3529 iostat should display time used by dtrace
[unleashed.git] / usr / src / uts / common / os / cpu.c
bloba2047160d516eca2ad029a108ddcc67a743754ff
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
27 * Architecture-independent CPU control functions.
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/var.h>
33 #include <sys/thread.h>
34 #include <sys/cpuvar.h>
35 #include <sys/cpu_event.h>
36 #include <sys/kstat.h>
37 #include <sys/uadmin.h>
38 #include <sys/systm.h>
39 #include <sys/errno.h>
40 #include <sys/cmn_err.h>
41 #include <sys/procset.h>
42 #include <sys/processor.h>
43 #include <sys/debug.h>
44 #include <sys/cpupart.h>
45 #include <sys/lgrp.h>
46 #include <sys/pset.h>
47 #include <sys/pghw.h>
48 #include <sys/kmem.h>
49 #include <sys/kmem_impl.h> /* to set per-cpu kmem_cache offset */
50 #include <sys/atomic.h>
51 #include <sys/callb.h>
52 #include <sys/vtrace.h>
53 #include <sys/cyclic.h>
54 #include <sys/bitmap.h>
55 #include <sys/nvpair.h>
56 #include <sys/pool_pset.h>
57 #include <sys/msacct.h>
58 #include <sys/time.h>
59 #include <sys/archsystm.h>
60 #include <sys/sdt.h>
61 #if defined(__x86) || defined(__amd64)
62 #include <sys/x86_archext.h>
63 #endif
64 #include <sys/callo.h>
66 extern int mp_cpu_start(cpu_t *);
67 extern int mp_cpu_stop(cpu_t *);
68 extern int mp_cpu_poweron(cpu_t *);
69 extern int mp_cpu_poweroff(cpu_t *);
70 extern int mp_cpu_configure(int);
71 extern int mp_cpu_unconfigure(int);
72 extern void mp_cpu_faulted_enter(cpu_t *);
73 extern void mp_cpu_faulted_exit(cpu_t *);
75 extern int cmp_cpu_to_chip(processorid_t cpuid);
76 #ifdef __sparcv9
77 extern char *cpu_fru_fmri(cpu_t *cp);
78 #endif
80 static void cpu_add_active_internal(cpu_t *cp);
81 static void cpu_remove_active(cpu_t *cp);
82 static void cpu_info_kstat_create(cpu_t *cp);
83 static void cpu_info_kstat_destroy(cpu_t *cp);
84 static void cpu_stats_kstat_create(cpu_t *cp);
85 static void cpu_stats_kstat_destroy(cpu_t *cp);
87 static int cpu_sys_stats_ks_update(kstat_t *ksp, int rw);
88 static int cpu_vm_stats_ks_update(kstat_t *ksp, int rw);
89 static int cpu_stat_ks_update(kstat_t *ksp, int rw);
90 static int cpu_state_change_hooks(int, cpu_setup_t, cpu_setup_t);
93 * cpu_lock protects ncpus, ncpus_online, cpu_flag, cpu_list, cpu_active,
94 * max_cpu_seqid_ever, and dispatch queue reallocations. The lock ordering with
95 * respect to related locks is:
97 * cpu_lock --> thread_free_lock ---> p_lock ---> thread_lock()
99 * Warning: Certain sections of code do not use the cpu_lock when
100 * traversing the cpu_list (e.g. mutex_vector_enter(), clock()). Since
101 * all cpus are paused during modifications to this list, a solution
102 * to protect the list is too either disable kernel preemption while
103 * walking the list, *or* recheck the cpu_next pointer at each
104 * iteration in the loop. Note that in no cases can any cached
105 * copies of the cpu pointers be kept as they may become invalid.
107 kmutex_t cpu_lock;
108 cpu_t *cpu_list; /* list of all CPUs */
109 cpu_t *clock_cpu_list; /* used by clock to walk CPUs */
110 cpu_t *cpu_active; /* list of active CPUs */
111 static cpuset_t cpu_available; /* set of available CPUs */
112 cpuset_t cpu_seqid_inuse; /* which cpu_seqids are in use */
114 cpu_t **cpu_seq; /* ptrs to CPUs, indexed by seq_id */
117 * max_ncpus keeps the max cpus the system can have. Initially
118 * it's NCPU, but since most archs scan the devtree for cpus
119 * fairly early on during boot, the real max can be known before
120 * ncpus is set (useful for early NCPU based allocations).
122 int max_ncpus = NCPU;
124 * platforms that set max_ncpus to maxiumum number of cpus that can be
125 * dynamically added will set boot_max_ncpus to the number of cpus found
126 * at device tree scan time during boot.
128 int boot_max_ncpus = -1;
129 int boot_ncpus = -1;
131 * Maximum possible CPU id. This can never be >= NCPU since NCPU is
132 * used to size arrays that are indexed by CPU id.
134 processorid_t max_cpuid = NCPU - 1;
137 * Maximum cpu_seqid was given. This number can only grow and never shrink. It
138 * can be used to optimize NCPU loops to avoid going through CPUs which were
139 * never on-line.
141 processorid_t max_cpu_seqid_ever = 0;
143 int ncpus = 1;
144 int ncpus_online = 1;
147 * CPU that we're trying to offline. Protected by cpu_lock.
