3246 ZFS I/O deadman thread
[unleashed.git] / usr / src / uts / common / fs / zfs / spa.c
blob968fbd80d61d03ded5ff4896c49457b0a7228958
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
29 * This file contains all the routines used when modifying on-disk SPA state.
30 * This includes opening, importing, destroying, exporting a pool, and syncing a
31 * pool.
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/ddt.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/arc.h>
60 #include <sys/callb.h>
61 #include <sys/systeminfo.h>
62 #include <sys/spa_boot.h>
63 #include <sys/zfs_ioctl.h>
64 #include <sys/dsl_scan.h>
65 #include <sys/zfeature.h>
67 #ifdef _KERNEL
68 #include <sys/bootprops.h>
69 #include <sys/callb.h>
70 #include <sys/cpupart.h>
71 #include <sys/pool.h>
72 #include <sys/sysdc.h>
73 #include <sys/zone.h>
74 #endif /* _KERNEL */
76 #include "zfs_prop.h"
77 #include "zfs_comutil.h"
79 typedef enum zti_modes {
80 zti_mode_fixed, /* value is # of threads (min 1) */
81 zti_mode_online_percent, /* value is % of online CPUs */
82 zti_mode_batch, /* cpu-intensive; value is ignored */
83 zti_mode_null, /* don't create a taskq */
84 zti_nmodes
85 } zti_modes_t;
87 #define ZTI_FIX(n) { zti_mode_fixed, (n) }
88 #define ZTI_PCT(n) { zti_mode_online_percent, (n) }
89 #define ZTI_BATCH { zti_mode_batch, 0 }
90 #define ZTI_NULL { zti_mode_null, 0 }
92 #define ZTI_ONE ZTI_FIX(1)
94 typedef struct zio_taskq_info {
95 enum zti_modes zti_mode;
96 uint_t zti_value;
97 } zio_taskq_info_t;
99 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
100 "issue", "issue_high", "intr", "intr_high"
104 * Define the taskq threads for the following I/O types:
105 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL
107 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
108 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
109 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
110 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL },
111 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) },
112 { ZTI_FIX(100), ZTI_NULL, ZTI_ONE, ZTI_NULL },
113 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
114 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
117 static dsl_syncfunc_t spa_sync_version;
118 static dsl_syncfunc_t spa_sync_props;
119 static dsl_checkfunc_t spa_change_guid_check;
120 static dsl_syncfunc_t spa_change_guid_sync;
121 static boolean_t spa_has_active_shared_spare(spa_t *spa);
122 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
123 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
124 char **ereport);
125 static void spa_vdev_resilver_done(spa_t *spa);
127 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */
128 id_t zio_taskq_psrset_bind = PS_NONE;
129 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
130 uint_t zio_taskq_basedc = 80; /* base duty cycle */
132 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
135 * This (illegal) pool name is used when temporarily importing a spa_t in order
136 * to get the vdev stats associated with the imported devices.
138 #define TRYIMPORT_NAME "$import"
141 * ==========================================================================
142 * SPA properties routines
143 * ==========================================================================
147 * Add a (source=src, propname=propval) list to an nvlist.
149 static void
150 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
151 uint64_t intval, zprop_source_t src)
153 const char *propname = zpool_prop_to_name(prop);
154 nvlist_t *propval;
156 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
157 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
159 if (strval != NULL)
160 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
161 else
162 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
164 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
165 nvlist_free(propval);
169 * Get property values from the spa configuration.
171 static void
172 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
174 vdev_t *rvd = spa->spa_root_vdev;
175 dsl_pool_t *pool = spa->spa_dsl_pool;
176 uint64_t size;
177 uint64_t alloc;
178 uint64_t space;
179 uint64_t cap, version;
180 zprop_source_t src = ZPROP_SRC_NONE;
181 spa_config_dirent_t *dp;
183 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
185 if (rvd != NULL) {
186 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
187 size = metaslab_class_get_space(spa_normal_class(spa));
188 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
189 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
190 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
191 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
192 size - alloc, src);
194 space = 0;
195 for (int c = 0; c < rvd->vdev_children; c++) {
196 vdev_t *tvd = rvd->vdev_child[c];
197 space += tvd->vdev_max_asize - tvd->vdev_asize;
199 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
200 src);
202 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
203 (spa_mode(spa) == FREAD), src);
205 cap = (size == 0) ? 0 : (alloc * 100 / size);
206 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
208 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
209 ddt_get_pool_dedup_ratio(spa), src);
211 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
212 rvd->vdev_state, src);
214 version = spa_version(spa);
215 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
216 src = ZPROP_SRC_DEFAULT;
217 else
218 src = ZPROP_SRC_LOCAL;
219 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
222 if (pool != NULL) {
223 dsl_dir_t *freedir = pool->dp_free_dir;
226 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
227 * when opening pools before this version freedir will be NULL.
229 if (freedir != NULL) {
230 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
231 freedir->dd_phys->dd_used_bytes, src);
232 } else {
233 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
234 NULL, 0, src);
238 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
240 if (spa->spa_comment != NULL) {
241 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
242 0, ZPROP_SRC_LOCAL);
245 if (spa->spa_root != NULL)
246 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
247 0, ZPROP_SRC_LOCAL);
249 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
250 if (dp->scd_path == NULL) {
251 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
252 "none", 0, ZPROP_SRC_LOCAL);
253 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
254 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
255 dp->scd_path, 0, ZPROP_SRC_LOCAL);
261 * Get zpool property values.
264 spa_prop_get(spa_t *spa, nvlist_t **nvp)
266 objset_t *mos = spa->spa_meta_objset;
267 zap_cursor_t zc;
268 zap_attribute_t za;
269 int err;
271 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
273 mutex_enter(&spa->spa_props_lock);
276 * Get properties from the spa config.
278 spa_prop_get_config(spa, nvp);
280 /* If no pool property object, no more prop to get. */
281 if (mos == NULL || spa->spa_pool_props_object == 0) {
282 mutex_exit(&spa->spa_props_lock);
283 return (0);
287 * Get properties from the MOS pool property object.
289 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
290 (err = zap_cursor_retrieve(&zc, &za)) == 0;
291 zap_cursor_advance(&zc)) {
292 uint64_t intval = 0;
293 char *strval = NULL;
294 zprop_source_t src = ZPROP_SRC_DEFAULT;
295 zpool_prop_t prop;
297 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
298 continue;
300 switch (za.za_integer_length) {
301 case 8:
302 /* integer property */
303 if (za.za_first_integer !=
304 zpool_prop_default_numeric(prop))
305 src = ZPROP_SRC_LOCAL;
307 if (prop == ZPOOL_PROP_BOOTFS) {
308 dsl_pool_t *dp;
309 dsl_dataset_t *ds = NULL;
311 dp = spa_get_dsl(spa);
312 rw_enter(&dp->dp_config_rwlock, RW_READER);
313 if (err = dsl_dataset_hold_obj(dp,
314 za.za_first_integer, FTAG, &ds)) {
315 rw_exit(&dp->dp_config_rwlock);
316 break;
319 strval = kmem_alloc(
320 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
321 KM_SLEEP);
322 dsl_dataset_name(ds, strval);
323 dsl_dataset_rele(ds, FTAG);
324 rw_exit(&dp->dp_config_rwlock);
325 } else {
326 strval = NULL;
327 intval = za.za_first_integer;
330 spa_prop_add_list(*nvp, prop, strval, intval, src);
332 if (strval != NULL)
333 kmem_free(strval,
334 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
336 break;
338 case 1:
339 /* string property */
340 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
341 err = zap_lookup(mos, spa->spa_pool_props_object,
342 za.za_name, 1, za.za_num_integers, strval);
343 if (err) {
344 kmem_free(strval, za.za_num_integers);
345 break;
347 spa_prop_add_list(*nvp, prop, strval, 0, src);
348 kmem_free(strval, za.za_num_integers);
349 break;
351 default:
352 break;
355 zap_cursor_fini(&zc);
356 mutex_exit(&spa->spa_props_lock);
357 out:
358 if (err && err != ENOENT) {
359 nvlist_free(*nvp);
360 *nvp = NULL;
361 return (err);
364 return (0);
368 * Validate the given pool properties nvlist and modify the list
369 * for the property values to be set.
371 static int
372 spa_prop_validate(spa_t *spa, nvlist_t *props)
374 nvpair_t *elem;
375 int error = 0, reset_bootfs = 0;
376 uint64_t objnum;
377 boolean_t has_feature = B_FALSE;
379 elem = NULL;
380 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
381 uint64_t intval;
382 char *strval, *slash, *check, *fname;
383 const char *propname = nvpair_name(elem);
384 zpool_prop_t prop = zpool_name_to_prop(propname);
386 switch (prop) {
387 case ZPROP_INVAL:
388 if (!zpool_prop_feature(propname)) {
389 error = EINVAL;
390 break;
394 * Sanitize the input.
396 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
397 error = EINVAL;
398 break;
401 if (nvpair_value_uint64(elem, &intval) != 0) {
402 error = EINVAL;
403 break;
406 if (intval != 0) {
407 error = EINVAL;
408 break;
411 fname = strchr(propname, '@') + 1;
412 if (zfeature_lookup_name(fname, NULL) != 0) {
413 error = EINVAL;
414 break;
417 has_feature = B_TRUE;
418 break;
420 case ZPOOL_PROP_VERSION:
421 error = nvpair_value_uint64(elem, &intval);
422 if (!error &&
423 (intval < spa_version(spa) ||
424 intval > SPA_VERSION_BEFORE_FEATURES ||
425 has_feature))
426 error = EINVAL;
427 break;
429 case ZPOOL_PROP_DELEGATION:
430 case ZPOOL_PROP_AUTOREPLACE:
431 case ZPOOL_PROP_LISTSNAPS:
432 case ZPOOL_PROP_AUTOEXPAND:
433 error = nvpair_value_uint64(elem, &intval);
434 if (!error && intval > 1)
435 error = EINVAL;
436 break;
438 case ZPOOL_PROP_BOOTFS:
440 * If the pool version is less than SPA_VERSION_BOOTFS,
441 * or the pool is still being created (version == 0),
442 * the bootfs property cannot be set.
444 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
445 error = ENOTSUP;
446 break;
450 * Make sure the vdev config is bootable
452 if (!vdev_is_bootable(spa->spa_root_vdev)) {
453 error = ENOTSUP;
454 break;
457 reset_bootfs = 1;
459 error = nvpair_value_string(elem, &strval);
461 if (!error) {
462 objset_t *os;
463 uint64_t compress;
465 if (strval == NULL || strval[0] == '\0') {
466 objnum = zpool_prop_default_numeric(
467 ZPOOL_PROP_BOOTFS);
468 break;
471 if (error = dmu_objset_hold(strval, FTAG, &os))
472 break;
474 /* Must be ZPL and not gzip compressed. */
476 if (dmu_objset_type(os) != DMU_OST_ZFS) {
477 error = ENOTSUP;
478 } else if ((error = dsl_prop_get_integer(strval,
479 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
480 &compress, NULL)) == 0 &&
481 !BOOTFS_COMPRESS_VALID(compress)) {
482 error = ENOTSUP;
483 } else {
484 objnum = dmu_objset_id(os);
486 dmu_objset_rele(os, FTAG);
488 break;
490 case ZPOOL_PROP_FAILUREMODE:
491 error = nvpair_value_uint64(elem, &intval);
492 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
493 intval > ZIO_FAILURE_MODE_PANIC))
494 error = EINVAL;
497 * This is a special case which only occurs when
498 * the pool has completely failed. This allows
499 * the user to change the in-core failmode property
500 * without syncing it out to disk (I/Os might
501 * currently be blocked). We do this by returning
502 * EIO to the caller (spa_prop_set) to trick it
503 * into thinking we encountered a property validation
504 * error.
506 if (!error && spa_suspended(spa)) {
507 spa->spa_failmode = intval;
508 error = EIO;
510 break;
512 case ZPOOL_PROP_CACHEFILE:
513 if ((error = nvpair_value_string(elem, &strval)) != 0)
514 break;
516 if (strval[0] == '\0')
517 break;
519 if (strcmp(strval, "none") == 0)
520 break;
522 if (strval[0] != '/') {
523 error = EINVAL;
524 break;
527 slash = strrchr(strval, '/');
528 ASSERT(slash != NULL);
530 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
531 strcmp(slash, "/..") == 0)
532 error = EINVAL;
533 break;
535 case ZPOOL_PROP_COMMENT:
536 if ((error = nvpair_value_string(elem, &strval)) != 0)
537 break;
538 for (check = strval; *check != '\0'; check++) {
540 * The kernel doesn't have an easy isprint()
541 * check. For this kernel check, we merely
542 * check ASCII apart from DEL. Fix this if
543 * there is an easy-to-use kernel isprint().
545 if (*check >= 0x7f) {
546 error = EINVAL;
547 break;
549 check++;
551 if (strlen(strval) > ZPROP_MAX_COMMENT)
552 error = E2BIG;
553 break;
555 case ZPOOL_PROP_DEDUPDITTO:
556 if (spa_version(spa) < SPA_VERSION_DEDUP)
557 error = ENOTSUP;
558 else
559 error = nvpair_value_uint64(elem, &intval);
560 if (error == 0 &&
561 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
562 error = EINVAL;
563 break;
566 if (error)
567 break;
570 if (!error && reset_bootfs) {
571 error = nvlist_remove(props,
572 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
574 if (!error) {
575 error = nvlist_add_uint64(props,
576 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
580 return (error);
583 void
584 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
586 char *cachefile;
587 spa_config_dirent_t *dp;
589 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
590 &cachefile) != 0)
591 return;
593 dp = kmem_alloc(sizeof (spa_config_dirent_t),
594 KM_SLEEP);
596 if (cachefile[0] == '\0')
597 dp->scd_path = spa_strdup(spa_config_path);
598 else if (strcmp(cachefile, "none") == 0)
599 dp->scd_path = NULL;
600 else
601 dp->scd_path = spa_strdup(cachefile);
603 list_insert_head(&spa->spa_config_list, dp);
604 if (need_sync)
605 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
609 spa_prop_set(spa_t *spa, nvlist_t *nvp)
611 int error;
612 nvpair_t *elem = NULL;
613 boolean_t need_sync = B_FALSE;
615 if ((error = spa_prop_validate(spa, nvp)) != 0)
616 return (error);
618 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
619 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
621 if (prop == ZPOOL_PROP_CACHEFILE ||
622 prop == ZPOOL_PROP_ALTROOT ||
623 prop == ZPOOL_PROP_READONLY)
624 continue;
626 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
627 uint64_t ver;
629 if (prop == ZPOOL_PROP_VERSION) {
630 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
631 } else {
632 ASSERT(zpool_prop_feature(nvpair_name(elem)));
633 ver = SPA_VERSION_FEATURES;
634 need_sync = B_TRUE;
637 /* Save time if the version is already set. */
638 if (ver == spa_version(spa))
639 continue;
642 * In addition to the pool directory object, we might
643 * create the pool properties object, the features for
644 * read object, the features for write object, or the
645 * feature descriptions object.
647 error = dsl_sync_task_do(spa_get_dsl(spa), NULL,
648 spa_sync_version, spa, &ver, 6);
649 if (error)
650 return (error);
651 continue;
654 need_sync = B_TRUE;
655 break;
658 if (need_sync) {
659 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
660 spa, nvp, 6));
663 return (0);
667 * If the bootfs property value is dsobj, clear it.
669 void
670 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
672 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
673 VERIFY(zap_remove(spa->spa_meta_objset,
674 spa->spa_pool_props_object,
675 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
676 spa->spa_bootfs = 0;
680 /*ARGSUSED*/
681 static int
682 spa_change_guid_check(void *arg1, void *arg2, dmu_tx_t *tx)
684 spa_t *spa = arg1;
685 uint64_t *newguid = arg2;
686 vdev_t *rvd = spa->spa_root_vdev;
687 uint64_t vdev_state;
689 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
690 vdev_state = rvd->vdev_state;
691 spa_config_exit(spa, SCL_STATE, FTAG);
693 if (vdev_state != VDEV_STATE_HEALTHY)
694 return (ENXIO);
696 ASSERT3U(spa_guid(spa), !=, *newguid);
698 return (0);
701 static void
702 spa_change_guid_sync(void *arg1, void *arg2, dmu_tx_t *tx)
704 spa_t *spa = arg1;
705 uint64_t *newguid = arg2;
706 uint64_t oldguid;
707 vdev_t *rvd = spa->spa_root_vdev;
709 oldguid = spa_guid(spa);
711 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
712 rvd->vdev_guid = *newguid;
713 rvd->vdev_guid_sum += (*newguid - oldguid);
714 vdev_config_dirty(rvd);
715 spa_config_exit(spa, SCL_STATE, FTAG);
717 spa_history_log_internal(spa, "guid change", tx, "old=%lld new=%lld",
718 oldguid, *newguid);
722 * Change the GUID for the pool. This is done so that we can later
723 * re-import a pool built from a clone of our own vdevs. We will modify
724 * the root vdev's guid, our own pool guid, and then mark all of our
725 * vdevs dirty. Note that we must make sure that all our vdevs are
726 * online when we do this, or else any vdevs that weren't present
727 * would be orphaned from our pool. We are also going to issue a
728 * sysevent to update any watchers.
731 spa_change_guid(spa_t *spa)
733 int error;
734 uint64_t guid;
736 mutex_enter(&spa_namespace_lock);
737 guid = spa_generate_guid(NULL);
739 error = dsl_sync_task_do(spa_get_dsl(spa), spa_change_guid_check,
740 spa_change_guid_sync, spa, &guid, 5);
742 if (error == 0) {
743 spa_config_sync(spa, B_FALSE, B_TRUE);
744 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
747 mutex_exit(&spa_namespace_lock);
749 return (error);
753 * ==========================================================================
754 * SPA state manipulation (open/create/destroy/import/export)
755 * ==========================================================================
758 static int
759 spa_error_entry_compare(const void *a, const void *b)
761 spa_error_entry_t *sa = (spa_error_entry_t *)a;
762 spa_error_entry_t *sb = (spa_error_entry_t *)b;
763 int ret;
765 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
766 sizeof (zbookmark_t));
768 if (ret < 0)
769 return (-1);
770 else if (ret > 0)
771 return (1);
772 else
773 return (0);
777 * Utility function which retrieves copies of the current logs and
778 * re-initializes them in the process.
