with the specified
1449 * arguments and environment variables (see exec_args() for a description
1450 * of the user stack layout). To do this, we copy the arguments and
1451 * environment variables from the old user address space into the kernel,
1452 * free the old as, create the new as, and copy our buffered information
1453 * to the new stack. Our kernel buffer has the following structure:
1455 * +-----------------------+ <--- stk_base + stk_size
1456 * | string offsets |
1457 * +-----------------------+ <--- stk_offp
1458 * | |
1459 * | STK_AVAIL() space |
1460 * | |
1461 * +-----------------------+ <--- stk_strp
1462 * | strings |
1463 * +-----------------------+ <--- stk_base
1465 * When we add a string, we store the string's contents (including the null
1466 * terminator) at stk_strp, and we store the offset of the string relative to
1467 * stk_base at --stk_offp. At strings are added, stk_strp increases and
1468 * stk_offp decreases. The amount of space remaining, STK_AVAIL(), is just
1469 * the difference between these pointers. If we run out of space, we return
1470 * an error and exec_args() starts all over again with a buffer twice as large.
1471 * When we're all done, the kernel buffer looks like this:
1473 * +-----------------------+ <--- stk_base + stk_size
1474 * | argv[0] offset |
1475 * +-----------------------+
1476 * | ... |
1477 * +-----------------------+
1478 * | argv[argc-1] offset |
1479 * +-----------------------+
1480 * | envp[0] offset |
1481 * +-----------------------+
1482 * | ... |
1483 * +-----------------------+
1484 * | envp[envc-1] offset |
1485 * +-----------------------+
1486 * | AT_SUN_PLATFORM offset|
1487 * +-----------------------+
1488 * | AT_SUN_EXECNAME offset|
1489 * +-----------------------+ <--- stk_offp
1490 * | |
1491 * | STK_AVAIL() space |
1492 * | |
1493 * +-----------------------+ <--- stk_strp
1494 * | AT_SUN_EXECNAME offset|
1495 * +-----------------------+
1496 * | AT_SUN_PLATFORM offset|
1497 * +-----------------------+
1498 * | envp[envc-1] string |
1499 * +-----------------------+
1500 * | ... |
1501 * +-----------------------+
1502 * | envp[0] string |
1503 * +-----------------------+
1504 * | argv[argc-1] string |
1505 * +-----------------------+
1506 * | ... |
1507 * +-----------------------+
1508 * | argv[0] string |
1509 * +-----------------------+ <--- stk_base
1512 #define STK_AVAIL(args) ((char *)(args)->stk_offp - (args)->stk_strp)
1515 * Add a string to the stack.
1517 static int
1518 stk_add(uarg_t *args, const char *sp, enum uio_seg segflg)
1520 int error;
1521 size_t len;
1523 if (STK_AVAIL(args) < sizeof (int))
1524 return (E2BIG);
1525 *--args->stk_offp = args->stk_strp - args->stk_base;
1527 if (segflg == UIO_USERSPACE) {
1528 error = copyinstr(sp, args->stk_strp, STK_AVAIL(args), &len);
1529 if (error != 0)
1530 return (error);
1531 } else {
1532 len = strlen(sp) + 1;
1533 if (len > STK_AVAIL(args))
1534 return (E2BIG);
1535 bcopy(sp, args->stk_strp, len);
1538 args->stk_strp += len;
1540 return (0);
1543 static int
1544 stk_getptr(uarg_t *args, char *src, char **dst)
1546 int error;
1548 if (args->from_model == DATAMODEL_NATIVE) {
1549 ulong_t ptr;
1550 error = fulword(src, &ptr);
1551 *dst = (caddr_t)ptr;
1552 } else {
1553 uint32_t ptr;
1554 error = fuword32(src, &ptr);
1555 *dst = (caddr_t)(uintptr_t)ptr;
1557 return (error);
1560 static int
1561 stk_putptr(uarg_t *args, char *addr, char *value)
1563 if (args->to_model == DATAMODEL_NATIVE)
1564 return (sulword(addr, (ulong_t)value));
1565 else
1566 return (suword32(addr, (uint32_t)(uintptr_t)value));
1569 static int
1570 stk_copyin(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp)
1572 char *sp;
1573 int argc, error;
1574 int argv_empty = 0;
1575 size_t ptrsize = args->from_ptrsize;
1576 size_t size, pad;
1577 char *argv = (char *)uap->argp;
1578 char *envp = (char *)uap->envp;
1581 * Copy interpreter's name and argument to argv[0] and argv[1].
