4976 zfs should only avoid writing to a failing non-redundant top-level vdev
[unleashed.git] / usr / src / uts / common / fs / zfs / metaslab.c
blobfcb290be317d06fc07a93a03220c2627001341ed
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
27 #include <sys/zfs_context.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/space_map.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zfeature.h>
38 * Allow allocations to switch to gang blocks quickly. We do this to
39 * avoid having to load lots of space_maps in a given txg. There are,
40 * however, some cases where we want to avoid "fast" ganging and instead
41 * we want to do an exhaustive search of all metaslabs on this device.
42 * Currently we don't allow any gang, slog, or dump device related allocations
43 * to "fast" gang.
45 #define CAN_FASTGANG(flags) \
46 (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
47 METASLAB_GANG_AVOID)))
49 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
50 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
51 #define METASLAB_ACTIVE_MASK \
52 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
54 uint64_t metaslab_aliquot = 512ULL << 10;
55 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
58 * The in-core space map representation is more compact than its on-disk form.
59 * The zfs_condense_pct determines how much more compact the in-core
60 * space_map representation must be before we compact it on-disk.
61 * Values should be greater than or equal to 100.
63 int zfs_condense_pct = 200;
66 * Condensing a metaslab is not guaranteed to actually reduce the amount of
67 * space used on disk. In particular, a space map uses data in increments of
68 * MAX(1 << ashift, SPACE_MAP_INITIAL_BLOCKSIZE), so a metaslab might use the
69 * same number of blocks after condensing. Since the goal of condensing is to
70 * reduce the number of IOPs required to read the space map, we only want to
71 * condense when we can be sure we will reduce the number of blocks used by the
72 * space map. Unfortunately, we cannot precisely compute whether or not this is
73 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
74 * we apply the following heuristic: do not condense a spacemap unless the
75 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
76 * blocks.
78 int zfs_metaslab_condense_block_threshold = 4;
81 * The zfs_mg_noalloc_threshold defines which metaslab groups should
82 * be eligible for allocation. The value is defined as a percentage of
83 * free space. Metaslab groups that have more free space than
84 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
85 * a metaslab group's free space is less than or equal to the
86 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
87 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
88 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
89 * groups are allowed to accept allocations. Gang blocks are always
90 * eligible to allocate on any metaslab group. The default value of 0 means
91 * no metaslab group will be excluded based on this criterion.
93 int zfs_mg_noalloc_threshold = 0;
96 * Metaslab groups are considered eligible for allocations if their
97 * fragmenation metric (measured as a percentage) is less than or equal to
98 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
99 * then it will be skipped unless all metaslab groups within the metaslab
100 * class have also crossed this threshold.
102 int zfs_mg_fragmentation_threshold = 85;
105 * Allow metaslabs to keep their active state as long as their fragmentation
106 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
107 * active metaslab that exceeds this threshold will no longer keep its active
108 * status allowing better metaslabs to be selected.
110 int zfs_metaslab_fragmentation_threshold = 70;
113 * When set will load all metaslabs when pool is first opened.
115 int metaslab_debug_load = 0;
118 * When set will prevent metaslabs from being unloaded.
120 int metaslab_debug_unload = 0;
123 * Minimum size which forces the dynamic allocator to change
124 * it's allocation strategy. Once the space map cannot satisfy
125 * an allocation of this size then it switches to using more
126 * aggressive strategy (i.e search by size rather than offset).
128 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
131 * The minimum free space, in percent, which must be available
132 * in a space map to continue allocations in a first-fit fashion.
133 * Once the space_map's free space drops below this level we dynamically
134 * switch to using best-fit allocations.
136 int metaslab_df_free_pct = 4;
139 * A metaslab is considered "free" if it contains a contiguous
140 * segment which is greater than metaslab_min_alloc_size.
142 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
145 * Percentage of all cpus that can be used by the metaslab taskq.
147 int metaslab_load_pct = 50;
150 * Determines how many txgs a metaslab may remain loaded without having any
151 * allocations from it. As long as a metaslab continues to be used we will
152 * keep it loaded.
154 int metaslab_unload_delay = TXG_SIZE * 2;
157 * Max number of metaslabs per group to preload.
159 int metaslab_preload_limit = SPA_DVAS_PER_BP;
162 * Enable/disable preloading of metaslab.
164 boolean_t metaslab_preload_enabled = B_TRUE;
167 * Enable/disable fragmentation weighting on metaslabs.
169 boolean_t metaslab_fragmentation_factor_enabled = B_TRUE;
172 * Enable/disable lba weighting (i.e. outer tracks are given preference).
174 boolean_t metaslab_lba_weighting_enabled = B_TRUE;
177 * Enable/disable metaslab group biasing.
179 boolean_t metaslab_bias_enabled = B_TRUE;
181 static uint64_t metaslab_fragmentation(metaslab_t *);
184 * ==========================================================================
185 * Metaslab classes
186 * ==========================================================================
188 metaslab_class_t *
189 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
191 metaslab_class_t *mc;
193 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
195 mc->mc_spa = spa;
196 mc->mc_rotor = NULL;
197 mc->mc_ops = ops;
199 return (mc);
202 void
203 metaslab_class_destroy(metaslab_class_t *mc)
205 ASSERT(mc->mc_rotor == NULL);
206 ASSERT(mc->mc_alloc == 0);
207 ASSERT(mc->mc_deferred == 0);
208 ASSERT(mc->mc_space == 0);
209 ASSERT(mc->mc_dspace == 0);
211 kmem_free(mc, sizeof (metaslab_class_t));
215 metaslab_class_validate(metaslab_class_t *mc)
217 metaslab_group_t *mg;
218 vdev_t *vd;
221 * Must hold one of the spa_config locks.
223 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
224 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
226 if ((mg = mc->mc_rotor) == NULL)
227 return (0);
229 do {
230 vd = mg->mg_vd;
231 ASSERT(vd->vdev_mg != NULL);
232 ASSERT3P(vd->vdev_top, ==, vd);
233 ASSERT3P(mg->mg_class, ==, mc);
234 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
235 } while ((mg = mg->mg_next) != mc->mc_rotor);
237 return (0);
240 void
241 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
242 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
244 atomic_add_64(&mc->mc_alloc, alloc_delta);
245 atomic_add_64(&mc->mc_deferred, defer_delta);
246 atomic_add_64(&mc->mc_space, space_delta);
247 atomic_add_64(&mc->mc_dspace, dspace_delta);
250 uint64_t
251 metaslab_class_get_alloc(metaslab_class_t *mc)
253 return (mc->mc_alloc);
256 uint64_t
257 metaslab_class_get_deferred(metaslab_class_t *mc)
259 return (mc->mc_deferred);
262 uint64_t
263 metaslab_class_get_space(metaslab_class_t *mc)
265 return (mc->mc_space);
268 uint64_t
269 metaslab_class_get_dspace(metaslab_class_t *mc)
271 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
274 void
275 metaslab_class_histogram_verify(metaslab_class_t *mc)
277 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
278 uint64_t *mc_hist;
279 int i;
281 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
282 return;
284 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
285 KM_SLEEP);
287 for (int c = 0; c < rvd->vdev_children; c++) {
288 vdev_t *tvd = rvd->vdev_child[c];
289 metaslab_group_t *mg = tvd->vdev_mg;
292 * Skip any holes, uninitialized top-levels, or
293 * vdevs that are not in this metalab class.
295 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
296 mg->mg_class != mc) {
297 continue;
300 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
301 mc_hist[i] += mg->mg_histogram[i];
304 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
305 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
307 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
311 * Calculate the metaslab class's fragmentation metric. The metric
312 * is weighted based on the space contribution of each metaslab group.
313 * The return value will be a number between 0 and 100 (inclusive), or
314 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
315 * zfs_frag_table for more information about the metric.
317 uint64_t
318 metaslab_class_fragmentation(metaslab_class_t *mc)
320 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
321 uint64_t fragmentation = 0;
323 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
325 for (int c = 0; c < rvd->vdev_children; c++) {
326 vdev_t *tvd = rvd->vdev_child[c];
327 metaslab_group_t *mg = tvd->vdev_mg;
330 * Skip any holes, uninitialized top-levels, or
331 * vdevs that are not in this metalab class.
333 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
334 mg->mg_class != mc) {
335 continue;
339 * If a metaslab group does not contain a fragmentation
340 * metric then just bail out.
342 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
343 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
344 return (ZFS_FRAG_INVALID);
348 * Determine how much this metaslab_group is contributing
349 * to the overall pool fragmentation metric.
351 fragmentation += mg->mg_fragmentation *
352 metaslab_group_get_space(mg);
354 fragmentation /= metaslab_class_get_space(mc);
356 ASSERT3U(fragmentation, <=, 100);
357 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
358 return (fragmentation);
362 * Calculate the amount of expandable space that is available in
363 * this metaslab class. If a device is expanded then its expandable
364 * space will be the amount of allocatable space that is currently not
365 * part of this metaslab class.
