9236 nuke spa_dbgmsg
[unleashed.git] / usr / src / uts / common / fs / zfs / spa_misc.c
blob8a348af53c75bf18aeaa46e00fa3d37b29965880
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright (c) 2017 Datto Inc.
31 #include <sys/zfs_context.h>
32 #include <sys/spa_impl.h>
33 #include <sys/spa_boot.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/txg.h>
45 #include <sys/avl.h>
46 #include <sys/unique.h>
47 #include <sys/dsl_pool.h>
48 #include <sys/dsl_dir.h>
49 #include <sys/dsl_prop.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/metaslab_impl.h>
53 #include <sys/arc.h>
54 #include <sys/ddt.h>
55 #include "zfs_prop.h"
56 #include <sys/zfeature.h>
59 * SPA locking
61 * There are four basic locks for managing spa_t structures:
63 * spa_namespace_lock (global mutex)
65 * This lock must be acquired to do any of the following:
67 * - Lookup a spa_t by name
68 * - Add or remove a spa_t from the namespace
69 * - Increase spa_refcount from non-zero
70 * - Check if spa_refcount is zero
71 * - Rename a spa_t
72 * - add/remove/attach/detach devices
73 * - Held for the duration of create/destroy/import/export
75 * It does not need to handle recursion. A create or destroy may
76 * reference objects (files or zvols) in other pools, but by
77 * definition they must have an existing reference, and will never need
78 * to lookup a spa_t by name.
80 * spa_refcount (per-spa refcount_t protected by mutex)
82 * This reference count keep track of any active users of the spa_t. The
83 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
84 * the refcount is never really 'zero' - opening a pool implicitly keeps
85 * some references in the DMU. Internally we check against spa_minref, but
86 * present the image of a zero/non-zero value to consumers.
88 * spa_config_lock[] (per-spa array of rwlocks)
90 * This protects the spa_t from config changes, and must be held in
91 * the following circumstances:
93 * - RW_READER to perform I/O to the spa
94 * - RW_WRITER to change the vdev config
96 * The locking order is fairly straightforward:
98 * spa_namespace_lock -> spa_refcount
100 * The namespace lock must be acquired to increase the refcount from 0
101 * or to check if it is zero.
103 * spa_refcount -> spa_config_lock[]
105 * There must be at least one valid reference on the spa_t to acquire
106 * the config lock.
108 * spa_namespace_lock -> spa_config_lock[]
110 * The namespace lock must always be taken before the config lock.
113 * The spa_namespace_lock can be acquired directly and is globally visible.
115 * The namespace is manipulated using the following functions, all of which
116 * require the spa_namespace_lock to be held.
118 * spa_lookup() Lookup a spa_t by name.
120 * spa_add() Create a new spa_t in the namespace.
122 * spa_remove() Remove a spa_t from the namespace. This also
123 * frees up any memory associated with the spa_t.
125 * spa_next() Returns the next spa_t in the system, or the
126 * first if NULL is passed.
128 * spa_evict_all() Shutdown and remove all spa_t structures in
129 * the system.
131 * spa_guid_exists() Determine whether a pool/device guid exists.
133 * The spa_refcount is manipulated using the following functions:
135 * spa_open_ref() Adds a reference to the given spa_t. Must be
136 * called with spa_namespace_lock held if the
137 * refcount is currently zero.
139 * spa_close() Remove a reference from the spa_t. This will
140 * not free the spa_t or remove it from the
141 * namespace. No locking is required.
143 * spa_refcount_zero() Returns true if the refcount is currently
144 * zero. Must be called with spa_namespace_lock
145 * held.
147 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
148 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
149 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
151 * To read the configuration, it suffices to hold one of these locks as reader.
152 * To modify the configuration, you must hold all locks as writer. To modify
153 * vdev state without altering the vdev tree's topology (e.g. online/offline),
154 * you must hold SCL_STATE and SCL_ZIO as writer.
156 * We use these distinct config locks to avoid recursive lock entry.
157 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
158 * block allocations (SCL_ALLOC), which may require reading space maps
159 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
161 * The spa config locks cannot be normal rwlocks because we need the
162 * ability to hand off ownership. For example, SCL_ZIO is acquired
163 * by the issuing thread and later released by an interrupt thread.
164 * They do, however, obey the usual write-wanted semantics to prevent
165 * writer (i.e. system administrator) starvation.
167 * The lock acquisition rules are as follows:
169 * SCL_CONFIG
170 * Protects changes to the vdev tree topology, such as vdev
171 * add/remove/attach/detach. Protects the dirty config list
172 * (spa_config_dirty_list) and the set of spares and l2arc devices.
174 * SCL_STATE
175 * Protects changes to pool state and vdev state, such as vdev
176 * online/offline/fault/degrade/clear. Protects the dirty state list
177 * (spa_state_dirty_list) and global pool state (spa_state).
179 * SCL_ALLOC
180 * Protects changes to metaslab groups and classes.
181 * Held as reader by metaslab_alloc() and metaslab_claim().
183 * SCL_ZIO
184 * Held by bp-level zios (those which have no io_vd upon entry)
185 * to prevent changes to the vdev tree. The bp-level zio implicitly
186 * protects all of its vdev child zios, which do not hold SCL_ZIO.
188 * SCL_FREE
189 * Protects changes to metaslab groups and classes.
190 * Held as reader by metaslab_free(). SCL_FREE is distinct from
191 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
192 * blocks in zio_done() while another i/o that holds either
193 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
195 * SCL_VDEV
196 * Held as reader to prevent changes to the vdev tree during trivial
197 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
198 * other locks, and lower than all of them, to ensure that it's safe
199 * to acquire regardless of caller context.
201 * In addition, the following rules apply:
203 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
204 * The lock ordering is SCL_CONFIG > spa_props_lock.
206 * (b) I/O operations on leaf vdevs. For any zio operation that takes
207 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
208 * or zio_write_phys() -- the caller must ensure that the config cannot
209 * cannot change in the interim, and that the vdev cannot be reopened.
210 * SCL_STATE as reader suffices for both.
212 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
214 * spa_vdev_enter() Acquire the namespace lock and the config lock
215 * for writing.
217 * spa_vdev_exit() Release the config lock, wait for all I/O
218 * to complete, sync the updated configs to the
219 * cache, and release the namespace lock.
221 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
222 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
223 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
225 * spa_rename() is also implemented within this file since it requires
226 * manipulation of the namespace.
229 static avl_tree_t spa_namespace_avl;
230 kmutex_t spa_namespace_lock;
231 static kcondvar_t spa_namespace_cv;
232 static int spa_active_count;
233 int spa_max_replication_override = SPA_DVAS_PER_BP;
235 static kmutex_t spa_spare_lock;
236 static avl_tree_t spa_spare_avl;
237 static kmutex_t spa_l2cache_lock;
238 static avl_tree_t spa_l2cache_avl;
240 kmem_cache_t *spa_buffer_pool;
241 int spa_mode_global;
243 #ifdef ZFS_DEBUG
245 * Everything except dprintf, spa, and indirect_remap is on by default
246 * in debug builds.