1582 * In the rare case that we have nested interpreters then those names
1583 * and arguments are also copied to the subsequent slots in argv.
1585 if (intp != NULL && intp->intp_name[0] != NULL) {
1586 int i;
1588 for (i = 0; i < INTP_MAXDEPTH; i++) {
1589 if (intp->intp_name[i] == NULL)
1590 break;
1591 error = stk_add(args, intp->intp_name[i], UIO_SYSSPACE);
1592 if (error != 0)
1593 return (error);
1594 if (intp->intp_arg[i] != NULL) {
1595 error = stk_add(args, intp->intp_arg[i],
1596 UIO_SYSSPACE);
1597 if (error != 0)
1598 return (error);
1602 if (args->fname != NULL)
1603 error = stk_add(args, args->fname, UIO_SYSSPACE);
1604 else
1605 error = stk_add(args, uap->fname, UIO_USERSPACE);
1606 if (error)
1607 return (error);
1610 * Check for an empty argv[].
1612 if (stk_getptr(args, argv, &sp))
1613 return (EFAULT);
1614 if (sp == NULL)
1615 argv_empty = 1;
1617 argv += ptrsize; /* ignore original argv[0] */
1620 if (argv_empty == 0) {
1622 * Add argv[] strings to the stack.
1624 for (;;) {
1625 if (stk_getptr(args, argv, &sp))
1626 return (EFAULT);
1627 if (sp == NULL)
1628 break;
1629 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0)
1630 return (error);
1631 argv += ptrsize;
1634 argc = (int *)(args->stk_base + args->stk_size) - args->stk_offp;
1635 args->arglen = args->stk_strp - args->stk_base;
1638 * Add environ[] strings to the stack.
1640 if (envp != NULL) {
1641 for (;;) {
1642 char *tmp = args->stk_strp;
1643 if (stk_getptr(args, envp, &sp))
1644 return (EFAULT);
1645 if (sp == NULL)
1646 break;
1647 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0)
1648 return (error);
1649 if (args->scrubenv && strncmp(tmp, "LD_", 3) == 0) {
1650 /* Undo the copied string */
1651 args->stk_strp = tmp;
1652 *(args->stk_offp++) = 0;
1654 envp += ptrsize;
1657 args->na = (int *)(args->stk_base + args->stk_size) - args->stk_offp;
1658 args->ne = args->na - argc;
1661 * Add AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME, and
1662 * AT_SUN_EMULATOR strings to the stack.
1664 if (auxvpp != NULL && *auxvpp != NULL) {
1665 if ((error = stk_add(args, platform, UIO_SYSSPACE)) != 0)
1666 return (error);
1667 if ((error = stk_add(args, args->pathname, UIO_SYSSPACE)) != 0)
1668 return (error);
1669 if (args->brandname != NULL &&
1670 (error = stk_add(args, args->brandname, UIO_SYSSPACE)) != 0)
1671 return (error);
1672 if (args->emulator != NULL &&
1673 (error = stk_add(args, args->emulator, UIO_SYSSPACE)) != 0)
1674 return (error);
1678 * Compute the size of the stack. This includes all the pointers,
1679 * the space reserved for the aux vector, and all the strings.
1680 * The total number of pointers is args->na (which is argc + envc)
1681 * plus 4 more: (1) a pointer's worth of space for argc; (2) the NULL
1682 * after the last argument (i.e. argv[argc]); (3) the NULL after the
1683 * last environment variable (i.e. envp[envc]); and (4) the NULL after
1684 * all the strings, at the very top of the stack.
