3246 ZFS I/O deadman thread
[unleashed.git] / usr / src / uts / common / fs / zfs / vdev_queue.c
blob2b06040c51b72717799776640dd234630ef8b700
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2012 by Delphix. All rights reserved.
30 #include <sys/zfs_context.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zio.h>
33 #include <sys/avl.h>
36 * These tunables are for performance analysis.
39 * zfs_vdev_max_pending is the maximum number of i/os concurrently
40 * pending to each device. zfs_vdev_min_pending is the initial number
41 * of i/os pending to each device (before it starts ramping up to
42 * max_pending).
44 int zfs_vdev_max_pending = 10;
45 int zfs_vdev_min_pending = 4;
47 /* deadline = pri + ddi_get_lbolt64() >> time_shift) */
48 int zfs_vdev_time_shift = 6;
50 /* exponential I/O issue ramp-up rate */
51 int zfs_vdev_ramp_rate = 2;
54 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
55 * For read I/Os, we also aggregate across small adjacency gaps; for writes
56 * we include spans of optional I/Os to aid aggregation at the disk even when
57 * they aren't able to help us aggregate at this level.
59 int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
60 int zfs_vdev_read_gap_limit = 32 << 10;
61 int zfs_vdev_write_gap_limit = 4 << 10;
64 * Virtual device vector for disk I/O scheduling.
66 int
67 vdev_queue_deadline_compare(const void *x1, const void *x2)
69 const zio_t *z1 = x1;
70 const zio_t *z2 = x2;
72 if (z1->io_deadline < z2->io_deadline)
73 return (-1);
74 if (z1->io_deadline > z2->io_deadline)
75 return (1);
77 if (z1->io_offset < z2->io_offset)
78 return (-1);
79 if (z1->io_offset > z2->io_offset)
80 return (1);
82 if (z1 < z2)
83 return (-1);
84 if (z1 > z2)
85 return (1);
87 return (0);
90 int
91 vdev_queue_offset_compare(const void *x1, const void *x2)
93 const zio_t *z1 = x1;
94 const zio_t *z2 = x2;
96 if (z1->io_offset < z2->io_offset)
97 return (-1);
98 if (z1->io_offset > z2->io_offset)
99 return (1);
101 if (z1 < z2)
102 return (-1);
103 if (z1 > z2)
104 return (1);
106 return (0);
109 void
110 vdev_queue_init(vdev_t *vd)
112 vdev_queue_t *vq = &vd->vdev_queue;
114 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
116 avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare,
117 sizeof (zio_t), offsetof(struct zio, io_deadline_node));
119 avl_create(&vq->vq_read_tree, vdev_queue_offset_compare,
120 sizeof (zio_t), offsetof(struct zio, io_offset_node));
122 avl_create(&vq->vq_write_tree, vdev_queue_offset_compare,
123 sizeof (zio_t), offsetof(struct zio, io_offset_node));
125 avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare,
126 sizeof (zio_t), offsetof(struct zio, io_offset_node));
129 void
130 vdev_queue_fini(vdev_t *vd)
132 vdev_queue_t *vq = &vd->vdev_queue;
134 avl_destroy(&vq->vq_deadline_tree);
135 avl_destroy(&vq->vq_read_tree);
136 avl_destroy(&vq->vq_write_tree);
137 avl_destroy(&vq->vq_pending_tree);
139 mutex_destroy(&vq->vq_lock);
142 static void
143 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
145 avl_add(&vq->vq_deadline_tree, zio);
146 avl_add(zio->io_vdev_tree, zio);
149 static void
150 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
152 avl_remove(&vq->vq_deadline_tree, zio);
153 avl_remove(zio->io_vdev_tree, zio);
156 static void
157 vdev_queue_agg_io_done(zio_t *aio)
159 zio_t *pio;
161 while ((pio = zio_walk_parents(aio)) != NULL)
162 if (aio->io_type == ZIO_TYPE_READ)
163 bcopy((char *)aio->io_data + (pio->io_offset -
164 aio->io_offset), pio->io_data, pio->io_size);
166 zio_buf_free(aio->io_data, aio->io_size);
170 * Compute the range spanned by two i/os, which is the endpoint of the last
171 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
172 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
173 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
175 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
176 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
178 static zio_t *
179 vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
181 zio_t *fio, *lio, *aio, *dio, *nio, *mio;
182 avl_tree_t *t;
183 int flags;
184 uint64_t maxspan = zfs_vdev_aggregation_limit;
185 uint64_t maxgap;
186 int stretch;
188 again:
189 ASSERT(MUTEX_HELD(&vq->vq_lock));
191 if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
192 avl_numnodes(&vq->vq_deadline_tree) == 0)
193 return (NULL);
195 fio = lio = avl_first(&vq->vq_deadline_tree);
197 t = fio->io_vdev_tree;
198 flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT;
199 maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0;
201 if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
203 * We can aggregate I/Os that are sufficiently adjacent and of
204 * the same flavor, as expressed by the AGG_INHERIT flags.
205 * The latter requirement is necessary so that certain
206 * attributes of the I/O, such as whether it's a normal I/O
207 * or a scrub/resilver, can be preserved in the aggregate.
208 * We can include optional I/Os, but don't allow them
209 * to begin a range as they add no benefit in that situation.
213 * We keep track of the last non-optional I/O.
215 mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio;
218 * Walk backwards through sufficiently contiguous I/Os
219 * recording the last non-option I/O.
221 while ((dio = AVL_PREV(t, fio)) != NULL &&
222 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
223 IO_SPAN(dio, lio) <= maxspan &&
224 IO_GAP(dio, fio) <= maxgap) {
225 fio = dio;
226 if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL))
227 mio = fio;
231 * Skip any initial optional I/Os.