149 cpu_t *cpu_inmotion;
152 * Can be raised to suppress further weakbinding, which are instead
153 * satisfied by disabling preemption. Must be raised/lowered under cpu_lock,
154 * while individual thread weakbinding synchronization is done under thread
155 * lock.
157 int weakbindingbarrier;
160 * Variables used in pause_cpus().
162 static volatile char safe_list[NCPU];
164 static struct _cpu_pause_info {
165 int cp_spl; /* spl saved in pause_cpus() */
166 volatile int cp_go; /* Go signal sent after all ready */
167 int cp_count; /* # of CPUs to pause */
168 ksema_t cp_sem; /* synch pause_cpus & cpu_pause */
169 kthread_id_t cp_paused;
170 } cpu_pause_info;
172 static kmutex_t pause_free_mutex;
173 static kcondvar_t pause_free_cv;
175 void *(*cpu_pause_func)(void *) = NULL;
178 static struct cpu_sys_stats_ks_data {
179 kstat_named_t cpu_ticks_idle;
180 kstat_named_t cpu_ticks_user;
181 kstat_named_t cpu_ticks_kernel;
182 kstat_named_t cpu_ticks_wait;
183 kstat_named_t cpu_nsec_idle;
184 kstat_named_t cpu_nsec_user;
185 kstat_named_t cpu_nsec_kernel;
186 kstat_named_t cpu_nsec_dtrace;
187 kstat_named_t cpu_nsec_intr;
188 kstat_named_t cpu_load_intr;
189 kstat_named_t wait_ticks_io;
190 kstat_named_t dtrace_probes;
191 kstat_named_t bread;
192 kstat_named_t bwrite;
193 kstat_named_t lread;
194 kstat_named_t lwrite;
195 kstat_named_t phread;
196 kstat_named_t phwrite;
197 kstat_named_t pswitch;
198 kstat_named_t trap;
199 kstat_named_t intr;
200 kstat_named_t syscall;
201 kstat_named_t sysread;
202 kstat_named_t syswrite;
203 kstat_named_t sysfork;
204 kstat_named_t sysvfork;
205 kstat_named_t sysexec;
206 kstat_named_t readch;
207 kstat_named_t writech;
208 kstat_named_t rcvint;
209 kstat_named_t xmtint;
210 kstat_named_t mdmint;
211 kstat_named_t rawch;
212 kstat_named_t canch;
213 kstat_named_t outch;
214 kstat_named_t msg;
215 kstat_named_t sema;
216 kstat_named_t namei;
217 kstat_named_t ufsiget;
218 kstat_named_t ufsdirblk;
219 kstat_named_t ufsipage;
220 kstat_named_t ufsinopage;
221 kstat_named_t procovf;
222 kstat_named_t intrthread;
223 kstat_named_t intrblk;
224 kstat_named_t intrunpin;
225 kstat_named_t idlethread;
226 kstat_named_t inv_swtch;
227 kstat_named_t nthreads;
228 kstat_named_t cpumigrate;
229 kstat_named_t xcalls;
230 kstat_named_t mutex_adenters;
231 kstat_named_t rw_rdfails;
232 kstat_named_t rw_wrfails;
233 kstat_named_t modload;
234 kstat_named_t modunload;
235 kstat_named_t bawrite;
236 kstat_named_t iowait;
237 } cpu_sys_stats_ks_data_template = {
238 { "cpu_ticks_idle", KSTAT_DATA_UINT64 },
239 { "cpu_ticks_user", KSTAT_DATA_UINT64 },
240 { "cpu_ticks_kernel", KSTAT_DATA_UINT64 },
241 { "cpu_ticks_wait", KSTAT_DATA_UINT64 },
242 { "cpu_nsec_idle", KSTAT_DATA_UINT64 },
243 { "cpu_nsec_user", KSTAT_DATA_UINT64 },
244 { "cpu_nsec_kernel", KSTAT_DATA_UINT64 },
245 { "cpu_nsec_dtrace", KSTAT_DATA_UINT64 },
246 { "cpu_nsec_intr", KSTAT_DATA_UINT64 },
247 { "cpu_load_intr", KSTAT_DATA_UINT64 },
248 { "wait_ticks_io", KSTAT_DATA_UINT64 },
249 { "dtrace_probes", KSTAT_DATA_UINT64 },
250 { "bread", KSTAT_DATA_UINT64 },
251 { "bwrite", KSTAT_DATA_UINT64 },
252 { "lread", KSTAT_DATA_UINT64 },
253 { "lwrite", KSTAT_DATA_UINT64 },
254 { "phread", KSTAT_DATA_UINT64 },
255 { "phwrite", KSTAT_DATA_UINT64 },
256 { "pswitch", KSTAT_DATA_UINT64 },
257 { "trap", KSTAT_DATA_UINT64 },
258 { "intr", KSTAT_DATA_UINT64 },
259 { "syscall", KSTAT_DATA_UINT64 },
260 { "sysread", KSTAT_DATA_UINT64 },
261 { "syswrite", KSTAT_DATA_UINT64 },
262 { "sysfork", KSTAT_DATA_UINT64 },