367 uint64_t
368 metaslab_class_expandable_space(metaslab_class_t *mc)
370 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
371 uint64_t space = 0;
373 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
374 for (int c = 0; c < rvd->vdev_children; c++) {
375 vdev_t *tvd = rvd->vdev_child[c];
376 metaslab_group_t *mg = tvd->vdev_mg;
378 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
379 mg->mg_class != mc) {
380 continue;
383 space += tvd->vdev_max_asize - tvd->vdev_asize;
385 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
386 return (space);
390 * ==========================================================================
391 * Metaslab groups
392 * ==========================================================================
394 static int
395 metaslab_compare(const void *x1, const void *x2)
397 const metaslab_t *m1 = x1;
398 const metaslab_t *m2 = x2;
400 if (m1->ms_weight < m2->ms_weight)
401 return (1);
402 if (m1->ms_weight > m2->ms_weight)
403 return (-1);
406 * If the weights are identical, use the offset to force uniqueness.
408 if (m1->ms_start < m2->ms_start)
409 return (-1);
410 if (m1->ms_start > m2->ms_start)
411 return (1);
413 ASSERT3P(m1, ==, m2);
415 return (0);
419 * Update the allocatable flag and the metaslab group's capacity.
420 * The allocatable flag is set to true if the capacity is below
421 * the zfs_mg_noalloc_threshold. If a metaslab group transitions
422 * from allocatable to non-allocatable or vice versa then the metaslab
423 * group's class is updated to reflect the transition.
425 static void
426 metaslab_group_alloc_update(metaslab_group_t *mg)
428 vdev_t *vd = mg->mg_vd;
429 metaslab_class_t *mc = mg->mg_class;
430 vdev_stat_t *vs = &vd->vdev_stat;
431 boolean_t was_allocatable;
433 ASSERT(vd == vd->vdev_top);
435 mutex_enter(&mg->mg_lock);
436 was_allocatable = mg->mg_allocatable;
438 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
439 (vs->vs_space + 1);
442 * A metaslab group is considered allocatable if it has plenty
443 * of free space or is not heavily fragmented. We only take
444 * fragmentation into account if the metaslab group has a valid
445 * fragmentation metric (i.e. a value between 0 and 100).
447 mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
448 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
449 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
452 * The mc_alloc_groups maintains a count of the number of
453 * groups in this metaslab class that are still above the
454 * zfs_mg_noalloc_threshold. This is used by the allocating
455 * threads to determine if they should avoid allocations to
456 * a given group. The allocator will avoid allocations to a group
457 * if that group has reached or is below the zfs_mg_noalloc_threshold
458 * and there are still other groups that are above the threshold.
459 * When a group transitions from allocatable to non-allocatable or
460 * vice versa we update the metaslab class to reflect that change.
461 * When the mc_alloc_groups value drops to 0 that means that all
462 * groups have reached the zfs_mg_noalloc_threshold making all groups
463 * eligible for allocations. This effectively means that all devices
464 * are balanced again.
466 if (was_allocatable && !mg->mg_allocatable)
467 mc->mc_alloc_groups--;
468 else if (!was_allocatable && mg->mg_allocatable)
469 mc->mc_alloc_groups++;
471 mutex_exit(&mg->mg_lock);
474 metaslab_group_t *
475 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
477 metaslab_group_t *mg;
479 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
480 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
481 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
482 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
483 mg->mg_vd = vd;
484 mg->mg_class = mc;
485 mg->mg_activation_count = 0;
487 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
488 minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
490 return (mg);
493 void
494 metaslab_group_destroy(metaslab_group_t *mg)
496 ASSERT(mg->mg_prev == NULL);
497 ASSERT(mg->mg_next == NULL);
499 * We may have gone below zero with the activation count
500 * either because we never activated in the first place or
501 * because we're done, and possibly removing the vdev.
503 ASSERT(mg->mg_activation_count <= 0);
505 taskq_destroy(mg->mg_taskq);
506 avl_destroy(&mg->mg_metaslab_tree);
507 mutex_destroy(&mg->mg_lock);
508 kmem_free(mg, sizeof (metaslab_group_t));
511 void
512 metaslab_group_activate(metaslab_group_t *mg)
514 metaslab_class_t *mc = mg->mg_class;
515 metaslab_group_t *mgprev, *mgnext;
517 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
519 ASSERT(mc->mc_rotor != mg);
520 ASSERT(mg->mg_prev == NULL);
521 ASSERT(mg->mg_next == NULL);
522 ASSERT(mg->mg_activation_count <= 0);
524 if (++mg->mg_activation_count <= 0)
525 return;
527 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
528 metaslab_group_alloc_update(mg);
530 if ((mgprev = mc->mc_rotor) == NULL) {
531 mg->mg_prev = mg;
532 mg->mg_next = mg;
533 } else {
534 mgnext = mgprev->mg_next;
535 mg->mg_prev = mgprev;
536 mg->mg_next = mgnext;
537 mgprev->mg_next = mg;
538 mgnext->mg_prev = mg;
540 mc->mc_rotor = mg;
543 void
544 metaslab_group_passivate(metaslab_group_t *mg)
546 metaslab_class_t *mc = mg->mg_class;
547 metaslab_group_t *mgprev, *mgnext;
549 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
551 if (--mg->mg_activation_count != 0) {
552 ASSERT(mc->mc_rotor != mg);
553 ASSERT(mg->mg_prev == NULL);
554 ASSERT(mg->mg_next == NULL);
555 ASSERT(mg->mg_activation_count < 0);
556 return;
559 taskq_wait(mg->mg_taskq);
560 metaslab_group_alloc_update(mg);
562 mgprev = mg->mg_prev;
563 mgnext = mg->mg_next;
565 if (mg == mgnext) {
566 mc->mc_rotor = NULL;
567 } else {
568 mc->mc_rotor = mgnext;
569 mgprev->mg_next = mgnext;
570 mgnext->mg_prev = mgprev;
573 mg->mg_prev = NULL;
574 mg->mg_next = NULL;
577 uint64_t
578 metaslab_group_get_space(metaslab_group_t *mg)
580 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
583 void
584 metaslab_group_histogram_verify(metaslab_group_t *mg)
586 uint64_t *mg_hist;
587 vdev_t *vd = mg->mg_vd;
588 uint64_t ashift = vd->vdev_ashift;
589 int i;
591 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
592 return;
594 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
595 KM_SLEEP);
597 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
598 SPACE_MAP_HISTOGRAM_SIZE + ashift);
600 for (int m = 0; m < vd->vdev_ms_count; m++) {
601 metaslab_t *msp = vd->vdev_ms[m];
603 if (msp->ms_sm == NULL)
604 continue;
606 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
607 mg_hist[i + ashift] +=
608 msp->ms_sm->sm_phys->smp_histogram[i];
611 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
612 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
614 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
617 static void
618 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
620 metaslab_class_t *mc = mg->mg_class;
621 uint64_t ashift = mg->mg_vd->vdev_ashift;
623 ASSERT(MUTEX_HELD(&msp->ms_lock));
624 if (msp->ms_sm == NULL)
625 return;
627 mutex_enter(&mg->mg_lock);
628 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
629 mg->mg_histogram[i + ashift] +=
630 msp->ms_sm->sm_phys->smp_histogram[i];
631 mc->mc_histogram[i + ashift] +=
632 msp->ms_sm->sm_phys->smp_histogram[i];
634 mutex_exit(&mg->mg_lock);
637 void
638 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
640 metaslab_class_t *mc = mg->mg_class;
641 uint64_t ashift = mg->mg_vd->vdev_ashift;
643 ASSERT(MUTEX_HELD(&msp->ms_lock));
644 if (msp->ms_sm == NULL)
645 return;
647 mutex_enter(&mg->mg_lock);
648 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
649 ASSERT3U(mg->mg_histogram[i + ashift], >=,
650 msp->ms_sm->sm_phys->smp_histogram[i]);
651 ASSERT3U(mc->mc_histogram[i + ashift], >=,
652 msp->ms_sm->sm_phys->smp_histogram[i]);
654 mg->mg_histogram[i + ashift] -=
655 msp->ms_sm->sm_phys->smp_histogram[i];
656 mc->mc_histogram[i + ashift] -=
657 msp->ms_sm->sm_phys->smp_histogram[i];
659 mutex_exit(&mg->mg_lock);
662 static void
663 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
665 ASSERT(msp->ms_group == NULL);
666 mutex_enter(&mg->mg_lock);
667 msp->ms_group = mg;
668 msp->ms_weight = 0;
669 avl_add(&mg->mg_metaslab_tree, msp);
670 mutex_exit(&mg->mg_lock);
672 mutex_enter(&msp->ms_lock);
673 metaslab_group_histogram_add(mg, msp);
674 mutex_exit(&msp->ms_lock);
677 static void
678 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
680 mutex_enter(&msp->ms_lock);
681 metaslab_group_histogram_remove(mg, msp);
682 mutex_exit(&msp->ms_lock);
684 mutex_enter(&mg->mg_lock);
685 ASSERT(msp->ms_group == mg);
686 avl_remove(&mg->mg_metaslab_tree, msp);
687 msp->ms_group = NULL;
688 mutex_exit(&mg->mg_lock);
691 static void
692 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
695 * Although in principle the weight can be any value, in
696 * practice we do not use values in the range [1, 511].