1686 size = (args->na + 4) * args->to_ptrsize + args->auxsize +
1687 (args->stk_strp - args->stk_base);
1690 * Pad the string section with zeroes to align the stack size.
1692 pad = P2NPHASE(size, args->stk_align);
1694 if (STK_AVAIL(args) < pad)
1695 return (E2BIG);
1697 args->usrstack_size = size + pad;
1699 while (pad-- != 0)
1700 *args->stk_strp++ = 0;
1702 args->nc = args->stk_strp - args->stk_base;
1704 return (0);
1707 static int
1708 stk_copyout(uarg_t *args, char *usrstack, void **auxvpp, user_t *up)
1710 size_t ptrsize = args->to_ptrsize;
1711 ssize_t pslen;
1712 char *kstrp = args->stk_base;
1713 char *ustrp = usrstack - args->nc - ptrsize;
1714 char *usp = usrstack - args->usrstack_size;
1715 int *offp = (int *)(args->stk_base + args->stk_size);
1716 int envc = args->ne;
1717 int argc = args->na - envc;
1718 int i;
1721 * Record argc for /proc.
1723 up->u_argc = argc;
1726 * Put argc on the stack. Note that even though it's an int,
1727 * it always consumes ptrsize bytes (for alignment).
1729 if (stk_putptr(args, usp, (char *)(uintptr_t)argc))
1730 return (-1);
1733 * Add argc space (ptrsize) to usp and record argv for /proc.
1735 up->u_argv = (uintptr_t)(usp += ptrsize);
1738 * Put the argv[] pointers on the stack.
1740 for (i = 0; i < argc; i++, usp += ptrsize)
1741 if (stk_putptr(args, usp, &ustrp[*--offp]))
1742 return (-1);
1745 * Copy arguments to u_psargs.
1747 pslen = MIN(args->arglen, PSARGSZ) - 1;
1748 for (i = 0; i < pslen; i++)
1749 up->u_psargs[i] = (kstrp[i] == '\0' ? ' ' : kstrp[i]);
1750 while (i < PSARGSZ)
1751 up->u_psargs[i++] = '\0';
1754 * Add space for argv[]'s NULL terminator (ptrsize) to usp and
1755 * record envp for /proc.
1757 up->u_envp = (uintptr_t)(usp += ptrsize);
1760 * Put the envp[] pointers on the stack.
1762 for (i = 0; i < envc; i++, usp += ptrsize)
1763 if (stk_putptr(args, usp, &ustrp[*--offp]))
1764 return (-1);
1767 * Add space for envp[]'s NULL terminator (ptrsize) to usp and
1768 * remember where the stack ends, which is also where auxv begins.
1770 args->stackend = usp += ptrsize;
1773 * Put all the argv[], envp[], and auxv strings on the stack.
1775 if (copyout(args->stk_base, ustrp, args->nc))
1776 return (-1);
1779 * Fill in the aux vector now that we know the user stack addresses
1780 * for the AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME and
1781 * AT_SUN_EMULATOR strings.
1783 if (auxvpp != NULL && *auxvpp != NULL) {
1784 if (args->to_model == DATAMODEL_NATIVE) {
1785 auxv_t **a = (auxv_t **)auxvpp;
1786 ADDAUX(*a, AT_SUN_PLATFORM, (long)&ustrp[*--offp])
1787 ADDAUX(*a, AT_SUN_EXECNAME, (long)&ustrp[*--offp])
1788 if (args->brandname != NULL)
1789 ADDAUX(*a,
1790 AT_SUN_BRANDNAME, (long)&ustrp[*--offp])
1791 if (args->emulator != NULL)
1792 ADDAUX(*a,
1793 AT_SUN_EMULATOR, (long)&ustrp[*--offp])
1794 } else {
1795 auxv32_t **a = (auxv32_t **)auxvpp;
1796 ADDAUX(*a,
1797 AT_SUN_PLATFORM, (int)(uintptr_t)&ustrp[*--offp])
1798 ADDAUX(*a,
1799 AT_SUN_EXECNAME, (int)(uintptr_t)&ustrp[*--offp])
1800 if (args->brandname != NULL)
1801 ADDAUX(*a, AT_SUN_BRANDNAME,
1802 (int)(uintptr_t)&ustrp[*--offp])
1803 if (args->emulator != NULL)
1804 ADDAUX(*a, AT_SUN_EMULATOR,
1805 (int)(uintptr_t)&ustrp[*--offp])
1809 return (0);
1813 * Though the actual stack base is constant, slew the %sp by a random aligned
1814 * amount in [0,aslr_max_stack_skew). Mostly, this makes life slightly more
1815 * complicated for buffer overflows hoping to overwrite the return address.