780 void
781 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
783 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
785 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
786 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
788 avl_create(&spa->spa_errlist_scrub,
789 spa_error_entry_compare, sizeof (spa_error_entry_t),
790 offsetof(spa_error_entry_t, se_avl));
791 avl_create(&spa->spa_errlist_last,
792 spa_error_entry_compare, sizeof (spa_error_entry_t),
793 offsetof(spa_error_entry_t, se_avl));
796 static taskq_t *
797 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
798 uint_t value)
800 uint_t flags = 0;
801 boolean_t batch = B_FALSE;
803 switch (mode) {
804 case zti_mode_null:
805 return (NULL); /* no taskq needed */
807 case zti_mode_fixed:
808 ASSERT3U(value, >=, 1);
809 value = MAX(value, 1);
810 break;
812 case zti_mode_batch:
813 batch = B_TRUE;
814 flags |= TASKQ_THREADS_CPU_PCT;
815 value = zio_taskq_batch_pct;
816 break;
818 case zti_mode_online_percent:
819 flags |= TASKQ_THREADS_CPU_PCT;
820 break;
822 default:
823 panic("unrecognized mode for %s taskq (%u:%u) in "
824 "spa_activate()",
825 name, mode, value);
826 break;
829 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
830 if (batch)
831 flags |= TASKQ_DC_BATCH;
833 return (taskq_create_sysdc(name, value, 50, INT_MAX,
834 spa->spa_proc, zio_taskq_basedc, flags));
836 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
837 spa->spa_proc, flags));
840 static void
841 spa_create_zio_taskqs(spa_t *spa)
843 for (int t = 0; t < ZIO_TYPES; t++) {
844 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
845 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
846 enum zti_modes mode = ztip->zti_mode;
847 uint_t value = ztip->zti_value;
848 char name[32];
850 (void) snprintf(name, sizeof (name),
851 "%s_%s", zio_type_name[t], zio_taskq_types[q]);
853 spa->spa_zio_taskq[t][q] =
854 spa_taskq_create(spa, name, mode, value);
859 #ifdef _KERNEL
860 static void
861 spa_thread(void *arg)
863 callb_cpr_t cprinfo;
865 spa_t *spa = arg;
866 user_t *pu = PTOU(curproc);
868 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
869 spa->spa_name);
871 ASSERT(curproc != &p0);
872 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
873 "zpool-%s", spa->spa_name);
874 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
876 /* bind this thread to the requested psrset */
877 if (zio_taskq_psrset_bind != PS_NONE) {
878 pool_lock();
879 mutex_enter(&cpu_lock);
880 mutex_enter(&pidlock);
881 mutex_enter(&curproc->p_lock);
883 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
884 0, NULL, NULL) == 0) {
885 curthread->t_bind_pset = zio_taskq_psrset_bind;
886 } else {
887 cmn_err(CE_WARN,
888 "Couldn't bind process for zfs pool \"%s\" to "
889 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
892 mutex_exit(&curproc->p_lock);
893 mutex_exit(&pidlock);
894 mutex_exit(&cpu_lock);
895 pool_unlock();
898 if (zio_taskq_sysdc) {
899 sysdc_thread_enter(curthread, 100, 0);
902 spa->spa_proc = curproc;
903 spa->spa_did = curthread->t_did;
905 spa_create_zio_taskqs(spa);
907 mutex_enter(&spa->spa_proc_lock);
908 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
910 spa->spa_proc_state = SPA_PROC_ACTIVE;
911 cv_broadcast(&spa->spa_proc_cv);
913 CALLB_CPR_SAFE_BEGIN(&cprinfo);
914 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
915 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
916 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
918 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
919 spa->spa_proc_state = SPA_PROC_GONE;
920 spa->spa_proc = &p0;
921 cv_broadcast(&spa->spa_proc_cv);
922 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
924 mutex_enter(&curproc->p_lock);
925 lwp_exit();
927 #endif
930 * Activate an uninitialized pool.
932 static void
933 spa_activate(spa_t *spa, int mode)
935 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
937 spa->spa_state = POOL_STATE_ACTIVE;
938 spa->spa_mode = mode;
940 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
941 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
943 /* Try to create a covering process */
944 mutex_enter(&spa->spa_proc_lock);
945 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
946 ASSERT(spa->spa_proc == &p0);
947 spa->spa_did = 0;
949 /* Only create a process if we're going to be around a while. */
950 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
951 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
952 NULL, 0) == 0) {
953 spa->spa_proc_state = SPA_PROC_CREATED;
954 while (spa->spa_proc_state == SPA_PROC_CREATED) {
955 cv_wait(&spa->spa_proc_cv,
956 &spa->spa_proc_lock);
958 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
959 ASSERT(spa->spa_proc != &p0);
960 ASSERT(spa->spa_did != 0);
961 } else {
962 #ifdef _KERNEL
963 cmn_err(CE_WARN,
964 "Couldn't create process for zfs pool \"%s\"\n",
965 spa->spa_name);
966 #endif
969 mutex_exit(&spa->spa_proc_lock);
971 /* If we didn't create a process, we need to create our taskqs. */
972 if (spa->spa_proc == &p0) {
973 spa_create_zio_taskqs(spa);
976 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
977 offsetof(vdev_t, vdev_config_dirty_node));
978 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
979 offsetof(vdev_t, vdev_state_dirty_node));
981 txg_list_create(&spa->spa_vdev_txg_list,
982 offsetof(struct vdev, vdev_txg_node));
984 avl_create(&spa->spa_errlist_scrub,
985 spa_error_entry_compare, sizeof (spa_error_entry_t),
986 offsetof(spa_error_entry_t, se_avl));
987 avl_create(&spa->spa_errlist_last,
988 spa_error_entry_compare, sizeof (spa_error_entry_t),
989 offsetof(spa_error_entry_t, se_avl));
993 * Opposite of spa_activate().
995 static void
996 spa_deactivate(spa_t *spa)
998 ASSERT(spa->spa_sync_on == B_FALSE);
999 ASSERT(spa->spa_dsl_pool == NULL);
1000 ASSERT(spa->spa_root_vdev == NULL);
1001 ASSERT(spa->spa_async_zio_root == NULL);
1002 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1004 txg_list_destroy(&spa->spa_vdev_txg_list);
1006 list_destroy(&spa->spa_config_dirty_list);
1007 list_destroy(&spa->spa_state_dirty_list);
1009 for (int t = 0; t < ZIO_TYPES; t++) {
1010 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1011 if (spa->spa_zio_taskq[t][q] != NULL)
1012 taskq_destroy(spa->spa_zio_taskq[t][q]);
1013 spa->spa_zio_taskq[t][q] = NULL;
1017 metaslab_class_destroy(spa->spa_normal_class);
1018 spa->spa_normal_class = NULL;
1020 metaslab_class_destroy(spa->spa_log_class);
1021 spa->spa_log_class = NULL;
1024 * If this was part of an import or the open otherwise failed, we may
1025 * still have errors left in the queues. Empty them just in case.
1027 spa_errlog_drain(spa);
1029 avl_destroy(&spa->spa_errlist_scrub);
1030 avl_destroy(&spa->spa_errlist_last);
1032 spa->spa_state = POOL_STATE_UNINITIALIZED;
1034 mutex_enter(&spa->spa_proc_lock);
1035 if (spa->spa_proc_state != SPA_PROC_NONE) {
1036 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1037 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1038 cv_broadcast(&spa->spa_proc_cv);
1039 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1040 ASSERT(spa->spa_proc != &p0);
1041 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1043 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1044 spa->spa_proc_state = SPA_PROC_NONE;
1046 ASSERT(spa->spa_proc == &p0);
1047 mutex_exit(&spa->spa_proc_lock);
1050 * We want to make sure spa_thread() has actually exited the ZFS
1051 * module, so that the module can't be unloaded out from underneath
1052 * it.
1054 if (spa->spa_did != 0) {
1055 thread_join(spa->spa_did);
1056 spa->spa_did = 0;
1061 * Verify a pool configuration, and construct the vdev tree appropriately. This
1062 * will create all the necessary vdevs in the appropriate layout, with each vdev
1063 * in the CLOSED state. This will prep the pool before open/creation/import.
1064 * All vdev validation is done by the vdev_alloc() routine.
1066 static int
1067 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1068 uint_t id, int atype)
1070 nvlist_t **child;
1071 uint_t children;
1072 int error;
1074 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1075 return (error);
1077 if ((*vdp)->vdev_ops->vdev_op_leaf)
1078 return (0);
1080 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1081 &child, &children);
1083 if (error == ENOENT)
1084 return (0);
1086 if (error) {
1087 vdev_free(*vdp);
1088 *vdp = NULL;
1089 return (EINVAL);
1092 for (int c = 0; c < children; c++) {
1093 vdev_t *vd;
1094 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1095 atype)) != 0) {
1096 vdev_free(*vdp);
1097 *vdp = NULL;
1098 return (error);
1102 ASSERT(*vdp != NULL);
1104 return (0);
1108 * Opposite of spa_load().
1110 static void
1111 spa_unload(spa_t *spa)
1113 int i;
1115 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1118 * Stop async tasks.
1120 spa_async_suspend(spa);
1123 * Stop syncing.
1125 if (spa->spa_sync_on) {
1126 txg_sync_stop(spa->spa_dsl_pool);
1127 spa->spa_sync_on = B_FALSE;
1131 * Wait for any outstanding async I/O to complete.
1133 if (spa->spa_async_zio_root != NULL) {
1134 (void) zio_wait(spa->spa_async_zio_root);
1135 spa->spa_async_zio_root = NULL;
1138 bpobj_close(&spa->spa_deferred_bpobj);
1141 * Close the dsl pool.
1143 if (spa->spa_dsl_pool) {
1144 dsl_pool_close(spa->spa_dsl_pool);
1145 spa->spa_dsl_pool = NULL;
1146 spa->spa_meta_objset = NULL;
1149 ddt_unload(spa);
1151 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1154 * Drop and purge level 2 cache
1156 spa_l2cache_drop(spa);
1159 * Close all vdevs.
1161 if (spa->spa_root_vdev)
1162 vdev_free(spa->spa_root_vdev);
1163 ASSERT(spa->spa_root_vdev == NULL);
1165 for (i = 0; i < spa->spa_spares.sav_count; i++)
1166 vdev_free(spa->spa_spares.sav_vdevs[i]);
1167 if (spa->spa_spares.sav_vdevs) {
1168 kmem_free(spa->spa_spares.sav_vdevs,
1169 spa->spa_spares.sav_count * sizeof (void *));
1170 spa->spa_spares.sav_vdevs = NULL;
1172 if (spa->spa_spares.sav_config) {
1173 nvlist_free(spa->spa_spares.sav_config);
1174 spa->spa_spares.sav_config = NULL;
1176 spa->spa_spares.sav_count = 0;
1178 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1179 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1180 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1182 if (spa->spa_l2cache.sav_vdevs) {
1183 kmem_free(spa->spa_l2cache.sav_vdevs,
1184 spa->spa_l2cache.sav_count * sizeof (void *));
1185 spa->spa_l2cache.sav_vdevs = NULL;
1187 if (spa->spa_l2cache.sav_config) {
1188 nvlist_free(spa->spa_l2cache.sav_config);
1189 spa->spa_l2cache.sav_config = NULL;
1191 spa->spa_l2cache.sav_count = 0;
1193 spa->spa_async_suspended = 0;
1195 if (spa->spa_comment != NULL) {
1196 spa_strfree(spa->spa_comment);
1197 spa->spa_comment = NULL;
1200 spa_config_exit(spa, SCL_ALL, FTAG);
1204 * Load (or re-load) the current list of vdevs describing the active spares for
1205 * this pool. When this is called, we have some form of basic information in
1206 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1207 * then re-generate a more complete list including status information.
1209 static void
1210 spa_load_spares(spa_t *spa)
1212 nvlist_t **spares;
1213 uint_t nspares;
1214 int i;
1215 vdev_t *vd, *tvd;
1217 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1220 * First, close and free any existing spare vdevs.
1222 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1223 vd = spa->spa_spares.sav_vdevs[i];
1225 /* Undo the call to spa_activate() below */
1226 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1227 B_FALSE)) != NULL && tvd->vdev_isspare)
1228 spa_spare_remove(tvd);
1229 vdev_close(vd);
1230 vdev_free(vd);
1233 if (spa->spa_spares.sav_vdevs)
1234 kmem_free(spa->spa_spares.sav_vdevs,
1235 spa->spa_spares.sav_count * sizeof (void *));
1237 if (spa->spa_spares.sav_config == NULL)
1238 nspares = 0;
1239 else
1240 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1241 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1243 spa->spa_spares.sav_count = (int)nspares;
1244 spa->spa_spares.sav_vdevs = NULL;
1246 if (nspares == 0)
1247 return;
1250 * Construct the array of vdevs, opening them to get status in the
1251 * process. For each spare, there is potentially two different vdev_t
1252 * structures associated with it: one in the list of spares (used only
1253 * for basic validation purposes) and one in the active vdev
1254 * configuration (if it's spared in). During this phase we open and
1255 * validate each vdev on the spare list. If the vdev also exists in the
1256 * active configuration, then we also mark this vdev as an active spare.
1258 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1259 KM_SLEEP);
1260 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1261 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1262 VDEV_ALLOC_SPARE) == 0);
1263 ASSERT(vd != NULL);
1265 spa->spa_spares.sav_vdevs[i] = vd;
1267 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1268 B_FALSE)) != NULL) {
1269 if (!tvd->vdev_isspare)
1270 spa_spare_add(tvd);
1273 * We only mark the spare active if we were successfully
1274 * able to load the vdev. Otherwise, importing a pool
1275 * with a bad active spare would result in strange
1276 * behavior, because multiple pool would think the spare
1277 * is actively in use.
1279 * There is a vulnerability here to an equally bizarre
1280 * circumstance, where a dead active spare is later
1281 * brought back to life (onlined or otherwise). Given
1282 * the rarity of this scenario, and the extra complexity
1283 * it adds, we ignore the possibility.
1285 if (!vdev_is_dead(tvd))
1286 spa_spare_activate(tvd);
1289 vd->vdev_top = vd;
1290 vd->vdev_aux = &spa->spa_spares;
1292 if (vdev_open(vd) != 0)
1293 continue;
1295 if (vdev_validate_aux(vd) == 0)
1296 spa_spare_add(vd);
1300 * Recompute the stashed list of spares, with status information
1301 * this time.
1303 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1304 DATA_TYPE_NVLIST_ARRAY) == 0);
1306 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1307 KM_SLEEP);
1308 for (i = 0; i < spa->spa_spares.sav_count; i++)
1309 spares[i] = vdev_config_generate(spa,
1310 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1311 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1312 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1313 for (i = 0; i < spa->spa_spares.sav_count; i++)
1314 nvlist_free(spares[i]);
1315 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1319 * Load (or re-load) the current list of vdevs describing the active l2cache for
1320 * this pool. When this is called, we have some form of basic information in
1321 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1322 * then re-generate a more complete list including status information.
1323 * Devices which are already active have their details maintained, and are
1324 * not re-opened.
1326 static void
1327 spa_load_l2cache(spa_t *spa)
1329 nvlist_t **l2cache;
1330 uint_t nl2cache;
1331 int i, j, oldnvdevs;
1332 uint64_t guid;
1333 vdev_t *vd, **oldvdevs, **newvdevs;
1334 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1336 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1338 if (sav->sav_config != NULL) {
1339 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1340 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1341 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1342 } else {
1343 nl2cache = 0;
1346 oldvdevs = sav->sav_vdevs;
1347 oldnvdevs = sav->sav_count;
1348 sav->sav_vdevs = NULL;
1349 sav->sav_count = 0;
1352 * Process new nvlist of vdevs.
1354 for (i = 0; i < nl2cache; i++) {
1355 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1356 &guid) == 0);
1358 newvdevs[i] = NULL;
1359 for (j = 0; j < oldnvdevs; j++) {
1360 vd = oldvdevs[j];
1361 if (vd != NULL && guid == vd->vdev_guid) {
1363 * Retain previous vdev for add/remove ops.
1365 newvdevs[i] = vd;
1366 oldvdevs[j] = NULL;
1367 break;
1371 if (newvdevs[i] == NULL) {
1373 * Create new vdev
1375 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1376 VDEV_ALLOC_L2CACHE) == 0);
1377 ASSERT(vd != NULL);
1378 newvdevs[i] = vd;
1381 * Commit this vdev as an l2cache device,
1382 * even if it fails to open.
1384 spa_l2cache_add(vd);
1386 vd->vdev_top = vd;
1387 vd->vdev_aux = sav;
1389 spa_l2cache_activate(vd);
1391 if (vdev_open(vd) != 0)
1392 continue;
1394 (void) vdev_validate_aux(vd);
1396 if (!vdev_is_dead(vd))
1397 l2arc_add_vdev(spa, vd);
1402 * Purge vdevs that were dropped
1404 for (i = 0; i < oldnvdevs; i++) {
1405 uint64_t pool;
1407 vd = oldvdevs[i];
1408 if (vd != NULL) {
1409 ASSERT(vd->vdev_isl2cache);
1411 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1412 pool != 0ULL && l2arc_vdev_present(vd))
1413 l2arc_remove_vdev(vd);
1414 vdev_clear_stats(vd);
1415 vdev_free(vd);
1419 if (oldvdevs)
1420 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1422 if (sav->sav_config == NULL)
1423 goto out;
1425 sav->sav_vdevs = newvdevs;
1426 sav->sav_count = (int)nl2cache;
1429 * Recompute the stashed list of l2cache devices, with status
1430 * information this time.
1432 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1433 DATA_TYPE_NVLIST_ARRAY) == 0);
1435 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1436 for (i = 0; i < sav->sav_count; i++)
1437 l2cache[i] = vdev_config_generate(spa,
1438 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1439 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1440 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1441 out:
1442 for (i = 0; i < sav->sav_count; i++)
1443 nvlist_free(l2cache[i]);
1444 if (sav->sav_count)
1445 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1448 static int
1449 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1451 dmu_buf_t *db;
1452 char *packed = NULL;
1453 size_t nvsize = 0;
1454 int error;
1455 *value = NULL;
1457 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1458 nvsize = *(uint64_t *)db->db_data;
1459 dmu_buf_rele(db, FTAG);
1461 packed = kmem_alloc(nvsize, KM_SLEEP);
1462 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1463 DMU_READ_PREFETCH);
1464 if (error == 0)
1465 error = nvlist_unpack(packed, nvsize, value, 0);
1466 kmem_free(packed, nvsize);
1468 return (error);
1472 * Checks to see if the given vdev could not be opened, in which case we post a
1473 * sysevent to notify the autoreplace code that the device has been removed.
1475 static void
1476 spa_check_removed(vdev_t *vd)
1478 for (int c = 0; c < vd->vdev_children; c++)
1479 spa_check_removed(vd->vdev_child[c]);
1481 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1482 zfs_post_autoreplace(vd->vdev_spa, vd);
1483 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1488 * Validate the current config against the MOS config
1490 static boolean_t
1491 spa_config_valid(spa_t *spa, nvlist_t *config)
1493 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1494 nvlist_t *nv;
1496 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1498 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1499 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1501 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1504 * If we're doing a normal import, then build up any additional
1505 * diagnostic information about missing devices in this config.
1506 * We'll pass this up to the user for further processing.
1508 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1509 nvlist_t **child, *nv;
1510 uint64_t idx = 0;
1512 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1513 KM_SLEEP);
1514 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1516 for (int c = 0; c < rvd->vdev_children; c++) {
1517 vdev_t *tvd = rvd->vdev_child[c];
1518 vdev_t *mtvd = mrvd->vdev_child[c];
1520 if (tvd->vdev_ops == &vdev_missing_ops &&
1521 mtvd->vdev_ops != &vdev_missing_ops &&
1522 mtvd->vdev_islog)
1523 child[idx++] = vdev_config_generate(spa, mtvd,
1524 B_FALSE, 0);
1527 if (idx) {
1528 VERIFY(nvlist_add_nvlist_array(nv,
1529 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1530 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1531 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1533 for (int i = 0; i < idx; i++)
1534 nvlist_free(child[i]);
1536 nvlist_free(nv);
1537 kmem_free(child, rvd->vdev_children * sizeof (char **));
1541 * Compare the root vdev tree with the information we have
1542 * from the MOS config (mrvd). Check each top-level vdev
1543 * with the corresponding MOS config top-level (mtvd).
1545 for (int c = 0; c < rvd->vdev_children; c++) {
1546 vdev_t *tvd = rvd->vdev_child[c];
1547 vdev_t *mtvd = mrvd->vdev_child[c];
1550 * Resolve any "missing" vdevs in the current configuration.
1551 * If we find that the MOS config has more accurate information
1552 * about the top-level vdev then use that vdev instead.
1554 if (tvd->vdev_ops == &vdev_missing_ops &&
1555 mtvd->vdev_ops != &vdev_missing_ops) {
1557 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1558 continue;
1561 * Device specific actions.
1563 if (mtvd->vdev_islog) {
1564 spa_set_log_state(spa, SPA_LOG_CLEAR);
1565 } else {
1567 * XXX - once we have 'readonly' pool
1568 * support we should be able to handle
1569 * missing data devices by transitioning
1570 * the pool to readonly.
1572 continue;
1576 * Swap the missing vdev with the data we were
1577 * able to obtain from the MOS config.
1579 vdev_remove_child(rvd, tvd);
1580 vdev_remove_child(mrvd, mtvd);
1582 vdev_add_child(rvd, mtvd);
1583 vdev_add_child(mrvd, tvd);
1585 spa_config_exit(spa, SCL_ALL, FTAG);
1586 vdev_load(mtvd);
1587 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1589 vdev_reopen(rvd);
1590 } else if (mtvd->vdev_islog) {
1592 * Load the slog device's state from the MOS config
1593 * since it's possible that the label does not
1594 * contain the most up-to-date information.