698 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
699 ASSERT(MUTEX_HELD(&msp->ms_lock));
701 mutex_enter(&mg->mg_lock);
702 ASSERT(msp->ms_group == mg);
703 avl_remove(&mg->mg_metaslab_tree, msp);
704 msp->ms_weight = weight;
705 avl_add(&mg->mg_metaslab_tree, msp);
706 mutex_exit(&mg->mg_lock);
710 * Calculate the fragmentation for a given metaslab group. We can use
711 * a simple average here since all metaslabs within the group must have
712 * the same size. The return value will be a value between 0 and 100
713 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
714 * group have a fragmentation metric.
716 uint64_t
717 metaslab_group_fragmentation(metaslab_group_t *mg)
719 vdev_t *vd = mg->mg_vd;
720 uint64_t fragmentation = 0;
721 uint64_t valid_ms = 0;
723 for (int m = 0; m < vd->vdev_ms_count; m++) {
724 metaslab_t *msp = vd->vdev_ms[m];
726 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
727 continue;
729 valid_ms++;
730 fragmentation += msp->ms_fragmentation;
733 if (valid_ms <= vd->vdev_ms_count / 2)
734 return (ZFS_FRAG_INVALID);
736 fragmentation /= valid_ms;
737 ASSERT3U(fragmentation, <=, 100);
738 return (fragmentation);
742 * Determine if a given metaslab group should skip allocations. A metaslab
743 * group should avoid allocations if its free capacity is less than the
744 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
745 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
746 * that can still handle allocations.
748 static boolean_t
749 metaslab_group_allocatable(metaslab_group_t *mg)
751 vdev_t *vd = mg->mg_vd;
752 spa_t *spa = vd->vdev_spa;
753 metaslab_class_t *mc = mg->mg_class;
756 * We use two key metrics to determine if a metaslab group is
757 * considered allocatable -- free space and fragmentation. If
758 * the free space is greater than the free space threshold and
759 * the fragmentation is less than the fragmentation threshold then
760 * consider the group allocatable. There are two case when we will
761 * not consider these key metrics. The first is if the group is
762 * associated with a slog device and the second is if all groups
763 * in this metaslab class have already been consider ineligible
764 * for allocations.
766 return ((mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
767 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
768 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)) ||
769 mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
773 * ==========================================================================
774 * Range tree callbacks
775 * ==========================================================================
779 * Comparison function for the private size-ordered tree. Tree is sorted
780 * by size, larger sizes at the end of the tree.
782 static int
783 metaslab_rangesize_compare(const void *x1, const void *x2)
785 const range_seg_t *r1 = x1;
786 const range_seg_t *r2 = x2;
787 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
788 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
790 if (rs_size1 < rs_size2)
791 return (-1);
792 if (rs_size1 > rs_size2)
793 return (1);
795 if (r1->rs_start < r2->rs_start)
796 return (-1);
798 if (r1->rs_start > r2->rs_start)
799 return (1);
801 return (0);
805 * Create any block allocator specific components. The current allocators
806 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
808 static void
809 metaslab_rt_create(range_tree_t *rt, void *arg)
811 metaslab_t *msp = arg;
813 ASSERT3P(rt->rt_arg, ==, msp);
814 ASSERT(msp->ms_tree == NULL);
816 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
817 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
821 * Destroy the block allocator specific components.
823 static void
824 metaslab_rt_destroy(range_tree_t *rt, void *arg)
826 metaslab_t *msp = arg;
828 ASSERT3P(rt->rt_arg, ==, msp);
829 ASSERT3P(msp->ms_tree, ==, rt);
830 ASSERT0(avl_numnodes(&msp->ms_size_tree));
832 avl_destroy(&msp->ms_size_tree);
835 static void
836 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
838 metaslab_t *msp = arg;
840 ASSERT3P(rt->rt_arg, ==, msp);
841 ASSERT3P(msp->ms_tree, ==, rt);
842 VERIFY(!msp->ms_condensing);
843 avl_add(&msp->ms_size_tree, rs);
846 static void
847 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
849 metaslab_t *msp = arg;
851 ASSERT3P(rt->rt_arg, ==, msp);
852 ASSERT3P(msp->ms_tree, ==, rt);
853 VERIFY(!msp->ms_condensing);
854 avl_remove(&msp->ms_size_tree, rs);
857 static void
858 metaslab_rt_vacate(range_tree_t *rt, void *arg)
860 metaslab_t *msp = arg;
862 ASSERT3P(rt->rt_arg, ==, msp);
863 ASSERT3P(msp->ms_tree, ==, rt);
866 * Normally one would walk the tree freeing nodes along the way.
867 * Since the nodes are shared with the range trees we can avoid
868 * walking all nodes and just reinitialize the avl tree. The nodes
869 * will be freed by the range tree, so we don't want to free them here.
871 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
872 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
875 static range_tree_ops_t metaslab_rt_ops = {
876 metaslab_rt_create,
877 metaslab_rt_destroy,
878 metaslab_rt_add,
879 metaslab_rt_remove,
880 metaslab_rt_vacate
884 * ==========================================================================
885 * Metaslab block operations
886 * ==========================================================================
890 * Return the maximum contiguous segment within the metaslab.
892 uint64_t
893 metaslab_block_maxsize(metaslab_t *msp)
895 avl_tree_t *t = &msp->ms_size_tree;
896 range_seg_t *rs;
898 if (t == NULL || (rs = avl_last(t)) == NULL)
899 return (0ULL);
901 return (rs->rs_end - rs->rs_start);
904 uint64_t
905 metaslab_block_alloc(metaslab_t *msp, uint64_t size)
907 uint64_t start;
908 range_tree_t *rt = msp->ms_tree;
910 VERIFY(!msp->ms_condensing);
912 start = msp->ms_ops->msop_alloc(msp, size);
913 if (start != -1ULL) {
914 vdev_t *vd = msp->ms_group->mg_vd;
916 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
917 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
918 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
919 range_tree_remove(rt, start, size);
921 return (start);
925 * ==========================================================================
926 * Common allocator routines
927 * ==========================================================================
931 * This is a helper function that can be used by the allocator to find
932 * a suitable block to allocate. This will search the specified AVL
933 * tree looking for a block that matches the specified criteria.
935 static uint64_t
936 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
937 uint64_t align)
939 range_seg_t *rs, rsearch;
940 avl_index_t where;
942 rsearch.rs_start = *cursor;
943 rsearch.rs_end = *cursor + size;
945 rs = avl_find(t, &rsearch, &where);
946 if (rs == NULL)
947 rs = avl_nearest(t, where, AVL_AFTER);
949 while (rs != NULL) {
950 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
952 if (offset + size <= rs->rs_end) {
953 *cursor = offset + size;
954 return (offset);
956 rs = AVL_NEXT(t, rs);
960 * If we know we've searched the whole map (*cursor == 0), give up.
961 * Otherwise, reset the cursor to the beginning and try again.
963 if (*cursor == 0)
964 return (-1ULL);
966 *cursor = 0;
967 return (metaslab_block_picker(t, cursor, size, align));
971 * ==========================================================================
972 * The first-fit block allocator
973 * ==========================================================================
975 static uint64_t
976 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
979 * Find the largest power of 2 block size that evenly divides the
980 * requested size. This is used to try to allocate blocks with similar
981 * alignment from the same area of the metaslab (i.e. same cursor
982 * bucket) but it does not guarantee that other allocations sizes
983 * may exist in the same region.
985 uint64_t align = size & -size;
986 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
987 avl_tree_t *t = &msp->ms_tree->rt_root;
989 return (metaslab_block_picker(t, cursor, size, align));
992 static metaslab_ops_t metaslab_ff_ops = {
993 metaslab_ff_alloc
997 * ==========================================================================
998 * Dynamic block allocator -
999 * Uses the first fit allocation scheme until space get low and then
1000 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1001 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1002 * ==========================================================================
1004 static uint64_t
1005 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1008 * Find the largest power of 2 block size that evenly divides the
1009 * requested size. This is used to try to allocate blocks with similar
1010 * alignment from the same area of the metaslab (i.e. same cursor
1011 * bucket) but it does not guarantee that other allocations sizes
1012 * may exist in the same region.
1014 uint64_t align = size & -size;
1015 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1016 range_tree_t *rt = msp->ms_tree;
1017 avl_tree_t *t = &rt->rt_root;
1018 uint64_t max_size = metaslab_block_maxsize(msp);
1019 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1021 ASSERT(MUTEX_HELD(&msp->ms_lock));
1022 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1024 if (max_size < size)
1025 return (-1ULL);
1028 * If we're running low on space switch to using the size
1029 * sorted AVL tree (best-fit).