248 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP);
249 #else
250 int zfs_flags = 0;
251 #endif
254 * zfs_recover can be set to nonzero to attempt to recover from
255 * otherwise-fatal errors, typically caused by on-disk corruption. When
256 * set, calls to zfs_panic_recover() will turn into warning messages.
257 * This should only be used as a last resort, as it typically results
258 * in leaked space, or worse.
260 boolean_t zfs_recover = B_FALSE;
263 * If destroy encounters an EIO while reading metadata (e.g. indirect
264 * blocks), space referenced by the missing metadata can not be freed.
265 * Normally this causes the background destroy to become "stalled", as
266 * it is unable to make forward progress. While in this stalled state,
267 * all remaining space to free from the error-encountering filesystem is
268 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
269 * permanently leak the space from indirect blocks that can not be read,
270 * and continue to free everything else that it can.
272 * The default, "stalling" behavior is useful if the storage partially
273 * fails (i.e. some but not all i/os fail), and then later recovers. In
274 * this case, we will be able to continue pool operations while it is
275 * partially failed, and when it recovers, we can continue to free the
276 * space, with no leaks. However, note that this case is actually
277 * fairly rare.
279 * Typically pools either (a) fail completely (but perhaps temporarily,
280 * e.g. a top-level vdev going offline), or (b) have localized,
281 * permanent errors (e.g. disk returns the wrong data due to bit flip or
282 * firmware bug). In case (a), this setting does not matter because the
283 * pool will be suspended and the sync thread will not be able to make
284 * forward progress regardless. In case (b), because the error is
285 * permanent, the best we can do is leak the minimum amount of space,
286 * which is what setting this flag will do. Therefore, it is reasonable
287 * for this flag to normally be set, but we chose the more conservative
288 * approach of not setting it, so that there is no possibility of
289 * leaking space in the "partial temporary" failure case.
291 boolean_t zfs_free_leak_on_eio = B_FALSE;
294 * Expiration time in milliseconds. This value has two meanings. First it is
295 * used to determine when the spa_deadman() logic should fire. By default the
296 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
297 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
298 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
299 * in a system panic.
301 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
304 * Check time in milliseconds. This defines the frequency at which we check
305 * for hung I/O.
307 uint64_t zfs_deadman_checktime_ms = 5000ULL;
310 * Override the zfs deadman behavior via /etc/system. By default the
311 * deadman is enabled except on VMware and sparc deployments.
313 int zfs_deadman_enabled = -1;
316 * The worst case is single-sector max-parity RAID-Z blocks, in which
317 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
318 * times the size; so just assume that. Add to this the fact that
319 * we can have up to 3 DVAs per bp, and one more factor of 2 because
320 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
321 * the worst case is:
322 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
324 int spa_asize_inflation = 24;
327 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
328 * the pool to be consumed. This ensures that we don't run the pool
329 * completely out of space, due to unaccounted changes (e.g. to the MOS).
330 * It also limits the worst-case time to allocate space. If we have
331 * less than this amount of free space, most ZPL operations (e.g. write,
332 * create) will return ENOSPC.
334 * Certain operations (e.g. file removal, most administrative actions) can
335 * use half the slop space. They will only return ENOSPC if less than half
336 * the slop space is free. Typically, once the pool has less than the slop
337 * space free, the user will use these operations to free up space in the pool.
338 * These are the operations that call dsl_pool_adjustedsize() with the netfree
339 * argument set to TRUE.
341 * Operations that are almost guaranteed to free up space in the absence of
342 * a pool checkpoint can use up to three quarters of the slop space
343 * (e.g zfs destroy).
345 * A very restricted set of operations are always permitted, regardless of
346 * the amount of free space. These are the operations that call
347 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
348 * increase in the amount of space used, it is possible to run the pool
349 * completely out of space, causing it to be permanently read-only.
351 * Note that on very small pools, the slop space will be larger than
352 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
353 * but we never allow it to be more than half the pool size.
355 * See also the comments in zfs_space_check_t.
357 int spa_slop_shift = 5;
358 uint64_t spa_min_slop = 128 * 1024 * 1024;
360 int spa_allocators = 4;
362 /*PRINTFLIKE2*/
363 void
364 spa_load_failed(spa_t *spa, const char *fmt, ...)
366 va_list adx;
367 char buf[256];
369 va_start(adx, fmt);
370 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
371 va_end(adx);
373 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
374 spa->spa_trust_config ? "trusted" : "untrusted", buf);
377 /*PRINTFLIKE2*/
378 void
379 spa_load_note(spa_t *spa, const char *fmt, ...)
381 va_list adx;
382 char buf[256];
384 va_start(adx, fmt);
385 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
386 va_end(adx);
388 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
389 spa->spa_trust_config ? "trusted" : "untrusted", buf);
393 * ==========================================================================
394 * SPA config locking
395 * ==========================================================================
397 static void
398 spa_config_lock_init(spa_t *spa)
400 for (int i = 0; i < SCL_LOCKS; i++) {
401 spa_config_lock_t *scl = &spa->spa_config_lock[i];
402 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
403 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
404 refcount_create_untracked(&scl->scl_count);
405 scl->scl_writer = NULL;
406 scl->scl_write_wanted = 0;
410 static void
411 spa_config_lock_destroy(spa_t *spa)
413 for (int i = 0; i < SCL_LOCKS; i++) {
414 spa_config_lock_t *scl = &spa->spa_config_lock[i];
415 mutex_destroy(&scl->scl_lock);
416 cv_destroy(&scl->scl_cv);
417 refcount_destroy(&scl->scl_count);
418 ASSERT(scl->scl_writer == NULL);
419 ASSERT(scl->scl_write_wanted == 0);
424 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
426 for (int i = 0; i < SCL_LOCKS; i++) {
427 spa_config_lock_t *scl = &spa->spa_config_lock[i];
428 if (!(locks & (1 << i)))
429 continue;
430 mutex_enter(&scl->scl_lock);
431 if (rw == RW_READER) {
432 if (scl->scl_writer || scl->scl_write_wanted) {
433 mutex_exit(&scl->scl_lock);
434 spa_config_exit(spa, locks & ((1 << i) - 1),
435 tag);
436 return (0);
438 } else {
439 ASSERT(scl->scl_writer != curthread);
440 if (!refcount_is_zero(&scl->scl_count)) {
441 mutex_exit(&scl->scl_lock);
442 spa_config_exit(spa, locks & ((1 << i) - 1),
443 tag);
444 return (0);
446 scl->scl_writer = curthread;
448 (void) refcount_add(&scl->scl_count, tag);
449 mutex_exit(&scl->scl_lock);
451 return (1);
454 void
455 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
457 int wlocks_held = 0;
459 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
461 for (int i = 0; i < SCL_LOCKS; i++) {
462 spa_config_lock_t *scl = &spa->spa_config_lock[i];
463 if (scl->scl_writer == curthread)
464 wlocks_held |= (1 << i);
465 if (!(locks & (1 << i)))
466 continue;
467 mutex_enter(&scl->scl_lock);
468 if (rw == RW_READER) {
469 while (scl->scl_writer || scl->scl_write_wanted) {
470 cv_wait(&scl->scl_cv, &scl->scl_lock);
472 } else {
473 ASSERT(scl->scl_writer != curthread);
474 while (!refcount_is_zero(&scl->scl_count)) {
475 scl->scl_write_wanted++;
476 cv_wait(&scl->scl_cv, &scl->scl_lock);
477 scl->scl_write_wanted--;
479 scl->scl_writer = curthread;
481 (void) refcount_add(&scl->scl_count, tag);
482 mutex_exit(&scl->scl_lock);
484 ASSERT3U(wlocks_held, <=, locks);
487 void
488 spa_config_exit(spa_t *spa, int locks, void *tag)
490 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
491 spa_config_lock_t *scl = &spa->spa_config_lock[i];
492 if (!(locks & (1 << i)))
493 continue;
494 mutex_enter(&scl->scl_lock);
495 ASSERT(!refcount_is_zero(&scl->scl_count));
496 if (refcount_remove(&scl->scl_count, tag) == 0) {
497 ASSERT(scl->scl_writer == NULL ||
498 scl->scl_writer == curthread);
499 scl->scl_writer = NULL; /* OK in either case */
500 cv_broadcast(&scl->scl_cv);
502 mutex_exit(&scl->scl_lock);
507 spa_config_held(spa_t *spa, int locks, krw_t rw)
509 int locks_held = 0;
511 for (int i = 0; i < SCL_LOCKS; i++) {
512 spa_config_lock_t *scl = &spa->spa_config_lock[i];
513 if (!(locks & (1 << i)))
514 continue;
515 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
516 (rw == RW_WRITER && scl->scl_writer == curthread))
517 locks_held |= 1 << i;
520 return (locks_held);
524 * ==========================================================================
525 * SPA namespace functions
526 * ==========================================================================
530 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
531 * Returns NULL if no matching spa_t is found.