1596 vdev_load_log_state(tvd, mtvd);
1597 vdev_reopen(tvd);
1600 vdev_free(mrvd);
1601 spa_config_exit(spa, SCL_ALL, FTAG);
1604 * Ensure we were able to validate the config.
1606 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1610 * Check for missing log devices
1612 static int
1613 spa_check_logs(spa_t *spa)
1615 switch (spa->spa_log_state) {
1616 case SPA_LOG_MISSING:
1617 /* need to recheck in case slog has been restored */
1618 case SPA_LOG_UNKNOWN:
1619 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1620 DS_FIND_CHILDREN)) {
1621 spa_set_log_state(spa, SPA_LOG_MISSING);
1622 return (1);
1624 break;
1626 return (0);
1629 static boolean_t
1630 spa_passivate_log(spa_t *spa)
1632 vdev_t *rvd = spa->spa_root_vdev;
1633 boolean_t slog_found = B_FALSE;
1635 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1637 if (!spa_has_slogs(spa))
1638 return (B_FALSE);
1640 for (int c = 0; c < rvd->vdev_children; c++) {
1641 vdev_t *tvd = rvd->vdev_child[c];
1642 metaslab_group_t *mg = tvd->vdev_mg;
1644 if (tvd->vdev_islog) {
1645 metaslab_group_passivate(mg);
1646 slog_found = B_TRUE;
1650 return (slog_found);
1653 static void
1654 spa_activate_log(spa_t *spa)
1656 vdev_t *rvd = spa->spa_root_vdev;
1658 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1660 for (int c = 0; c < rvd->vdev_children; c++) {
1661 vdev_t *tvd = rvd->vdev_child[c];
1662 metaslab_group_t *mg = tvd->vdev_mg;
1664 if (tvd->vdev_islog)
1665 metaslab_group_activate(mg);
1670 spa_offline_log(spa_t *spa)
1672 int error = 0;
1674 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1675 NULL, DS_FIND_CHILDREN)) == 0) {
1678 * We successfully offlined the log device, sync out the
1679 * current txg so that the "stubby" block can be removed
1680 * by zil_sync().
1682 txg_wait_synced(spa->spa_dsl_pool, 0);
1684 return (error);
1687 static void
1688 spa_aux_check_removed(spa_aux_vdev_t *sav)
1690 for (int i = 0; i < sav->sav_count; i++)
1691 spa_check_removed(sav->sav_vdevs[i]);
1694 void
1695 spa_claim_notify(zio_t *zio)
1697 spa_t *spa = zio->io_spa;
1699 if (zio->io_error)
1700 return;
1702 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1703 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1704 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1705 mutex_exit(&spa->spa_props_lock);
1708 typedef struct spa_load_error {
1709 uint64_t sle_meta_count;
1710 uint64_t sle_data_count;
1711 } spa_load_error_t;
1713 static void
1714 spa_load_verify_done(zio_t *zio)
1716 blkptr_t *bp = zio->io_bp;
1717 spa_load_error_t *sle = zio->io_private;
1718 dmu_object_type_t type = BP_GET_TYPE(bp);
1719 int error = zio->io_error;
1721 if (error) {
1722 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1723 type != DMU_OT_INTENT_LOG)
1724 atomic_add_64(&sle->sle_meta_count, 1);
1725 else
1726 atomic_add_64(&sle->sle_data_count, 1);
1728 zio_data_buf_free(zio->io_data, zio->io_size);
1731 /*ARGSUSED*/
1732 static int
1733 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1734 arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1736 if (bp != NULL) {
1737 zio_t *rio = arg;
1738 size_t size = BP_GET_PSIZE(bp);
1739 void *data = zio_data_buf_alloc(size);
1741 zio_nowait(zio_read(rio, spa, bp, data, size,
1742 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1743 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1744 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1746 return (0);
1749 static int
1750 spa_load_verify(spa_t *spa)
1752 zio_t *rio;
1753 spa_load_error_t sle = { 0 };
1754 zpool_rewind_policy_t policy;
1755 boolean_t verify_ok = B_FALSE;
1756 int error;
1758 zpool_get_rewind_policy(spa->spa_config, &policy);
1760 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1761 return (0);
1763 rio = zio_root(spa, NULL, &sle,
1764 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1766 error = traverse_pool(spa, spa->spa_verify_min_txg,
1767 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1769 (void) zio_wait(rio);
1771 spa->spa_load_meta_errors = sle.sle_meta_count;
1772 spa->spa_load_data_errors = sle.sle_data_count;
1774 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1775 sle.sle_data_count <= policy.zrp_maxdata) {
1776 int64_t loss = 0;
1778 verify_ok = B_TRUE;
1779 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1780 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1782 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1783 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1784 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1785 VERIFY(nvlist_add_int64(spa->spa_load_info,
1786 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1787 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1788 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1789 } else {
1790 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1793 if (error) {
1794 if (error != ENXIO && error != EIO)
1795 error = EIO;
1796 return (error);
1799 return (verify_ok ? 0 : EIO);
1803 * Find a value in the pool props object.
1805 static void
1806 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1808 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1809 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1813 * Find a value in the pool directory object.
1815 static int
1816 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1818 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1819 name, sizeof (uint64_t), 1, val));
1822 static int
1823 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1825 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1826 return (err);
1830 * Fix up config after a partly-completed split. This is done with the
1831 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1832 * pool have that entry in their config, but only the splitting one contains
1833 * a list of all the guids of the vdevs that are being split off.
1835 * This function determines what to do with that list: either rejoin
1836 * all the disks to the pool, or complete the splitting process. To attempt
1837 * the rejoin, each disk that is offlined is marked online again, and
1838 * we do a reopen() call. If the vdev label for every disk that was
1839 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1840 * then we call vdev_split() on each disk, and complete the split.
1842 * Otherwise we leave the config alone, with all the vdevs in place in
1843 * the original pool.
1845 static void
1846 spa_try_repair(spa_t *spa, nvlist_t *config)
1848 uint_t extracted;
1849 uint64_t *glist;
1850 uint_t i, gcount;
1851 nvlist_t *nvl;
1852 vdev_t **vd;
1853 boolean_t attempt_reopen;
1855 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1856 return;
1858 /* check that the config is complete */
1859 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1860 &glist, &gcount) != 0)
1861 return;
1863 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1865 /* attempt to online all the vdevs & validate */
1866 attempt_reopen = B_TRUE;
1867 for (i = 0; i < gcount; i++) {
1868 if (glist[i] == 0) /* vdev is hole */
1869 continue;
1871 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1872 if (vd[i] == NULL) {
1874 * Don't bother attempting to reopen the disks;
1875 * just do the split.
1877 attempt_reopen = B_FALSE;
1878 } else {
1879 /* attempt to re-online it */
1880 vd[i]->vdev_offline = B_FALSE;
1884 if (attempt_reopen) {
1885 vdev_reopen(spa->spa_root_vdev);
1887 /* check each device to see what state it's in */
1888 for (extracted = 0, i = 0; i < gcount; i++) {
1889 if (vd[i] != NULL &&
1890 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1891 break;
1892 ++extracted;
1897 * If every disk has been moved to the new pool, or if we never
1898 * even attempted to look at them, then we split them off for
1899 * good.
1901 if (!attempt_reopen || gcount == extracted) {
1902 for (i = 0; i < gcount; i++)
1903 if (vd[i] != NULL)
1904 vdev_split(vd[i]);
1905 vdev_reopen(spa->spa_root_vdev);
1908 kmem_free(vd, gcount * sizeof (vdev_t *));
1911 static int
1912 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1913 boolean_t mosconfig)
1915 nvlist_t *config = spa->spa_config;
1916 char *ereport = FM_EREPORT_ZFS_POOL;
1917 char *comment;
1918 int error;
1919 uint64_t pool_guid;
1920 nvlist_t *nvl;
1922 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1923 return (EINVAL);
1925 ASSERT(spa->spa_comment == NULL);
1926 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1927 spa->spa_comment = spa_strdup(comment);
1930 * Versioning wasn't explicitly added to the label until later, so if
1931 * it's not present treat it as the initial version.
1933 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1934 &spa->spa_ubsync.ub_version) != 0)
1935 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1937 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1938 &spa->spa_config_txg);
1940 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1941 spa_guid_exists(pool_guid, 0)) {
1942 error = EEXIST;
1943 } else {
1944 spa->spa_config_guid = pool_guid;
1946 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1947 &nvl) == 0) {
1948 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1949 KM_SLEEP) == 0);
1952 nvlist_free(spa->spa_load_info);
1953 spa->spa_load_info = fnvlist_alloc();
1955 gethrestime(&spa->spa_loaded_ts);
1956 error = spa_load_impl(spa, pool_guid, config, state, type,
1957 mosconfig, &ereport);
1960 spa->spa_minref = refcount_count(&spa->spa_refcount);
1961 if (error) {
1962 if (error != EEXIST) {
1963 spa->spa_loaded_ts.tv_sec = 0;
1964 spa->spa_loaded_ts.tv_nsec = 0;
1966 if (error != EBADF) {
1967 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1970 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1971 spa->spa_ena = 0;
1973 return (error);
1977 * Load an existing storage pool, using the pool's builtin spa_config as a
1978 * source of configuration information.
1980 static int
1981 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1982 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1983 char **ereport)
1985 int error = 0;
1986 nvlist_t *nvroot = NULL;
1987 nvlist_t *label;
1988 vdev_t *rvd;
1989 uberblock_t *ub = &spa->spa_uberblock;
1990 uint64_t children, config_cache_txg = spa->spa_config_txg;
1991 int orig_mode = spa->spa_mode;
1992 int parse;
1993 uint64_t obj;
1994 boolean_t missing_feat_write = B_FALSE;
1997 * If this is an untrusted config, access the pool in read-only mode.
1998 * This prevents things like resilvering recently removed devices.
2000 if (!mosconfig)
2001 spa->spa_mode = FREAD;
2003 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2005 spa->spa_load_state = state;
2007 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2008 return (EINVAL);
2010 parse = (type == SPA_IMPORT_EXISTING ?
2011 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2014 * Create "The Godfather" zio to hold all async IOs
2016 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2017 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2020 * Parse the configuration into a vdev tree. We explicitly set the
2021 * value that will be returned by spa_version() since parsing the
2022 * configuration requires knowing the version number.
2024 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2025 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2026 spa_config_exit(spa, SCL_ALL, FTAG);
2028 if (error != 0)
2029 return (error);
2031 ASSERT(spa->spa_root_vdev == rvd);
2033 if (type != SPA_IMPORT_ASSEMBLE) {
2034 ASSERT(spa_guid(spa) == pool_guid);
2038 * Try to open all vdevs, loading each label in the process.
2040 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2041 error = vdev_open(rvd);
2042 spa_config_exit(spa, SCL_ALL, FTAG);
2043 if (error != 0)
2044 return (error);
2047 * We need to validate the vdev labels against the configuration that
2048 * we have in hand, which is dependent on the setting of mosconfig. If
2049 * mosconfig is true then we're validating the vdev labels based on
2050 * that config. Otherwise, we're validating against the cached config
2051 * (zpool.cache) that was read when we loaded the zfs module, and then
2052 * later we will recursively call spa_load() and validate against
2053 * the vdev config.
2055 * If we're assembling a new pool that's been split off from an
2056 * existing pool, the labels haven't yet been updated so we skip
2057 * validation for now.
2059 if (type != SPA_IMPORT_ASSEMBLE) {
2060 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2061 error = vdev_validate(rvd, mosconfig);
2062 spa_config_exit(spa, SCL_ALL, FTAG);
2064 if (error != 0)
2065 return (error);
2067 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2068 return (ENXIO);
2072 * Find the best uberblock.
2074 vdev_uberblock_load(rvd, ub, &label);
2077 * If we weren't able to find a single valid uberblock, return failure.
2079 if (ub->ub_txg == 0) {
2080 nvlist_free(label);
2081 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2085 * If the pool has an unsupported version we can't open it.
2087 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2088 nvlist_free(label);
2089 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2092 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2093 nvlist_t *features;
2096 * If we weren't able to find what's necessary for reading the
2097 * MOS in the label, return failure.
2099 if (label == NULL || nvlist_lookup_nvlist(label,
2100 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2101 nvlist_free(label);
2102 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2103 ENXIO));
2107 * Update our in-core representation with the definitive values
2108 * from the label.
2110 nvlist_free(spa->spa_label_features);
2111 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2114 nvlist_free(label);
2117 * Look through entries in the label nvlist's features_for_read. If
2118 * there is a feature listed there which we don't understand then we
2119 * cannot open a pool.
2121 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2122 nvlist_t *unsup_feat;
2124 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2127 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2128 NULL); nvp != NULL;
2129 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2130 if (!zfeature_is_supported(nvpair_name(nvp))) {
2131 VERIFY(nvlist_add_string(unsup_feat,
2132 nvpair_name(nvp), "") == 0);
2136 if (!nvlist_empty(unsup_feat)) {
2137 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2138 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2139 nvlist_free(unsup_feat);
2140 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2141 ENOTSUP));
2144 nvlist_free(unsup_feat);
2148 * If the vdev guid sum doesn't match the uberblock, we have an
2149 * incomplete configuration. We first check to see if the pool
2150 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2151 * If it is, defer the vdev_guid_sum check till later so we
2152 * can handle missing vdevs.
2154 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2155 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2156 rvd->vdev_guid_sum != ub->ub_guid_sum)
2157 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2159 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2160 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2161 spa_try_repair(spa, config);
2162 spa_config_exit(spa, SCL_ALL, FTAG);
2163 nvlist_free(spa->spa_config_splitting);
2164 spa->spa_config_splitting = NULL;
2168 * Initialize internal SPA structures.
2170 spa->spa_state = POOL_STATE_ACTIVE;
2171 spa->spa_ubsync = spa->spa_uberblock;
2172 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2173 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2174 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2175 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2176 spa->spa_claim_max_txg = spa->spa_first_txg;
2177 spa->spa_prev_software_version = ub->ub_software_version;
2179 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2180 if (error)
2181 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2182 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2184 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2185 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2187 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2188 boolean_t missing_feat_read = B_FALSE;
2189 nvlist_t *unsup_feat, *enabled_feat;
2191 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2192 &spa->spa_feat_for_read_obj) != 0) {
2193 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2196 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2197 &spa->spa_feat_for_write_obj) != 0) {
2198 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2201 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2202 &spa->spa_feat_desc_obj) != 0) {
2203 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2206 enabled_feat = fnvlist_alloc();
2207 unsup_feat = fnvlist_alloc();
2209 if (!feature_is_supported(spa->spa_meta_objset,
2210 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2211 unsup_feat, enabled_feat))
2212 missing_feat_read = B_TRUE;
2214 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2215 if (!feature_is_supported(spa->spa_meta_objset,
2216 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2217 unsup_feat, enabled_feat)) {
2218 missing_feat_write = B_TRUE;
2222 fnvlist_add_nvlist(spa->spa_load_info,
2223 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2225 if (!nvlist_empty(unsup_feat)) {
2226 fnvlist_add_nvlist(spa->spa_load_info,
2227 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2230 fnvlist_free(enabled_feat);
2231 fnvlist_free(unsup_feat);
2233 if (!missing_feat_read) {
2234 fnvlist_add_boolean(spa->spa_load_info,
2235 ZPOOL_CONFIG_CAN_RDONLY);
2239 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2240 * twofold: to determine whether the pool is available for
2241 * import in read-write mode and (if it is not) whether the
2242 * pool is available for import in read-only mode. If the pool
2243 * is available for import in read-write mode, it is displayed
2244 * as available in userland; if it is not available for import
2245 * in read-only mode, it is displayed as unavailable in
2246 * userland. If the pool is available for import in read-only
2247 * mode but not read-write mode, it is displayed as unavailable
2248 * in userland with a special note that the pool is actually
2249 * available for open in read-only mode.
2251 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2252 * missing a feature for write, we must first determine whether
2253 * the pool can be opened read-only before returning to
2254 * userland in order to know whether to display the
2255 * abovementioned note.
2257 if (missing_feat_read || (missing_feat_write &&
2258 spa_writeable(spa))) {
2259 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2260 ENOTSUP));
2264 spa->spa_is_initializing = B_TRUE;
2265 error = dsl_pool_open(spa->spa_dsl_pool);
2266 spa->spa_is_initializing = B_FALSE;
2267 if (error != 0)
2268 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2270 if (!mosconfig) {
2271 uint64_t hostid;
2272 nvlist_t *policy = NULL, *nvconfig;
2274 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2277 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2278 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2279 char *hostname;
2280 unsigned long myhostid = 0;
2282 VERIFY(nvlist_lookup_string(nvconfig,
2283 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2285 #ifdef _KERNEL
2286 myhostid = zone_get_hostid(NULL);
2287 #else /* _KERNEL */
2289 * We're emulating the system's hostid in userland, so
2290 * we can't use zone_get_hostid().
2292 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2293 #endif /* _KERNEL */
2294 if (hostid != 0 && myhostid != 0 &&
2295 hostid != myhostid) {
2296 nvlist_free(nvconfig);
2297 cmn_err(CE_WARN, "pool '%s' could not be "
2298 "loaded as it was last accessed by "
2299 "another system (host: %s hostid: 0x%lx). "
2300 "See: http://illumos.org/msg/ZFS-8000-EY",
2301 spa_name(spa), hostname,
2302 (unsigned long)hostid);
2303 return (EBADF);
2306 if (nvlist_lookup_nvlist(spa->spa_config,
2307 ZPOOL_REWIND_POLICY, &policy) == 0)
2308 VERIFY(nvlist_add_nvlist(nvconfig,
2309 ZPOOL_REWIND_POLICY, policy) == 0);
2311 spa_config_set(spa, nvconfig);
2312 spa_unload(spa);
2313 spa_deactivate(spa);
2314 spa_activate(spa, orig_mode);
2316 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2319 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2320 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2321 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2322 if (error != 0)
2323 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2326 * Load the bit that tells us to use the new accounting function
2327 * (raid-z deflation). If we have an older pool, this will not
2328 * be present.
2330 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2331 if (error != 0 && error != ENOENT)
2332 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2334 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2335 &spa->spa_creation_version);
2336 if (error != 0 && error != ENOENT)
2337 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2340 * Load the persistent error log. If we have an older pool, this will
2341 * not be present.
2343 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2344 if (error != 0 && error != ENOENT)
2345 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2347 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2348 &spa->spa_errlog_scrub);
2349 if (error != 0 && error != ENOENT)
2350 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2353 * Load the history object. If we have an older pool, this
2354 * will not be present.
2356 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2357 if (error != 0 && error != ENOENT)
2358 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2361 * If we're assembling the pool from the split-off vdevs of
2362 * an existing pool, we don't want to attach the spares & cache
2363 * devices.
2367 * Load any hot spares for this pool.
2369 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2370 if (error != 0 && error != ENOENT)
2371 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2372 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2373 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2374 if (load_nvlist(spa, spa->spa_spares.sav_object,
2375 &spa->spa_spares.sav_config) != 0)
2376 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2378 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2379 spa_load_spares(spa);
2380 spa_config_exit(spa, SCL_ALL, FTAG);
2381 } else if (error == 0) {
2382 spa->spa_spares.sav_sync = B_TRUE;
2386 * Load any level 2 ARC devices for this pool.
2388 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2389 &spa->spa_l2cache.sav_object);
2390 if (error != 0 && error != ENOENT)
2391 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2392 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2393 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2394 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2395 &spa->spa_l2cache.sav_config) != 0)
2396 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2398 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2399 spa_load_l2cache(spa);
2400 spa_config_exit(spa, SCL_ALL, FTAG);
2401 } else if (error == 0) {
2402 spa->spa_l2cache.sav_sync = B_TRUE;
2405 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2407 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2408 if (error && error != ENOENT)
2409 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2411 if (error == 0) {
2412 uint64_t autoreplace;
2414 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2415 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2416 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2417 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2418 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2419 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2420 &spa->spa_dedup_ditto);
2422 spa->spa_autoreplace = (autoreplace != 0);
2426 * If the 'autoreplace' property is set, then post a resource notifying
2427 * the ZFS DE that it should not issue any faults for unopenable
2428 * devices. We also iterate over the vdevs, and post a sysevent for any
2429 * unopenable vdevs so that the normal autoreplace handler can take
2430 * over.