263 { "sysvfork", KSTAT_DATA_UINT64 },
264 { "sysexec", KSTAT_DATA_UINT64 },
265 { "readch", KSTAT_DATA_UINT64 },
266 { "writech", KSTAT_DATA_UINT64 },
267 { "rcvint", KSTAT_DATA_UINT64 },
268 { "xmtint", KSTAT_DATA_UINT64 },
269 { "mdmint", KSTAT_DATA_UINT64 },
270 { "rawch", KSTAT_DATA_UINT64 },
271 { "canch", KSTAT_DATA_UINT64 },
272 { "outch", KSTAT_DATA_UINT64 },
273 { "msg", KSTAT_DATA_UINT64 },
274 { "sema", KSTAT_DATA_UINT64 },
275 { "namei", KSTAT_DATA_UINT64 },
276 { "ufsiget", KSTAT_DATA_UINT64 },
277 { "ufsdirblk", KSTAT_DATA_UINT64 },
278 { "ufsipage", KSTAT_DATA_UINT64 },
279 { "ufsinopage", KSTAT_DATA_UINT64 },
280 { "procovf", KSTAT_DATA_UINT64 },
281 { "intrthread", KSTAT_DATA_UINT64 },
282 { "intrblk", KSTAT_DATA_UINT64 },
283 { "intrunpin", KSTAT_DATA_UINT64 },
284 { "idlethread", KSTAT_DATA_UINT64 },
285 { "inv_swtch", KSTAT_DATA_UINT64 },
286 { "nthreads", KSTAT_DATA_UINT64 },
287 { "cpumigrate", KSTAT_DATA_UINT64 },
288 { "xcalls", KSTAT_DATA_UINT64 },
289 { "mutex_adenters", KSTAT_DATA_UINT64 },
290 { "rw_rdfails", KSTAT_DATA_UINT64 },
291 { "rw_wrfails", KSTAT_DATA_UINT64 },
292 { "modload", KSTAT_DATA_UINT64 },
293 { "modunload", KSTAT_DATA_UINT64 },
294 { "bawrite", KSTAT_DATA_UINT64 },
295 { "iowait", KSTAT_DATA_UINT64 },
298 static struct cpu_vm_stats_ks_data {
299 kstat_named_t pgrec;
300 kstat_named_t pgfrec;
301 kstat_named_t pgin;
302 kstat_named_t pgpgin;
303 kstat_named_t pgout;
304 kstat_named_t pgpgout;
305 kstat_named_t swapin;
306 kstat_named_t pgswapin;
307 kstat_named_t swapout;
308 kstat_named_t pgswapout;
309 kstat_named_t zfod;
310 kstat_named_t dfree;
311 kstat_named_t scan;
312 kstat_named_t rev;
313 kstat_named_t hat_fault;
314 kstat_named_t as_fault;
315 kstat_named_t maj_fault;
316 kstat_named_t cow_fault;
317 kstat_named_t prot_fault;
318 kstat_named_t softlock;
319 kstat_named_t kernel_asflt;
320 kstat_named_t pgrrun;
321 kstat_named_t execpgin;
322 kstat_named_t execpgout;
323 kstat_named_t execfree;
324 kstat_named_t anonpgin;
325 kstat_named_t anonpgout;
326 kstat_named_t anonfree;
327 kstat_named_t fspgin;
328 kstat_named_t fspgout;
329 kstat_named_t fsfree;
330 } cpu_vm_stats_ks_data_template = {
331 { "pgrec", KSTAT_DATA_UINT64 },
332 { "pgfrec", KSTAT_DATA_UINT64 },
333 { "pgin", KSTAT_DATA_UINT64 },
334 { "pgpgin", KSTAT_DATA_UINT64 },
335 { "pgout", KSTAT_DATA_UINT64 },
336 { "pgpgout", KSTAT_DATA_UINT64 },
337 { "swapin", KSTAT_DATA_UINT64 },
338 { "pgswapin", KSTAT_DATA_UINT64 },
339 { "swapout", KSTAT_DATA_UINT64 },
340 { "pgswapout", KSTAT_DATA_UINT64 },
341 { "zfod", KSTAT_DATA_UINT64 },
342 { "dfree", KSTAT_DATA_UINT64 },
343 { "scan", KSTAT_DATA_UINT64 },
344 { "rev", KSTAT_DATA_UINT64 },
345 { "hat_fault", KSTAT_DATA_UINT64 },
346 { "as_fault", KSTAT_DATA_UINT64 },
347 { "maj_fault", KSTAT_DATA_UINT64 },
348 { "cow_fault", KSTAT_DATA_UINT64 },
349 { "prot_fault", KSTAT_DATA_UINT64 },
350 { "softlock", KSTAT_DATA_UINT64 },
351 { "kernel_asflt", KSTAT_DATA_UINT64 },
352 { "pgrrun", KSTAT_DATA_UINT64 },
353 { "execpgin", KSTAT_DATA_UINT64 },
354 { "execpgout", KSTAT_DATA_UINT64 },
355 { "execfree", KSTAT_DATA_UINT64 },
356 { "anonpgin", KSTAT_DATA_UINT64 },
357 { "anonpgout", KSTAT_DATA_UINT64 },
358 { "anonfree", KSTAT_DATA_UINT64 },
359 { "fspgin", KSTAT_DATA_UINT64 },
360 { "fspgout", KSTAT_DATA_UINT64 },
361 { "fsfree", KSTAT_DATA_UINT64 },
365 * Force the specified thread to migrate to the appropriate processor.
366 * Called with thread lock held, returns with it dropped.