533 spa_t *
534 spa_lookup(const char *name)
536 static spa_t search; /* spa_t is large; don't allocate on stack */
537 spa_t *spa;
538 avl_index_t where;
539 char *cp;
541 ASSERT(MUTEX_HELD(&spa_namespace_lock));
543 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
546 * If it's a full dataset name, figure out the pool name and
547 * just use that.
549 cp = strpbrk(search.spa_name, "/@#");
550 if (cp != NULL)
551 *cp = '\0';
553 spa = avl_find(&spa_namespace_avl, &search, &where);
555 return (spa);
559 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
560 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
561 * looking for potentially hung I/Os.
563 void
564 spa_deadman(void *arg)
566 spa_t *spa = arg;
569 * Disable the deadman timer if the pool is suspended.
571 if (spa_suspended(spa)) {
572 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
573 return;
576 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
577 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
578 ++spa->spa_deadman_calls);
579 if (zfs_deadman_enabled)
580 vdev_deadman(spa->spa_root_vdev);
584 * Create an uninitialized spa_t with the given name. Requires
585 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
586 * exist by calling spa_lookup() first.
588 spa_t *
589 spa_add(const char *name, nvlist_t *config, const char *altroot)
591 spa_t *spa;
592 spa_config_dirent_t *dp;
593 cyc_handler_t hdlr;
594 cyc_time_t when;
596 ASSERT(MUTEX_HELD(&spa_namespace_lock));
598 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
600 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
601 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
602 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
603 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
604 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
605 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
606 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
607 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
608 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
609 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
610 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
611 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
613 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
614 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
615 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
616 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
617 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
619 for (int t = 0; t < TXG_SIZE; t++)
620 bplist_create(&spa->spa_free_bplist[t]);
622 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
623 spa->spa_state = POOL_STATE_UNINITIALIZED;
624 spa->spa_freeze_txg = UINT64_MAX;
625 spa->spa_final_txg = UINT64_MAX;
626 spa->spa_load_max_txg = UINT64_MAX;
627 spa->spa_proc = &p0;
628 spa->spa_proc_state = SPA_PROC_NONE;
629 spa->spa_trust_config = B_TRUE;
631 hdlr.cyh_func = spa_deadman;
632 hdlr.cyh_arg = spa;
633 hdlr.cyh_level = CY_LOW_LEVEL;
635 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
638 * This determines how often we need to check for hung I/Os after
639 * the cyclic has already fired. Since checking for hung I/Os is
640 * an expensive operation we don't want to check too frequently.
641 * Instead wait for 5 seconds before checking again.
643 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
644 when.cyt_when = CY_INFINITY;
645 mutex_enter(&cpu_lock);
646 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
647 mutex_exit(&cpu_lock);
649 refcount_create(&spa->spa_refcount);
650 spa_config_lock_init(spa);
652 avl_add(&spa_namespace_avl, spa);
655 * Set the alternate root, if there is one.
657 if (altroot) {
658 spa->spa_root = spa_strdup(altroot);
659 spa_active_count++;
662 spa->spa_alloc_count = spa_allocators;
663 spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
664 sizeof (kmutex_t), KM_SLEEP);
665 spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
666 sizeof (avl_tree_t), KM_SLEEP);
667 for (int i = 0; i < spa->spa_alloc_count; i++) {
668 mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
669 avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
670 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
674 * Every pool starts with the default cachefile
676 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
677 offsetof(spa_config_dirent_t, scd_link));
679 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
680 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
681 list_insert_head(&spa->spa_config_list, dp);
683 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
684 KM_SLEEP) == 0);
686 if (config != NULL) {
687 nvlist_t *features;
689 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
690 &features) == 0) {
691 VERIFY(nvlist_dup(features, &spa->spa_label_features,
692 0) == 0);
695 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
698 if (spa->spa_label_features == NULL) {
699 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
700 KM_SLEEP) == 0);
703 spa->spa_iokstat = kstat_create("zfs", 0, name,
704 "disk", KSTAT_TYPE_IO, 1, 0);
705 if (spa->spa_iokstat) {
706 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
707 kstat_install(spa->spa_iokstat);
710 spa->spa_min_ashift = INT_MAX;
711 spa->spa_max_ashift = 0;
714 * As a pool is being created, treat all features as disabled by
715 * setting SPA_FEATURE_DISABLED for all entries in the feature
716 * refcount cache.
718 for (int i = 0; i < SPA_FEATURES; i++) {
719 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
722 return (spa);
726 * Removes a spa_t from the namespace, freeing up any memory used. Requires
727 * spa_namespace_lock. This is called only after the spa_t has been closed and
728 * deactivated.