1031 if (max_size < metaslab_df_alloc_threshold ||
1032 free_pct < metaslab_df_free_pct) {
1033 t = &msp->ms_size_tree;
1034 *cursor = 0;
1037 return (metaslab_block_picker(t, cursor, size, 1ULL));
1040 static metaslab_ops_t metaslab_df_ops = {
1041 metaslab_df_alloc
1045 * ==========================================================================
1046 * Cursor fit block allocator -
1047 * Select the largest region in the metaslab, set the cursor to the beginning
1048 * of the range and the cursor_end to the end of the range. As allocations
1049 * are made advance the cursor. Continue allocating from the cursor until
1050 * the range is exhausted and then find a new range.
1051 * ==========================================================================
1053 static uint64_t
1054 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1056 range_tree_t *rt = msp->ms_tree;
1057 avl_tree_t *t = &msp->ms_size_tree;
1058 uint64_t *cursor = &msp->ms_lbas[0];
1059 uint64_t *cursor_end = &msp->ms_lbas[1];
1060 uint64_t offset = 0;
1062 ASSERT(MUTEX_HELD(&msp->ms_lock));
1063 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1065 ASSERT3U(*cursor_end, >=, *cursor);
1067 if ((*cursor + size) > *cursor_end) {
1068 range_seg_t *rs;
1070 rs = avl_last(&msp->ms_size_tree);
1071 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1072 return (-1ULL);
1074 *cursor = rs->rs_start;
1075 *cursor_end = rs->rs_end;
1078 offset = *cursor;
1079 *cursor += size;
1081 return (offset);
1084 static metaslab_ops_t metaslab_cf_ops = {
1085 metaslab_cf_alloc
1089 * ==========================================================================
1090 * New dynamic fit allocator -
1091 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1092 * contiguous blocks. If no region is found then just use the largest segment
1093 * that remains.
1094 * ==========================================================================
1098 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1099 * to request from the allocator.
1101 uint64_t metaslab_ndf_clump_shift = 4;
1103 static uint64_t
1104 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1106 avl_tree_t *t = &msp->ms_tree->rt_root;
1107 avl_index_t where;
1108 range_seg_t *rs, rsearch;
1109 uint64_t hbit = highbit64(size);
1110 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1111 uint64_t max_size = metaslab_block_maxsize(msp);
1113 ASSERT(MUTEX_HELD(&msp->ms_lock));
1114 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1116 if (max_size < size)
1117 return (-1ULL);
1119 rsearch.rs_start = *cursor;
1120 rsearch.rs_end = *cursor + size;
1122 rs = avl_find(t, &rsearch, &where);
1123 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1124 t = &msp->ms_size_tree;
1126 rsearch.rs_start = 0;
1127 rsearch.rs_end = MIN(max_size,
1128 1ULL << (hbit + metaslab_ndf_clump_shift));
1129 rs = avl_find(t, &rsearch, &where);
1130 if (rs == NULL)
1131 rs = avl_nearest(t, where, AVL_AFTER);
1132 ASSERT(rs != NULL);
1135 if ((rs->rs_end - rs->rs_start) >= size) {
1136 *cursor = rs->rs_start + size;
1137 return (rs->rs_start);
1139 return (-1ULL);
1142 static metaslab_ops_t metaslab_ndf_ops = {
1143 metaslab_ndf_alloc
1146 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1149 * ==========================================================================
1150 * Metaslabs
1151 * ==========================================================================
1155 * Wait for any in-progress metaslab loads to complete.
1157 void
1158 metaslab_load_wait(metaslab_t *msp)
1160 ASSERT(MUTEX_HELD(&msp->ms_lock));
1162 while (msp->ms_loading) {
1163 ASSERT(!msp->ms_loaded);
1164 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1169 metaslab_load(metaslab_t *msp)
1171 int error = 0;
1173 ASSERT(MUTEX_HELD(&msp->ms_lock));
1174 ASSERT(!msp->ms_loaded);
1175 ASSERT(!msp->ms_loading);
1177 msp->ms_loading = B_TRUE;
1180 * If the space map has not been allocated yet, then treat
1181 * all the space in the metaslab as free and add it to the
1182 * ms_tree.
1184 if (msp->ms_sm != NULL)
1185 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
1186 else
1187 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
1189 msp->ms_loaded = (error == 0);
1190 msp->ms_loading = B_FALSE;
1192 if (msp->ms_loaded) {
1193 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1194 range_tree_walk(msp->ms_defertree[t],
1195 range_tree_remove, msp->ms_tree);
1198 cv_broadcast(&msp->ms_load_cv);
1199 return (error);
1202 void
1203 metaslab_unload(metaslab_t *msp)
1205 ASSERT(MUTEX_HELD(&msp->ms_lock));
1206 range_tree_vacate(msp->ms_tree, NULL, NULL);
1207 msp->ms_loaded = B_FALSE;
1208 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1211 metaslab_t *
1212 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg)
1214 vdev_t *vd = mg->mg_vd;
1215 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1216 metaslab_t *msp;
1218 msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1219 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1220 cv_init(&msp->ms_load_cv, NULL, CV_DEFAULT, NULL);
1221 msp->ms_id = id;
1222 msp->ms_start = id << vd->vdev_ms_shift;
1223 msp->ms_size = 1ULL << vd->vdev_ms_shift;
1226 * We only open space map objects that already exist. All others
1227 * will be opened when we finally allocate an object for it.
1229 if (object != 0) {
1230 VERIFY0(space_map_open(&msp->ms_sm, mos, object, msp->ms_start,
1231 msp->ms_size, vd->vdev_ashift, &msp->ms_lock));
1232 ASSERT(msp->ms_sm != NULL);
1236 * We create the main range tree here, but we don't create the
1237 * alloctree and freetree until metaslab_sync_done(). This serves
1238 * two purposes: it allows metaslab_sync_done() to detect the
1239 * addition of new space; and for debugging, it ensures that we'd
1240 * data fault on any attempt to use this metaslab before it's ready.
1242 msp->ms_tree = range_tree_create(&metaslab_rt_ops, msp, &msp->ms_lock);
1243 metaslab_group_add(mg, msp);
1245 msp->ms_fragmentation = metaslab_fragmentation(msp);
1246 msp->ms_ops = mg->mg_class->mc_ops;
1249 * If we're opening an existing pool (txg == 0) or creating
1250 * a new one (txg == TXG_INITIAL), all space is available now.
1251 * If we're adding space to an existing pool, the new space
1252 * does not become available until after this txg has synced.
1254 if (txg <= TXG_INITIAL)
1255 metaslab_sync_done(msp, 0);
1258 * If metaslab_debug_load is set and we're initializing a metaslab
1259 * that has an allocated space_map object then load the its space
1260 * map so that can verify frees.
1262 if (metaslab_debug_load && msp->ms_sm != NULL) {
1263 mutex_enter(&msp->ms_lock);
1264 VERIFY0(metaslab_load(msp));
1265 mutex_exit(&msp->ms_lock);
1268 if (txg != 0) {
1269 vdev_dirty(vd, 0, NULL, txg);
1270 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1273 return (msp);
1276 void
1277 metaslab_fini(metaslab_t *msp)
1279 metaslab_group_t *mg = msp->ms_group;
1281 metaslab_group_remove(mg, msp);
1283 mutex_enter(&msp->ms_lock);
1285 VERIFY(msp->ms_group == NULL);
1286 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1287 0, -msp->ms_size);
1288 space_map_close(msp->ms_sm);
1290 metaslab_unload(msp);
1291 range_tree_destroy(msp->ms_tree);
1293 for (int t = 0; t < TXG_SIZE; t++) {
1294 range_tree_destroy(msp->ms_alloctree[t]);
1295 range_tree_destroy(msp->ms_freetree[t]);
1298 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1299 range_tree_destroy(msp->ms_defertree[t]);
1302 ASSERT0(msp->ms_deferspace);
1304 mutex_exit(&msp->ms_lock);
1305 cv_destroy(&msp->ms_load_cv);
1306 mutex_destroy(&msp->ms_lock);
1308 kmem_free(msp, sizeof (metaslab_t));
1311 #define FRAGMENTATION_TABLE_SIZE 17
1314 * This table defines a segment size based fragmentation metric that will
1315 * allow each metaslab to derive its own fragmentation value. This is done
1316 * by calculating the space in each bucket of the spacemap histogram and
1317 * multiplying that by the fragmetation metric in this table. Doing
1318 * this for all buckets and dividing it by the total amount of free
1319 * space in this metaslab (i.e. the total free space in all buckets) gives
1320 * us the fragmentation metric. This means that a high fragmentation metric
1321 * equates to most of the free space being comprised of small segments.
1322 * Conversely, if the metric is low, then most of the free space is in
1323 * large segments. A 10% change in fragmentation equates to approximately
1324 * double the number of segments.
1326 * This table defines 0% fragmented space using 16MB segments. Testing has
1327 * shown that segments that are greater than or equal to 16MB do not suffer
1328 * from drastic performance problems. Using this value, we derive the rest
1329 * of the table. Since the fragmentation value is never stored on disk, it
1330 * is possible to change these calculations in the future.
