4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2012 by Delphix. All rights reserved.
30 #include <sys/zfs_context.h>
31 #include <sys/vdev_impl.h>
36 * These tunables are for performance analysis.
39 * zfs_vdev_max_pending is the maximum number of i/os concurrently
40 * pending to each device. zfs_vdev_min_pending is the initial number
41 * of i/os pending to each device (before it starts ramping up to
44 int zfs_vdev_max_pending
= 10;
45 int zfs_vdev_min_pending
= 4;
47 /* deadline = pri + ddi_get_lbolt64() >> time_shift) */
48 int zfs_vdev_time_shift
= 6;
50 /* exponential I/O issue ramp-up rate */
51 int zfs_vdev_ramp_rate
= 2;
54 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
55 * For read I/Os, we also aggregate across small adjacency gaps; for writes
56 * we include spans of optional I/Os to aid aggregation at the disk even when
57 * they aren't able to help us aggregate at this level.
59 int zfs_vdev_aggregation_limit
= SPA_MAXBLOCKSIZE
;
60 int zfs_vdev_read_gap_limit
= 32 << 10;
61 int zfs_vdev_write_gap_limit
= 4 << 10;
64 * Virtual device vector for disk I/O scheduling.
67 vdev_queue_deadline_compare(const void *x1
, const void *x2
)
72 if (z1
->io_deadline
< z2
->io_deadline
)
74 if (z1
->io_deadline
> z2
->io_deadline
)
77 if (z1
->io_offset
< z2
->io_offset
)
79 if (z1
->io_offset
> z2
->io_offset
)
91 vdev_queue_offset_compare(const void *x1
, const void *x2
)
96 if (z1
->io_offset
< z2
->io_offset
)
98 if (z1
->io_offset
> z2
->io_offset
)
110 vdev_queue_init(vdev_t
*vd
)
112 vdev_queue_t
*vq
= &vd
->vdev_queue
;
114 mutex_init(&vq
->vq_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
116 avl_create(&vq
->vq_deadline_tree
, vdev_queue_deadline_compare
,
117 sizeof (zio_t
), offsetof(struct zio
, io_deadline_node
));
119 avl_create(&vq
->vq_read_tree
, vdev_queue_offset_compare
,
120 sizeof (zio_t
), offsetof(struct zio
, io_offset_node
));
122 avl_create(&vq
->vq_write_tree
, vdev_queue_offset_compare
,
123 sizeof (zio_t
), offsetof(struct zio
, io_offset_node
));
125 avl_create(&vq
->vq_pending_tree
, vdev_queue_offset_compare
,
126 sizeof (zio_t
), offsetof(struct zio
, io_offset_node
));
130 vdev_queue_fini(vdev_t
*vd
)
132 vdev_queue_t
*vq
= &vd
->vdev_queue
;
134 avl_destroy(&vq
->vq_deadline_tree
);
135 avl_destroy(&vq
->vq_read_tree
);
136 avl_destroy(&vq
->vq_write_tree
);
137 avl_destroy(&vq
->vq_pending_tree
);
139 mutex_destroy(&vq
->vq_lock
);
143 vdev_queue_io_add(vdev_queue_t
*vq
, zio_t
*zio
)
145 avl_add(&vq
->vq_deadline_tree
, zio
);
146 avl_add(zio
->io_vdev_tree
, zio
);
150 vdev_queue_io_remove(vdev_queue_t
*vq
, zio_t
*zio
)
152 avl_remove(&vq
->vq_deadline_tree
, zio
);
153 avl_remove(zio
->io_vdev_tree
, zio
);
157 vdev_queue_agg_io_done(zio_t
*aio
)
161 while ((pio
= zio_walk_parents(aio
)) != NULL
)
162 if (aio
->io_type
== ZIO_TYPE_READ
)
163 bcopy((char *)aio
->io_data
+ (pio
->io_offset
-
164 aio
->io_offset
), pio
->io_data
, pio
->io_size
);
166 zio_buf_free(aio
->io_data
, aio
->io_size
);
170 * Compute the range spanned by two i/os, which is the endpoint of the last
171 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
172 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
173 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
175 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
176 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
179 vdev_queue_io_to_issue(vdev_queue_t
*vq
, uint64_t pending_limit
)
181 zio_t
*fio
, *lio
, *aio
, *dio
, *nio
, *mio
;
184 uint64_t maxspan
= zfs_vdev_aggregation_limit
;
189 ASSERT(MUTEX_HELD(&vq
->vq_lock
));
191 if (avl_numnodes(&vq
->vq_pending_tree
) >= pending_limit
||
192 avl_numnodes(&vq
->vq_deadline_tree
) == 0)
195 fio
= lio
= avl_first(&vq
->vq_deadline_tree
);
197 t
= fio
->io_vdev_tree
;
198 flags
= fio
->io_flags
& ZIO_FLAG_AGG_INHERIT
;
199 maxgap
= (t
== &vq
->vq_read_tree
) ? zfs_vdev_read_gap_limit
: 0;
201 if (!(flags
& ZIO_FLAG_DONT_AGGREGATE
)) {
203 * We can aggregate I/Os that are sufficiently adjacent and of
204 * the same flavor, as expressed by the AGG_INHERIT flags.