730 void
731 spa_remove(spa_t *spa)
733 spa_config_dirent_t *dp;
735 ASSERT(MUTEX_HELD(&spa_namespace_lock));
736 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
737 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
739 nvlist_free(spa->spa_config_splitting);
741 avl_remove(&spa_namespace_avl, spa);
742 cv_broadcast(&spa_namespace_cv);
744 if (spa->spa_root) {
745 spa_strfree(spa->spa_root);
746 spa_active_count--;
749 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
750 list_remove(&spa->spa_config_list, dp);
751 if (dp->scd_path != NULL)
752 spa_strfree(dp->scd_path);
753 kmem_free(dp, sizeof (spa_config_dirent_t));
756 for (int i = 0; i < spa->spa_alloc_count; i++) {
757 avl_destroy(&spa->spa_alloc_trees[i]);
758 mutex_destroy(&spa->spa_alloc_locks[i]);
760 kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
761 sizeof (kmutex_t));
762 kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
763 sizeof (avl_tree_t));
765 list_destroy(&spa->spa_config_list);
767 nvlist_free(spa->spa_label_features);
768 nvlist_free(spa->spa_load_info);
769 spa_config_set(spa, NULL);
771 mutex_enter(&cpu_lock);
772 if (spa->spa_deadman_cycid != CYCLIC_NONE)
773 cyclic_remove(spa->spa_deadman_cycid);
774 mutex_exit(&cpu_lock);
775 spa->spa_deadman_cycid = CYCLIC_NONE;
777 refcount_destroy(&spa->spa_refcount);
779 spa_config_lock_destroy(spa);
781 kstat_delete(spa->spa_iokstat);
782 spa->spa_iokstat = NULL;
784 for (int t = 0; t < TXG_SIZE; t++)
785 bplist_destroy(&spa->spa_free_bplist[t]);
787 zio_checksum_templates_free(spa);
789 cv_destroy(&spa->spa_async_cv);
790 cv_destroy(&spa->spa_evicting_os_cv);
791 cv_destroy(&spa->spa_proc_cv);
792 cv_destroy(&spa->spa_scrub_io_cv);
793 cv_destroy(&spa->spa_suspend_cv);
795 mutex_destroy(&spa->spa_async_lock);
796 mutex_destroy(&spa->spa_errlist_lock);
797 mutex_destroy(&spa->spa_errlog_lock);
798 mutex_destroy(&spa->spa_evicting_os_lock);
799 mutex_destroy(&spa->spa_history_lock);
800 mutex_destroy(&spa->spa_proc_lock);
801 mutex_destroy(&spa->spa_props_lock);
802 mutex_destroy(&spa->spa_cksum_tmpls_lock);
803 mutex_destroy(&spa->spa_scrub_lock);
804 mutex_destroy(&spa->spa_suspend_lock);
805 mutex_destroy(&spa->spa_vdev_top_lock);
806 mutex_destroy(&spa->spa_iokstat_lock);
808 kmem_free(spa, sizeof (spa_t));
812 * Given a pool, return the next pool in the namespace, or NULL if there is
813 * none. If 'prev' is NULL, return the first pool.
815 spa_t *
816 spa_next(spa_t *prev)
818 ASSERT(MUTEX_HELD(&spa_namespace_lock));
820 if (prev)
821 return (AVL_NEXT(&spa_namespace_avl, prev));
822 else
823 return (avl_first(&spa_namespace_avl));
827 * ==========================================================================
828 * SPA refcount functions
829 * ==========================================================================
833 * Add a reference to the given spa_t. Must have at least one reference, or
834 * have the namespace lock held.
836 void
837 spa_open_ref(spa_t *spa, void *tag)
839 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
840 MUTEX_HELD(&spa_namespace_lock));
841 (void) refcount_add(&spa->spa_refcount, tag);
845 * Remove a reference to the given spa_t. Must have at least one reference, or
846 * have the namespace lock held.
848 void
849 spa_close(spa_t *spa, void *tag)
851 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
852 MUTEX_HELD(&spa_namespace_lock));
853 (void) refcount_remove(&spa->spa_refcount, tag);
857 * Remove a reference to the given spa_t held by a dsl dir that is
858 * being asynchronously released. Async releases occur from a taskq
859 * performing eviction of dsl datasets and dirs. The namespace lock
860 * isn't held and the hold by the object being evicted may contribute to
861 * spa_minref (e.g. dataset or directory released during pool export),
862 * so the asserts in spa_close() do not apply.
864 void
865 spa_async_close(spa_t *spa, void *tag)
867 (void) refcount_remove(&spa->spa_refcount, tag);
871 * Check to see if the spa refcount is zero. Must be called with
872 * spa_namespace_lock held. We really compare against spa_minref, which is the
873 * number of references acquired when opening a pool
875 boolean_t
876 spa_refcount_zero(spa_t *spa)
878 ASSERT(MUTEX_HELD(&spa_namespace_lock));
880 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
884 * ==========================================================================
885 * SPA spare and l2cache tracking
886 * ==========================================================================
890 * Hot spares and cache devices are tracked using the same code below,
891 * for 'auxiliary' devices.
894 typedef struct spa_aux {
895 uint64_t aux_guid;
896 uint64_t aux_pool;
897 avl_node_t aux_avl;
898 int aux_count;
899 } spa_aux_t;
901 static int
902 spa_aux_compare(const void *a, const void *b)
904 const spa_aux_t *sa = a;
905 const spa_aux_t *sb = b;
907 if (sa->aux_guid < sb->aux_guid)
908 return (-1);
909 else if (sa->aux_guid > sb->aux_guid)
910 return (1);
911 else
912 return (0);
915 void
916 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
918 avl_index_t where;
919 spa_aux_t search;
920 spa_aux_t *aux;
922 search.aux_guid = vd->vdev_guid;
923 if ((aux = avl_find(avl, &search, &where)) != NULL) {
924 aux->aux_count++;
925 } else {
926 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
927 aux->aux_guid = vd->vdev_guid;
928 aux->aux_count = 1;
929 avl_insert(avl, aux, where);
933 void
934 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
936 spa_aux_t search;
937 spa_aux_t *aux;
938 avl_index_t where;
940 search.aux_guid = vd->vdev_guid;
941 aux = avl_find(avl, &search, &where);
943 ASSERT(aux != NULL);
945 if (--aux->aux_count == 0) {
946 avl_remove(avl, aux);
947 kmem_free(aux, sizeof (spa_aux_t));
948 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
949 aux->aux_pool = 0ULL;
953 boolean_t
954 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
956 spa_aux_t search, *found;
958 search.aux_guid = guid;
959 found = avl_find(avl, &search, NULL);
961 if (pool) {
962 if (found)
963 *pool = found->aux_pool;
964 else
965 *pool = 0ULL;
968 if (refcnt) {
969 if (found)
970 *refcnt = found->aux_count;
971 else
972 *refcnt = 0;
975 return (found != NULL);
978 void
979 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
981 spa_aux_t search, *found;
982 avl_index_t where;
984 search.aux_guid = vd->vdev_guid;
985 found = avl_find(avl, &search, &where);
986 ASSERT(found != NULL);
987 ASSERT(found->aux_pool == 0ULL);
989 found->aux_pool = spa_guid(vd->vdev_spa);
993 * Spares are tracked globally due to the following constraints:
995 * - A spare may be part of multiple pools.
996 * - A spare may be added to a pool even if it's actively in use within
997 * another pool.
998 * - A spare in use in any pool can only be the source of a replacement if
999 * the target is a spare in the same pool.
1001 * We keep track of all spares on the system through the use of a reference
1002 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
1003 * spare, then we bump the reference count in the AVL tree. In addition, we set
1004 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1005 * inactive). When a spare is made active (used to replace a device in the
1006 * pool), we also keep track of which pool its been made a part of.