368 static void
369 force_thread_migrate(kthread_id_t tp)
371 ASSERT(THREAD_LOCK_HELD(tp));
372 if (tp == curthread) {
373 THREAD_TRANSITION(tp);
374 CL_SETRUN(tp);
375 thread_unlock_nopreempt(tp);
376 swtch();
377 } else {
378 if (tp->t_state == TS_ONPROC) {
379 cpu_surrender(tp);
380 } else if (tp->t_state == TS_RUN) {
381 (void) dispdeq(tp);
382 setbackdq(tp);
384 thread_unlock(tp);
389 * Set affinity for a specified CPU.
390 * A reference count is incremented and the affinity is held until the
391 * reference count is decremented to zero by thread_affinity_clear().
392 * This is so regions of code requiring affinity can be nested.
393 * Caller needs to ensure that cpu_id remains valid, which can be
394 * done by holding cpu_lock across this call, unless the caller
395 * specifies CPU_CURRENT in which case the cpu_lock will be acquired
396 * by thread_affinity_set and CPU->cpu_id will be the target CPU.
398 void
399 thread_affinity_set(kthread_id_t t, int cpu_id)
401 cpu_t *cp;
402 int c;
404 ASSERT(!(t == curthread && t->t_weakbound_cpu != NULL));
406 if ((c = cpu_id) == CPU_CURRENT) {
407 mutex_enter(&cpu_lock);
408 cpu_id = CPU->cpu_id;
411 * We should be asserting that cpu_lock is held here, but
412 * the NCA code doesn't acquire it. The following assert
413 * should be uncommented when the NCA code is fixed.
415 * ASSERT(MUTEX_HELD(&cpu_lock));
417 ASSERT((cpu_id >= 0) && (cpu_id < NCPU));
418 cp = cpu[cpu_id];
419 ASSERT(cp != NULL); /* user must provide a good cpu_id */
421 * If there is already a hard affinity requested, and this affinity
422 * conflicts with that, panic.
424 thread_lock(t);
425 if (t->t_affinitycnt > 0 && t->t_bound_cpu != cp) {
426 panic("affinity_set: setting %p but already bound to %p",
427 (void *)cp, (void *)t->t_bound_cpu);
429 t->t_affinitycnt++;
430 t->t_bound_cpu = cp;
433 * Make sure we're running on the right CPU.
435 if (cp != t->t_cpu || t != curthread) {
436 force_thread_migrate(t); /* drops thread lock */
437 } else {
438 thread_unlock(t);
441 if (c == CPU_CURRENT)
442 mutex_exit(&cpu_lock);
446 * Wrapper for backward compatibility.
448 void
449 affinity_set(int cpu_id)
451 thread_affinity_set(curthread, cpu_id);
455 * Decrement the affinity reservation count and if it becomes zero,
456 * clear the CPU affinity for the current thread, or set it to the user's
457 * software binding request.
459 void
460 thread_affinity_clear(kthread_id_t t)
462 register processorid_t binding;
464 thread_lock(t);
465 if (--t->t_affinitycnt == 0) {
466 if ((binding = t->t_bind_cpu) == PBIND_NONE) {
468 * Adjust disp_max_unbound_pri if necessary.
470 disp_adjust_unbound_pri(t);
471 t->t_bound_cpu = NULL;
472 if (t->t_cpu->cpu_part != t->t_cpupart) {
473 force_thread_migrate(t);
474 return;
476 } else {
477 t->t_bound_cpu = cpu[binding];
479 * Make sure the thread is running on the bound CPU.
481 if (t->t_cpu != t->t_bound_cpu) {
482 force_thread_migrate(t);
483 return; /* already dropped lock */
487 thread_unlock(t);
491 * Wrapper for backward compatibility.
493 void
494 affinity_clear(void)
496 thread_affinity_clear(curthread);
500 * Weak cpu affinity. Bind to the "current" cpu for short periods
501 * of time during which the thread must not block (but may be preempted).
502 * Use this instead of kpreempt_disable() when it is only "no migration"
503 * rather than "no preemption" semantics that are required - disabling
504 * preemption holds higher priority threads off of cpu and if the
505 * operation that is protected is more than momentary this is not good
506 * for realtime etc.
508 * Weakly bound threads will not prevent a cpu from being offlined -
509 * we'll only run them on the cpu to which they are weakly bound but
510 * (because they do not block) we'll always be able to move them on to
511 * another cpu at offline time if we give them just a short moment to
512 * run during which they will unbind. To give a cpu a chance of offlining,
513 * however, we require a barrier to weak bindings that may be raised for a
514 * given cpu (offline/move code may set this and then wait a short time for
515 * existing weak bindings to drop); the cpu_inmotion pointer is that barrier.
517 * There are few restrictions on the calling context of thread_nomigrate.
518 * The caller must not hold the thread lock. Calls may be nested.
520 * After weakbinding a thread must not perform actions that may block.
521 * In particular it must not call thread_affinity_set; calling that when
522 * already weakbound is nonsensical anyway.
524 * If curthread is prevented from migrating for other reasons
525 * (kernel preemption disabled; high pil; strongly bound; interrupt thread)
526 * then the weak binding will succeed even if this cpu is the target of an
527 * offline/move request.