205 * The latter requirement is necessary so that certain
206 * attributes of the I/O, such as whether it's a normal I/O
207 * or a scrub/resilver, can be preserved in the aggregate.
208 * We can include optional I/Os, but don't allow them
209 * to begin a range as they add no benefit in that situation.
213 * We keep track of the last non-optional I/O.
215 mio
= (fio
->io_flags
& ZIO_FLAG_OPTIONAL
) ? NULL
: fio
;
218 * Walk backwards through sufficiently contiguous I/Os
219 * recording the last non-option I/O.
221 while ((dio
= AVL_PREV(t
, fio
)) != NULL
&&
222 (dio
->io_flags
& ZIO_FLAG_AGG_INHERIT
) == flags
&&
223 IO_SPAN(dio
, lio
) <= maxspan
&&
224 IO_GAP(dio
, fio
) <= maxgap
) {
226 if (mio
== NULL
&& !(fio
->io_flags
& ZIO_FLAG_OPTIONAL
))
231 * Skip any initial optional I/Os.
233 while ((fio
->io_flags
& ZIO_FLAG_OPTIONAL
) && fio
!= lio
) {
234 fio
= AVL_NEXT(t
, fio
);
239 * Walk forward through sufficiently contiguous I/Os.
241 while ((dio
= AVL_NEXT(t
, lio
)) != NULL
&&
242 (dio
->io_flags
& ZIO_FLAG_AGG_INHERIT
) == flags
&&
243 IO_SPAN(fio
, dio
) <= maxspan
&&
244 IO_GAP(lio
, dio
) <= maxgap
) {
246 if (!(lio
->io_flags
& ZIO_FLAG_OPTIONAL
))
251 * Now that we've established the range of the I/O aggregation
252 * we must decide what to do with trailing optional I/Os.
253 * For reads, there's nothing to do. While we are unable to
254 * aggregate further, it's possible that a trailing optional
255 * I/O would allow the underlying device to aggregate with
256 * subsequent I/Os. We must therefore determine if the next
257 * non-optional I/O is close enough to make aggregation
261 if (t
!= &vq
->vq_read_tree
&& mio
!= NULL
) {
263 while ((dio
= AVL_NEXT(t
, nio
)) != NULL
&&
264 IO_GAP(nio
, dio
) == 0 &&
265 IO_GAP(mio
, dio
) <= zfs_vdev_write_gap_limit
) {
267 if (!(nio
->io_flags
& ZIO_FLAG_OPTIONAL
)) {
275 /* This may be a no-op. */
276 VERIFY((dio
= AVL_NEXT(t
, lio
)) != NULL
);
277 dio
->io_flags
&= ~ZIO_FLAG_OPTIONAL
;
279 while (lio
!= mio
&& lio
!= fio
) {
280 ASSERT(lio
->io_flags
& ZIO_FLAG_OPTIONAL
);
281 lio
= AVL_PREV(t
, lio
);
288 uint64_t size
= IO_SPAN(fio
, lio
);
289 ASSERT(size
<= zfs_vdev_aggregation_limit
);
291 aio
= zio_vdev_delegated_io(fio
->io_vd
, fio
->io_offset
,
292 zio_buf_alloc(size
), size
, fio
->io_type
, ZIO_PRIORITY_AGG
,
293 flags
| ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_DONT_QUEUE
,
294 vdev_queue_agg_io_done
, NULL
);
295 aio
->io_timestamp
= fio
->io_timestamp
;
300 nio
= AVL_NEXT(t