1332 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1333 100, /* 512B */
1334 100, /* 1K */
1335 98, /* 2K */
1336 95, /* 4K */
1337 90, /* 8K */
1338 80, /* 16K */
1339 70, /* 32K */
1340 60, /* 64K */
1341 50, /* 128K */
1342 40, /* 256K */
1343 30, /* 512K */
1344 20, /* 1M */
1345 15, /* 2M */
1346 10, /* 4M */
1347 5, /* 8M */
1348 0 /* 16M */
1352 * Calclate the metaslab's fragmentation metric. A return value
1353 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1354 * not support this metric. Otherwise, the return value should be in the
1355 * range [0, 100].
1357 static uint64_t
1358 metaslab_fragmentation(metaslab_t *msp)
1360 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1361 uint64_t fragmentation = 0;
1362 uint64_t total = 0;
1363 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1364 SPA_FEATURE_SPACEMAP_HISTOGRAM);
1366 if (!feature_enabled)
1367 return (ZFS_FRAG_INVALID);
1370 * A null space map means that the entire metaslab is free
1371 * and thus is not fragmented.
1373 if (msp->ms_sm == NULL)
1374 return (0);
1377 * If this metaslab's space_map has not been upgraded, flag it
1378 * so that we upgrade next time we encounter it.
1380 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1381 uint64_t txg = spa_syncing_txg(spa);
1382 vdev_t *vd = msp->ms_group->mg_vd;
1384 msp->ms_condense_wanted = B_TRUE;
1385 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1386 spa_dbgmsg(spa, "txg %llu, requesting force condense: "
1387 "msp %p, vd %p", txg, msp, vd);
1388 return (ZFS_FRAG_INVALID);
1391 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1392 uint64_t space = 0;
1393 uint8_t shift = msp->ms_sm->sm_shift;
1394 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1395 FRAGMENTATION_TABLE_SIZE - 1);
1397 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1398 continue;
1400 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1401 total += space;
1403 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1404 fragmentation += space * zfs_frag_table[idx];
1407 if (total > 0)
1408 fragmentation /= total;
1409 ASSERT3U(fragmentation, <=, 100);
1410 return (fragmentation);
1414 * Compute a weight -- a selection preference value -- for the given metaslab.
1415 * This is based on the amount of free space, the level of fragmentation,
1416 * the LBA range, and whether the metaslab is loaded.
1418 static uint64_t
1419 metaslab_weight(metaslab_t *msp)
1421 metaslab_group_t *mg = msp->ms_group;
1422 vdev_t *vd = mg->mg_vd;
1423 uint64_t weight, space;
1425 ASSERT(MUTEX_HELD(&msp->ms_lock));
1428 * This vdev is in the process of being removed so there is nothing
1429 * for us to do here.
1431 if (vd->vdev_removing) {
1432 ASSERT0(space_map_allocated(msp->ms_sm));
1433 ASSERT0(vd->vdev_ms_shift);
1434 return (0);
1438 * The baseline weight is the metaslab's free space.
1440 space = msp->ms_size - space_map_allocated(msp->ms_sm);
1442 msp->ms_fragmentation = metaslab_fragmentation(msp);
1443 if (metaslab_fragmentation_factor_enabled &&
1444 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1446 * Use the fragmentation information to inversely scale
1447 * down the baseline weight. We need to ensure that we
1448 * don't exclude this metaslab completely when it's 100%
1449 * fragmented. To avoid this we reduce the fragmented value
1450 * by 1.
1452 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1455 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1456 * this metaslab again. The fragmentation metric may have
1457 * decreased the space to something smaller than
1458 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1459 * so that we can consume any remaining space.
1461 if (space > 0 && space < SPA_MINBLOCKSIZE)
1462 space = SPA_MINBLOCKSIZE;
1464 weight = space;
1467 * Modern disks have uniform bit density and constant angular velocity.
1468 * Therefore, the outer recording zones are faster (higher bandwidth)
1469 * than the inner zones by the ratio of outer to inner track diameter,
1470 * which is typically around 2:1. We account for this by assigning
1471 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1472 * In effect, this means that we'll select the metaslab with the most
1473 * free bandwidth rather than simply the one with the most free space.
1475 if (metaslab_lba_weighting_enabled) {
1476 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1477 ASSERT(weight >= space && weight <= 2 * space);
1481 * If this metaslab is one we're actively using, adjust its
1482 * weight to make it preferable to any inactive metaslab so
1483 * we'll polish it off. If the fragmentation on this metaslab
1484 * has exceed our threshold, then don't mark it active.
1486 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1487 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1488 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1491 return (weight);
1494 static int
1495 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1497 ASSERT(MUTEX_HELD(&msp->ms_lock));
1499 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1500 metaslab_load_wait(msp);
1501 if (!msp->ms_loaded) {
1502 int error = metaslab_load(msp);
1503 if (error) {
1504 metaslab_group_sort(msp->ms_group, msp, 0);
1505 return (error);
1509 metaslab_group_sort(msp->ms_group, msp,
1510 msp->ms_weight | activation_weight);
1512 ASSERT(msp->ms_loaded);
1513 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1515 return (0);
1518 static void
1519 metaslab_passivate(metaslab_t *msp, uint64_t size)
1522 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1523 * this metaslab again. In that case, it had better be empty,
1524 * or we would be leaving space on the table.
1526 ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0);
1527 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
1528 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1531 static void
1532 metaslab_preload(void *arg)
1534 metaslab_t *msp = arg;
1535 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1537 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
1539 mutex_enter(&msp->ms_lock);
1540 metaslab_load_wait(msp);
1541 if (!msp->ms_loaded)
1542 (void) metaslab_load(msp);
1545 * Set the ms_access_txg value so that we don't unload it right away.
1547 msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1;
1548 mutex_exit(&msp->ms_lock);
1551 static void
1552 metaslab_group_preload(metaslab_group_t *mg)
1554 spa_t *spa = mg->mg_vd->vdev_spa;
1555 metaslab_t *msp;
1556 avl_tree_t *t = &mg->mg_metaslab_tree;
1557 int m = 0;
1559 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1560 taskq_wait(mg->mg_taskq);
1561 return;
1564 mutex_enter(&mg->mg_lock);
1566 * Load the next potential metaslabs
1568 msp = avl_first(t);
1569 while (msp != NULL) {
1570 metaslab_t *msp_next = AVL_NEXT(t, msp);
1573 * We preload only the maximum number of metaslabs specified
1574 * by metaslab_preload_limit. If a metaslab is being forced
1575 * to condense then we preload it too. This will ensure
1576 * that force condensing happens in the next txg.
1578 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
1579 msp = msp_next;
1580 continue;
1584 * We must drop the metaslab group lock here to preserve
1585 * lock ordering with the ms_lock (when grabbing both
1586 * the mg_lock and the ms_lock, the ms_lock must be taken
1587 * first). As a result, it is possible that the ordering
1588 * of the metaslabs within the avl tree may change before
1589 * we reacquire the lock. The metaslab cannot be removed from
1590 * the tree while we're in syncing context so it is safe to
1591 * drop the mg_lock here. If the metaslabs are reordered
1592 * nothing will break -- we just may end up loading a
1593 * less than optimal one.
1595 mutex_exit(&mg->mg_lock);
1596 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
1597 msp, TQ_SLEEP) != NULL);
1598 mutex_enter(&mg->mg_lock);
1599 msp = msp_next;
1601 mutex_exit(&mg->mg_lock);
1605 * Determine if the space map's on-disk footprint is past our tolerance
1606 * for inefficiency. We would like to use the following criteria to make
1607 * our decision:
1609 * 1. The size of the space map object should not dramatically increase as a
1610 * result of writing out the free space range tree.
1612 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
1613 * times the size than the free space range tree representation
1614 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
1616 * 3. The on-disk size of the space map should actually decrease.
1618 * Checking the first condition is tricky since we don't want to walk
1619 * the entire AVL tree calculating the estimated on-disk size. Instead we
1620 * use the size-ordered range tree in the metaslab and calculate the
1621 * size required to write out the largest segment in our free tree. If the
1622 * size required to represent that segment on disk is larger than the space
1623 * map object then we avoid condensing this map.
1625 * To determine the second criterion we use a best-case estimate and assume
1626 * each segment can be represented on-disk as a single 64-bit entry. We refer
1627 * to this best-case estimate as the space map's minimal form.
1629 * Unfortunately, we cannot compute the on-disk size of the space map in this
1630 * context because we cannot accurately compute the effects of compression, etc.
1631 * Instead, we apply the heuristic described in the block comment for
1632 * zfs_metaslab_condense_block_threshold - we only condense if the space used
1633 * is greater than a threshold number of blocks.