1817 * On some platforms this helps avoid cache thrashing when identical processes
1818 * simultaneously share caches that don't provide enough associativity
1819 * (e.g. sun4v systems). In this case stack slewing makes the same hot stack
1820 * variables in different processes live in different cache sets increasing
1821 * effective associativity.
1823 size_t
1824 exec_get_spslew(void)
1826 #ifdef sun4v
1827 static uint_t sp_color_stride = 16;
1828 static uint_t sp_color_mask = 0x1f;
1829 static uint_t sp_current_color = (uint_t)-1;
1830 #endif
1831 size_t off;
1833 ASSERT(ISP2(aslr_max_stack_skew));
1835 if ((aslr_max_stack_skew == 0) ||
1836 !secflag_enabled(curproc, PROC_SEC_ASLR)) {
1837 #ifdef sun4v
1838 uint_t spcolor = atomic_inc_32_nv(&sp_current_color);
1839 return ((size_t)((spcolor & sp_color_mask) *
1840 SA(sp_color_stride)));
1841 #else
1842 return (0);
1843 #endif
1846 (void) random_get_pseudo_bytes((uint8_t *)&off, sizeof (off));
1847 return (SA(P2PHASE(off, aslr_max_stack_skew)));
1851 * Initialize a new user stack with the specified arguments and environment.
1852 * The initial user stack layout is as follows:
1854 * User Stack
1855 * +---------------+
1856 * | |
1857 * | stack guard |
1858 * | (64-bit only) |
1859 * | |
1860 * +...............+ <--- stack limit (base - curproc->p_stk_ctl)
1861 * . .
1862 * . .
1863 * . .
1864 * +---------------+ <--- curproc->p_usrstack
1865 * | |
1866 * | slew |
1867 * | |
1868 * +---------------+
1869 * | NULL |
1870 * +---------------+
1871 * | |
1872 * | auxv strings |
1873 * | |
1874 * +---------------+
1875 * | |
1876 * | envp strings |
1877 * | |
1878 * +---------------+
1879 * | |
1880 * | argv strings |
1881 * | |
1882 * +---------------+ <--- ustrp
1883 * | |
1884 * | aux vector |
1885 * | |
1886 * +---------------+ <--- auxv
1887 * | NULL |
1888 * +---------------+
1889 * | envp[envc-1] |
1890 * +---------------+
1891 * | ... |
1892 * +---------------+
1893 * | envp[0] |
1894 * +---------------+ <--- envp[]
1895 * | NULL |
1896 * +---------------+
1897 * | argv[argc-1] |
1898 * +---------------+
1899 * | ... |
1900 * +---------------+
1901 * | argv[0] |
1902 * +---------------+ <--- argv[]
1903 * | argc |
1904 * +---------------+ <--- stack base
1906 * In 64-bit processes, a stack guard segment is allocated at the address
1907 * immediately below where the stack limit ends. This protects new library
1908 * mappings (such as the linker) from being placed in relatively dangerous
1909 * proximity to the stack.