2432 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2433 spa_check_removed(spa->spa_root_vdev);
2435 * For the import case, this is done in spa_import(), because
2436 * at this point we're using the spare definitions from
2437 * the MOS config, not necessarily from the userland config.
2439 if (state != SPA_LOAD_IMPORT) {
2440 spa_aux_check_removed(&spa->spa_spares);
2441 spa_aux_check_removed(&spa->spa_l2cache);
2446 * Load the vdev state for all toplevel vdevs.
2448 vdev_load(rvd);
2451 * Propagate the leaf DTLs we just loaded all the way up the tree.
2453 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2454 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2455 spa_config_exit(spa, SCL_ALL, FTAG);
2458 * Load the DDTs (dedup tables).
2460 error = ddt_load(spa);
2461 if (error != 0)
2462 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2464 spa_update_dspace(spa);
2467 * Validate the config, using the MOS config to fill in any
2468 * information which might be missing. If we fail to validate
2469 * the config then declare the pool unfit for use. If we're
2470 * assembling a pool from a split, the log is not transferred
2471 * over.
2473 if (type != SPA_IMPORT_ASSEMBLE) {
2474 nvlist_t *nvconfig;
2476 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2477 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2479 if (!spa_config_valid(spa, nvconfig)) {
2480 nvlist_free(nvconfig);
2481 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2482 ENXIO));
2484 nvlist_free(nvconfig);
2487 * Now that we've validated the config, check the state of the
2488 * root vdev. If it can't be opened, it indicates one or
2489 * more toplevel vdevs are faulted.
2491 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2492 return (ENXIO);
2494 if (spa_check_logs(spa)) {
2495 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2496 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2500 if (missing_feat_write) {
2501 ASSERT(state == SPA_LOAD_TRYIMPORT);
2504 * At this point, we know that we can open the pool in
2505 * read-only mode but not read-write mode. We now have enough
2506 * information and can return to userland.
2508 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2512 * We've successfully opened the pool, verify that we're ready
2513 * to start pushing transactions.
2515 if (state != SPA_LOAD_TRYIMPORT) {
2516 if (error = spa_load_verify(spa))
2517 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2518 error));
2521 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2522 spa->spa_load_max_txg == UINT64_MAX)) {
2523 dmu_tx_t *tx;
2524 int need_update = B_FALSE;
2526 ASSERT(state != SPA_LOAD_TRYIMPORT);
2529 * Claim log blocks that haven't been committed yet.
2530 * This must all happen in a single txg.
2531 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2532 * invoked from zil_claim_log_block()'s i/o done callback.
2533 * Price of rollback is that we abandon the log.
2535 spa->spa_claiming = B_TRUE;
2537 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2538 spa_first_txg(spa));
2539 (void) dmu_objset_find(spa_name(spa),
2540 zil_claim, tx, DS_FIND_CHILDREN);
2541 dmu_tx_commit(tx);
2543 spa->spa_claiming = B_FALSE;
2545 spa_set_log_state(spa, SPA_LOG_GOOD);
2546 spa->spa_sync_on = B_TRUE;
2547 txg_sync_start(spa->spa_dsl_pool);
2550 * Wait for all claims to sync. We sync up to the highest
2551 * claimed log block birth time so that claimed log blocks
2552 * don't appear to be from the future. spa_claim_max_txg
2553 * will have been set for us by either zil_check_log_chain()
2554 * (invoked from spa_check_logs()) or zil_claim() above.
2556 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2559 * If the config cache is stale, or we have uninitialized
2560 * metaslabs (see spa_vdev_add()), then update the config.
2562 * If this is a verbatim import, trust the current
2563 * in-core spa_config and update the disk labels.
2565 if (config_cache_txg != spa->spa_config_txg ||
2566 state == SPA_LOAD_IMPORT ||
2567 state == SPA_LOAD_RECOVER ||
2568 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2569 need_update = B_TRUE;
2571 for (int c = 0; c < rvd->vdev_children; c++)
2572 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2573 need_update = B_TRUE;
2576 * Update the config cache asychronously in case we're the
2577 * root pool, in which case the config cache isn't writable yet.
2579 if (need_update)
2580 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2583 * Check all DTLs to see if anything needs resilvering.
2585 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2586 vdev_resilver_needed(rvd, NULL, NULL))
2587 spa_async_request(spa, SPA_ASYNC_RESILVER);
2590 * Log the fact that we booted up (so that we can detect if
2591 * we rebooted in the middle of an operation).
2593 spa_history_log_version(spa, "open");
2596 * Delete any inconsistent datasets.
2598 (void) dmu_objset_find(spa_name(spa),
2599 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2602 * Clean up any stale temporary dataset userrefs.
2604 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2607 return (0);
2610 static int
2611 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2613 int mode = spa->spa_mode;
2615 spa_unload(spa);
2616 spa_deactivate(spa);
2618 spa->spa_load_max_txg--;
2620 spa_activate(spa, mode);
2621 spa_async_suspend(spa);
2623 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2627 * If spa_load() fails this function will try loading prior txg's. If
2628 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2629 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2630 * function will not rewind the pool and will return the same error as
2631 * spa_load().
2633 static int
2634 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2635 uint64_t max_request, int rewind_flags)
2637 nvlist_t *loadinfo = NULL;
2638 nvlist_t *config = NULL;
2639 int load_error, rewind_error;
2640 uint64_t safe_rewind_txg;
2641 uint64_t min_txg;
2643 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2644 spa->spa_load_max_txg = spa->spa_load_txg;
2645 spa_set_log_state(spa, SPA_LOG_CLEAR);
2646 } else {
2647 spa->spa_load_max_txg = max_request;
2650 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2651 mosconfig);
2652 if (load_error == 0)
2653 return (0);
2655 if (spa->spa_root_vdev != NULL)
2656 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2658 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2659 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2661 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2662 nvlist_free(config);
2663 return (load_error);
2666 if (state == SPA_LOAD_RECOVER) {
2667 /* Price of rolling back is discarding txgs, including log */
2668 spa_set_log_state(spa, SPA_LOG_CLEAR);
2669 } else {
2671 * If we aren't rolling back save the load info from our first
2672 * import attempt so that we can restore it after attempting
2673 * to rewind.
2675 loadinfo = spa->spa_load_info;
2676 spa->spa_load_info = fnvlist_alloc();
2679 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2680 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2681 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2682 TXG_INITIAL : safe_rewind_txg;
2685 * Continue as long as we're finding errors, we're still within
2686 * the acceptable rewind range, and we're still finding uberblocks
2688 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2689 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2690 if (spa->spa_load_max_txg < safe_rewind_txg)
2691 spa->spa_extreme_rewind = B_TRUE;
2692 rewind_error = spa_load_retry(spa, state, mosconfig);
2695 spa->spa_extreme_rewind = B_FALSE;
2696 spa->spa_load_max_txg = UINT64_MAX;
2698 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2699 spa_config_set(spa, config);
2701 if (state == SPA_LOAD_RECOVER) {
2702 ASSERT3P(loadinfo, ==, NULL);
2703 return (rewind_error);
2704 } else {
2705 /* Store the rewind info as part of the initial load info */
2706 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2707 spa->spa_load_info);
2709 /* Restore the initial load info */
2710 fnvlist_free(spa->spa_load_info);
2711 spa->spa_load_info = loadinfo;
2713 return (load_error);
2718 * Pool Open/Import
2720 * The import case is identical to an open except that the configuration is sent
2721 * down from userland, instead of grabbed from the configuration cache. For the
2722 * case of an open, the pool configuration will exist in the
2723 * POOL_STATE_UNINITIALIZED state.
2725 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2726 * the same time open the pool, without having to keep around the spa_t in some
2727 * ambiguous state.
2729 static int
2730 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2731 nvlist_t **config)
2733 spa_t *spa;
2734 spa_load_state_t state = SPA_LOAD_OPEN;
2735 int error;
2736 int locked = B_FALSE;
2738 *spapp = NULL;
2741 * As disgusting as this is, we need to support recursive calls to this
2742 * function because dsl_dir_open() is called during spa_load(), and ends
2743 * up calling spa_open() again. The real fix is to figure out how to
2744 * avoid dsl_dir_open() calling this in the first place.
2746 if (mutex_owner(&spa_namespace_lock) != curthread) {
2747 mutex_enter(&spa_namespace_lock);
2748 locked = B_TRUE;
2751 if ((spa = spa_lookup(pool)) == NULL) {
2752 if (locked)
2753 mutex_exit(&spa_namespace_lock);
2754 return (ENOENT);
2757 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2758 zpool_rewind_policy_t policy;
2760 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2761 &policy);
2762 if (policy.zrp_request & ZPOOL_DO_REWIND)
2763 state = SPA_LOAD_RECOVER;
2765 spa_activate(spa, spa_mode_global);
2767 if (state != SPA_LOAD_RECOVER)
2768 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2770 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2771 policy.zrp_request);
2773 if (error == EBADF) {
2775 * If vdev_validate() returns failure (indicated by
2776 * EBADF), it indicates that one of the vdevs indicates
2777 * that the pool has been exported or destroyed. If
2778 * this is the case, the config cache is out of sync and
2779 * we should remove the pool from the namespace.
2781 spa_unload(spa);
2782 spa_deactivate(spa);
2783 spa_config_sync(spa, B_TRUE, B_TRUE);
2784 spa_remove(spa);
2785 if (locked)
2786 mutex_exit(&spa_namespace_lock);
2787 return (ENOENT);
2790 if (error) {
2792 * We can't open the pool, but we still have useful
2793 * information: the state of each vdev after the
2794 * attempted vdev_open(). Return this to the user.
2796 if (config != NULL && spa->spa_config) {
2797 VERIFY(nvlist_dup(spa->spa_config, config,
2798 KM_SLEEP) == 0);
2799 VERIFY(nvlist_add_nvlist(*config,
2800 ZPOOL_CONFIG_LOAD_INFO,
2801 spa->spa_load_info) == 0);
2803 spa_unload(spa);
2804 spa_deactivate(spa);
2805 spa->spa_last_open_failed = error;
2806 if (locked)
2807 mutex_exit(&spa_namespace_lock);
2808 *spapp = NULL;
2809 return (error);
2813 spa_open_ref(spa, tag);
2815 if (config != NULL)
2816 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2819 * If we've recovered the pool, pass back any information we
2820 * gathered while doing the load.
2822 if (state == SPA_LOAD_RECOVER) {
2823 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2824 spa->spa_load_info) == 0);
2827 if (locked) {
2828 spa->spa_last_open_failed = 0;
2829 spa->spa_last_ubsync_txg = 0;
2830 spa->spa_load_txg = 0;
2831 mutex_exit(&spa_namespace_lock);
2834 *spapp = spa;
2836 return (0);
2840 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2841 nvlist_t **config)
2843 return (spa_open_common(name, spapp, tag, policy, config));
2847 spa_open(const char *name, spa_t **spapp, void *tag)
2849 return (spa_open_common(name, spapp, tag, NULL, NULL));
2853 * Lookup the given spa_t, incrementing the inject count in the process,
2854 * preventing it from being exported or destroyed.
2856 spa_t *
2857 spa_inject_addref(char *name)
2859 spa_t *spa;
2861 mutex_enter(&spa_namespace_lock);
2862 if ((spa = spa_lookup(name)) == NULL) {
2863 mutex_exit(&spa_namespace_lock);
2864 return (NULL);
2866 spa->spa_inject_ref++;
2867 mutex_exit(&spa_namespace_lock);
2869 return (spa);
2872 void
2873 spa_inject_delref(spa_t *spa)
2875 mutex_enter(&spa_namespace_lock);
2876 spa->spa_inject_ref--;
2877 mutex_exit(&spa_namespace_lock);
2881 * Add spares device information to the nvlist.
2883 static void
2884 spa_add_spares(spa_t *spa, nvlist_t *config)
2886 nvlist_t **spares;
2887 uint_t i, nspares;
2888 nvlist_t *nvroot;
2889 uint64_t guid;
2890 vdev_stat_t *vs;
2891 uint_t vsc;
2892 uint64_t pool;
2894 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2896 if (spa->spa_spares.sav_count == 0)
2897 return;
2899 VERIFY(nvlist_lookup_nvlist(config,
2900 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2901 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2902 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2903 if (nspares != 0) {
2904 VERIFY(nvlist_add_nvlist_array(nvroot,
2905 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2906 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2907 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2910 * Go through and find any spares which have since been
2911 * repurposed as an active spare. If this is the case, update
2912 * their status appropriately.
2914 for (i = 0; i < nspares; i++) {
2915 VERIFY(nvlist_lookup_uint64(spares[i],
2916 ZPOOL_CONFIG_GUID, &guid) == 0);
2917 if (spa_spare_exists(guid, &pool, NULL) &&
2918 pool != 0ULL) {
2919 VERIFY(nvlist_lookup_uint64_array(
2920 spares[i], ZPOOL_CONFIG_VDEV_STATS,
2921 (uint64_t **)&vs, &vsc) == 0);
2922 vs->vs_state = VDEV_STATE_CANT_OPEN;
2923 vs->vs_aux = VDEV_AUX_SPARED;
2930 * Add l2cache device information to the nvlist, including vdev stats.
2932 static void
2933 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2935 nvlist_t **l2cache;
2936 uint_t i, j, nl2cache;
2937 nvlist_t *nvroot;
2938 uint64_t guid;
2939 vdev_t *vd;
2940 vdev_stat_t *vs;
2941 uint_t vsc;
2943 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2945 if (spa->spa_l2cache.sav_count == 0)
2946 return;
2948 VERIFY(nvlist_lookup_nvlist(config,
2949 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2950 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2951 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2952 if (nl2cache != 0) {
2953 VERIFY(nvlist_add_nvlist_array(nvroot,
2954 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2955 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2956 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2959 * Update level 2 cache device stats.
2962 for (i = 0; i < nl2cache; i++) {
2963 VERIFY(nvlist_lookup_uint64(l2cache[i],
2964 ZPOOL_CONFIG_GUID, &guid) == 0);
2966 vd = NULL;
2967 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2968 if (guid ==
2969 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2970 vd = spa->spa_l2cache.sav_vdevs[j];
2971 break;
2974 ASSERT(vd != NULL);
2976 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2977 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2978 == 0);
2979 vdev_get_stats(vd, vs);
2984 static void
2985 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
2987 nvlist_t *features;
2988 zap_cursor_t zc;
2989 zap_attribute_t za;
2991 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2992 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2994 if (spa->spa_feat_for_read_obj != 0) {
2995 for (zap_cursor_init(&zc, spa->spa_meta_objset,
2996 spa->spa_feat_for_read_obj);
2997 zap_cursor_retrieve(&zc, &za) == 0;
2998 zap_cursor_advance(&zc)) {
2999 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3000 za.za_num_integers == 1);
3001 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3002 za.za_first_integer));
3004 zap_cursor_fini(&zc);
3007 if (spa->spa_feat_for_write_obj != 0) {
3008 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3009 spa->spa_feat_for_write_obj);
3010 zap_cursor_retrieve(&zc, &za) == 0;
3011 zap_cursor_advance(&zc)) {
3012 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3013 za.za_num_integers == 1);
3014 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3015 za.za_first_integer));
3017 zap_cursor_fini(&zc);
3020 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3021 features) == 0);
3022 nvlist_free(features);
3026 spa_get_stats(const char *name, nvlist_t **config,
3027 char *altroot, size_t buflen)
3029 int error;
3030 spa_t *spa;
3032 *config = NULL;
3033 error = spa_open_common(name, &spa, FTAG, NULL, config);
3035 if (spa != NULL) {
3037 * This still leaves a window of inconsistency where the spares
3038 * or l2cache devices could change and the config would be
3039 * self-inconsistent.
3041 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3043 if (*config != NULL) {
3044 uint64_t loadtimes[2];
3046 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3047 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3048 VERIFY(nvlist_add_uint64_array(*config,
3049 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3051 VERIFY(nvlist_add_uint64(*config,
3052 ZPOOL_CONFIG_ERRCOUNT,
3053 spa_get_errlog_size(spa)) == 0);
3055 if (spa_suspended(spa))
3056 VERIFY(nvlist_add_uint64(*config,
3057 ZPOOL_CONFIG_SUSPENDED,
3058 spa->spa_failmode) == 0);
3060 spa_add_spares(spa, *config);
3061 spa_add_l2cache(spa, *config);
3062 spa_add_feature_stats(spa, *config);
3067 * We want to get the alternate root even for faulted pools, so we cheat
3068 * and call spa_lookup() directly.
3070 if (altroot) {
3071 if (spa == NULL) {
3072 mutex_enter(&spa_namespace_lock);
3073 spa = spa_lookup(name);
3074 if (spa)
3075 spa_altroot(spa, altroot, buflen);
3076 else
3077 altroot[0] = '\0';
3078 spa = NULL;
3079 mutex_exit(&spa_namespace_lock);
3080 } else {
3081 spa_altroot(spa, altroot, buflen);
3085 if (spa != NULL) {
3086 spa_config_exit(spa, SCL_CONFIG, FTAG);
3087 spa_close(spa, FTAG);
3090 return (error);
3094 * Validate that the auxiliary device array is well formed. We must have an
3095 * array of nvlists, each which describes a valid leaf vdev. If this is an
3096 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3097 * specified, as long as they are well-formed.
3099 static int
3100 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3101 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3102 vdev_labeltype_t label)
3104 nvlist_t **dev;
3105 uint_t i, ndev;
3106 vdev_t *vd;
3107 int error;
3109 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3112 * It's acceptable to have no devs specified.
3114 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3115 return (0);
3117 if (ndev == 0)
3118 return (EINVAL);
3121 * Make sure the pool is formatted with a version that supports this
3122 * device type.
3124 if (spa_version(spa) < version)
3125 return (ENOTSUP);
3128 * Set the pending device list so we correctly handle device in-use
3129 * checking.
3131 sav->sav_pending = dev;
3132 sav->sav_npending = ndev;
3134 for (i = 0; i < ndev; i++) {
3135 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3136 mode)) != 0)
3137 goto out;
3139 if (!vd->vdev_ops->vdev_op_leaf) {
3140 vdev_free(vd);
3141 error = EINVAL;
3142 goto out;
3146 * The L2ARC currently only supports disk devices in
3147 * kernel context. For user-level testing, we allow it.
3149 #ifdef _KERNEL
3150 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3151 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3152 error = ENOTBLK;
3153 vdev_free(vd);
3154 goto out;
3156 #endif
3157 vd->vdev_top = vd;
3159 if ((error = vdev_open(vd)) == 0 &&
3160 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3161 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3162 vd->vdev_guid) == 0);
3165 vdev_free(vd);
3167 if (error &&
3168 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3169 goto out;
3170 else
3171 error = 0;
3174 out:
3175 sav->sav_pending = NULL;
3176 sav->sav_npending = 0;
3177 return (error);
3180 static int
3181 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3183 int error;
3185 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3187 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3188 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3189 VDEV_LABEL_SPARE)) != 0) {
3190 return (error);
3193 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3194 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3195 VDEV_LABEL_L2CACHE));
3198 static void
3199 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3200 const char *config)
3202 int i;
3204 if (sav->sav_config != NULL) {
3205 nvlist_t **olddevs;
3206 uint_t oldndevs;
3207 nvlist_t **newdevs;
3210 * Generate new dev list by concatentating with the
3211 * current dev list.
3213 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3214 &olddevs, &oldndevs) == 0);
3216 newdevs = kmem_alloc(sizeof (void *) *
3217 (ndevs + oldndevs), KM_SLEEP);
3218 for (i = 0; i < oldndevs; i++)
3219 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3220 KM_SLEEP) == 0);
3221 for (i = 0; i < ndevs; i++)
3222 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3223 KM_SLEEP) == 0);
3225 VERIFY(nvlist_remove(sav->sav_config, config,
3226 DATA_TYPE_NVLIST_ARRAY) == 0);
3228 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3229 config, newdevs, ndevs + oldndevs) == 0);
3230 for (i = 0; i < oldndevs + ndevs; i++)
3231 nvlist_free(newdevs[i]);
3232 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3233 } else {
3235 * Generate a new dev list.