529 void
530 thread_nomigrate(void)
532 cpu_t *cp;
533 kthread_id_t t = curthread;
535 again:
536 kpreempt_disable();
537 cp = CPU;
540 * A highlevel interrupt must not modify t_nomigrate or
541 * t_weakbound_cpu of the thread it has interrupted. A lowlevel
542 * interrupt thread cannot migrate and we can avoid the
543 * thread_lock call below by short-circuiting here. In either
544 * case we can just return since no migration is possible and
545 * the condition will persist (ie, when we test for these again
546 * in thread_allowmigrate they can't have changed). Migration
547 * is also impossible if we're at or above DISP_LEVEL pil.
549 if (CPU_ON_INTR(cp) || t->t_flag & T_INTR_THREAD ||
550 getpil() >= DISP_LEVEL) {
551 kpreempt_enable();
552 return;
556 * We must be consistent with existing weak bindings. Since we
557 * may be interrupted between the increment of t_nomigrate and
558 * the store to t_weakbound_cpu below we cannot assume that
559 * t_weakbound_cpu will be set if t_nomigrate is. Note that we
560 * cannot assert t_weakbound_cpu == t_bind_cpu since that is not
561 * always the case.
563 if (t->t_nomigrate && t->t_weakbound_cpu && t->t_weakbound_cpu != cp) {
564 if (!panicstr)
565 panic("thread_nomigrate: binding to %p but already "
566 "bound to %p", (void *)cp,
567 (void *)t->t_weakbound_cpu);
571 * At this point we have preemption disabled and we don't yet hold
572 * the thread lock. So it's possible that somebody else could
573 * set t_bind_cpu here and not be able to force us across to the
574 * new cpu (since we have preemption disabled).
576 thread_lock(curthread);
579 * If further weak bindings are being (temporarily) suppressed then
580 * we'll settle for disabling kernel preemption (which assures
581 * no migration provided the thread does not block which it is
582 * not allowed to if using thread_nomigrate). We must remember
583 * this disposition so we can take appropriate action in
584 * thread_allowmigrate. If this is a nested call and the
585 * thread is already weakbound then fall through as normal.
586 * We remember the decision to settle for kpreempt_disable through
587 * negative nesting counting in t_nomigrate. Once a thread has had one
588 * weakbinding request satisfied in this way any further (nested)
589 * requests will continue to be satisfied in the same way,
590 * even if weak bindings have recommenced.
592 if (t->t_nomigrate < 0 || weakbindingbarrier && t->t_nomigrate == 0) {
593 --t->t_nomigrate;
594 thread_unlock(curthread);
595 return; /* with kpreempt_disable still active */
599 * We hold thread_lock so t_bind_cpu cannot change. We could,
600 * however, be running on a different cpu to which we are t_bound_cpu
601 * to (as explained above). If we grant the weak binding request
602 * in that case then the dispatcher must favour our weak binding
603 * over our strong (in which case, just as when preemption is
604 * disabled, we can continue to run on a cpu other than the one to
605 * which we are strongbound; the difference in this case is that
606 * this thread can be preempted and so can appear on the dispatch
607 * queues of a cpu other than the one it is strongbound to).
609 * If the cpu we are running on does not appear to be a current
610 * offline target (we check cpu_inmotion to determine this - since
611 * we don't hold cpu_lock we may not see a recent store to that,
612 * so it's possible that we at times can grant a weak binding to a
613 * cpu that is an offline target, but that one request will not
614 * prevent the offline from succeeding) then we will always grant
615 * the weak binding request. This includes the case above where
616 * we grant a weakbinding not commensurate with our strong binding.
618 * If our cpu does appear to be an offline target then we're inclined
619 * not to grant the weakbinding request just yet - we'd prefer to
620 * migrate to another cpu and grant the request there. The
621 * exceptions are those cases where going through preemption code
622 * will not result in us changing cpu:
624 * . interrupts have already bypassed this case (see above)
625 * . we are already weakbound to this cpu (dispatcher code will
626 * always return us to the weakbound cpu)
627 * . preemption was disabled even before we disabled it above
628 * . we are strongbound to this cpu (if we're strongbound to
629 * another and not yet running there the trip through the
630 * dispatcher will move us to the strongbound cpu and we
631 * will grant the weak binding there)
633 if (cp != cpu_inmotion || t->t_nomigrate > 0 || t->t_preempt > 1 ||
634 t->t_bound_cpu == cp) {
636 * Don't be tempted to store to t_weakbound_cpu only on
637 * the first nested bind request - if we're interrupted
638 * after the increment of t_nomigrate and before the
639 * store to t_weakbound_cpu and the interrupt calls
640 * thread_nomigrate then the assertion in thread_allowmigrate
641 * would fail.
643 t->t_nomigrate++;
644 t->t_weakbound_cpu = cp;
645 membar_producer();
646 thread_unlock(curthread);
648 * Now that we have dropped the thread_lock another thread
649 * can set our t_weakbound_cpu, and will try to migrate us
650 * to the strongbound cpu (which will not be prevented by
651 * preemption being disabled since we're about to enable
652 * preemption). We have granted the weakbinding to the current
653 * cpu, so again we are in the position that is is is possible
654 * that our weak and strong bindings differ. Again this
655 * is catered for by dispatcher code which will favour our
656 * weak binding.
658 kpreempt_enable();
659 } else {
661 * Move to another cpu before granting the request by
662 * forcing this thread through preemption code. When we
663 * get to set{front,back}dq called from CL_PREEMPT()
664 * cpu_choose() will be used to select a cpu to queue
665 * us on - that will see cpu_inmotion and take
666 * steps to avoid returning us to this cpu.