1008 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
1009 * called under the spa_namespace lock as part of vdev reconfiguration. The
1010 * separate spare lock exists for the status query path, which does not need to
1011 * be completely consistent with respect to other vdev configuration changes.
1014 static int
1015 spa_spare_compare(const void *a, const void *b)
1017 return (spa_aux_compare(a, b));
1020 void
1021 spa_spare_add(vdev_t *vd)
1023 mutex_enter(&spa_spare_lock);
1024 ASSERT(!vd->vdev_isspare);
1025 spa_aux_add(vd, &spa_spare_avl);
1026 vd->vdev_isspare = B_TRUE;
1027 mutex_exit(&spa_spare_lock);
1030 void
1031 spa_spare_remove(vdev_t *vd)
1033 mutex_enter(&spa_spare_lock);
1034 ASSERT(vd->vdev_isspare);
1035 spa_aux_remove(vd, &spa_spare_avl);
1036 vd->vdev_isspare = B_FALSE;
1037 mutex_exit(&spa_spare_lock);
1040 boolean_t
1041 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1043 boolean_t found;
1045 mutex_enter(&spa_spare_lock);
1046 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1047 mutex_exit(&spa_spare_lock);
1049 return (found);
1052 void
1053 spa_spare_activate(vdev_t *vd)
1055 mutex_enter(&spa_spare_lock);
1056 ASSERT(vd->vdev_isspare);
1057 spa_aux_activate(vd, &spa_spare_avl);
1058 mutex_exit(&spa_spare_lock);
1062 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1063 * Cache devices currently only support one pool per cache device, and so
1064 * for these devices the aux reference count is currently unused beyond 1.
1067 static int
1068 spa_l2cache_compare(const void *a, const void *b)
1070 return (spa_aux_compare(a, b));
1073 void
1074 spa_l2cache_add(vdev_t *vd)
1076 mutex_enter(&spa_l2cache_lock);
1077 ASSERT(!vd->vdev_isl2cache);
1078 spa_aux_add(vd, &spa_l2cache_avl);
1079 vd->vdev_isl2cache = B_TRUE;
1080 mutex_exit(&spa_l2cache_lock);
1083 void
1084 spa_l2cache_remove(vdev_t *vd)
1086 mutex_enter(&spa_l2cache_lock);
1087 ASSERT(vd->vdev_isl2cache);
1088 spa_aux_remove(vd, &spa_l2cache_avl);
1089 vd->vdev_isl2cache = B_FALSE;
1090 mutex_exit(&spa_l2cache_lock);
1093 boolean_t
1094 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1096 boolean_t found;
1098 mutex_enter(&spa_l2cache_lock);
1099 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1100 mutex_exit(&spa_l2cache_lock);
1102 return (found);
1105 void
1106 spa_l2cache_activate(vdev_t *vd)
1108 mutex_enter(&spa_l2cache_lock);
1109 ASSERT(vd->vdev_isl2cache);
1110 spa_aux_activate(vd, &spa_l2cache_avl);
1111 mutex_exit(&spa_l2cache_lock);
1115 * ==========================================================================
1116 * SPA vdev locking
1117 * ==========================================================================
1121 * Lock the given spa_t for the purpose of adding or removing a vdev.
1122 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1123 * It returns the next transaction group for the spa_t.
1125 uint64_t
1126 spa_vdev_enter(spa_t *spa)
1128 mutex_enter(&spa->spa_vdev_top_lock);
1129 mutex_enter(&spa_namespace_lock);
1130 return (spa_vdev_config_enter(spa));
1134 * Internal implementation for spa_vdev_enter(). Used when a vdev
1135 * operation requires multiple syncs (i.e. removing a device) while
1136 * keeping the spa_namespace_lock held.
1138 uint64_t
1139 spa_vdev_config_enter(spa_t *spa)
1141 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1143 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1145 return (spa_last_synced_txg(spa) + 1);
1149 * Used in combination with spa_vdev_config_enter() to allow the syncing
1150 * of multiple transactions without releasing the spa_namespace_lock.
1152 void
1153 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1155 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1157 int config_changed = B_FALSE;
1159 ASSERT(txg > spa_last_synced_txg(spa));
1161 spa->spa_pending_vdev = NULL;
1164 * Reassess the DTLs.
1166 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1168 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1169 config_changed = B_TRUE;
1170 spa->spa_config_generation++;
1174 * Verify the metaslab classes.
1176 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1177 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1179 spa_config_exit(spa, SCL_ALL, spa);
1182 * Panic the system if the specified tag requires it. This
1183 * is useful for ensuring that configurations are updated
1184 * transactionally.
1186 if (zio_injection_enabled)
1187 zio_handle_panic_injection(spa, tag, 0);
1190 * Note: this txg_wait_synced() is important because it ensures
1191 * that there won't be more than one config change per txg.
1192 * This allows us to use the txg as the generation number.
1194 if (error == 0)
1195 txg_wait_synced(spa->spa_dsl_pool, txg);
1197 if (vd != NULL) {
1198 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1199 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1200 vdev_free(vd);
1201 spa_config_exit(spa, SCL_ALL, spa);
1205 * If the config changed, update the config cache.
1207 if (config_changed)
1208 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1212 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1213 * locking of spa_vdev_enter(), we also want make sure the transactions have
1214 * synced to disk, and then update the global configuration cache with the new
1215 * information.
1218 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1220 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1221 mutex_exit(&spa_namespace_lock);
1222 mutex_exit(&spa->spa_vdev_top_lock);
1224 return (error);
1228 * Lock the given spa_t for the purpose of changing vdev state.
1230 void
1231 spa_vdev_state_enter(spa_t *spa, int oplocks)
1233 int locks = SCL_STATE_ALL | oplocks;
1236 * Root pools may need to read of the underlying devfs filesystem
1237 * when opening up a vdev. Unfortunately if we're holding the
1238 * SCL_ZIO lock it will result in a deadlock when we try to issue
1239 * the read from the root filesystem. Instead we "prefetch"
1240 * the associated vnodes that we need prior to opening the
1241 * underlying devices and cache them so that we can prevent
1242 * any I/O when we are doing the actual open.
1244 if (spa_is_root(spa)) {
1245 int low = locks & ~(SCL_ZIO - 1);
1246 int high = locks & ~low;
1248 spa_config_enter(spa, high, spa, RW_WRITER);
1249 vdev_hold(spa->spa_root_vdev);
1250 spa_config_enter(spa, low, spa, RW_WRITER);
1251 } else {
1252 spa_config_enter(spa, locks, spa, RW_WRITER);
1254 spa->spa_vdev_locks = locks;
1258 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1260 boolean_t config_changed = B_FALSE;
1262 if (vd != NULL || error == 0)
1263 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1264 0, 0, B_FALSE);
1266 if (vd != NULL) {
1267 vdev_state_dirty(vd->vdev_top);
1268 config_changed = B_TRUE;
1269 spa->spa_config_generation++;
1272 if (spa_is_root(spa))
1273 vdev_rele(spa->spa_root_vdev);
1275 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1276 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1279 * If anything changed, wait for it to sync. This ensures that,
1280 * from the system administrator's perspective, zpool(1M) commands
1281 * are synchronous. This is important for things like zpool offline:
1282 * when the command completes, you expect no further I/O from ZFS.