3237 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3238 KM_SLEEP) == 0);
3239 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3240 devs, ndevs) == 0);
3245 * Stop and drop level 2 ARC devices
3247 void
3248 spa_l2cache_drop(spa_t *spa)
3250 vdev_t *vd;
3251 int i;
3252 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3254 for (i = 0; i < sav->sav_count; i++) {
3255 uint64_t pool;
3257 vd = sav->sav_vdevs[i];
3258 ASSERT(vd != NULL);
3260 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3261 pool != 0ULL && l2arc_vdev_present(vd))
3262 l2arc_remove_vdev(vd);
3267 * Pool Creation
3270 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3271 nvlist_t *zplprops)
3273 spa_t *spa;
3274 char *altroot = NULL;
3275 vdev_t *rvd;
3276 dsl_pool_t *dp;
3277 dmu_tx_t *tx;
3278 int error = 0;
3279 uint64_t txg = TXG_INITIAL;
3280 nvlist_t **spares, **l2cache;
3281 uint_t nspares, nl2cache;
3282 uint64_t version, obj;
3283 boolean_t has_features;
3286 * If this pool already exists, return failure.
3288 mutex_enter(&spa_namespace_lock);
3289 if (spa_lookup(pool) != NULL) {
3290 mutex_exit(&spa_namespace_lock);
3291 return (EEXIST);
3295 * Allocate a new spa_t structure.
3297 (void) nvlist_lookup_string(props,
3298 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3299 spa = spa_add(pool, NULL, altroot);
3300 spa_activate(spa, spa_mode_global);
3302 if (props && (error = spa_prop_validate(spa, props))) {
3303 spa_deactivate(spa);
3304 spa_remove(spa);
3305 mutex_exit(&spa_namespace_lock);
3306 return (error);
3309 has_features = B_FALSE;
3310 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3311 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3312 if (zpool_prop_feature(nvpair_name(elem)))
3313 has_features = B_TRUE;
3316 if (has_features || nvlist_lookup_uint64(props,
3317 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3318 version = SPA_VERSION;
3320 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3322 spa->spa_first_txg = txg;
3323 spa->spa_uberblock.ub_txg = txg - 1;
3324 spa->spa_uberblock.ub_version = version;
3325 spa->spa_ubsync = spa->spa_uberblock;
3328 * Create "The Godfather" zio to hold all async IOs
3330 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3331 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3334 * Create the root vdev.
3336 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3338 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3340 ASSERT(error != 0 || rvd != NULL);
3341 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3343 if (error == 0 && !zfs_allocatable_devs(nvroot))
3344 error = EINVAL;
3346 if (error == 0 &&
3347 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3348 (error = spa_validate_aux(spa, nvroot, txg,
3349 VDEV_ALLOC_ADD)) == 0) {
3350 for (int c = 0; c < rvd->vdev_children; c++) {
3351 vdev_metaslab_set_size(rvd->vdev_child[c]);
3352 vdev_expand(rvd->vdev_child[c], txg);
3356 spa_config_exit(spa, SCL_ALL, FTAG);
3358 if (error != 0) {
3359 spa_unload(spa);
3360 spa_deactivate(spa);
3361 spa_remove(spa);
3362 mutex_exit(&spa_namespace_lock);
3363 return (error);
3367 * Get the list of spares, if specified.
3369 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3370 &spares, &nspares) == 0) {
3371 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3372 KM_SLEEP) == 0);
3373 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3374 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3375 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3376 spa_load_spares(spa);
3377 spa_config_exit(spa, SCL_ALL, FTAG);
3378 spa->spa_spares.sav_sync = B_TRUE;
3382 * Get the list of level 2 cache devices, if specified.
3384 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3385 &l2cache, &nl2cache) == 0) {
3386 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3387 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3388 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3389 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3390 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3391 spa_load_l2cache(spa);
3392 spa_config_exit(spa, SCL_ALL, FTAG);
3393 spa->spa_l2cache.sav_sync = B_TRUE;
3396 spa->spa_is_initializing = B_TRUE;
3397 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3398 spa->spa_meta_objset = dp->dp_meta_objset;
3399 spa->spa_is_initializing = B_FALSE;
3402 * Create DDTs (dedup tables).
3404 ddt_create(spa);
3406 spa_update_dspace(spa);
3408 tx = dmu_tx_create_assigned(dp, txg);
3411 * Create the pool config object.
3413 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3414 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3415 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3417 if (zap_add(spa->spa_meta_objset,
3418 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3419 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3420 cmn_err(CE_PANIC, "failed to add pool config");
3423 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3424 spa_feature_create_zap_objects(spa, tx);
3426 if (zap_add(spa->spa_meta_objset,
3427 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3428 sizeof (uint64_t), 1, &version, tx) != 0) {
3429 cmn_err(CE_PANIC, "failed to add pool version");
3432 /* Newly created pools with the right version are always deflated. */
3433 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3434 spa->spa_deflate = TRUE;
3435 if (zap_add(spa->spa_meta_objset,
3436 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3437 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3438 cmn_err(CE_PANIC, "failed to add deflate");
3443 * Create the deferred-free bpobj. Turn off compression
3444 * because sync-to-convergence takes longer if the blocksize
3445 * keeps changing.
3447 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3448 dmu_object_set_compress(spa->spa_meta_objset, obj,
3449 ZIO_COMPRESS_OFF, tx);
3450 if (zap_add(spa->spa_meta_objset,
3451 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3452 sizeof (uint64_t), 1, &obj, tx) != 0) {
3453 cmn_err(CE_PANIC, "failed to add bpobj");
3455 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3456 spa->spa_meta_objset, obj));
3459 * Create the pool's history object.
3461 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3462 spa_history_create_obj(spa, tx);
3465 * Set pool properties.
3467 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3468 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3469 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3470 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3472 if (props != NULL) {
3473 spa_configfile_set(spa, props, B_FALSE);
3474 spa_sync_props(spa, props, tx);
3477 dmu_tx_commit(tx);
3479 spa->spa_sync_on = B_TRUE;
3480 txg_sync_start(spa->spa_dsl_pool);
3483 * We explicitly wait for the first transaction to complete so that our
3484 * bean counters are appropriately updated.
3486 txg_wait_synced(spa->spa_dsl_pool, txg);
3488 spa_config_sync(spa, B_FALSE, B_TRUE);
3490 spa_history_log_version(spa, "create");
3492 spa->spa_minref = refcount_count(&spa->spa_refcount);
3494 mutex_exit(&spa_namespace_lock);
3496 return (0);
3499 #ifdef _KERNEL
3501 * Get the root pool information from the root disk, then import the root pool
3502 * during the system boot up time.
3504 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3506 static nvlist_t *
3507 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3509 nvlist_t *config;
3510 nvlist_t *nvtop, *nvroot;
3511 uint64_t pgid;
3513 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3514 return (NULL);
3517 * Add this top-level vdev to the child array.
3519 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3520 &nvtop) == 0);
3521 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3522 &pgid) == 0);
3523 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3526 * Put this pool's top-level vdevs into a root vdev.
3528 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3529 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3530 VDEV_TYPE_ROOT) == 0);
3531 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3532 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3533 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3534 &nvtop, 1) == 0);
3537 * Replace the existing vdev_tree with the new root vdev in
3538 * this pool's configuration (remove the old, add the new).
3540 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3541 nvlist_free(nvroot);
3542 return (config);
3546 * Walk the vdev tree and see if we can find a device with "better"
3547 * configuration. A configuration is "better" if the label on that
3548 * device has a more recent txg.
3550 static void
3551 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3553 for (int c = 0; c < vd->vdev_children; c++)
3554 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3556 if (vd->vdev_ops->vdev_op_leaf) {
3557 nvlist_t *label;
3558 uint64_t label_txg;
3560 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3561 &label) != 0)
3562 return;
3564 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3565 &label_txg) == 0);
3568 * Do we have a better boot device?
3570 if (label_txg > *txg) {
3571 *txg = label_txg;
3572 *avd = vd;
3574 nvlist_free(label);
3579 * Import a root pool.
3581 * For x86. devpath_list will consist of devid and/or physpath name of
3582 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3583 * The GRUB "findroot" command will return the vdev we should boot.
3585 * For Sparc, devpath_list consists the physpath name of the booting device
3586 * no matter the rootpool is a single device pool or a mirrored pool.
3587 * e.g.
3588 * "/pci@1f,0/ide@d/disk@0,0:a"
3591 spa_import_rootpool(char *devpath, char *devid)
3593 spa_t *spa;
3594 vdev_t *rvd, *bvd, *avd = NULL;
3595 nvlist_t *config, *nvtop;
3596 uint64_t guid, txg;
3597 char *pname;
3598 int error;
3601 * Read the label from the boot device and generate a configuration.
3603 config = spa_generate_rootconf(devpath, devid, &guid);
3604 #if defined(_OBP) && defined(_KERNEL)
3605 if (config == NULL) {
3606 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3607 /* iscsi boot */
3608 get_iscsi_bootpath_phy(devpath);
3609 config = spa_generate_rootconf(devpath, devid, &guid);
3612 #endif
3613 if (config == NULL) {
3614 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3615 devpath);
3616 return (EIO);
3619 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3620 &pname) == 0);
3621 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3623 mutex_enter(&spa_namespace_lock);
3624 if ((spa = spa_lookup(pname)) != NULL) {
3626 * Remove the existing root pool from the namespace so that we
3627 * can replace it with the correct config we just read in.
3629 spa_remove(spa);
3632 spa = spa_add(pname, config, NULL);
3633 spa->spa_is_root = B_TRUE;
3634 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3637 * Build up a vdev tree based on the boot device's label config.
3639 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3640 &nvtop) == 0);
3641 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3642 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3643 VDEV_ALLOC_ROOTPOOL);
3644 spa_config_exit(spa, SCL_ALL, FTAG);
3645 if (error) {
3646 mutex_exit(&spa_namespace_lock);
3647 nvlist_free(config);
3648 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3649 pname);
3650 return (error);
3654 * Get the boot vdev.
3656 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3657 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3658 (u_longlong_t)guid);
3659 error = ENOENT;
3660 goto out;
3664 * Determine if there is a better boot device.
3666 avd = bvd;
3667 spa_alt_rootvdev(rvd, &avd, &txg);
3668 if (avd != bvd) {
3669 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3670 "try booting from '%s'", avd->vdev_path);
3671 error = EINVAL;
3672 goto out;
3676 * If the boot device is part of a spare vdev then ensure that
3677 * we're booting off the active spare.
3679 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3680 !bvd->vdev_isspare) {
3681 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3682 "try booting from '%s'",
3683 bvd->vdev_parent->
3684 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3685 error = EINVAL;
3686 goto out;
3689 error = 0;
3690 out:
3691 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3692 vdev_free(rvd);
3693 spa_config_exit(spa, SCL_ALL, FTAG);
3694 mutex_exit(&spa_namespace_lock);
3696 nvlist_free(config);
3697 return (error);
3700 #endif
3703 * Import a non-root pool into the system.
3706 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3708 spa_t *spa;
3709 char *altroot = NULL;
3710 spa_load_state_t state = SPA_LOAD_IMPORT;
3711 zpool_rewind_policy_t policy;
3712 uint64_t mode = spa_mode_global;
3713 uint64_t readonly = B_FALSE;
3714 int error;
3715 nvlist_t *nvroot;
3716 nvlist_t **spares, **l2cache;
3717 uint_t nspares, nl2cache;
3720 * If a pool with this name exists, return failure.
3722 mutex_enter(&spa_namespace_lock);
3723 if (spa_lookup(pool) != NULL) {
3724 mutex_exit(&spa_namespace_lock);
3725 return (EEXIST);
3729 * Create and initialize the spa structure.
3731 (void) nvlist_lookup_string(props,
3732 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3733 (void) nvlist_lookup_uint64(props,
3734 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3735 if (readonly)
3736 mode = FREAD;
3737 spa = spa_add(pool, config, altroot);
3738 spa->spa_import_flags = flags;
3741 * Verbatim import - Take a pool and insert it into the namespace
3742 * as if it had been loaded at boot.
3744 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3745 if (props != NULL)
3746 spa_configfile_set(spa, props, B_FALSE);
3748 spa_config_sync(spa, B_FALSE, B_TRUE);
3750 mutex_exit(&spa_namespace_lock);
3751 spa_history_log_version(spa, "import");
3753 return (0);
3756 spa_activate(spa, mode);
3759 * Don't start async tasks until we know everything is healthy.
3761 spa_async_suspend(spa);
3763 zpool_get_rewind_policy(config, &policy);
3764 if (policy.zrp_request & ZPOOL_DO_REWIND)
3765 state = SPA_LOAD_RECOVER;
3768 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3769 * because the user-supplied config is actually the one to trust when
3770 * doing an import.
3772 if (state != SPA_LOAD_RECOVER)
3773 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3775 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3776 policy.zrp_request);
3779 * Propagate anything learned while loading the pool and pass it
3780 * back to caller (i.e. rewind info, missing devices, etc).
3782 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3783 spa->spa_load_info) == 0);
3785 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3787 * Toss any existing sparelist, as it doesn't have any validity
3788 * anymore, and conflicts with spa_has_spare().
3790 if (spa->spa_spares.sav_config) {
3791 nvlist_free(spa->spa_spares.sav_config);
3792 spa->spa_spares.sav_config = NULL;
3793 spa_load_spares(spa);
3795 if (spa->spa_l2cache.sav_config) {
3796 nvlist_free(spa->spa_l2cache.sav_config);
3797 spa->spa_l2cache.sav_config = NULL;
3798 spa_load_l2cache(spa);
3801 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3802 &nvroot) == 0);
3803 if (error == 0)
3804 error = spa_validate_aux(spa, nvroot, -1ULL,
3805 VDEV_ALLOC_SPARE);
3806 if (error == 0)
3807 error = spa_validate_aux(spa, nvroot, -1ULL,
3808 VDEV_ALLOC_L2CACHE);
3809 spa_config_exit(spa, SCL_ALL, FTAG);
3811 if (props != NULL)
3812 spa_configfile_set(spa, props, B_FALSE);
3814 if (error != 0 || (props && spa_writeable(spa) &&
3815 (error = spa_prop_set(spa, props)))) {
3816 spa_unload(spa);
3817 spa_deactivate(spa);
3818 spa_remove(spa);
3819 mutex_exit(&spa_namespace_lock);
3820 return (error);
3823 spa_async_resume(spa);
3826 * Override any spares and level 2 cache devices as specified by
3827 * the user, as these may have correct device names/devids, etc.
3829 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3830 &spares, &nspares) == 0) {
3831 if (spa->spa_spares.sav_config)
3832 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3833 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3834 else
3835 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3836 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3837 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3838 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3839 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3840 spa_load_spares(spa);
3841 spa_config_exit(spa, SCL_ALL, FTAG);
3842 spa->spa_spares.sav_sync = B_TRUE;
3844 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3845 &l2cache, &nl2cache) == 0) {
3846 if (spa->spa_l2cache.sav_config)
3847 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3848 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3849 else
3850 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3851 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3852 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3853 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3854 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3855 spa_load_l2cache(spa);
3856 spa_config_exit(spa, SCL_ALL, FTAG);
3857 spa->spa_l2cache.sav_sync = B_TRUE;
3861 * Check for any removed devices.
3863 if (spa->spa_autoreplace) {
3864 spa_aux_check_removed(&spa->spa_spares);
3865 spa_aux_check_removed(&spa->spa_l2cache);
3868 if (spa_writeable(spa)) {
3870 * Update the config cache to include the newly-imported pool.
3872 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3876 * It's possible that the pool was expanded while it was exported.
3877 * We kick off an async task to handle this for us.
3879 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3881 mutex_exit(&spa_namespace_lock);
3882 spa_history_log_version(spa, "import");
3884 return (0);
3887 nvlist_t *
3888 spa_tryimport(nvlist_t *tryconfig)
3890 nvlist_t *config = NULL;
3891 char *poolname;
3892 spa_t *spa;
3893 uint64_t state;
3894 int error;
3896 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3897 return (NULL);
3899 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3900 return (NULL);
3903 * Create and initialize the spa structure.
3905 mutex_enter(&spa_namespace_lock);
3906 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3907 spa_activate(spa, FREAD);
3910 * Pass off the heavy lifting to spa_load().
3911 * Pass TRUE for mosconfig because the user-supplied config
3912 * is actually the one to trust when doing an import.
3914 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3917 * If 'tryconfig' was at least parsable, return the current config.
3919 if (spa->spa_root_vdev != NULL) {
3920 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3921 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3922 poolname) == 0);
3923 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3924 state) == 0);
3925 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3926 spa->spa_uberblock.ub_timestamp) == 0);
3927 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3928 spa->spa_load_info) == 0);
3931 * If the bootfs property exists on this pool then we
3932 * copy it out so that external consumers can tell which
3933 * pools are bootable.
3935 if ((!error || error == EEXIST) && spa->spa_bootfs) {
3936 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3939 * We have to play games with the name since the
3940 * pool was opened as TRYIMPORT_NAME.
3942 if (dsl_dsobj_to_dsname(spa_name(spa),
3943 spa->spa_bootfs, tmpname) == 0) {
3944 char *cp;
3945 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3947 cp = strchr(tmpname, '/');
3948 if (cp == NULL) {
3949 (void) strlcpy(dsname, tmpname,
3950 MAXPATHLEN);
3951 } else {
3952 (void) snprintf(dsname, MAXPATHLEN,
3953 "%s/%s", poolname, ++cp);
3955 VERIFY(nvlist_add_string(config,
3956 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3957 kmem_free(dsname, MAXPATHLEN);
3959 kmem_free(tmpname, MAXPATHLEN);
3963 * Add the list of hot spares and level 2 cache devices.
3965 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3966 spa_add_spares(spa, config);
3967 spa_add_l2cache(spa, config);
3968 spa_config_exit(spa, SCL_CONFIG, FTAG);
3971 spa_unload(spa);
3972 spa_deactivate(spa);
3973 spa_remove(spa);
3974 mutex_exit(&spa_namespace_lock);
3976 return (config);
3980 * Pool export/destroy
3982 * The act of destroying or exporting a pool is very simple. We make sure there
3983 * is no more pending I/O and any references to the pool are gone. Then, we
3984 * update the pool state and sync all the labels to disk, removing the
3985 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3986 * we don't sync the labels or remove the configuration cache.
3988 static int
3989 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3990 boolean_t force, boolean_t hardforce)
3992 spa_t *spa;
3994 if (oldconfig)
3995 *oldconfig = NULL;
3997 if (!(spa_mode_global & FWRITE))
3998 return (EROFS);
4000 mutex_enter(&spa_namespace_lock);
4001 if ((spa = spa_lookup(pool)) == NULL) {
4002 mutex_exit(&spa_namespace_lock);
4003 return (ENOENT);
4007 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4008 * reacquire the namespace lock, and see if we can export.
4010 spa_open_ref(spa, FTAG);
4011 mutex_exit(&spa_namespace_lock);
4012 spa_async_suspend(spa);
4013 mutex_enter(&spa_namespace_lock);
4014 spa_close(spa, FTAG);
4017 * The pool will be in core if it's openable,
4018 * in which case we can modify its state.
4020 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4022 * Objsets may be open only because they're dirty, so we
4023 * have to force it to sync before checking spa_refcnt.
4025 txg_wait_synced(spa->spa_dsl_pool, 0);
4028 * A pool cannot be exported or destroyed if there are active
4029 * references. If we are resetting a pool, allow references by
4030 * fault injection handlers.
4032 if (!spa_refcount_zero(spa) ||
4033 (spa->spa_inject_ref != 0 &&
4034 new_state != POOL_STATE_UNINITIALIZED)) {
4035 spa_async_resume(spa);
4036 mutex_exit(&spa_namespace_lock);
4037 return (EBUSY);
4041 * A pool cannot be exported if it has an active shared spare.
4042 * This is to prevent other pools stealing the active spare
4043 * from an exported pool. At user's own will, such pool can
4044 * be forcedly exported.