233 while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) {
234 fio = AVL_NEXT(t, fio);
235 ASSERT(fio != NULL);
239 * Walk forward through sufficiently contiguous I/Os.
241 while ((dio = AVL_NEXT(t, lio)) != NULL &&
242 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
243 IO_SPAN(fio, dio) <= maxspan &&
244 IO_GAP(lio, dio) <= maxgap) {
245 lio = dio;
246 if (!(lio->io_flags & ZIO_FLAG_OPTIONAL))
247 mio = lio;
251 * Now that we've established the range of the I/O aggregation
252 * we must decide what to do with trailing optional I/Os.
253 * For reads, there's nothing to do. While we are unable to
254 * aggregate further, it's possible that a trailing optional
255 * I/O would allow the underlying device to aggregate with
256 * subsequent I/Os. We must therefore determine if the next
257 * non-optional I/O is close enough to make aggregation
258 * worthwhile.
260 stretch = B_FALSE;
261 if (t != &vq->vq_read_tree && mio != NULL) {
262 nio = lio;
263 while ((dio = AVL_NEXT(t, nio)) != NULL &&
264 IO_GAP(nio, dio) == 0 &&
265 IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) {
266 nio = dio;
267 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
268 stretch = B_TRUE;
269 break;
274 if (stretch) {
275 /* This may be a no-op. */
276 VERIFY((dio = AVL_NEXT(t, lio)) != NULL);
277 dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
278 } else {
279 while (lio != mio && lio != fio) {
280 ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL);
281 lio = AVL_PREV(t, lio);
282 ASSERT(lio != NULL);
287 if (fio != lio) {
288 uint64_t size = IO_SPAN(fio, lio);
289 ASSERT(size <= zfs_vdev_aggregation_limit);
291 aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset,
292 zio_buf_alloc(size), size, fio->io_type, ZIO_PRIORITY_AGG,
293 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
294 vdev_queue_agg_io_done, NULL);
295 aio->io_timestamp = fio->io_timestamp;
297 nio = fio;
298 do {
299 dio = nio;
300 nio = AVL_NEXT(t, dio);
301 ASSERT(dio->io_type == aio->io_type);
302 ASSERT(dio->io_vdev_tree == t);
304 if (dio->io_flags & ZIO_FLAG_NODATA) {
305 ASSERT(dio->io_type == ZIO_TYPE_WRITE);
306 bzero((char *)aio->io_data + (dio->io_offset -
307 aio->io_offset), dio->io_size);
308 } else if (dio->io_type == ZIO_TYPE_WRITE) {
309 bcopy(dio->io_data, (char *)aio->io_data +
310 (dio->io_offset - aio->io_offset),
311 dio->io_size);
314 zio_add_child(dio, aio);
315 vdev_queue_io_remove(vq, dio);
316 zio_vdev_io_bypass(dio);
317 zio_execute(dio);
318 } while (dio != lio);
320 avl_add(&vq->vq_pending_tree, aio);
322 return (aio);
325 ASSERT(fio->io_vdev_tree == t);
326 vdev_queue_io_remove(vq, fio);
329 * If the I/O is or was optional and therefore has no data, we need to
330 * simply discard it. We need to drop the vdev queue's lock to avoid a
331 * deadlock that we could encounter since this I/O will complete
332 * immediately.
334 if (fio->io_flags & ZIO_FLAG_NODATA) {
335 mutex_exit(&vq->vq_lock);
336 zio_vdev_io_bypass(fio);
337 zio_execute(fio);
338 mutex_enter(&vq->vq_lock);
339 goto again;
342 avl_add(&vq->vq_pending_tree, fio);
344 return (fio);
347 zio_t *
348 vdev_queue_io(zio_t *zio)
350 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
351 zio_t *nio;
353 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
355 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
356 return (zio);
358 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
360 if (zio->io_type == ZIO_TYPE_READ)
361 zio->io_vdev_tree = &vq->vq_read_tree;
362 else
363 zio->io_vdev_tree = &vq->vq_write_tree;
365 mutex_enter(&vq->vq_lock);
367 zio->io_timestamp = ddi_get_lbolt64();
368 zio->io_deadline = (zio->io_timestamp >> zfs_vdev_time_shift) +
369 zio->io_priority;
371 vdev_queue_io_add(vq, zio);
373 nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending);
375 mutex_exit(&vq->vq_lock);
377 if (nio == NULL)
378 return (NULL);
380 if (nio->io_done == vdev_queue_agg_io_done) {
381 zio_nowait(nio);
382 return (NULL);
385 return (nio);
388 void
389 vdev_queue_io_done(zio_t *zio)
391 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
393 if (zio_injection_enabled)
394 delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
396 mutex_enter(&vq->vq_lock);
398 avl_remove(&vq->vq_pending_tree, zio);
400 vq->vq_io_complete_ts = ddi_get_lbolt64();
401 vq->vq_io_delta_ts = vq->vq_io_complete_ts - zio->io_timestamp;
403 for (int i = 0; i < zfs_vdev_ramp_rate; i++) {
404 zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending);
405 if (nio == NULL)
406 break;
407 mutex_exit(&vq->vq_lock);
408 if (nio->io_done == vdev_queue_agg_io_done) {
409 zio_nowait(nio);
410 } else {
411 zio_vdev_io_reissue(nio);
412 zio_execute(nio);
414 mutex_enter(&vq->vq_lock);
417 mutex_exit(&vq->vq_lock);