1635 static boolean_t
1636 metaslab_should_condense(metaslab_t *msp)
1638 space_map_t *sm = msp->ms_sm;
1639 range_seg_t *rs;
1640 uint64_t size, entries, segsz, object_size, optimal_size, record_size;
1641 dmu_object_info_t doi;
1642 uint64_t vdev_blocksize = 1 << msp->ms_group->mg_vd->vdev_ashift;
1644 ASSERT(MUTEX_HELD(&msp->ms_lock));
1645 ASSERT(msp->ms_loaded);
1648 * Use the ms_size_tree range tree, which is ordered by size, to
1649 * obtain the largest segment in the free tree. We always condense
1650 * metaslabs that are empty and metaslabs for which a condense
1651 * request has been made.
1653 rs = avl_last(&msp->ms_size_tree);
1654 if (rs == NULL || msp->ms_condense_wanted)
1655 return (B_TRUE);
1658 * Calculate the number of 64-bit entries this segment would
1659 * require when written to disk. If this single segment would be
1660 * larger on-disk than the entire current on-disk structure, then
1661 * clearly condensing will increase the on-disk structure size.
1663 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
1664 entries = size / (MIN(size, SM_RUN_MAX));
1665 segsz = entries * sizeof (uint64_t);
1667 optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root);
1668 object_size = space_map_length(msp->ms_sm);
1670 dmu_object_info_from_db(sm->sm_dbuf, &doi);
1671 record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
1673 return (segsz <= object_size &&
1674 object_size >= (optimal_size * zfs_condense_pct / 100) &&
1675 object_size > zfs_metaslab_condense_block_threshold * record_size);
1679 * Condense the on-disk space map representation to its minimized form.
1680 * The minimized form consists of a small number of allocations followed by
1681 * the entries of the free range tree.
1683 static void
1684 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1686 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1687 range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK];
1688 range_tree_t *condense_tree;
1689 space_map_t *sm = msp->ms_sm;
1691 ASSERT(MUTEX_HELD(&msp->ms_lock));
1692 ASSERT3U(spa_sync_pass(spa), ==, 1);
1693 ASSERT(msp->ms_loaded);
1696 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
1697 "smp size %llu, segments %lu, forcing condense=%s", txg,
1698 msp->ms_id, msp, space_map_length(msp->ms_sm),
1699 avl_numnodes(&msp->ms_tree->rt_root),
1700 msp->ms_condense_wanted ? "TRUE" : "FALSE");
1702 msp->ms_condense_wanted = B_FALSE;
1705 * Create an range tree that is 100% allocated. We remove segments
1706 * that have been freed in this txg, any deferred frees that exist,
1707 * and any allocation in the future. Removing segments should be
1708 * a relatively inexpensive operation since we expect these trees to
1709 * have a small number of nodes.
1711 condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
1712 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
1715 * Remove what's been freed in this txg from the condense_tree.
1716 * Since we're in sync_pass 1, we know that all the frees from
1717 * this txg are in the freetree.
1719 range_tree_walk(freetree, range_tree_remove, condense_tree);
1721 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1722 range_tree_walk(msp->ms_defertree[t],
1723 range_tree_remove, condense_tree);
1726 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
1727 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
1728 range_tree_remove, condense_tree);
1732 * We're about to drop the metaslab's lock thus allowing
1733 * other consumers to change it's content. Set the
1734 * metaslab's ms_condensing flag to ensure that
1735 * allocations on this metaslab do not occur while we're
1736 * in the middle of committing it to disk. This is only critical
1737 * for the ms_tree as all other range trees use per txg
1738 * views of their content.
1740 msp->ms_condensing = B_TRUE;
1742 mutex_exit(&msp->ms_lock);
1743 space_map_truncate(sm, tx);
1744 mutex_enter(&msp->ms_lock);
1747 * While we would ideally like to create a space_map representation
1748 * that consists only of allocation records, doing so can be
1749 * prohibitively expensive because the in-core free tree can be
1750 * large, and therefore computationally expensive to subtract
1751 * from the condense_tree. Instead we sync out two trees, a cheap
1752 * allocation only tree followed by the in-core free tree. While not
1753 * optimal, this is typically close to optimal, and much cheaper to
1754 * compute.
1756 space_map_write(sm, condense_tree, SM_ALLOC, tx);
1757 range_tree_vacate(condense_tree, NULL, NULL);
1758 range_tree_destroy(condense_tree);
1760 space_map_write(sm, msp->ms_tree, SM_FREE, tx);
1761 msp->ms_condensing = B_FALSE;
1765 * Write a metaslab to disk in the context of the specified transaction group.
1767 void
1768 metaslab_sync(metaslab_t *msp, uint64_t txg)
1770 metaslab_group_t *mg = msp->ms_group;
1771 vdev_t *vd = mg->mg_vd;
1772 spa_t *spa = vd->vdev_spa;
1773 objset_t *mos = spa_meta_objset(spa);
1774 range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
1775 range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK];
1776 range_tree_t **freed_tree =
1777 &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1778 dmu_tx_t *tx;
1779 uint64_t object = space_map_object(msp->ms_sm);
1781 ASSERT(!vd->vdev_ishole);
1784 * This metaslab has just been added so there's no work to do now.
1786 if (*freetree == NULL) {
1787 ASSERT3P(alloctree, ==, NULL);
1788 return;
1791 ASSERT3P(alloctree, !=, NULL);
1792 ASSERT3P(*freetree, !=, NULL);
1793 ASSERT3P(*freed_tree, !=, NULL);
1796 * Normally, we don't want to process a metaslab if there
1797 * are no allocations or frees to perform. However, if the metaslab
1798 * is being forced to condense we need to let it through.
1800 if (range_tree_space(alloctree) == 0 &&
1801 range_tree_space(*freetree) == 0 &&
1802 !msp->ms_condense_wanted)
1803 return;
1806 * The only state that can actually be changing concurrently with
1807 * metaslab_sync() is the metaslab's ms_tree. No other thread can
1808 * be modifying this txg's alloctree, freetree, freed_tree, or
1809 * space_map_phys_t. Therefore, we only hold ms_lock to satify
1810 * space_map ASSERTs. We drop it whenever we call into the DMU,
1811 * because the DMU can call down to us (e.g. via zio_free()) at
1812 * any time.
1815 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1817 if (msp->ms_sm == NULL) {
1818 uint64_t new_object;
1820 new_object = space_map_alloc(mos, tx);
1821 VERIFY3U(new_object, !=, 0);
1823 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
1824 msp->ms_start, msp->ms_size, vd->vdev_ashift,
1825 &msp->ms_lock));
1826 ASSERT(msp->ms_sm != NULL);
1829 mutex_enter(&msp->ms_lock);
1831 if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
1832 metaslab_should_condense(msp)) {
1833 metaslab_condense(msp, txg, tx);
1834 } else {
1835 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
1836 space_map_write(msp->ms_sm, *freetree, SM_FREE, tx);
1839 metaslab_group_histogram_verify(mg);
1840 metaslab_class_histogram_verify(mg->mg_class);
1841 metaslab_group_histogram_remove(mg, msp);
1842 if (msp->ms_loaded) {
1844 * When the space map is loaded, we have an accruate
1845 * histogram in the range tree. This gives us an opportunity
1846 * to bring the space map's histogram up-to-date so we clear
1847 * it first before updating it.
1849 space_map_histogram_clear(msp->ms_sm);
1850 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
1851 } else {
1853 * Since the space map is not loaded we simply update the
1854 * exisiting histogram with what was freed in this txg. This
1855 * means that the on-disk histogram may not have an accurate
1856 * view of the free space but it's close enough to allow
1857 * us to make allocation decisions.
1859 space_map_histogram_add(msp->ms_sm, *freetree, tx);
1861 metaslab_group_histogram_add(mg, msp);
1862 metaslab_group_histogram_verify(mg);
1863 metaslab_class_histogram_verify(mg->mg_class);
1866 * For sync pass 1, we avoid traversing this txg's free range tree
1867 * and instead will just swap the pointers for freetree and
1868 * freed_tree. We can safely do this since the freed_tree is
1869 * guaranteed to be empty on the initial pass.
1871 if (spa_sync_pass(spa) == 1) {
1872 range_tree_swap(freetree, freed_tree);
1873 } else {
1874 range_tree_vacate(*freetree, range_tree_add, *freed_tree);
1876 range_tree_vacate(alloctree, NULL, NULL);
1878 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1879 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1881 mutex_exit(&msp->ms_lock);
1883 if (object != space_map_object(msp->ms_sm)) {
1884 object = space_map_object(msp->ms_sm);
1885 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
1886 msp->ms_id, sizeof (uint64_t), &object, tx);
1888 dmu_tx_commit(tx);
1892 * Called after a transaction group has completely synced to mark
1893 * all of the metaslab's free space as usable.
1895 void
1896 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1898 metaslab_group_t *mg = msp->ms_group;
1899 vdev_t *vd = mg->mg_vd;
1900 range_tree_t **freed_tree;
1901 range_tree_t **defer_tree;
1902 int64_t alloc_delta, defer_delta;
1904 ASSERT(!vd->vdev_ishole);
1906 mutex_enter(&msp->ms_lock);
1909 * If this metaslab is just becoming available, initialize its
1910 * alloctrees, freetrees, and defertree and add its capacity to
1911 * the vdev.