1284 if (vd != NULL)
1285 txg_wait_synced(spa->spa_dsl_pool, 0);
1288 * If the config changed, update the config cache.
1290 if (config_changed) {
1291 mutex_enter(&spa_namespace_lock);
1292 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1293 mutex_exit(&spa_namespace_lock);
1296 return (error);
1300 * ==========================================================================
1301 * Miscellaneous functions
1302 * ==========================================================================
1305 void
1306 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1308 if (!nvlist_exists(spa->spa_label_features, feature)) {
1309 fnvlist_add_boolean(spa->spa_label_features, feature);
1311 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1312 * dirty the vdev config because lock SCL_CONFIG is not held.
1313 * Thankfully, in this case we don't need to dirty the config
1314 * because it will be written out anyway when we finish
1315 * creating the pool.
1317 if (tx->tx_txg != TXG_INITIAL)
1318 vdev_config_dirty(spa->spa_root_vdev);
1322 void
1323 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1325 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1326 vdev_config_dirty(spa->spa_root_vdev);
1330 * Rename a spa_t.
1333 spa_rename(const char *name, const char *newname)
1335 spa_t *spa;
1336 int err;
1339 * Lookup the spa_t and grab the config lock for writing. We need to
1340 * actually open the pool so that we can sync out the necessary labels.
1341 * It's OK to call spa_open() with the namespace lock held because we
1342 * allow recursive calls for other reasons.
1344 mutex_enter(&spa_namespace_lock);
1345 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1346 mutex_exit(&spa_namespace_lock);
1347 return (err);
1350 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1352 avl_remove(&spa_namespace_avl, spa);
1353 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1354 avl_add(&spa_namespace_avl, spa);
1357 * Sync all labels to disk with the new names by marking the root vdev
1358 * dirty and waiting for it to sync. It will pick up the new pool name
1359 * during the sync.
1361 vdev_config_dirty(spa->spa_root_vdev);
1363 spa_config_exit(spa, SCL_ALL, FTAG);
1365 txg_wait_synced(spa->spa_dsl_pool, 0);
1368 * Sync the updated config cache.
1370 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1372 spa_close(spa, FTAG);
1374 mutex_exit(&spa_namespace_lock);
1376 return (0);
1380 * Return the spa_t associated with given pool_guid, if it exists. If
1381 * device_guid is non-zero, determine whether the pool exists *and* contains
1382 * a device with the specified device_guid.
1384 spa_t *
1385 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1387 spa_t *spa;
1388 avl_tree_t *t = &spa_namespace_avl;
1390 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1392 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1393 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1394 continue;
1395 if (spa->spa_root_vdev == NULL)
1396 continue;
1397 if (spa_guid(spa) == pool_guid) {
1398 if (device_guid == 0)
1399 break;
1401 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1402 device_guid) != NULL)
1403 break;
1406 * Check any devices we may be in the process of adding.
1408 if (spa->spa_pending_vdev) {
1409 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1410 device_guid) != NULL)
1411 break;
1416 return (spa);
1420 * Determine whether a pool with the given pool_guid exists.
1422 boolean_t
1423 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1425 return (spa_by_guid(pool_guid, device_guid) != NULL);
1428 char *
1429 spa_strdup(const char *s)
1431 size_t len;
1432 char *new;
1434 len = strlen(s);
1435 new = kmem_alloc(len + 1, KM_SLEEP);
1436 bcopy(s, new, len);
1437 new[len] = '\0';
1439 return (new);
1442 void
1443 spa_strfree(char *s)
1445 kmem_free(s, strlen(s) + 1);
1448 uint64_t
1449 spa_get_random(uint64_t range)
1451 uint64_t r;
1453 ASSERT(range != 0);
1455 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1457 return (r % range);
1460 uint64_t
1461 spa_generate_guid(spa_t *spa)
1463 uint64_t guid = spa_get_random(-1ULL);
1465 if (spa != NULL) {
1466 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1467 guid = spa_get_random(-1ULL);
1468 } else {
1469 while (guid == 0 || spa_guid_exists(guid, 0))
1470 guid = spa_get_random(-1ULL);
1473 return (guid);
1476 void
1477 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1479 char type[256];
1480 char *checksum = NULL;
1481 char *compress = NULL;
1483 if (bp != NULL) {
1484 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1485 dmu_object_byteswap_t bswap =
1486 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1487 (void) snprintf(type, sizeof (type), "bswap %s %s",
1488 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1489 "metadata" : "data",
1490 dmu_ot_byteswap[bswap].ob_name);
1491 } else {
1492 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1493 sizeof (type));
1495 if (!BP_IS_EMBEDDED(bp)) {
1496 checksum =
1497 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1499 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1502 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1503 compress);
1506 void
1507 spa_freeze(spa_t *spa)
1509 uint64_t freeze_txg = 0;
1511 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1512 if (spa->spa_freeze_txg == UINT64_MAX) {
1513 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1514 spa->spa_freeze_txg = freeze_txg;
1516 spa_config_exit(spa, SCL_ALL, FTAG);
1517 if (freeze_txg != 0)
1518 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1521 void
1522 zfs_panic_recover(const char *fmt, ...)
1524 va_list adx;
1526 va_start(adx, fmt);
1527 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1528 va_end(adx);
1532 * This is a stripped-down version of strtoull, suitable only for converting
1533 * lowercase hexadecimal numbers that don't overflow.
1535 uint64_t
1536 zfs_strtonum(const char *str, char **nptr)
1538 uint64_t val = 0;
1539 char c;
1540 int digit;
1542 while ((c = *str) != '\0') {
1543 if (c >= '0' && c <= '9')
1544 digit = c - '0';
1545 else if (c >= 'a' && c <= 'f')
1546 digit = 10 + c - 'a';
1547 else
1548 break;
1550 val *= 16;
1551 val += digit;
1553 str++;
1556 if (nptr)
1557 *nptr = (char *)str;
1559 return (val);
1563 * ==========================================================================
1564 * Accessor functions
1565 * ==========================================================================
1568 boolean_t
1569 spa_shutting_down(spa_t *spa)
1571 return (spa->spa_async_suspended);
1574 dsl_pool_t *
1575 spa_get_dsl(spa_t *spa)
1577 return (spa->spa_dsl_pool);
1580 boolean_t
1581 spa_is_initializing(spa_t *spa)
1583 return (spa->spa_is_initializing);
1586 boolean_t
1587 spa_indirect_vdevs_loaded(spa_t *spa)
1589 return (spa->spa_indirect_vdevs_loaded);
1592 blkptr_t *
1593 spa_get_rootblkptr(spa_t *spa)
1595 return (&spa->spa_ubsync.ub_rootbp);
1598 void
1599 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1601 spa->spa_uberblock.ub_rootbp = *bp;
1604 void
1605 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1607 if (spa->spa_root == NULL)
1608 buf[0] = '\0';
1609 else
1610 (void) strncpy(buf, spa->spa_root, buflen);
1614 spa_sync_pass(spa_t *spa)
1616 return (spa->spa_sync_pass);
1619 char *
1620 spa_name(spa_t *spa)
1622 return (spa->spa_name);
1625 uint64_t
1626 spa_guid(spa_t *spa)
1628 dsl_pool_t *dp = spa_get_dsl(spa);
1629 uint64_t guid;
1632 * If we fail to parse the config during spa_load(), we can go through
1633 * the error path (which posts an ereport) and end up here with no root
1634 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1635 * this case.