668 cp->cpu_kprunrun = 1;
669 thread_unlock(curthread);
670 kpreempt_enable(); /* will call preempt() */
671 goto again;
675 void
676 thread_allowmigrate(void)
678 kthread_id_t t = curthread;
680 ASSERT(t->t_weakbound_cpu == CPU ||
681 (t->t_nomigrate < 0 && t->t_preempt > 0) ||
682 CPU_ON_INTR(CPU) || t->t_flag & T_INTR_THREAD ||
683 getpil() >= DISP_LEVEL);
685 if (CPU_ON_INTR(CPU) || (t->t_flag & T_INTR_THREAD) ||
686 getpil() >= DISP_LEVEL)
687 return;
689 if (t->t_nomigrate < 0) {
691 * This thread was granted "weak binding" in the
692 * stronger form of kernel preemption disabling.
693 * Undo a level of nesting for both t_nomigrate
694 * and t_preempt.
696 ++t->t_nomigrate;
697 kpreempt_enable();
698 } else if (--t->t_nomigrate == 0) {
700 * Time to drop the weak binding. We need to cater
701 * for the case where we're weakbound to a different
702 * cpu than that to which we're strongbound (a very
703 * temporary arrangement that must only persist until
704 * weak binding drops). We don't acquire thread_lock
705 * here so even as this code executes t_bound_cpu
706 * may be changing. So we disable preemption and
707 * a) in the case that t_bound_cpu changes while we
708 * have preemption disabled kprunrun will be set
709 * asynchronously, and b) if before disabling
710 * preemption we were already on a different cpu to
711 * our t_bound_cpu then we set kprunrun ourselves
712 * to force a trip through the dispatcher when
713 * preemption is enabled.
715 kpreempt_disable();
716 if (t->t_bound_cpu &&
717 t->t_weakbound_cpu != t->t_bound_cpu)
718 CPU->cpu_kprunrun = 1;
719 t->t_weakbound_cpu = NULL;
720 membar_producer();
721 kpreempt_enable();
726 * weakbinding_stop can be used to temporarily cause weakbindings made
727 * with thread_nomigrate to be satisfied through the stronger action of
728 * kpreempt_disable. weakbinding_start recommences normal weakbinding.
731 void
732 weakbinding_stop(void)
734 ASSERT(MUTEX_HELD(&cpu_lock));
735 weakbindingbarrier = 1;
736 membar_producer(); /* make visible before subsequent thread_lock */
739 void
740 weakbinding_start(void)
742 ASSERT(MUTEX_HELD(&cpu_lock));
743 weakbindingbarrier = 0;
746 void
747 null_xcall(void)
752 * This routine is called to place the CPUs in a safe place so that
753 * one of them can be taken off line or placed on line. What we are
754 * trying to do here is prevent a thread from traversing the list
755 * of active CPUs while we are changing it or from getting placed on
756 * the run queue of a CPU that has just gone off line. We do this by
757 * creating a thread with the highest possible prio for each CPU and
758 * having it call this routine. The advantage of this method is that
759 * we can eliminate all checks for CPU_ACTIVE in the disp routines.
760 * This makes disp faster at the expense of making p_online() slower
761 * which is a good trade off.
763 static void
764 cpu_pause(int index)
766 int s;
767 struct _cpu_pause_info *cpi = &cpu_pause_info;
768 volatile char *safe = &safe_list[index];
769 long lindex = index;
771 ASSERT((curthread->t_bound_cpu != NULL) || (*safe == PAUSE_DIE));
773 while (*safe != PAUSE_DIE) {
774 *safe = PAUSE_READY;
775 membar_enter(); /* make sure stores are flushed */
776 sema_v(&cpi->cp_sem); /* signal requesting thread */
779 * Wait here until all pause threads are running. That
780 * indicates that it's safe to do the spl. Until
781 * cpu_pause_info.cp_go is set, we don't want to spl
782 * because that might block clock interrupts needed
783 * to preempt threads on other CPUs.
785 while (cpi->cp_go == 0)
788 * Even though we are at the highest disp prio, we need
789 * to block out all interrupts below LOCK_LEVEL so that
790 * an intr doesn't come in, wake up a thread, and call
791 * setbackdq/setfrontdq.
793 s = splhigh();
795 * if cpu_pause_func() has been set then call it using
796 * index as the argument, currently only used by
797 * cpr_suspend_cpus(). This function is used as the
798 * code to execute on the "paused" cpu's when a machine
799 * comes out of a sleep state and CPU's were powered off.
800 * (could also be used for hotplugging CPU's).
802 if (cpu_pause_func != NULL)
803 (*cpu_pause_func)((void *)lindex);
805 mach_cpu_pause(safe);
807 splx(s);
809 * Waiting is at an end. Switch out of cpu_pause
810 * loop and resume useful work.
812 swtch();
815 mutex_enter(&pause_free_mutex);
816 *safe = PAUSE_DEAD;
817 cv_broadcast(&pause_free_cv);
818 mutex_exit(&pause_free_mutex);
822 * Allow the cpus to start running again.