1912 exec_args(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp)
1914 size_t size;
1915 int error;
1916 proc_t *p = ttoproc(curthread);
1917 user_t *up = PTOU(p);
1918 char *usrstack;
1919 rctl_entity_p_t e;
1920 struct as *as;
1921 extern int use_stk_lpg;
1922 size_t sp_slew;
1923 #if defined(_LP64)
1924 const size_t sg_sz = (stack_guard_seg_sz & PAGEMASK);
1925 #endif /* defined(_LP64) */
1927 args->from_model = p->p_model;
1928 if (p->p_model == DATAMODEL_NATIVE) {
1929 args->from_ptrsize = sizeof (long);
1930 } else {
1931 args->from_ptrsize = sizeof (int32_t);
1934 if (args->to_model == DATAMODEL_NATIVE) {
1935 args->to_ptrsize = sizeof (long);
1936 args->ncargs = NCARGS;
1937 args->stk_align = STACK_ALIGN;
1938 if (args->addr32)
1939 usrstack = (char *)USRSTACK64_32;
1940 else
1941 usrstack = (char *)USRSTACK;
1942 } else {
1943 args->to_ptrsize = sizeof (int32_t);
1944 args->ncargs = NCARGS32;
1945 args->stk_align = STACK_ALIGN32;
1946 usrstack = (char *)USRSTACK32;
1949 ASSERT(P2PHASE((uintptr_t)usrstack, args->stk_align) == 0);
1952 for (size = PAGESIZE; ; size *= 2) {
1953 args->stk_size = size;
1954 args->stk_base = kmem_alloc(size, KM_SLEEP);
1955 args->stk_strp = args->stk_base;
1956 args->stk_offp = (int *)(args->stk_base + size);
1957 error = stk_copyin(uap, args, intp, auxvpp);
1958 if (error == 0)
1959 break;
1960 kmem_free(args->stk_base, size);
1961 if (error != E2BIG && error != ENAMETOOLONG)
1962 return (error);
1963 if (size >= args->ncargs)
1964 return (E2BIG);
1967 size = args->usrstack_size;
1969 ASSERT(error == 0);
1970 ASSERT(P2PHASE(size, args->stk_align) == 0);
1971 ASSERT((ssize_t)STK_AVAIL(args) >= 0);
1973 if (size > args->ncargs) {
1974 kmem_free(args->stk_base, args->stk_size);
1975 return (E2BIG);
1979 * Leave only the current lwp and force the other lwps to exit.
1980 * If another lwp beat us to the punch by calling exit(), bail out.
1982 if ((error = exitlwps(0)) != 0) {
1983 kmem_free(args->stk_base, args->stk_size);
1984 return (error);
1988 * Revoke any doors created by the process.
1990 if (p->p_door_list)
1991 door_exit();
1994 * Release schedctl data structures.
1996 if (p->p_pagep)
1997 schedctl_proc_cleanup();
2000 * Clean up any DTrace helpers for the process.
2002 if (p->p_dtrace_helpers != NULL) {
2003 ASSERT(dtrace_helpers_cleanup != NULL);
2004 (*dtrace_helpers_cleanup)(p);
2007 mutex_enter(&p->p_lock);
2009 * Cleanup the DTrace provider associated with this process.
2011 if (p->p_dtrace_probes) {
2012 ASSERT(dtrace_fasttrap_exec_ptr != NULL);
2013 dtrace_fasttrap_exec_ptr(p);
2015 mutex_exit(&p->p_lock);
2018 * discard the lwpchan cache.
2020 if (p->p_lcp != NULL)
2021 lwpchan_destroy_cache(1);
2024 * Delete the POSIX timers.
2026 if (p->p_itimer != NULL)
2027 timer_exit();
2030 * Delete the ITIMER_REALPROF interval timer.
2031 * The other ITIMER_* interval timers are specified
2032 * to be inherited across exec().
2034 delete_itimer_realprof();
2036 if (AU_AUDITING())
2037 audit_exec(args->stk_base, args->stk_base + args->arglen,
2038 args->na - args->ne, args->ne, args->pfcred);
2041 * Ensure that we don't change resource associations while we
2042 * change address spaces.