1913 if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) {
1914 for (int t = 0; t < TXG_SIZE; t++) {
1915 ASSERT(msp->ms_alloctree[t] == NULL);
1916 ASSERT(msp->ms_freetree[t] == NULL);
1918 msp->ms_alloctree[t] = range_tree_create(NULL, msp,
1919 &msp->ms_lock);
1920 msp->ms_freetree[t] = range_tree_create(NULL, msp,
1921 &msp->ms_lock);
1924 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1925 ASSERT(msp->ms_defertree[t] == NULL);
1927 msp->ms_defertree[t] = range_tree_create(NULL, msp,
1928 &msp->ms_lock);
1931 vdev_space_update(vd, 0, 0, msp->ms_size);
1934 freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1935 defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
1937 alloc_delta = space_map_alloc_delta(msp->ms_sm);
1938 defer_delta = range_tree_space(*freed_tree) -
1939 range_tree_space(*defer_tree);
1941 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1943 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1944 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1947 * If there's a metaslab_load() in progress, wait for it to complete
1948 * so that we have a consistent view of the in-core space map.
1950 metaslab_load_wait(msp);
1953 * Move the frees from the defer_tree back to the free
1954 * range tree (if it's loaded). Swap the freed_tree and the
1955 * defer_tree -- this is safe to do because we've just emptied out
1956 * the defer_tree.
1958 range_tree_vacate(*defer_tree,
1959 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
1960 range_tree_swap(freed_tree, defer_tree);
1962 space_map_update(msp->ms_sm);
1964 msp->ms_deferspace += defer_delta;
1965 ASSERT3S(msp->ms_deferspace, >=, 0);
1966 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
1967 if (msp->ms_deferspace != 0) {
1969 * Keep syncing this metaslab until all deferred frees
1970 * are back in circulation.
1972 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1975 if (msp->ms_loaded && msp->ms_access_txg < txg) {
1976 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
1977 VERIFY0(range_tree_space(
1978 msp->ms_alloctree[(txg + t) & TXG_MASK]));
1981 if (!metaslab_debug_unload)
1982 metaslab_unload(msp);
1985 metaslab_group_sort(mg, msp, metaslab_weight(msp));
1986 mutex_exit(&msp->ms_lock);
1989 void
1990 metaslab_sync_reassess(metaslab_group_t *mg)
1992 metaslab_group_alloc_update(mg);
1993 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
1996 * Preload the next potential metaslabs
1998 metaslab_group_preload(mg);
2001 static uint64_t
2002 metaslab_distance(metaslab_t *msp, dva_t *dva)
2004 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2005 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
2006 uint64_t start = msp->ms_id;
2008 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2009 return (1ULL << 63);
2011 if (offset < start)
2012 return ((start - offset) << ms_shift);
2013 if (offset > start)
2014 return ((offset - start) << ms_shift);
2015 return (0);
2018 static uint64_t
2019 metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
2020 uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2022 spa_t *spa = mg->mg_vd->vdev_spa;
2023 metaslab_t *msp = NULL;
2024 uint64_t offset = -1ULL;
2025 avl_tree_t *t = &mg->mg_metaslab_tree;
2026 uint64_t activation_weight;
2027 uint64_t target_distance;
2028 int i;
2030 activation_weight = METASLAB_WEIGHT_PRIMARY;
2031 for (i = 0; i < d; i++) {
2032 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
2033 activation_weight = METASLAB_WEIGHT_SECONDARY;
2034 break;
2038 for (;;) {
2039 boolean_t was_active;
2041 mutex_enter(&mg->mg_lock);
2042 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
2043 if (msp->ms_weight < asize) {
2044 spa_dbgmsg(spa, "%s: failed to meet weight "
2045 "requirement: vdev %llu, txg %llu, mg %p, "
2046 "msp %p, psize %llu, asize %llu, "
2047 "weight %llu", spa_name(spa),
2048 mg->mg_vd->vdev_id, txg,
2049 mg, msp, psize, asize, msp->ms_weight);
2050 mutex_exit(&mg->mg_lock);
2051 return (-1ULL);
2055 * If the selected metaslab is condensing, skip it.
2057 if (msp->ms_condensing)
2058 continue;
2060 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2061 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
2062 break;
2064 target_distance = min_distance +
2065 (space_map_allocated(msp->ms_sm) != 0 ? 0 :
2066 min_distance >> 1);
2068 for (i = 0; i < d; i++)
2069 if (metaslab_distance(msp, &dva[i]) <
2070 target_distance)
2071 break;
2072 if (i == d)
2073 break;
2075 mutex_exit(&mg->mg_lock);
2076 if (msp == NULL)
2077 return (-1ULL);
2079 mutex_enter(&msp->ms_lock);
2082 * Ensure that the metaslab we have selected is still
2083 * capable of handling our request. It's possible that
2084 * another thread may have changed the weight while we
2085 * were blocked on the metaslab lock.
2087 if (msp->ms_weight < asize || (was_active &&
2088 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
2089 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
2090 mutex_exit(&msp->ms_lock);
2091 continue;
2094 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
2095 activation_weight == METASLAB_WEIGHT_PRIMARY) {
2096 metaslab_passivate(msp,
2097 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
2098 mutex_exit(&msp->ms_lock);
2099 continue;
2102 if (metaslab_activate(msp, activation_weight) != 0) {
2103 mutex_exit(&msp->ms_lock);
2104 continue;
2108 * If this metaslab is currently condensing then pick again as
2109 * we can't manipulate this metaslab until it's committed
2110 * to disk.
2112 if (msp->ms_condensing) {
2113 mutex_exit(&msp->ms_lock);
2114 continue;
2117 if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL)
2118 break;
2120 metaslab_passivate(msp, metaslab_block_maxsize(msp));
2121 mutex_exit(&msp->ms_lock);
2124 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2125 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2127 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize);
2128 msp->ms_access_txg = txg + metaslab_unload_delay;
2130 mutex_exit(&msp->ms_lock);
2132 return (offset);
2136 * Allocate a block for the specified i/o.
2138 static int
2139 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
2140 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
2142 metaslab_group_t *mg, *rotor;
2143 vdev_t *vd;
2144 int dshift = 3;
2145 int all_zero;
2146 int zio_lock = B_FALSE;
2147 boolean_t allocatable;
2148 uint64_t offset = -1ULL;
2149 uint64_t asize;
2150 uint64_t distance;
2152 ASSERT(!DVA_IS_VALID(&dva[d]));
2155 * For testing, make some blocks above a certain size be gang blocks.
2157 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
2158 return (SET_ERROR(ENOSPC));
2161 * Start at the rotor and loop through all mgs until we find something.
2162 * Note that there's no locking on mc_rotor or mc_aliquot because
2163 * nothing actually breaks if we miss a few updates -- we just won't
2164 * allocate quite as evenly. It all balances out over time.
2166 * If we are doing ditto or log blocks, try to spread them across
2167 * consecutive vdevs. If we're forced to reuse a vdev before we've
2168 * allocated all of our ditto blocks, then try and spread them out on
2169 * that vdev as much as possible. If it turns out to not be possible,
2170 * gradually lower our standards until anything becomes acceptable.
2171 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
2172 * gives us hope of containing our fault domains to something we're
2173 * able to reason about. Otherwise, any two top-level vdev failures
2174 * will guarantee the loss of data. With consecutive allocation,
2175 * only two adjacent top-level vdev failures will result in data loss.
2177 * If we are doing gang blocks (hintdva is non-NULL), try to keep
2178 * ourselves on the same vdev as our gang block header. That
2179 * way, we can hope for locality in vdev_cache, plus it makes our
2180 * fault domains something tractable.
2182 if (hintdva) {
2183 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
2186 * It's possible the vdev we're using as the hint no
2187 * longer exists (i.e. removed). Consult the rotor when
2188 * all else fails.
2190 if (vd != NULL) {
2191 mg = vd->vdev_mg;
2193 if (flags & METASLAB_HINTBP_AVOID &&
2194 mg->mg_next != NULL)
2195 mg = mg->mg_next;
2196 } else {
2197 mg = mc->mc_rotor;
2199 } else if (d != 0) {
2200 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
2201 mg = vd->vdev_mg->mg_next;
2202 } else {
2203 mg = mc->mc_rotor;
2207 * If the hint put us into the wrong metaslab class, or into a
2208 * metaslab group that has been passivated, just follow the rotor.
2210 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
2211 mg = mc->mc_rotor;
2213 rotor = mg;
2214 top:
2215 all_zero = B_TRUE;
2216 do {
2217 ASSERT(mg->mg_activation_count == 1);
2219 vd = mg->mg_vd;
2222 * Don't allocate from faulted devices.