824 void
825 start_cpus()
827 int i;
829 ASSERT(MUTEX_HELD(&cpu_lock));
830 ASSERT(cpu_pause_info.cp_paused);
831 cpu_pause_info.cp_paused = NULL;
832 for (i = 0; i < NCPU; i++)
833 safe_list[i] = PAUSE_IDLE;
834 membar_enter(); /* make sure stores are flushed */
835 affinity_clear();
836 splx(cpu_pause_info.cp_spl);
837 kpreempt_enable();
841 * Allocate a pause thread for a CPU.
843 static void
844 cpu_pause_alloc(cpu_t *cp)
846 kthread_id_t t;
847 long cpun = cp->cpu_id;
850 * Note, v.v_nglobpris will not change value as long as I hold
851 * cpu_lock.
853 t = thread_create(NULL, 0, cpu_pause, (void *)cpun,
854 0, &p0, TS_STOPPED, v.v_nglobpris - 1);
855 thread_lock(t);
856 t->t_bound_cpu = cp;
857 t->t_disp_queue = cp->cpu_disp;
858 t->t_affinitycnt = 1;
859 t->t_preempt = 1;
860 thread_unlock(t);
861 cp->cpu_pause_thread = t;
863 * Registering a thread in the callback table is usually done
864 * in the initialization code of the thread. In this
865 * case, we do it right after thread creation because the
866 * thread itself may never run, and we need to register the
867 * fact that it is safe for cpr suspend.
869 CALLB_CPR_INIT_SAFE(t, "cpu_pause");
873 * Free a pause thread for a CPU.
875 static void
876 cpu_pause_free(cpu_t *cp)
878 kthread_id_t t;
879 int cpun = cp->cpu_id;
881 ASSERT(MUTEX_HELD(&cpu_lock));
883 * We have to get the thread and tell him to die.
885 if ((t = cp->cpu_pause_thread) == NULL) {
886 ASSERT(safe_list[cpun] == PAUSE_IDLE);
887 return;
889 thread_lock(t);
890 t->t_cpu = CPU; /* disp gets upset if last cpu is quiesced. */
891 t->t_bound_cpu = NULL; /* Must un-bind; cpu may not be running. */
892 t->t_pri = v.v_nglobpris - 1;
893 ASSERT(safe_list[cpun] == PAUSE_IDLE);
894 safe_list[cpun] = PAUSE_DIE;
895 THREAD_TRANSITION(t);
896 setbackdq(t);
897 thread_unlock_nopreempt(t);
900 * If we don't wait for the thread to actually die, it may try to
901 * run on the wrong cpu as part of an actual call to pause_cpus().
903 mutex_enter(&pause_free_mutex);
904 while (safe_list[cpun] != PAUSE_DEAD) {
905 cv_wait(&pause_free_cv, &pause_free_mutex);
907 mutex_exit(&pause_free_mutex);
908 safe_list[cpun] = PAUSE_IDLE;
910 cp->cpu_pause_thread = NULL;
914 * Initialize basic structures for pausing CPUs.
916 void
917 cpu_pause_init()
919 sema_init(&cpu_pause_info.cp_sem, 0, NULL, SEMA_DEFAULT, NULL);
921 * Create initial CPU pause thread.
923 cpu_pause_alloc(CPU);
927 * Start the threads used to pause another CPU.
929 static int
930 cpu_pause_start(processorid_t cpu_id)
932 int i;
933 int cpu_count = 0;
935 for (i = 0; i < NCPU; i++) {
936 cpu_t *cp;
937 kthread_id_t t;
939 cp = cpu[i];
940 if (!CPU_IN_SET(cpu_available, i) || (i == cpu_id)) {
941 safe_list[i] = PAUSE_WAIT;
942 continue;
946 * Skip CPU if it is quiesced or not yet started.
948 if ((cp->cpu_flags & (CPU_QUIESCED | CPU_READY)) != CPU_READY) {
949 safe_list[i] = PAUSE_WAIT;
950 continue;
954 * Start this CPU's pause thread.
956 t = cp->cpu_pause_thread;
957 thread_lock(t);
959 * Reset the priority, since nglobpris may have
960 * changed since the thread was created, if someone
961 * has loaded the RT (or some other) scheduling
962 * class.
964 t->t_pri = v.v_nglobpris - 1;
965 THREAD_TRANSITION(t);
966 setbackdq(t);
967 thread_unlock_nopreempt(t);
968 ++cpu_count;
970 return (cpu_count);
975 * Pause all of the CPUs except the one we are on by creating a high
976 * priority thread bound to those CPUs.
978 * Note that one must be extremely careful regarding code
979 * executed while CPUs are paused. Since a CPU may be paused
980 * while a thread scheduling on that CPU is holding an adaptive
981 * lock, code executed with CPUs paused must not acquire adaptive
982 * (or low-level spin) locks. Also, such code must not block,
983 * since the thread that is supposed to initiate the wakeup may
984 * never run.
986 * With a few exceptions, the restrictions on code executed with CPUs
987 * paused match those for code executed at high-level interrupt
988 * context.
990 void
991 pause_cpus(cpu_t *off_cp)
993 processorid_t cpu_id;
994 int i;
995 struct _cpu_pause_info *cpi = &cpu_pause_info;
997 ASSERT(MUTEX_HELD(&cpu_lock));
998 ASSERT(cpi->cp_paused == NULL);
999 cpi->cp_count = 0;
1000 cpi->cp_go = 0;
1001 for (i = 0; i < NCPU; i++)
1002 safe_list[i] = PAUSE_IDLE;
1003 kpreempt_disable();
1006 * If running on the cpu that is going offline, get off it.