4046 if (!force && new_state == POOL_STATE_EXPORTED &&
4047 spa_has_active_shared_spare(spa)) {
4048 spa_async_resume(spa);
4049 mutex_exit(&spa_namespace_lock);
4050 return (EXDEV);
4054 * We want this to be reflected on every label,
4055 * so mark them all dirty. spa_unload() will do the
4056 * final sync that pushes these changes out.
4058 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4059 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4060 spa->spa_state = new_state;
4061 spa->spa_final_txg = spa_last_synced_txg(spa) +
4062 TXG_DEFER_SIZE + 1;
4063 vdev_config_dirty(spa->spa_root_vdev);
4064 spa_config_exit(spa, SCL_ALL, FTAG);
4068 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4070 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4071 spa_unload(spa);
4072 spa_deactivate(spa);
4075 if (oldconfig && spa->spa_config)
4076 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4078 if (new_state != POOL_STATE_UNINITIALIZED) {
4079 if (!hardforce)
4080 spa_config_sync(spa, B_TRUE, B_TRUE);
4081 spa_remove(spa);
4083 mutex_exit(&spa_namespace_lock);
4085 return (0);
4089 * Destroy a storage pool.
4092 spa_destroy(char *pool)
4094 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4095 B_FALSE, B_FALSE));
4099 * Export a storage pool.
4102 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4103 boolean_t hardforce)
4105 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4106 force, hardforce));
4110 * Similar to spa_export(), this unloads the spa_t without actually removing it
4111 * from the namespace in any way.
4114 spa_reset(char *pool)
4116 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4117 B_FALSE, B_FALSE));
4121 * ==========================================================================
4122 * Device manipulation
4123 * ==========================================================================
4127 * Add a device to a storage pool.
4130 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4132 uint64_t txg, id;
4133 int error;
4134 vdev_t *rvd = spa->spa_root_vdev;
4135 vdev_t *vd, *tvd;
4136 nvlist_t **spares, **l2cache;
4137 uint_t nspares, nl2cache;
4139 ASSERT(spa_writeable(spa));
4141 txg = spa_vdev_enter(spa);
4143 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4144 VDEV_ALLOC_ADD)) != 0)
4145 return (spa_vdev_exit(spa, NULL, txg, error));
4147 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4149 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4150 &nspares) != 0)
4151 nspares = 0;
4153 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4154 &nl2cache) != 0)
4155 nl2cache = 0;
4157 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4158 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4160 if (vd->vdev_children != 0 &&
4161 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4162 return (spa_vdev_exit(spa, vd, txg, error));
4165 * We must validate the spares and l2cache devices after checking the
4166 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4168 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4169 return (spa_vdev_exit(spa, vd, txg, error));
4172 * Transfer each new top-level vdev from vd to rvd.
4174 for (int c = 0; c < vd->vdev_children; c++) {
4177 * Set the vdev id to the first hole, if one exists.
4179 for (id = 0; id < rvd->vdev_children; id++) {
4180 if (rvd->vdev_child[id]->vdev_ishole) {
4181 vdev_free(rvd->vdev_child[id]);
4182 break;
4185 tvd = vd->vdev_child[c];
4186 vdev_remove_child(vd, tvd);
4187 tvd->vdev_id = id;
4188 vdev_add_child(rvd, tvd);
4189 vdev_config_dirty(tvd);
4192 if (nspares != 0) {
4193 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4194 ZPOOL_CONFIG_SPARES);
4195 spa_load_spares(spa);
4196 spa->spa_spares.sav_sync = B_TRUE;
4199 if (nl2cache != 0) {
4200 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4201 ZPOOL_CONFIG_L2CACHE);
4202 spa_load_l2cache(spa);
4203 spa->spa_l2cache.sav_sync = B_TRUE;
4207 * We have to be careful when adding new vdevs to an existing pool.
4208 * If other threads start allocating from these vdevs before we
4209 * sync the config cache, and we lose power, then upon reboot we may
4210 * fail to open the pool because there are DVAs that the config cache
4211 * can't translate. Therefore, we first add the vdevs without
4212 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4213 * and then let spa_config_update() initialize the new metaslabs.
4215 * spa_load() checks for added-but-not-initialized vdevs, so that
4216 * if we lose power at any point in this sequence, the remaining
4217 * steps will be completed the next time we load the pool.
4219 (void) spa_vdev_exit(spa, vd, txg, 0);
4221 mutex_enter(&spa_namespace_lock);
4222 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4223 mutex_exit(&spa_namespace_lock);
4225 return (0);
4229 * Attach a device to a mirror. The arguments are the path to any device
4230 * in the mirror, and the nvroot for the new device. If the path specifies
4231 * a device that is not mirrored, we automatically insert the mirror vdev.
4233 * If 'replacing' is specified, the new device is intended to replace the
4234 * existing device; in this case the two devices are made into their own
4235 * mirror using the 'replacing' vdev, which is functionally identical to
4236 * the mirror vdev (it actually reuses all the same ops) but has a few
4237 * extra rules: you can't attach to it after it's been created, and upon
4238 * completion of resilvering, the first disk (the one being replaced)
4239 * is automatically detached.
4242 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4244 uint64_t txg, dtl_max_txg;
4245 vdev_t *rvd = spa->spa_root_vdev;
4246 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4247 vdev_ops_t *pvops;
4248 char *oldvdpath, *newvdpath;
4249 int newvd_isspare;
4250 int error;
4252 ASSERT(spa_writeable(spa));
4254 txg = spa_vdev_enter(spa);
4256 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4258 if (oldvd == NULL)
4259 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4261 if (!oldvd->vdev_ops->vdev_op_leaf)
4262 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4264 pvd = oldvd->vdev_parent;
4266 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4267 VDEV_ALLOC_ATTACH)) != 0)
4268 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4270 if (newrootvd->vdev_children != 1)
4271 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4273 newvd = newrootvd->vdev_child[0];
4275 if (!newvd->vdev_ops->vdev_op_leaf)
4276 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4278 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4279 return (spa_vdev_exit(spa, newrootvd, txg, error));
4282 * Spares can't replace logs
4284 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4285 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4287 if (!replacing) {
4289 * For attach, the only allowable parent is a mirror or the root
4290 * vdev.
4292 if (pvd->vdev_ops != &vdev_mirror_ops &&
4293 pvd->vdev_ops != &vdev_root_ops)
4294 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4296 pvops = &vdev_mirror_ops;
4297 } else {
4299 * Active hot spares can only be replaced by inactive hot
4300 * spares.
4302 if (pvd->vdev_ops == &vdev_spare_ops &&
4303 oldvd->vdev_isspare &&
4304 !spa_has_spare(spa, newvd->vdev_guid))
4305 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4308 * If the source is a hot spare, and the parent isn't already a
4309 * spare, then we want to create a new hot spare. Otherwise, we
4310 * want to create a replacing vdev. The user is not allowed to
4311 * attach to a spared vdev child unless the 'isspare' state is
4312 * the same (spare replaces spare, non-spare replaces
4313 * non-spare).
4315 if (pvd->vdev_ops == &vdev_replacing_ops &&
4316 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4317 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4318 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4319 newvd->vdev_isspare != oldvd->vdev_isspare) {
4320 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4323 if (newvd->vdev_isspare)
4324 pvops = &vdev_spare_ops;
4325 else
4326 pvops = &vdev_replacing_ops;
4330 * Make sure the new device is big enough.
4332 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4333 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4336 * The new device cannot have a higher alignment requirement
4337 * than the top-level vdev.
4339 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4340 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4343 * If this is an in-place replacement, update oldvd's path and devid
4344 * to make it distinguishable from newvd, and unopenable from now on.
4346 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4347 spa_strfree(oldvd->vdev_path);
4348 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4349 KM_SLEEP);
4350 (void) sprintf(oldvd->vdev_path, "%s/%s",
4351 newvd->vdev_path, "old");
4352 if (oldvd->vdev_devid != NULL) {
4353 spa_strfree(oldvd->vdev_devid);
4354 oldvd->vdev_devid = NULL;
4358 /* mark the device being resilvered */
4359 newvd->vdev_resilvering = B_TRUE;
4362 * If the parent is not a mirror, or if we're replacing, insert the new
4363 * mirror/replacing/spare vdev above oldvd.
4365 if (pvd->vdev_ops != pvops)
4366 pvd = vdev_add_parent(oldvd, pvops);
4368 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4369 ASSERT(pvd->vdev_ops == pvops);
4370 ASSERT(oldvd->vdev_parent == pvd);
4373 * Extract the new device from its root and add it to pvd.
4375 vdev_remove_child(newrootvd, newvd);
4376 newvd->vdev_id = pvd->vdev_children;
4377 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4378 vdev_add_child(pvd, newvd);
4380 tvd = newvd->vdev_top;
4381 ASSERT(pvd->vdev_top == tvd);
4382 ASSERT(tvd->vdev_parent == rvd);
4384 vdev_config_dirty(tvd);
4387 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4388 * for any dmu_sync-ed blocks. It will propagate upward when
4389 * spa_vdev_exit() calls vdev_dtl_reassess().
4391 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4393 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4394 dtl_max_txg - TXG_INITIAL);
4396 if (newvd->vdev_isspare) {
4397 spa_spare_activate(newvd);
4398 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4401 oldvdpath = spa_strdup(oldvd->vdev_path);
4402 newvdpath = spa_strdup(newvd->vdev_path);
4403 newvd_isspare = newvd->vdev_isspare;
4406 * Mark newvd's DTL dirty in this txg.
4408 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4411 * Restart the resilver
4413 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4416 * Commit the config
4418 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4420 spa_history_log_internal(spa, "vdev attach", NULL,
4421 "%s vdev=%s %s vdev=%s",
4422 replacing && newvd_isspare ? "spare in" :
4423 replacing ? "replace" : "attach", newvdpath,
4424 replacing ? "for" : "to", oldvdpath);
4426 spa_strfree(oldvdpath);
4427 spa_strfree(newvdpath);
4429 if (spa->spa_bootfs)
4430 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4432 return (0);
4436 * Detach a device from a mirror or replacing vdev.
4437 * If 'replace_done' is specified, only detach if the parent
4438 * is a replacing vdev.
4441 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4443 uint64_t txg;
4444 int error;
4445 vdev_t *rvd = spa->spa_root_vdev;
4446 vdev_t *vd, *pvd, *cvd, *tvd;
4447 boolean_t unspare = B_FALSE;
4448 uint64_t unspare_guid;
4449 char *vdpath;
4451 ASSERT(spa_writeable(spa));
4453 txg = spa_vdev_enter(spa);
4455 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4457 if (vd == NULL)
4458 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4460 if (!vd->vdev_ops->vdev_op_leaf)
4461 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4463 pvd = vd->vdev_parent;
4466 * If the parent/child relationship is not as expected, don't do it.
4467 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4468 * vdev that's replacing B with C. The user's intent in replacing
4469 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4470 * the replace by detaching C, the expected behavior is to end up
4471 * M(A,B). But suppose that right after deciding to detach C,
4472 * the replacement of B completes. We would have M(A,C), and then
4473 * ask to detach C, which would leave us with just A -- not what
4474 * the user wanted. To prevent this, we make sure that the
4475 * parent/child relationship hasn't changed -- in this example,
4476 * that C's parent is still the replacing vdev R.
4478 if (pvd->vdev_guid != pguid && pguid != 0)
4479 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4482 * Only 'replacing' or 'spare' vdevs can be replaced.
4484 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4485 pvd->vdev_ops != &vdev_spare_ops)
4486 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4488 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4489 spa_version(spa) >= SPA_VERSION_SPARES);
4492 * Only mirror, replacing, and spare vdevs support detach.
4494 if (pvd->vdev_ops != &vdev_replacing_ops &&
4495 pvd->vdev_ops != &vdev_mirror_ops &&
4496 pvd->vdev_ops != &vdev_spare_ops)
4497 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4500 * If this device has the only valid copy of some data,
4501 * we cannot safely detach it.
4503 if (vdev_dtl_required(vd))
4504 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4506 ASSERT(pvd->vdev_children >= 2);
4509 * If we are detaching the second disk from a replacing vdev, then
4510 * check to see if we changed the original vdev's path to have "/old"
4511 * at the end in spa_vdev_attach(). If so, undo that change now.
4513 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4514 vd->vdev_path != NULL) {
4515 size_t len = strlen(vd->vdev_path);
4517 for (int c = 0; c < pvd->vdev_children; c++) {
4518 cvd = pvd->vdev_child[c];
4520 if (cvd == vd || cvd->vdev_path == NULL)
4521 continue;
4523 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4524 strcmp(cvd->vdev_path + len, "/old") == 0) {
4525 spa_strfree(cvd->vdev_path);
4526 cvd->vdev_path = spa_strdup(vd->vdev_path);
4527 break;
4533 * If we are detaching the original disk from a spare, then it implies
4534 * that the spare should become a real disk, and be removed from the
4535 * active spare list for the pool.
4537 if (pvd->vdev_ops == &vdev_spare_ops &&
4538 vd->vdev_id == 0 &&
4539 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4540 unspare = B_TRUE;
4543 * Erase the disk labels so the disk can be used for other things.
4544 * This must be done after all other error cases are handled,
4545 * but before we disembowel vd (so we can still do I/O to it).
4546 * But if we can't do it, don't treat the error as fatal --
4547 * it may be that the unwritability of the disk is the reason
4548 * it's being detached!
4550 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4553 * Remove vd from its parent and compact the parent's children.
4555 vdev_remove_child(pvd, vd);
4556 vdev_compact_children(pvd);
4559 * Remember one of the remaining children so we can get tvd below.
4561 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4564 * If we need to remove the remaining child from the list of hot spares,
4565 * do it now, marking the vdev as no longer a spare in the process.
4566 * We must do this before vdev_remove_parent(), because that can
4567 * change the GUID if it creates a new toplevel GUID. For a similar
4568 * reason, we must remove the spare now, in the same txg as the detach;
4569 * otherwise someone could attach a new sibling, change the GUID, and
4570 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4572 if (unspare) {
4573 ASSERT(cvd->vdev_isspare);
4574 spa_spare_remove(cvd);
4575 unspare_guid = cvd->vdev_guid;
4576 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4577 cvd->vdev_unspare = B_TRUE;
4581 * If the parent mirror/replacing vdev only has one child,
4582 * the parent is no longer needed. Remove it from the tree.
4584 if (pvd->vdev_children == 1) {
4585 if (pvd->vdev_ops == &vdev_spare_ops)
4586 cvd->vdev_unspare = B_FALSE;
4587 vdev_remove_parent(cvd);
4588 cvd->vdev_resilvering = B_FALSE;
4593 * We don't set tvd until now because the parent we just removed
4594 * may have been the previous top-level vdev.
4596 tvd = cvd->vdev_top;
4597 ASSERT(tvd->vdev_parent == rvd);
4600 * Reevaluate the parent vdev state.
4602 vdev_propagate_state(cvd);
4605 * If the 'autoexpand' property is set on the pool then automatically
4606 * try to expand the size of the pool. For example if the device we
4607 * just detached was smaller than the others, it may be possible to
4608 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4609 * first so that we can obtain the updated sizes of the leaf vdevs.
4611 if (spa->spa_autoexpand) {
4612 vdev_reopen(tvd);
4613 vdev_expand(tvd, txg);
4616 vdev_config_dirty(tvd);
4619 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4620 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4621 * But first make sure we're not on any *other* txg's DTL list, to
4622 * prevent vd from being accessed after it's freed.
4624 vdpath = spa_strdup(vd->vdev_path);
4625 for (int t = 0; t < TXG_SIZE; t++)
4626 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4627 vd->vdev_detached = B_TRUE;
4628 vdev_dirty(tvd, VDD_DTL, vd, txg);
4630 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4632 /* hang on to the spa before we release the lock */
4633 spa_open_ref(spa, FTAG);
4635 error = spa_vdev_exit(spa, vd, txg, 0);
4637 spa_history_log_internal(spa, "detach", NULL,
4638 "vdev=%s", vdpath);
4639 spa_strfree(vdpath);
4642 * If this was the removal of the original device in a hot spare vdev,
4643 * then we want to go through and remove the device from the hot spare
4644 * list of every other pool.
4646 if (unspare) {
4647 spa_t *altspa = NULL;
4649 mutex_enter(&spa_namespace_lock);
4650 while ((altspa = spa_next(altspa)) != NULL) {
4651 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4652 altspa == spa)
4653 continue;
4655 spa_open_ref(altspa, FTAG);
4656 mutex_exit(&spa_namespace_lock);
4657 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4658 mutex_enter(&spa_namespace_lock);
4659 spa_close(altspa, FTAG);
4661 mutex_exit(&spa_namespace_lock);
4663 /* search the rest of the vdevs for spares to remove */
4664 spa_vdev_resilver_done(spa);
4667 /* all done with the spa; OK to release */
4668 mutex_enter(&spa_namespace_lock);
4669 spa_close(spa, FTAG);
4670 mutex_exit(&spa_namespace_lock);
4672 return (error);
4676 * Split a set of devices from their mirrors, and create a new pool from them.
4679 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4680 nvlist_t *props, boolean_t exp)
4682 int error = 0;
4683 uint64_t txg, *glist;
4684 spa_t *newspa;
4685 uint_t c, children, lastlog;
4686 nvlist_t **child, *nvl, *tmp;
4687 dmu_tx_t *tx;
4688 char *altroot = NULL;
4689 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4690 boolean_t activate_slog;
4692 ASSERT(spa_writeable(spa));
4694 txg = spa_vdev_enter(spa);
4696 /* clear the log and flush everything up to now */
4697 activate_slog = spa_passivate_log(spa);
4698 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4699 error = spa_offline_log(spa);
4700 txg = spa_vdev_config_enter(spa);
4702 if (activate_slog)
4703 spa_activate_log(spa);
4705 if (error != 0)
4706 return (spa_vdev_exit(spa, NULL, txg, error));
4708 /* check new spa name before going any further */
4709 if (spa_lookup(newname) != NULL)
4710 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4713 * scan through all the children to ensure they're all mirrors
4715 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4716 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4717 &children) != 0)
4718 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4720 /* first, check to ensure we've got the right child count */
4721 rvd = spa->spa_root_vdev;
4722 lastlog = 0;
4723 for (c = 0; c < rvd->vdev_children; c++) {
4724 vdev_t *vd = rvd->vdev_child[c];
4726 /* don't count the holes & logs as children */
4727 if (vd->vdev_islog || vd->vdev_ishole) {
4728 if (lastlog == 0)
4729 lastlog = c;
4730 continue;
4733 lastlog = 0;
4735 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4736 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4738 /* next, ensure no spare or cache devices are part of the split */
4739 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4740 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4741 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4743 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4744 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4746 /* then, loop over each vdev and validate it */
4747 for (c = 0; c < children; c++) {
4748 uint64_t is_hole = 0;
4750 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4751 &is_hole);
4753 if (is_hole != 0) {
4754 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4755 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4756 continue;
4757 } else {
4758 error = EINVAL;
4759 break;
4763 /* which disk is going to be split? */
4764 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4765 &glist[c]) != 0) {
4766 error = EINVAL;
4767 break;
4770 /* look it up in the spa */
4771 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4772 if (vml[c] == NULL) {
4773 error = ENODEV;
4774 break;
4777 /* make sure there's nothing stopping the split */
4778 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4779 vml[c]->vdev_islog ||
4780 vml[c]->vdev_ishole ||
4781 vml[c]->vdev_isspare ||
4782 vml[c]->vdev_isl2cache ||
4783 !vdev_writeable(vml[c]) ||
4784 vml[c]->vdev_children != 0 ||
4785 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4786 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4787 error = EINVAL;
4788 break;
4791 if (vdev_dtl_required(vml[c])) {
4792 error = EBUSY;
4793 break;
4796 /* we need certain info from the top level */
4797 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4798 vml[c]->vdev_top->vdev_ms_array) == 0);
4799 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4800 vml[c]->vdev_top->vdev_ms_shift) == 0);
4801 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4802 vml[c]->vdev_top->vdev_asize) == 0);
4803 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4804 vml[c]->vdev_top->vdev_ashift) == 0);
4807 if (error != 0) {
4808 kmem_free(vml, children * sizeof (vdev_t *));
4809 kmem_free(glist, children * sizeof (uint64_t));
4810 return (spa_vdev_exit(spa, NULL, txg, error));
4813 /* stop writers from using the disks */
4814 for (c = 0; c < children; c++) {
4815 if (vml[c] != NULL)
4816 vml[c]->vdev_offline = B_TRUE;
4818 vdev_reopen(spa->spa_root_vdev);
4821 * Temporarily record the splitting vdevs in the spa config. This
4822 * will disappear once the config is regenerated.