1637 if (spa->spa_root_vdev == NULL)
1638 return (spa->spa_config_guid);
1640 guid = spa->spa_last_synced_guid != 0 ?
1641 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1644 * Return the most recently synced out guid unless we're
1645 * in syncing context.
1647 if (dp && dsl_pool_sync_context(dp))
1648 return (spa->spa_root_vdev->vdev_guid);
1649 else
1650 return (guid);
1653 uint64_t
1654 spa_load_guid(spa_t *spa)
1657 * This is a GUID that exists solely as a reference for the
1658 * purposes of the arc. It is generated at load time, and
1659 * is never written to persistent storage.
1661 return (spa->spa_load_guid);
1664 uint64_t
1665 spa_last_synced_txg(spa_t *spa)
1667 return (spa->spa_ubsync.ub_txg);
1670 uint64_t
1671 spa_first_txg(spa_t *spa)
1673 return (spa->spa_first_txg);
1676 uint64_t
1677 spa_syncing_txg(spa_t *spa)
1679 return (spa->spa_syncing_txg);
1683 * Return the last txg where data can be dirtied. The final txgs
1684 * will be used to just clear out any deferred frees that remain.
1686 uint64_t
1687 spa_final_dirty_txg(spa_t *spa)
1689 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1692 pool_state_t
1693 spa_state(spa_t *spa)
1695 return (spa->spa_state);
1698 spa_load_state_t
1699 spa_load_state(spa_t *spa)
1701 return (spa->spa_load_state);
1704 uint64_t
1705 spa_freeze_txg(spa_t *spa)
1707 return (spa->spa_freeze_txg);
1710 /* ARGSUSED */
1711 uint64_t
1712 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1714 return (lsize * spa_asize_inflation);
1718 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1719 * or at least 128MB, unless that would cause it to be more than half the
1720 * pool size.
1722 * See the comment above spa_slop_shift for details.
1724 uint64_t
1725 spa_get_slop_space(spa_t *spa)
1727 uint64_t space = spa_get_dspace(spa);
1728 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1731 uint64_t
1732 spa_get_dspace(spa_t *spa)
1734 return (spa->spa_dspace);
1737 uint64_t
1738 spa_get_checkpoint_space(spa_t *spa)
1740 return (spa->spa_checkpoint_info.sci_dspace);
1743 void
1744 spa_update_dspace(spa_t *spa)
1746 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1747 ddt_get_dedup_dspace(spa);
1748 if (spa->spa_vdev_removal != NULL) {
1750 * We can't allocate from the removing device, so
1751 * subtract its size. This prevents the DMU/DSL from
1752 * filling up the (now smaller) pool while we are in the
1753 * middle of removing the device.
1755 * Note that the DMU/DSL doesn't actually know or care
1756 * how much space is allocated (it does its own tracking
1757 * of how much space has been logically used). So it
1758 * doesn't matter that the data we are moving may be
1759 * allocated twice (on the old device and the new
1760 * device).
1762 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1763 vdev_t *vd =
1764 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1765 spa->spa_dspace -= spa_deflate(spa) ?
1766 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1767 spa_config_exit(spa, SCL_VDEV, FTAG);
1772 * Return the failure mode that has been set to this pool. The default
1773 * behavior will be to block all I/Os when a complete failure occurs.
1775 uint8_t
1776 spa_get_failmode(spa_t *spa)
1778 return (spa->spa_failmode);
1781 boolean_t
1782 spa_suspended(spa_t *spa)
1784 return (spa->spa_suspended);
1787 uint64_t
1788 spa_version(spa_t *spa)
1790 return (spa->spa_ubsync.ub_version);
1793 boolean_t
1794 spa_deflate(spa_t *spa)
1796 return (spa->spa_deflate);
1799 metaslab_class_t *
1800 spa_normal_class(spa_t *spa)
1802 return (spa->spa_normal_class);
1805 metaslab_class_t *
1806 spa_log_class(spa_t *spa)
1808 return (spa->spa_log_class);
1811 void
1812 spa_evicting_os_register(spa_t *spa, objset_t *os)
1814 mutex_enter(&spa->spa_evicting_os_lock);
1815 list_insert_head(&spa->spa_evicting_os_list, os);
1816 mutex_exit(&spa->spa_evicting_os_lock);
1819 void
1820 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1822 mutex_enter(&spa->spa_evicting_os_lock);
1823 list_remove(&spa->spa_evicting_os_list, os);
1824 cv_broadcast(&spa->spa_evicting_os_cv);
1825 mutex_exit(&spa->spa_evicting_os_lock);
1828 void
1829 spa_evicting_os_wait(spa_t *spa)
1831 mutex_enter(&spa->spa_evicting_os_lock);
1832 while (!list_is_empty(&spa->spa_evicting_os_list))
1833 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1834 mutex_exit(&spa->spa_evicting_os_lock);
1836 dmu_buf_user_evict_wait();
1840 spa_max_replication(spa_t *spa)
1843 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1844 * handle BPs with more than one DVA allocated. Set our max
1845 * replication level accordingly.
1847 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1848 return (1);
1849 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1853 spa_prev_software_version(spa_t *spa)
1855 return (spa->spa_prev_software_version);
1858 uint64_t
1859 spa_deadman_synctime(spa_t *spa)
1861 return (spa->spa_deadman_synctime);
1864 uint64_t
1865 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1867 uint64_t asize = DVA_GET_ASIZE(dva);
1868 uint64_t dsize = asize;
1870 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1872 if (asize != 0 && spa->spa_deflate) {
1873 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1874 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1877 return (dsize);
1880 uint64_t
1881 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1883 uint64_t dsize = 0;
1885 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1886 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1888 return (dsize);
1891 uint64_t
1892 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1894 uint64_t dsize = 0;
1896 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1898 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1899 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1901 spa_config_exit(spa, SCL_VDEV, FTAG);
1903 return (dsize);
1907 * ==========================================================================
1908 * Initialization and Termination
1909 * ==========================================================================
1912 static int
1913 spa_name_compare(const void *a1, const void *a2)
1915 const spa_t *s1 = a1;
1916 const spa_t *s2 = a2;
1917 int s;
1919 s = strcmp(s1->spa_name, s2->spa_name);
1920 if (s > 0)
1921 return (1);
1922 if (s < 0)
1923 return (-1);
1924 return (0);
1928 spa_busy(void)
1930 return (spa_active_count);
1933 void
1934 spa_boot_init()
1936 spa_config_load();
1939 void
1940 spa_init(int mode)
1942 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1943 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1944 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1945 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1947 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1948 offsetof(spa_t, spa_avl));
1950 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1951 offsetof(spa_aux_t, aux_avl));
1953 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1954 offsetof(spa_aux_t, aux_avl));
1956 spa_mode_global = mode;
1958 #ifdef _KERNEL
1959 spa_arch_init();
1960 #else
1961 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1962 arc_procfd = open("/proc/self/ctl", O_WRONLY);
1963 if (arc_procfd == -1) {
1964 perror("could not enable watchpoints: "
1965 "opening /proc/self/ctl failed: ");
1966 } else {
1967 arc_watch = B_TRUE;
1970 #endif
1972 refcount_init();
1973 unique_init();
1974 range_tree_init();
1975 metaslab_alloc_trace_init();
1976 zio_init();
1977 dmu_init();
1978 zil_init();
1979 vdev_cache_stat_init();
1980 zfs_prop_init();
1981 zpool_prop_init();
1982 zpool_feature_init();
1983 spa_config_load();
1984 l2arc_start();
1987 void
1988 spa_fini(void)
1990 l2arc_stop();
1992 spa_evict_all();
1994 vdev_cache_stat_fini();
1995 zil_fini();
1996 dmu_fini();
1997 zio_fini();
1998 metaslab_alloc_trace_fini();
1999 range_tree_fini();
2000 unique_fini();
2001 refcount_fini();
2003 avl_destroy(&spa_namespace_avl);
2004 avl_destroy(&spa_spare_avl);
2005 avl_destroy(&spa_l2cache_avl);
2007 cv_destroy(&spa_namespace_cv);
2008 mutex_destroy(&spa_namespace_lock);
2009 mutex_destroy(&spa_spare_lock);
2010 mutex_destroy(&spa_l2cache_lock);
2014 * Return whether this pool has slogs. No locking needed.