2224 if (zio_lock) {
2225 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
2226 allocatable = vdev_allocatable(vd);
2227 spa_config_exit(spa, SCL_ZIO, FTAG);
2228 } else {
2229 allocatable = vdev_allocatable(vd);
2233 * Determine if the selected metaslab group is eligible
2234 * for allocations. If we're ganging or have requested
2235 * an allocation for the smallest gang block size
2236 * then we don't want to avoid allocating to the this
2237 * metaslab group. If we're in this condition we should
2238 * try to allocate from any device possible so that we
2239 * don't inadvertently return ENOSPC and suspend the pool
2240 * even though space is still available.
2242 if (allocatable && CAN_FASTGANG(flags) &&
2243 psize > SPA_GANGBLOCKSIZE)
2244 allocatable = metaslab_group_allocatable(mg);
2246 if (!allocatable)
2247 goto next;
2250 * Avoid writing single-copy data to a failing vdev
2251 * unless the user instructs us that it is okay.
2253 if ((vd->vdev_stat.vs_write_errors > 0 ||
2254 vd->vdev_state < VDEV_STATE_HEALTHY) &&
2255 d == 0 && dshift == 3 && vd->vdev_children == 0) {
2256 all_zero = B_FALSE;
2257 goto next;
2260 ASSERT(mg->mg_class == mc);
2262 distance = vd->vdev_asize >> dshift;
2263 if (distance <= (1ULL << vd->vdev_ms_shift))
2264 distance = 0;
2265 else
2266 all_zero = B_FALSE;
2268 asize = vdev_psize_to_asize(vd, psize);
2269 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
2271 offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
2272 dva, d);
2273 if (offset != -1ULL) {
2275 * If we've just selected this metaslab group,
2276 * figure out whether the corresponding vdev is
2277 * over- or under-used relative to the pool,
2278 * and set an allocation bias to even it out.
2280 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
2281 vdev_stat_t *vs = &vd->vdev_stat;
2282 int64_t vu, cu;
2284 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
2285 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
2288 * Calculate how much more or less we should
2289 * try to allocate from this device during
2290 * this iteration around the rotor.
2291 * For example, if a device is 80% full
2292 * and the pool is 20% full then we should
2293 * reduce allocations by 60% on this device.
2295 * mg_bias = (20 - 80) * 512K / 100 = -307K
2297 * This reduces allocations by 307K for this
2298 * iteration.
2300 mg->mg_bias = ((cu - vu) *
2301 (int64_t)mg->mg_aliquot) / 100;
2302 } else if (!metaslab_bias_enabled) {
2303 mg->mg_bias = 0;
2306 if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
2307 mg->mg_aliquot + mg->mg_bias) {
2308 mc->mc_rotor = mg->mg_next;
2309 mc->mc_aliquot = 0;
2312 DVA_SET_VDEV(&dva[d], vd->vdev_id);
2313 DVA_SET_OFFSET(&dva[d], offset);
2314 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
2315 DVA_SET_ASIZE(&dva[d], asize);
2317 return (0);
2319 next:
2320 mc->mc_rotor = mg->mg_next;
2321 mc->mc_aliquot = 0;
2322 } while ((mg = mg->mg_next) != rotor);
2324 if (!all_zero) {
2325 dshift++;
2326 ASSERT(dshift < 64);
2327 goto top;
2330 if (!allocatable && !zio_lock) {
2331 dshift = 3;
2332 zio_lock = B_TRUE;
2333 goto top;
2336 bzero(&dva[d], sizeof (dva_t));
2338 return (SET_ERROR(ENOSPC));
2342 * Free the block represented by DVA in the context of the specified
2343 * transaction group.
2345 static void
2346 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
2348 uint64_t vdev = DVA_GET_VDEV(dva);
2349 uint64_t offset = DVA_GET_OFFSET(dva);
2350 uint64_t size = DVA_GET_ASIZE(dva);
2351 vdev_t *vd;
2352 metaslab_t *msp;
2354 ASSERT(DVA_IS_VALID(dva));
2356 if (txg > spa_freeze_txg(spa))
2357 return;
2359 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2360 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
2361 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
2362 (u_longlong_t)vdev, (u_longlong_t)offset);
2363 ASSERT(0);
2364 return;
2367 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2369 if (DVA_GET_GANG(dva))
2370 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2372 mutex_enter(&msp->ms_lock);
2374 if (now) {
2375 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
2376 offset, size);
2378 VERIFY(!msp->ms_condensing);
2379 VERIFY3U(offset, >=, msp->ms_start);
2380 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
2381 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
2382 msp->ms_size);
2383 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2384 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2385 range_tree_add(msp->ms_tree, offset, size);
2386 } else {
2387 if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0)
2388 vdev_dirty(vd, VDD_METASLAB, msp, txg);
2389 range_tree_add(msp->ms_freetree[txg & TXG_MASK],
2390 offset, size);
2393 mutex_exit(&msp->ms_lock);
2397 * Intent log support: upon opening the pool after a crash, notify the SPA
2398 * of blocks that the intent log has allocated for immediate write, but
2399 * which are still considered free by the SPA because the last transaction
2400 * group didn't commit yet.
2402 static int
2403 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
2405 uint64_t vdev = DVA_GET_VDEV(dva);
2406 uint64_t offset = DVA_GET_OFFSET(dva);
2407 uint64_t size = DVA_GET_ASIZE(dva);
2408 vdev_t *vd;
2409 metaslab_t *msp;
2410 int error = 0;
2412 ASSERT(DVA_IS_VALID(dva));
2414 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2415 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
2416 return (SET_ERROR(ENXIO));
2418 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2420 if (DVA_GET_GANG(dva))
2421 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2423 mutex_enter(&msp->ms_lock);
2425 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
2426 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
2428 if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
2429 error = SET_ERROR(ENOENT);
2431 if (error || txg == 0) { /* txg == 0 indicates dry run */
2432 mutex_exit(&msp->ms_lock);
2433 return (error);
2436 VERIFY(!msp->ms_condensing);
2437 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2438 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2439 VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
2440 range_tree_remove(msp->ms_tree, offset, size);
2442 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
2443 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2444 vdev_dirty(vd, VDD_METASLAB, msp, txg);
2445 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
2448 mutex_exit(&msp->ms_lock);
2450 return (0);
2454 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
2455 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
2457 dva_t *dva = bp->blk_dva;
2458 dva_t *hintdva = hintbp->blk_dva;
2459 int error = 0;
2461 ASSERT(bp->blk_birth == 0);
2462 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
2464 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2466 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
2467 spa_config_exit(spa, SCL_ALLOC, FTAG);
2468 return (SET_ERROR(ENOSPC));
2471 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
2472 ASSERT(BP_GET_NDVAS(bp) == 0);
2473 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
2475 for (int d = 0; d < ndvas; d++) {
2476 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
2477 txg, flags);
2478 if (error != 0) {
2479 for (d--; d >= 0; d--) {
2480 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
2481 bzero(&dva[d], sizeof (dva_t));
2483 spa_config_exit(spa, SCL_ALLOC, FTAG);
2484 return (error);
2487 ASSERT(error == 0);
2488 ASSERT(BP_GET_NDVAS(bp) == ndvas);
2490 spa_config_exit(spa, SCL_ALLOC, FTAG);
2492 BP_SET_BIRTH(bp, txg, txg);
2494 return (0);
2497 void
2498 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
2500 const dva_t *dva = bp->blk_dva;
2501 int ndvas = BP_GET_NDVAS(bp);
2503 ASSERT(!BP_IS_HOLE(bp));
2504 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
2506 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
2508 for (int d = 0; d < ndvas; d++)
2509 metaslab_free_dva(spa, &dva[d], txg, now);
2511 spa_config_exit(spa, SCL_FREE, FTAG);
2515 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
2517 const dva_t *dva = bp->blk_dva;
2518 int ndvas = BP_GET_NDVAS(bp);
2519 int error = 0;
2521 ASSERT(!BP_IS_HOLE(bp));
2523 if (txg != 0) {
2525 * First do a dry run to make sure all DVAs are claimable,
2526 * so we don't have to unwind from partial failures below.
2528 if ((error = metaslab_claim(spa, bp, 0)) != 0)
2529 return (error);
2532 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2534 for (int d = 0; d < ndvas; d++)
2535 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
2536 break;
2538 spa_config_exit(spa, SCL_ALLOC, FTAG);
2540 ASSERT(error == 0 || txg == 0);
2542 return (error);
2545 void
2546 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
2548 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
2549 return;
2551 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2552 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
2553 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
2554 vdev_t *vd = vdev_lookup_top(spa, vdev);
2555 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
2556 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
2557 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2559 if (msp->ms_loaded)
2560 range_tree_verify(msp->ms_tree, offset, size);
2562 for (int j = 0; j < TXG_SIZE; j++)
2563 range_tree_verify(msp->ms_freetree[j], offset, size);
2564 for (int j = 0; j < TXG_DEFER_SIZE; j++)
2565 range_tree_verify(msp->ms_defertree[j], offset, size);
2567 spa_config_exit(spa, SCL_VDEV, FTAG);