4824 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4825 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4826 glist, children) == 0);
4827 kmem_free(glist, children * sizeof (uint64_t));
4829 mutex_enter(&spa->spa_props_lock);
4830 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4831 nvl) == 0);
4832 mutex_exit(&spa->spa_props_lock);
4833 spa->spa_config_splitting = nvl;
4834 vdev_config_dirty(spa->spa_root_vdev);
4836 /* configure and create the new pool */
4837 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4838 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4839 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4840 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4841 spa_version(spa)) == 0);
4842 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4843 spa->spa_config_txg) == 0);
4844 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4845 spa_generate_guid(NULL)) == 0);
4846 (void) nvlist_lookup_string(props,
4847 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4849 /* add the new pool to the namespace */
4850 newspa = spa_add(newname, config, altroot);
4851 newspa->spa_config_txg = spa->spa_config_txg;
4852 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4854 /* release the spa config lock, retaining the namespace lock */
4855 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4857 if (zio_injection_enabled)
4858 zio_handle_panic_injection(spa, FTAG, 1);
4860 spa_activate(newspa, spa_mode_global);
4861 spa_async_suspend(newspa);
4863 /* create the new pool from the disks of the original pool */
4864 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4865 if (error)
4866 goto out;
4868 /* if that worked, generate a real config for the new pool */
4869 if (newspa->spa_root_vdev != NULL) {
4870 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4871 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4872 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4873 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4874 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4875 B_TRUE));
4878 /* set the props */
4879 if (props != NULL) {
4880 spa_configfile_set(newspa, props, B_FALSE);
4881 error = spa_prop_set(newspa, props);
4882 if (error)
4883 goto out;
4886 /* flush everything */
4887 txg = spa_vdev_config_enter(newspa);
4888 vdev_config_dirty(newspa->spa_root_vdev);
4889 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4891 if (zio_injection_enabled)
4892 zio_handle_panic_injection(spa, FTAG, 2);
4894 spa_async_resume(newspa);
4896 /* finally, update the original pool's config */
4897 txg = spa_vdev_config_enter(spa);
4898 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4899 error = dmu_tx_assign(tx, TXG_WAIT);
4900 if (error != 0)
4901 dmu_tx_abort(tx);
4902 for (c = 0; c < children; c++) {
4903 if (vml[c] != NULL) {
4904 vdev_split(vml[c]);
4905 if (error == 0)
4906 spa_history_log_internal(spa, "detach", tx,
4907 "vdev=%s", vml[c]->vdev_path);
4908 vdev_free(vml[c]);
4911 vdev_config_dirty(spa->spa_root_vdev);
4912 spa->spa_config_splitting = NULL;
4913 nvlist_free(nvl);
4914 if (error == 0)
4915 dmu_tx_commit(tx);
4916 (void) spa_vdev_exit(spa, NULL, txg, 0);
4918 if (zio_injection_enabled)
4919 zio_handle_panic_injection(spa, FTAG, 3);
4921 /* split is complete; log a history record */
4922 spa_history_log_internal(newspa, "split", NULL,
4923 "from pool %s", spa_name(spa));
4925 kmem_free(vml, children * sizeof (vdev_t *));
4927 /* if we're not going to mount the filesystems in userland, export */
4928 if (exp)
4929 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4930 B_FALSE, B_FALSE);
4932 return (error);
4934 out:
4935 spa_unload(newspa);
4936 spa_deactivate(newspa);
4937 spa_remove(newspa);
4939 txg = spa_vdev_config_enter(spa);
4941 /* re-online all offlined disks */
4942 for (c = 0; c < children; c++) {
4943 if (vml[c] != NULL)
4944 vml[c]->vdev_offline = B_FALSE;
4946 vdev_reopen(spa->spa_root_vdev);
4948 nvlist_free(spa->spa_config_splitting);
4949 spa->spa_config_splitting = NULL;
4950 (void) spa_vdev_exit(spa, NULL, txg, error);
4952 kmem_free(vml, children * sizeof (vdev_t *));
4953 return (error);
4956 static nvlist_t *
4957 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4959 for (int i = 0; i < count; i++) {
4960 uint64_t guid;
4962 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4963 &guid) == 0);
4965 if (guid == target_guid)
4966 return (nvpp[i]);
4969 return (NULL);
4972 static void
4973 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4974 nvlist_t *dev_to_remove)
4976 nvlist_t **newdev = NULL;
4978 if (count > 1)
4979 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4981 for (int i = 0, j = 0; i < count; i++) {
4982 if (dev[i] == dev_to_remove)
4983 continue;
4984 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4987 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4988 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4990 for (int i = 0; i < count - 1; i++)
4991 nvlist_free(newdev[i]);
4993 if (count > 1)
4994 kmem_free(newdev, (count - 1) * sizeof (void *));
4998 * Evacuate the device.
5000 static int
5001 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5003 uint64_t txg;
5004 int error = 0;
5006 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5007 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5008 ASSERT(vd == vd->vdev_top);
5011 * Evacuate the device. We don't hold the config lock as writer
5012 * since we need to do I/O but we do keep the
5013 * spa_namespace_lock held. Once this completes the device
5014 * should no longer have any blocks allocated on it.
5016 if (vd->vdev_islog) {
5017 if (vd->vdev_stat.vs_alloc != 0)
5018 error = spa_offline_log(spa);
5019 } else {
5020 error = ENOTSUP;
5023 if (error)
5024 return (error);
5027 * The evacuation succeeded. Remove any remaining MOS metadata
5028 * associated with this vdev, and wait for these changes to sync.
5030 ASSERT0(vd->vdev_stat.vs_alloc);
5031 txg = spa_vdev_config_enter(spa);
5032 vd->vdev_removing = B_TRUE;
5033 vdev_dirty(vd, 0, NULL, txg);
5034 vdev_config_dirty(vd);
5035 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5037 return (0);
5041 * Complete the removal by cleaning up the namespace.
5043 static void
5044 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5046 vdev_t *rvd = spa->spa_root_vdev;
5047 uint64_t id = vd->vdev_id;
5048 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5050 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5051 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5052 ASSERT(vd == vd->vdev_top);
5055 * Only remove any devices which are empty.
5057 if (vd->vdev_stat.vs_alloc != 0)
5058 return;
5060 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5062 if (list_link_active(&vd->vdev_state_dirty_node))
5063 vdev_state_clean(vd);
5064 if (list_link_active(&vd->vdev_config_dirty_node))
5065 vdev_config_clean(vd);
5067 vdev_free(vd);
5069 if (last_vdev) {
5070 vdev_compact_children(rvd);
5071 } else {
5072 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5073 vdev_add_child(rvd, vd);
5075 vdev_config_dirty(rvd);
5078 * Reassess the health of our root vdev.
5080 vdev_reopen(rvd);
5084 * Remove a device from the pool -
5086 * Removing a device from the vdev namespace requires several steps
5087 * and can take a significant amount of time. As a result we use
5088 * the spa_vdev_config_[enter/exit] functions which allow us to
5089 * grab and release the spa_config_lock while still holding the namespace
5090 * lock. During each step the configuration is synced out.
5094 * Remove a device from the pool. Currently, this supports removing only hot
5095 * spares, slogs, and level 2 ARC devices.
5098 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5100 vdev_t *vd;
5101 metaslab_group_t *mg;
5102 nvlist_t **spares, **l2cache, *nv;
5103 uint64_t txg = 0;
5104 uint_t nspares, nl2cache;
5105 int error = 0;
5106 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5108 ASSERT(spa_writeable(spa));
5110 if (!locked)
5111 txg = spa_vdev_enter(spa);
5113 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5115 if (spa->spa_spares.sav_vdevs != NULL &&
5116 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5117 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5118 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5120 * Only remove the hot spare if it's not currently in use
5121 * in this pool.
5123 if (vd == NULL || unspare) {
5124 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5125 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5126 spa_load_spares(spa);
5127 spa->spa_spares.sav_sync = B_TRUE;
5128 } else {
5129 error = EBUSY;
5131 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5132 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5133 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5134 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5136 * Cache devices can always be removed.
5138 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5139 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5140 spa_load_l2cache(spa);
5141 spa->spa_l2cache.sav_sync = B_TRUE;
5142 } else if (vd != NULL && vd->vdev_islog) {
5143 ASSERT(!locked);
5144 ASSERT(vd == vd->vdev_top);
5147 * XXX - Once we have bp-rewrite this should
5148 * become the common case.
5151 mg = vd->vdev_mg;
5154 * Stop allocating from this vdev.
5156 metaslab_group_passivate(mg);
5159 * Wait for the youngest allocations and frees to sync,
5160 * and then wait for the deferral of those frees to finish.
5162 spa_vdev_config_exit(spa, NULL,
5163 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5166 * Attempt to evacuate the vdev.
5168 error = spa_vdev_remove_evacuate(spa, vd);
5170 txg = spa_vdev_config_enter(spa);
5173 * If we couldn't evacuate the vdev, unwind.
5175 if (error) {
5176 metaslab_group_activate(mg);
5177 return (spa_vdev_exit(spa, NULL, txg, error));
5181 * Clean up the vdev namespace.
5183 spa_vdev_remove_from_namespace(spa, vd);
5185 } else if (vd != NULL) {
5187 * Normal vdevs cannot be removed (yet).
5189 error = ENOTSUP;
5190 } else {
5192 * There is no vdev of any kind with the specified guid.
5194 error = ENOENT;
5197 if (!locked)
5198 return (spa_vdev_exit(spa, NULL, txg, error));
5200 return (error);
5204 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5205 * current spared, so we can detach it.
5207 static vdev_t *
5208 spa_vdev_resilver_done_hunt(vdev_t *vd)
5210 vdev_t *newvd, *oldvd;
5212 for (int c = 0; c < vd->vdev_children; c++) {
5213 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5214 if (oldvd != NULL)
5215 return (oldvd);
5219 * Check for a completed replacement. We always consider the first
5220 * vdev in the list to be the oldest vdev, and the last one to be
5221 * the newest (see spa_vdev_attach() for how that works). In
5222 * the case where the newest vdev is faulted, we will not automatically
5223 * remove it after a resilver completes. This is OK as it will require
5224 * user intervention to determine which disk the admin wishes to keep.
5226 if (vd->vdev_ops == &vdev_replacing_ops) {
5227 ASSERT(vd->vdev_children > 1);
5229 newvd = vd->vdev_child[vd->vdev_children - 1];
5230 oldvd = vd->vdev_child[0];
5232 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5233 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5234 !vdev_dtl_required(oldvd))
5235 return (oldvd);
5239 * Check for a completed resilver with the 'unspare' flag set.
5241 if (vd->vdev_ops == &vdev_spare_ops) {
5242 vdev_t *first = vd->vdev_child[0];
5243 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5245 if (last->vdev_unspare) {
5246 oldvd = first;
5247 newvd = last;
5248 } else if (first->vdev_unspare) {
5249 oldvd = last;
5250 newvd = first;
5251 } else {
5252 oldvd = NULL;
5255 if (oldvd != NULL &&
5256 vdev_dtl_empty(newvd, DTL_MISSING) &&
5257 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5258 !vdev_dtl_required(oldvd))
5259 return (oldvd);
5262 * If there are more than two spares attached to a disk,
5263 * and those spares are not required, then we want to
5264 * attempt to free them up now so that they can be used
5265 * by other pools. Once we're back down to a single
5266 * disk+spare, we stop removing them.
5268 if (vd->vdev_children > 2) {
5269 newvd = vd->vdev_child[1];
5271 if (newvd->vdev_isspare && last->vdev_isspare &&
5272 vdev_dtl_empty(last, DTL_MISSING) &&
5273 vdev_dtl_empty(last, DTL_OUTAGE) &&
5274 !vdev_dtl_required(newvd))
5275 return (newvd);
5279 return (NULL);
5282 static void
5283 spa_vdev_resilver_done(spa_t *spa)
5285 vdev_t *vd, *pvd, *ppvd;
5286 uint64_t guid, sguid, pguid, ppguid;
5288 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5290 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5291 pvd = vd->vdev_parent;
5292 ppvd = pvd->vdev_parent;
5293 guid = vd->vdev_guid;
5294 pguid = pvd->vdev_guid;
5295 ppguid = ppvd->vdev_guid;
5296 sguid = 0;
5298 * If we have just finished replacing a hot spared device, then
5299 * we need to detach the parent's first child (the original hot
5300 * spare) as well.
5302 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5303 ppvd->vdev_children == 2) {
5304 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5305 sguid = ppvd->vdev_child[1]->vdev_guid;
5307 spa_config_exit(spa, SCL_ALL, FTAG);
5308 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5309 return;
5310 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5311 return;
5312 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5315 spa_config_exit(spa, SCL_ALL, FTAG);
5319 * Update the stored path or FRU for this vdev.
5322 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5323 boolean_t ispath)
5325 vdev_t *vd;
5326 boolean_t sync = B_FALSE;
5328 ASSERT(spa_writeable(spa));
5330 spa_vdev_state_enter(spa, SCL_ALL);
5332 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5333 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5335 if (!vd->vdev_ops->vdev_op_leaf)
5336 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5338 if (ispath) {
5339 if (strcmp(value, vd->vdev_path) != 0) {
5340 spa_strfree(vd->vdev_path);
5341 vd->vdev_path = spa_strdup(value);
5342 sync = B_TRUE;
5344 } else {
5345 if (vd->vdev_fru == NULL) {
5346 vd->vdev_fru = spa_strdup(value);
5347 sync = B_TRUE;
5348 } else if (strcmp(value, vd->vdev_fru) != 0) {
5349 spa_strfree(vd->vdev_fru);
5350 vd->vdev_fru = spa_strdup(value);
5351 sync = B_TRUE;
5355 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5359 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5361 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5365 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5367 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5371 * ==========================================================================
5372 * SPA Scanning
5373 * ==========================================================================
5377 spa_scan_stop(spa_t *spa)
5379 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5380 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5381 return (EBUSY);
5382 return (dsl_scan_cancel(spa->spa_dsl_pool));
5386 spa_scan(spa_t *spa, pool_scan_func_t func)
5388 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5390 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5391 return (ENOTSUP);
5394 * If a resilver was requested, but there is no DTL on a
5395 * writeable leaf device, we have nothing to do.
5397 if (func == POOL_SCAN_RESILVER &&
5398 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5399 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5400 return (0);
5403 return (dsl_scan(spa->spa_dsl_pool, func));
5407 * ==========================================================================
5408 * SPA async task processing
5409 * ==========================================================================
5412 static void
5413 spa_async_remove(spa_t *spa, vdev_t *vd)
5415 if (vd->vdev_remove_wanted) {
5416 vd->vdev_remove_wanted = B_FALSE;
5417 vd->vdev_delayed_close = B_FALSE;
5418 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5421 * We want to clear the stats, but we don't want to do a full
5422 * vdev_clear() as that will cause us to throw away
5423 * degraded/faulted state as well as attempt to reopen the
5424 * device, all of which is a waste.
5426 vd->vdev_stat.vs_read_errors = 0;
5427 vd->vdev_stat.vs_write_errors = 0;
5428 vd->vdev_stat.vs_checksum_errors = 0;
5430 vdev_state_dirty(vd->vdev_top);
5433 for (int c = 0; c < vd->vdev_children; c++)
5434 spa_async_remove(spa, vd->vdev_child[c]);
5437 static void
5438 spa_async_probe(spa_t *spa, vdev_t *vd)
5440 if (vd->vdev_probe_wanted) {
5441 vd->vdev_probe_wanted = B_FALSE;
5442 vdev_reopen(vd); /* vdev_open() does the actual probe */
5445 for (int c = 0; c < vd->vdev_children; c++)
5446 spa_async_probe(spa, vd->vdev_child[c]);
5449 static void
5450 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5452 sysevent_id_t eid;
5453 nvlist_t *attr;
5454 char *physpath;
5456 if (!spa->spa_autoexpand)
5457 return;
5459 for (int c = 0; c < vd->vdev_children; c++) {
5460 vdev_t *cvd = vd->vdev_child[c];
5461 spa_async_autoexpand(spa, cvd);
5464 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5465 return;
5467 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5468 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5470 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5471 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5473 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5474 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5476 nvlist_free(attr);
5477 kmem_free(physpath, MAXPATHLEN);
5480 static void
5481 spa_async_thread(spa_t *spa)
5483 int tasks;
5485 ASSERT(spa->spa_sync_on);
5487 mutex_enter(&spa->spa_async_lock);
5488 tasks = spa->spa_async_tasks;
5489 spa->spa_async_tasks = 0;
5490 mutex_exit(&spa->spa_async_lock);
5493 * See if the config needs to be updated.
5495 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5496 uint64_t old_space, new_space;
5498 mutex_enter(&spa_namespace_lock);
5499 old_space = metaslab_class_get_space(spa_normal_class(spa));
5500 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5501 new_space = metaslab_class_get_space(spa_normal_class(spa));
5502 mutex_exit(&spa_namespace_lock);
5505 * If the pool grew as a result of the config update,
5506 * then log an internal history event.
5508 if (new_space != old_space) {
5509 spa_history_log_internal(spa, "vdev online", NULL,
5510 "pool '%s' size: %llu(+%llu)",
5511 spa_name(spa), new_space, new_space - old_space);
5516 * See if any devices need to be marked REMOVED.
5518 if (tasks & SPA_ASYNC_REMOVE) {
5519 spa_vdev_state_enter(spa, SCL_NONE);
5520 spa_async_remove(spa, spa->spa_root_vdev);
5521 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5522 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5523 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5524 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5525 (void) spa_vdev_state_exit(spa, NULL, 0);
5528 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5529 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5530 spa_async_autoexpand(spa, spa->spa_root_vdev);
5531 spa_config_exit(spa, SCL_CONFIG, FTAG);
5535 * See if any devices need to be probed.
5537 if (tasks & SPA_ASYNC_PROBE) {
5538 spa_vdev_state_enter(spa, SCL_NONE);
5539 spa_async_probe(spa, spa->spa_root_vdev);
5540 (void) spa_vdev_state_exit(spa, NULL, 0);
5544 * If any devices are done replacing, detach them.
5546 if (tasks & SPA_ASYNC_RESILVER_DONE)
5547 spa_vdev_resilver_done(spa);
5550 * Kick off a resilver.
5552 if (tasks & SPA_ASYNC_RESILVER)
5553 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5556 * Let the world know that we're done.
5558 mutex_enter(&spa->spa_async_lock);
5559 spa->spa_async_thread = NULL;
5560 cv_broadcast(&spa->spa_async_cv);
5561 mutex_exit(&spa->spa_async_lock);
5562 thread_exit();
5565 void
5566 spa_async_suspend(spa_t *spa)
5568 mutex_enter(&spa->spa_async_lock);
5569 spa->spa_async_suspended++;
5570 while (spa->spa_async_thread != NULL)
5571 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5572 mutex_exit(&spa->spa_async_lock);
5575 void
5576 spa_async_resume(spa_t *spa)
5578 mutex_enter(&spa->spa_async_lock);
5579 ASSERT(spa->spa_async_suspended != 0);
5580 spa->spa_async_suspended--;
5581 mutex_exit(&spa->spa_async_lock);
5584 static void
5585 spa_async_dispatch(spa_t *spa)
5587 mutex_enter(&spa->spa_async_lock);
5588 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5589 spa->spa_async_thread == NULL &&
5590 rootdir != NULL && !vn_is_readonly(rootdir))
5591 spa->spa_async_thread = thread_create(NULL, 0,
5592 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5593 mutex_exit(&spa->spa_async_lock);
5596 void
5597 spa_async_request(spa_t *spa, int task)
5599 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5600 mutex_enter(&spa->spa_async_lock);
5601 spa->spa_async_tasks |= task;
5602 mutex_exit(&spa->spa_async_lock);
5606 * ==========================================================================
5607 * SPA syncing routines
5608 * ==========================================================================
5611 static int
5612 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5614 bpobj_t *bpo = arg;
5615 bpobj_enqueue(bpo, bp, tx);
5616 return (0);
5619 static int
5620 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5622 zio_t *zio = arg;
5624 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5625 zio->io_flags));
5626 return (0);
5629 static void
5630 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5632 char *packed = NULL;
5633 size_t bufsize;
5634 size_t nvsize = 0;
5635 dmu_buf_t *db;
5637 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5640 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5641 * information. This avoids the dbuf_will_dirty() path and
5642 * saves us a pre-read to get data we don't actually care about.