2044 mutex_enter(&p->p_lock);
2045 pool_barrier_enter();
2046 mutex_exit(&p->p_lock);
2049 * Destroy the old address space and create a new one.
2050 * From here on, any errors are fatal to the exec()ing process.
2051 * On error we return -1, which means the caller must SIGKILL
2052 * the process.
2054 relvm();
2056 mutex_enter(&p->p_lock);
2057 pool_barrier_exit();
2058 mutex_exit(&p->p_lock);
2060 up->u_execsw = args->execswp;
2062 p->p_brkbase = NULL;
2063 p->p_brksize = 0;
2064 p->p_brkpageszc = 0;
2065 p->p_stksize = 0;
2066 p->p_stkpageszc = 0;
2067 p->p_stkg_start = 0;
2068 p->p_stkg_end = 0;
2069 p->p_model = args->to_model;
2070 p->p_usrstack = usrstack;
2071 p->p_stkprot = args->stk_prot;
2072 p->p_datprot = args->dat_prot;
2075 * Reset resource controls such that all controls are again active as
2076 * well as appropriate to the potentially new address model for the
2077 * process.
2079 e.rcep_p.proc = p;
2080 e.rcep_t = RCENTITY_PROCESS;
2081 rctl_set_reset(p->p_rctls, p, &e);
2083 /* Too early to call map_pgsz for the heap */
2084 if (use_stk_lpg) {
2085 p->p_stkpageszc = page_szc(map_pgsz(MAPPGSZ_STK, p, 0, 0, 0));
2088 mutex_enter(&p->p_lock);
2089 p->p_flag |= SAUTOLPG; /* kernel controls page sizes */
2090 mutex_exit(&p->p_lock);
2092 sp_slew = exec_get_spslew();
2093 ASSERT(P2PHASE(sp_slew, args->stk_align) == 0);
2094 /* Be certain we don't underflow */
2095 VERIFY((curproc->p_usrstack - (size + sp_slew)) < curproc->p_usrstack);
2096 exec_set_sp(size + sp_slew);
2098 as = as_alloc();
2099 p->p_as = as;
2100 as->a_proc = p;
2101 if (p->p_model == DATAMODEL_ILP32 || args->addr32)
2102 as->a_userlimit = (caddr_t)USERLIMIT32;
2103 (void) hat_setup(as->a_hat, HAT_ALLOC);
2104 hat_join_srd(as->a_hat, args->ex_vp);
2106 /* Write out the contents of the new stack. */
2107 error = stk_copyout(args, usrstack - sp_slew, auxvpp, up);
2108 kmem_free(args->stk_base, args->stk_size);
2110 #if defined(_LP64)
2111 /* Add stack guard segment (if needed) after successful copyout */
2112 if (error == 0 && p->p_model == DATAMODEL_LP64 && sg_sz != 0) {
2113 seghole_crargs_t sca;
2114 caddr_t addr_end = (caddr_t)(((uintptr_t)usrstack -
2115 p->p_stk_ctl) & PAGEMASK);
2116 caddr_t addr_start = addr_end - sg_sz;
2118 DTRACE_PROBE4(stack__guard__chk, proc_t *, p,
2119 caddr_t, addr_start, caddr_t, addr_end, size_t, sg_sz);
2121 if (addr_end >= usrstack || addr_start >= addr_end ||
2122 valid_usr_range(addr_start, sg_sz, PROT_NONE, as,
2123 as->a_userlimit) != RANGE_OKAY) {
2124 return (E2BIG);
2127 /* Create un-mappable area in AS with seg_hole */
2128 sca.name = "stack_guard";
2129 error = as_map(as, addr_start, sg_sz, seghole_create, &sca);
2130 if (error == 0) {
2131 p->p_stkg_start = (uintptr_t)addr_start;
2132 p->p_stkg_end = (uintptr_t)addr_start + sg_sz;
2135 #endif /* defined(_LP64) */
2137 return (error);