2015 * It's not a problem if the wrong answer is returned as it's only for
2016 * performance and not correctness
2018 boolean_t
2019 spa_has_slogs(spa_t *spa)
2021 return (spa->spa_log_class->mc_rotor != NULL);
2024 spa_log_state_t
2025 spa_get_log_state(spa_t *spa)
2027 return (spa->spa_log_state);
2030 void
2031 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2033 spa->spa_log_state = state;
2036 boolean_t
2037 spa_is_root(spa_t *spa)
2039 return (spa->spa_is_root);
2042 boolean_t
2043 spa_writeable(spa_t *spa)
2045 return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
2049 * Returns true if there is a pending sync task in any of the current
2050 * syncing txg, the current quiescing txg, or the current open txg.
2052 boolean_t
2053 spa_has_pending_synctask(spa_t *spa)
2055 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2056 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2060 spa_mode(spa_t *spa)
2062 return (spa->spa_mode);
2065 uint64_t
2066 spa_bootfs(spa_t *spa)
2068 return (spa->spa_bootfs);
2071 uint64_t
2072 spa_delegation(spa_t *spa)
2074 return (spa->spa_delegation);
2077 objset_t *
2078 spa_meta_objset(spa_t *spa)
2080 return (spa->spa_meta_objset);
2083 enum zio_checksum
2084 spa_dedup_checksum(spa_t *spa)
2086 return (spa->spa_dedup_checksum);
2090 * Reset pool scan stat per scan pass (or reboot).
2092 void
2093 spa_scan_stat_init(spa_t *spa)
2095 /* data not stored on disk */
2096 spa->spa_scan_pass_start = gethrestime_sec();
2097 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2098 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2099 else
2100 spa->spa_scan_pass_scrub_pause = 0;
2101 spa->spa_scan_pass_scrub_spent_paused = 0;
2102 spa->spa_scan_pass_exam = 0;
2103 vdev_scan_stat_init(spa->spa_root_vdev);
2107 * Get scan stats for zpool status reports
2110 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2112 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2114 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2115 return (SET_ERROR(ENOENT));
2116 bzero(ps, sizeof (pool_scan_stat_t));
2118 /* data stored on disk */
2119 ps->pss_func = scn->scn_phys.scn_func;
2120 ps->pss_start_time = scn->scn_phys.scn_start_time;
2121 ps->pss_end_time = scn->scn_phys.scn_end_time;
2122 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2123 ps->pss_examined = scn->scn_phys.scn_examined;
2124 ps->pss_to_process = scn->scn_phys.scn_to_process;
2125 ps->pss_processed = scn->scn_phys.scn_processed;
2126 ps->pss_errors = scn->scn_phys.scn_errors;
2127 ps->pss_state = scn->scn_phys.scn_state;
2129 /* data not stored on disk */
2130 ps->pss_pass_start = spa->spa_scan_pass_start;
2131 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2132 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2133 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2135 return (0);
2139 spa_maxblocksize(spa_t *spa)
2141 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2142 return (SPA_MAXBLOCKSIZE);
2143 else
2144 return (SPA_OLD_MAXBLOCKSIZE);
2148 * Returns the txg that the last device removal completed. No indirect mappings
2149 * have been added since this txg.
2151 uint64_t
2152 spa_get_last_removal_txg(spa_t *spa)
2154 uint64_t vdevid;
2155 uint64_t ret = -1ULL;
2157 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2159 * sr_prev_indirect_vdev is only modified while holding all the
2160 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2161 * examining it.
2163 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2165 while (vdevid != -1ULL) {
2166 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2167 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2169 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2172 * If the removal did not remap any data, we don't care.
2174 if (vdev_indirect_births_count(vib) != 0) {
2175 ret = vdev_indirect_births_last_entry_txg(vib);
2176 break;
2179 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2181 spa_config_exit(spa, SCL_VDEV, FTAG);
2183 IMPLY(ret != -1ULL,
2184 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2186 return (ret);
2189 boolean_t
2190 spa_trust_config(spa_t *spa)
2192 return (spa->spa_trust_config);
2195 uint64_t
2196 spa_missing_tvds_allowed(spa_t *spa)
2198 return (spa->spa_missing_tvds_allowed);
2201 void
2202 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2204 spa->spa_missing_tvds = missing;
2207 boolean_t
2208 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2210 vdev_t *rvd = spa->spa_root_vdev;
2211 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2212 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2213 return (B_FALSE);
2215 return (B_TRUE);
2218 boolean_t
2219 spa_has_checkpoint(spa_t *spa)
2221 return (spa->spa_checkpoint_txg != 0);
2224 boolean_t
2225 spa_importing_readonly_checkpoint(spa_t *spa)
2227 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2228 spa->spa_mode == FREAD);
2231 uint64_t
2232 spa_min_claim_txg(spa_t *spa)
2234 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2236 if (checkpoint_txg != 0)
2237 return (checkpoint_txg + 1);
2239 return (spa->spa_first_txg);
2243 * If there is a checkpoint, async destroys may consume more space from
2244 * the pool instead of freeing it. In an attempt to save the pool from
2245 * getting suspended when it is about to run out of space, we stop
2246 * processing async destroys.
2248 boolean_t
2249 spa_suspend_async_destroy(spa_t *spa)
2251 dsl_pool_t *dp = spa_get_dsl(spa);
2253 uint64_t unreserved = dsl_pool_unreserved_space(dp,
2254 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2255 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2256 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2258 if (spa_has_checkpoint(spa) && avail == 0)
2259 return (B_TRUE);
2261 return (B_FALSE);