5644 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5645 packed = kmem_alloc(bufsize, KM_SLEEP);
5647 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5648 KM_SLEEP) == 0);
5649 bzero(packed + nvsize, bufsize - nvsize);
5651 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5653 kmem_free(packed, bufsize);
5655 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5656 dmu_buf_will_dirty(db, tx);
5657 *(uint64_t *)db->db_data = nvsize;
5658 dmu_buf_rele(db, FTAG);
5661 static void
5662 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5663 const char *config, const char *entry)
5665 nvlist_t *nvroot;
5666 nvlist_t **list;
5667 int i;
5669 if (!sav->sav_sync)
5670 return;
5673 * Update the MOS nvlist describing the list of available devices.
5674 * spa_validate_aux() will have already made sure this nvlist is
5675 * valid and the vdevs are labeled appropriately.
5677 if (sav->sav_object == 0) {
5678 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5679 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5680 sizeof (uint64_t), tx);
5681 VERIFY(zap_update(spa->spa_meta_objset,
5682 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5683 &sav->sav_object, tx) == 0);
5686 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5687 if (sav->sav_count == 0) {
5688 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5689 } else {
5690 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5691 for (i = 0; i < sav->sav_count; i++)
5692 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5693 B_FALSE, VDEV_CONFIG_L2CACHE);
5694 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5695 sav->sav_count) == 0);
5696 for (i = 0; i < sav->sav_count; i++)
5697 nvlist_free(list[i]);
5698 kmem_free(list, sav->sav_count * sizeof (void *));
5701 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5702 nvlist_free(nvroot);
5704 sav->sav_sync = B_FALSE;
5707 static void
5708 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5710 nvlist_t *config;
5712 if (list_is_empty(&spa->spa_config_dirty_list))
5713 return;
5715 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5717 config = spa_config_generate(spa, spa->spa_root_vdev,
5718 dmu_tx_get_txg(tx), B_FALSE);
5720 spa_config_exit(spa, SCL_STATE, FTAG);
5722 if (spa->spa_config_syncing)
5723 nvlist_free(spa->spa_config_syncing);
5724 spa->spa_config_syncing = config;
5726 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5729 static void
5730 spa_sync_version(void *arg1, void *arg2, dmu_tx_t *tx)
5732 spa_t *spa = arg1;
5733 uint64_t version = *(uint64_t *)arg2;
5736 * Setting the version is special cased when first creating the pool.
5738 ASSERT(tx->tx_txg != TXG_INITIAL);
5740 ASSERT(version <= SPA_VERSION);
5741 ASSERT(version >= spa_version(spa));
5743 spa->spa_uberblock.ub_version = version;
5744 vdev_config_dirty(spa->spa_root_vdev);
5745 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5749 * Set zpool properties.
5751 static void
5752 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5754 spa_t *spa = arg1;
5755 objset_t *mos = spa->spa_meta_objset;
5756 nvlist_t *nvp = arg2;
5757 nvpair_t *elem = NULL;
5759 mutex_enter(&spa->spa_props_lock);
5761 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5762 uint64_t intval;
5763 char *strval, *fname;
5764 zpool_prop_t prop;
5765 const char *propname;
5766 zprop_type_t proptype;
5767 zfeature_info_t *feature;
5769 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5770 case ZPROP_INVAL:
5772 * We checked this earlier in spa_prop_validate().
5774 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5776 fname = strchr(nvpair_name(elem), '@') + 1;
5777 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5779 spa_feature_enable(spa, feature, tx);
5780 spa_history_log_internal(spa, "set", tx,
5781 "%s=enabled", nvpair_name(elem));
5782 break;
5784 case ZPOOL_PROP_VERSION:
5785 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5787 * The version is synced seperatly before other
5788 * properties and should be correct by now.
5790 ASSERT3U(spa_version(spa), >=, intval);
5791 break;
5793 case ZPOOL_PROP_ALTROOT:
5795 * 'altroot' is a non-persistent property. It should
5796 * have been set temporarily at creation or import time.
5798 ASSERT(spa->spa_root != NULL);
5799 break;
5801 case ZPOOL_PROP_READONLY:
5802 case ZPOOL_PROP_CACHEFILE:
5804 * 'readonly' and 'cachefile' are also non-persisitent
5805 * properties.
5807 break;
5808 case ZPOOL_PROP_COMMENT:
5809 VERIFY(nvpair_value_string(elem, &strval) == 0);
5810 if (spa->spa_comment != NULL)
5811 spa_strfree(spa->spa_comment);
5812 spa->spa_comment = spa_strdup(strval);
5814 * We need to dirty the configuration on all the vdevs
5815 * so that their labels get updated. It's unnecessary
5816 * to do this for pool creation since the vdev's
5817 * configuratoin has already been dirtied.
5819 if (tx->tx_txg != TXG_INITIAL)
5820 vdev_config_dirty(spa->spa_root_vdev);
5821 spa_history_log_internal(spa, "set", tx,
5822 "%s=%s", nvpair_name(elem), strval);
5823 break;
5824 default:
5826 * Set pool property values in the poolprops mos object.
5828 if (spa->spa_pool_props_object == 0) {
5829 spa->spa_pool_props_object =
5830 zap_create_link(mos, DMU_OT_POOL_PROPS,
5831 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5832 tx);
5835 /* normalize the property name */
5836 propname = zpool_prop_to_name(prop);
5837 proptype = zpool_prop_get_type(prop);
5839 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5840 ASSERT(proptype == PROP_TYPE_STRING);
5841 VERIFY(nvpair_value_string(elem, &strval) == 0);
5842 VERIFY(zap_update(mos,
5843 spa->spa_pool_props_object, propname,
5844 1, strlen(strval) + 1, strval, tx) == 0);
5845 spa_history_log_internal(spa, "set", tx,
5846 "%s=%s", nvpair_name(elem), strval);
5847 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5848 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5850 if (proptype == PROP_TYPE_INDEX) {
5851 const char *unused;
5852 VERIFY(zpool_prop_index_to_string(
5853 prop, intval, &unused) == 0);
5855 VERIFY(zap_update(mos,
5856 spa->spa_pool_props_object, propname,
5857 8, 1, &intval, tx) == 0);
5858 spa_history_log_internal(spa, "set", tx,
5859 "%s=%lld", nvpair_name(elem), intval);
5860 } else {
5861 ASSERT(0); /* not allowed */
5864 switch (prop) {
5865 case ZPOOL_PROP_DELEGATION:
5866 spa->spa_delegation = intval;
5867 break;
5868 case ZPOOL_PROP_BOOTFS:
5869 spa->spa_bootfs = intval;
5870 break;
5871 case ZPOOL_PROP_FAILUREMODE:
5872 spa->spa_failmode = intval;
5873 break;
5874 case ZPOOL_PROP_AUTOEXPAND:
5875 spa->spa_autoexpand = intval;
5876 if (tx->tx_txg != TXG_INITIAL)
5877 spa_async_request(spa,
5878 SPA_ASYNC_AUTOEXPAND);
5879 break;
5880 case ZPOOL_PROP_DEDUPDITTO:
5881 spa->spa_dedup_ditto = intval;
5882 break;
5883 default:
5884 break;
5890 mutex_exit(&spa->spa_props_lock);
5894 * Perform one-time upgrade on-disk changes. spa_version() does not
5895 * reflect the new version this txg, so there must be no changes this
5896 * txg to anything that the upgrade code depends on after it executes.
5897 * Therefore this must be called after dsl_pool_sync() does the sync
5898 * tasks.
5900 static void
5901 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5903 dsl_pool_t *dp = spa->spa_dsl_pool;
5905 ASSERT(spa->spa_sync_pass == 1);
5907 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5908 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5909 dsl_pool_create_origin(dp, tx);
5911 /* Keeping the origin open increases spa_minref */
5912 spa->spa_minref += 3;
5915 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5916 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5917 dsl_pool_upgrade_clones(dp, tx);
5920 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5921 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5922 dsl_pool_upgrade_dir_clones(dp, tx);
5924 /* Keeping the freedir open increases spa_minref */
5925 spa->spa_minref += 3;
5928 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
5929 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
5930 spa_feature_create_zap_objects(spa, tx);
5935 * Sync the specified transaction group. New blocks may be dirtied as
5936 * part of the process, so we iterate until it converges.
5938 void
5939 spa_sync(spa_t *spa, uint64_t txg)
5941 dsl_pool_t *dp = spa->spa_dsl_pool;
5942 objset_t *mos = spa->spa_meta_objset;
5943 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5944 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5945 vdev_t *rvd = spa->spa_root_vdev;
5946 vdev_t *vd;
5947 dmu_tx_t *tx;
5948 int error;
5950 VERIFY(spa_writeable(spa));
5953 * Lock out configuration changes.
5955 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5957 spa->spa_syncing_txg = txg;
5958 spa->spa_sync_pass = 0;
5961 * If there are any pending vdev state changes, convert them
5962 * into config changes that go out with this transaction group.
5964 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5965 while (list_head(&spa->spa_state_dirty_list) != NULL) {
5967 * We need the write lock here because, for aux vdevs,
5968 * calling vdev_config_dirty() modifies sav_config.
5969 * This is ugly and will become unnecessary when we
5970 * eliminate the aux vdev wart by integrating all vdevs
5971 * into the root vdev tree.
5973 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5974 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5975 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5976 vdev_state_clean(vd);
5977 vdev_config_dirty(vd);
5979 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5980 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5982 spa_config_exit(spa, SCL_STATE, FTAG);
5984 tx = dmu_tx_create_assigned(dp, txg);
5986 spa->spa_sync_starttime = gethrtime();
5987 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
5988 spa->spa_sync_starttime + spa->spa_deadman_synctime));
5991 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5992 * set spa_deflate if we have no raid-z vdevs.
5994 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5995 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5996 int i;
5998 for (i = 0; i < rvd->vdev_children; i++) {
5999 vd = rvd->vdev_child[i];
6000 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6001 break;
6003 if (i == rvd->vdev_children) {
6004 spa->spa_deflate = TRUE;
6005 VERIFY(0 == zap_add(spa->spa_meta_objset,
6006 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6007 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6012 * If anything has changed in this txg, or if someone is waiting
6013 * for this txg to sync (eg, spa_vdev_remove()), push the
6014 * deferred frees from the previous txg. If not, leave them
6015 * alone so that we don't generate work on an otherwise idle
6016 * system.
6018 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6019 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6020 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6021 ((dsl_scan_active(dp->dp_scan) ||
6022 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6023 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6024 VERIFY3U(bpobj_iterate(defer_bpo,
6025 spa_free_sync_cb, zio, tx), ==, 0);
6026 VERIFY0(zio_wait(zio));
6030 * Iterate to convergence.
6032 do {
6033 int pass = ++spa->spa_sync_pass;
6035 spa_sync_config_object(spa, tx);
6036 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6037 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6038 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6039 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6040 spa_errlog_sync(spa, txg);
6041 dsl_pool_sync(dp, txg);
6043 if (pass <= SYNC_PASS_DEFERRED_FREE) {
6044 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6045 bplist_iterate(free_bpl, spa_free_sync_cb,
6046 zio, tx);
6047 VERIFY(zio_wait(zio) == 0);
6048 } else {
6049 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6050 defer_bpo, tx);
6053 ddt_sync(spa, txg);
6054 dsl_scan_sync(dp, tx);
6056 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6057 vdev_sync(vd, txg);
6059 if (pass == 1)
6060 spa_sync_upgrades(spa, tx);
6062 } while (dmu_objset_is_dirty(mos, txg));
6065 * Rewrite the vdev configuration (which includes the uberblock)
6066 * to commit the transaction group.
6068 * If there are no dirty vdevs, we sync the uberblock to a few
6069 * random top-level vdevs that are known to be visible in the
6070 * config cache (see spa_vdev_add() for a complete description).
6071 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6073 for (;;) {
6075 * We hold SCL_STATE to prevent vdev open/close/etc.
6076 * while we're attempting to write the vdev labels.
6078 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6080 if (list_is_empty(&spa->spa_config_dirty_list)) {
6081 vdev_t *svd[SPA_DVAS_PER_BP];
6082 int svdcount = 0;
6083 int children = rvd->vdev_children;
6084 int c0 = spa_get_random(children);
6086 for (int c = 0; c < children; c++) {
6087 vd = rvd->vdev_child[(c0 + c) % children];
6088 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6089 continue;
6090 svd[svdcount++] = vd;
6091 if (svdcount == SPA_DVAS_PER_BP)
6092 break;
6094 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6095 if (error != 0)
6096 error = vdev_config_sync(svd, svdcount, txg,
6097 B_TRUE);
6098 } else {
6099 error = vdev_config_sync(rvd->vdev_child,
6100 rvd->vdev_children, txg, B_FALSE);
6101 if (error != 0)
6102 error = vdev_config_sync(rvd->vdev_child,
6103 rvd->vdev_children, txg, B_TRUE);
6106 if (error == 0)
6107 spa->spa_last_synced_guid = rvd->vdev_guid;
6109 spa_config_exit(spa, SCL_STATE, FTAG);
6111 if (error == 0)
6112 break;
6113 zio_suspend(spa, NULL);
6114 zio_resume_wait(spa);
6116 dmu_tx_commit(tx);
6118 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6121 * Clear the dirty config list.
6123 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6124 vdev_config_clean(vd);
6127 * Now that the new config has synced transactionally,
6128 * let it become visible to the config cache.
6130 if (spa->spa_config_syncing != NULL) {
6131 spa_config_set(spa, spa->spa_config_syncing);
6132 spa->spa_config_txg = txg;
6133 spa->spa_config_syncing = NULL;
6136 spa->spa_ubsync = spa->spa_uberblock;
6138 dsl_pool_sync_done(dp, txg);
6141 * Update usable space statistics.
6143 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6144 vdev_sync_done(vd, txg);
6146 spa_update_dspace(spa);
6149 * It had better be the case that we didn't dirty anything
6150 * since vdev_config_sync().
6152 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6153 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6154 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6156 spa->spa_sync_pass = 0;
6158 spa_config_exit(spa, SCL_CONFIG, FTAG);
6160 spa_handle_ignored_writes(spa);
6163 * If any async tasks have been requested, kick them off.
6165 spa_async_dispatch(spa);
6169 * Sync all pools. We don't want to hold the namespace lock across these
6170 * operations, so we take a reference on the spa_t and drop the lock during the
6171 * sync.
6173 void
6174 spa_sync_allpools(void)
6176 spa_t *spa = NULL;
6177 mutex_enter(&spa_namespace_lock);
6178 while ((spa = spa_next(spa)) != NULL) {
6179 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6180 !spa_writeable(spa) || spa_suspended(spa))
6181 continue;
6182 spa_open_ref(spa, FTAG);
6183 mutex_exit(&spa_namespace_lock);
6184 txg_wait_synced(spa_get_dsl(spa), 0);
6185 mutex_enter(&spa_namespace_lock);
6186 spa_close(spa, FTAG);
6188 mutex_exit(&spa_namespace_lock);
6192 * ==========================================================================
6193 * Miscellaneous routines
6194 * ==========================================================================
6198 * Remove all pools in the system.
6200 void
6201 spa_evict_all(void)
6203 spa_t *spa;
6206 * Remove all cached state. All pools should be closed now,
6207 * so every spa in the AVL tree should be unreferenced.
6209 mutex_enter(&spa_namespace_lock);
6210 while ((spa = spa_next(NULL)) != NULL) {
6212 * Stop async tasks. The async thread may need to detach
6213 * a device that's been replaced, which requires grabbing
6214 * spa_namespace_lock, so we must drop it here.
6216 spa_open_ref(spa, FTAG);
6217 mutex_exit(&spa_namespace_lock);
6218 spa_async_suspend(spa);
6219 mutex_enter(&spa_namespace_lock);
6220 spa_close(spa, FTAG);
6222 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6223 spa_unload(spa);
6224 spa_deactivate(spa);
6226 spa_remove(spa);
6228 mutex_exit(&spa_namespace_lock);
6231 vdev_t *
6232 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6234 vdev_t *vd;
6235 int i;
6237 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6238 return (vd);
6240 if (aux) {
6241 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6242 vd = spa->spa_l2cache.sav_vdevs[i];
6243 if (vd->vdev_guid == guid)
6244 return (vd);
6247 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6248 vd = spa->spa_spares.sav_vdevs[i];
6249 if (vd->vdev_guid == guid)
6250 return (vd);
6254 return (NULL);
6257 void
6258 spa_upgrade(spa_t *spa, uint64_t version)
6260 ASSERT(spa_writeable(spa));
6262 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6265 * This should only be called for a non-faulted pool, and since a
6266 * future version would result in an unopenable pool, this shouldn't be
6267 * possible.
6269 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
6270 ASSERT(version >= spa->spa_uberblock.ub_version);
6272 spa->spa_uberblock.ub_version = version;
6273 vdev_config_dirty(spa->spa_root_vdev);
6275 spa_config_exit(spa, SCL_ALL, FTAG);
6277 txg_wait_synced(spa_get_dsl(spa), 0);
6280 boolean_t
6281 spa_has_spare(spa_t *spa, uint64_t guid)
6283 int i;
6284 uint64_t spareguid;
6285 spa_aux_vdev_t *sav = &spa->spa_spares;
6287 for (i = 0; i < sav->sav_count; i++)
6288 if (sav->sav_vdevs[i]->vdev_guid == guid)
6289 return (B_TRUE);
6291 for (i = 0; i < sav->sav_npending; i++) {
6292 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6293 &spareguid) == 0 && spareguid == guid)
6294 return (B_TRUE);
6297 return (B_FALSE);
6301 * Check if a pool has an active shared spare device.
6302 * Note: reference count of an active spare is 2, as a spare and as a replace
6304 static boolean_t
6305 spa_has_active_shared_spare(spa_t *spa)
6307 int i, refcnt;
6308 uint64_t pool;
6309 spa_aux_vdev_t *sav = &spa->spa_spares;
6311 for (i = 0; i < sav->sav_count; i++) {
6312 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6313 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6314 refcnt > 2)
6315 return (B_TRUE);
6318 return (B_FALSE);
6322 * Post a sysevent corresponding to the given event. The 'name' must be one of
6323 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6324 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6325 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6326 * or zdb as real changes.
6328 void
6329 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6331 #ifdef _KERNEL
6332 sysevent_t *ev;
6333 sysevent_attr_list_t *attr = NULL;
6334 sysevent_value_t value;
6335 sysevent_id_t eid;
6337 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6338 SE_SLEEP);
6340 value.value_type = SE_DATA_TYPE_STRING;
6341 value.value.sv_string = spa_name(spa);
6342 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6343 goto done;
6345 value.value_type = SE_DATA_TYPE_UINT64;
6346 value.value.sv_uint64 = spa_guid(spa);
6347 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6348 goto done;
6350 if (vd) {
6351 value.value_type = SE_DATA_TYPE_UINT64;
6352 value.value.sv_uint64 = vd->vdev_guid;
6353 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6354 SE_SLEEP) != 0)
6355 goto done;
6357 if (vd->vdev_path) {
6358 value.value_type = SE_DATA_TYPE_STRING;
6359 value.value.sv_string = vd->vdev_path;
6360 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6361 &value, SE_SLEEP) != 0)
6362 goto done;
6366 if (sysevent_attach_attributes(ev, attr) != 0)
6367 goto done;
6368 attr = NULL;
6370 (void) log_sysevent(ev, SE_SLEEP, &eid);
6372 done:
6373 if (attr)
6374 sysevent_free_attr(attr);
6375 sysevent_free(ev);
6376 #endif