, dio
);
301 ASSERT(dio
->io_type
== aio
->io_type
);
302 ASSERT(dio
->io_vdev_tree
== t
);
304 if (dio
->io_flags
& ZIO_FLAG_NODATA
) {
305 ASSERT(dio
->io_type
== ZIO_TYPE_WRITE
);
306 bzero((char *)aio
->io_data
+ (dio
->io_offset
-
307 aio
->io_offset
), dio
->io_size
);
308 } else if (dio
->io_type
== ZIO_TYPE_WRITE
) {
309 bcopy(dio
->io_data
, (char *)aio
->io_data
+
310 (dio
->io_offset
- aio
->io_offset
),
314 zio_add_child(dio
, aio
);
315 vdev_queue_io_remove(vq
, dio
);
316 zio_vdev_io_bypass(dio
);
318 } while (dio
!= lio
);
320 avl_add(&vq
->vq_pending_tree
, aio
);
325 ASSERT(fio
->io_vdev_tree
== t
);
326 vdev_queue_io_remove(vq
, fio
);
329 * If the I/O is or was optional and therefore has no data, we need to
330 * simply discard it. We need to drop the vdev queue's lock to avoid a
331 * deadlock that we could encounter since this I/O will complete
334 if (fio
->io_flags
& ZIO_FLAG_NODATA
) {
335 mutex_exit(&vq
->vq_lock
);
336 zio_vdev_io_bypass(fio
);
338 mutex_enter(&vq
->vq_lock
);
342 avl_add(&vq
->vq_pending_tree
, fio
);
348 vdev_queue_io(zio_t
*zio
)
350 vdev_queue_t
*vq
= &zio
->io_vd
->vdev_queue
;
353 ASSERT(zio
->io_type
== ZIO_TYPE_READ
|| zio
->io_type
== ZIO_TYPE_WRITE
);
355 if (zio
->io_flags
& ZIO_FLAG_DONT_QUEUE
)
358 zio
->io_flags
|= ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_DONT_QUEUE
;
360 if (zio
->io_type
== ZIO_TYPE_READ
)
361 zio
->io_vdev_tree
= &vq
->vq_read_tree
;
363 zio
->io_vdev_tree
= &vq
->vq_write_tree
;
365 mutex_enter(&vq
->vq_lock
);
367 zio
->io_timestamp
= ddi_get_lbolt64();
368 zio
->io_deadline
= (zio
->io_timestamp
>> zfs_vdev_time_shift
) +
371 vdev_queue_io_add(vq
, zio
);
373 nio
= vdev_queue_io_to_issue(vq
, zfs_vdev_min_pending
);
375 mutex_exit(&vq
->vq_lock
);
380 if (nio
->io_done
== vdev_queue_agg_io_done
) {
389 vdev_queue_io_done(zio_t
*zio
)
391 vdev_queue_t
*vq
= &zio
->io_vd
->vdev_queue
;
393 if (zio_injection_enabled
)
394 delay(SEC_TO_TICK(zio_handle_io_delay(zio
)));
396 mutex_enter(&vq
->vq_lock
);
398 avl_remove(&vq
->vq_pending_tree
, zio
);
400 vq
->vq_io_complete_ts
= ddi_get_lbolt64();
401 vq
->vq_io_delta_ts
= vq
->vq_io_complete_ts
- zio
->io_timestamp
;
403 for (int i
= 0; i
< zfs_vdev_ramp_rate
; i
++) {
404 zio_t
*nio
= vdev_queue_io_to_issue(vq
, zfs_vdev_max_pending
);
407 mutex_exit(&vq
->vq_lock
);
408 if (nio
->io_done
== vdev_queue_agg_io_done
) {
411 zio_vdev_io_reissue(nio
);
414 mutex_enter(&vq
->vq_lock
);
417 mutex_exit(&vq
->vq_lock
);