1007 * This is so that it won't be necessary to rechoose a CPU
1008 * when done.
1010 if (CPU == off_cp)
1011 cpu_id = off_cp->cpu_next_part->cpu_id;
1012 else
1013 cpu_id = CPU->cpu_id;
1014 affinity_set(cpu_id);
1017 * Start the pause threads and record how many were started
1019 cpi->cp_count = cpu_pause_start(cpu_id);
1022 * Now wait for all CPUs to be running the pause thread.
1024 while (cpi->cp_count > 0) {
1026 * Spin reading the count without grabbing the disp
1027 * lock to make sure we don't prevent the pause
1028 * threads from getting the lock.
1030 while (sema_held(&cpi->cp_sem))
1032 if (sema_tryp(&cpi->cp_sem))
1033 --cpi->cp_count;
1035 cpi->cp_go = 1; /* all have reached cpu_pause */
1038 * Now wait for all CPUs to spl. (Transition from PAUSE_READY
1039 * to PAUSE_WAIT.)
1041 for (i = 0; i < NCPU; i++) {
1042 while (safe_list[i] != PAUSE_WAIT)
1045 cpi->cp_spl = splhigh(); /* block dispatcher on this CPU */
1046 cpi->cp_paused = curthread;
1050 * Check whether the current thread has CPUs paused
1053 cpus_paused(void)
1055 if (cpu_pause_info.cp_paused != NULL) {
1056 ASSERT(cpu_pause_info.cp_paused == curthread);
1057 return (1);
1059 return (0);
1062 static cpu_t *
1063 cpu_get_all(processorid_t cpun)
1065 ASSERT(MUTEX_HELD(&cpu_lock));
1067 if (cpun >= NCPU || cpun < 0 || !CPU_IN_SET(cpu_available, cpun))
1068 return (NULL);
1069 return (cpu[cpun]);
1073 * Check whether cpun is a valid processor id and whether it should be
1074 * visible from the current zone. If it is, return a pointer to the
1075 * associated CPU structure.
1077 cpu_t *
1078 cpu_get(processorid_t cpun)
1080 cpu_t *c;
1082 ASSERT(MUTEX_HELD(&cpu_lock));
1083 c = cpu_get_all(cpun);
1084 if (c != NULL && !INGLOBALZONE(curproc) && pool_pset_enabled() &&
1085 zone_pset_get(curproc->p_zone) != cpupart_query_cpu(c))
1086 return (NULL);
1087 return (c);
1091 * The following functions should be used to check CPU states in the kernel.
1092 * They should be invoked with cpu_lock held. Kernel subsystems interested
1093 * in CPU states should *not* use cpu_get_state() and various P_ONLINE/etc
1094 * states. Those are for user-land (and system call) use only.
1098 * Determine whether the CPU is online and handling interrupts.
1101 cpu_is_online(cpu_t *cpu)
1103 ASSERT(MUTEX_HELD(&cpu_lock));
1104 return (cpu_flagged_online(cpu->cpu_flags));
1108 * Determine whether the CPU is offline (this includes spare and faulted).
1111 cpu_is_offline(cpu_t *cpu)
1113 ASSERT(MUTEX_HELD(&cpu_lock));
1114 return (cpu_flagged_offline(cpu->cpu_flags));
1118 * Determine whether the CPU is powered off.
1121 cpu_is_poweredoff(cpu_t *cpu)
1123 ASSERT(MUTEX_HELD(&cpu_lock));
1124 return (cpu_flagged_poweredoff(cpu->cpu_flags));
1128 * Determine whether the CPU is handling interrupts.
1131 cpu_is_nointr(cpu_t *cpu)
1133 ASSERT(MUTEX_HELD(&cpu_lock));
1134 return (cpu_flagged_nointr(cpu->cpu_flags));
1138 * Determine whether the CPU is active (scheduling threads).
1141 cpu_is_active(cpu_t *cpu)
1143 ASSERT(MUTEX_HELD(&cpu_lock));
1144 return (cpu_flagged_active(cpu->cpu_flags));
1148 * Same as above, but these require cpu_flags instead of cpu_t pointers.
1151 cpu_flagged_online(cpu_flag_t cpu_flags)
1153 return (cpu_flagged_active(cpu_flags) &&
1154 (cpu_flags & CPU_ENABLE));
1158 cpu_flagged_offline(cpu_flag_t cpu_flags)
1160 return (((cpu_flags & CPU_POWEROFF) == 0) &&
1161 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY));
1165 cpu_flagged_poweredoff(cpu_flag_t cpu_flags)
1167 return ((cpu_flags & CPU_POWEROFF) == CPU_POWEROFF);
1171 cpu_flagged_nointr(cpu_flag_t cpu_flags)
1173 return (cpu_flagged_active(cpu_flags) &&
1174 (cpu_flags & CPU_ENABLE) == 0);
1178 cpu_flagged_active(cpu_flag_t cpu_flags)
1180 return (((cpu_flags & (CPU_POWEROFF | CPU_FAULTED | CPU_SPARE)) == 0) &&
1181 ((cpu_flags & (CPU_READY | CPU_OFFLINE)) == CPU_READY));
1185 * Bring the indicated CPU online.
1188 cpu_online(cpu_t *cp)
1190 int error = 0;
1193 * Handle on-line request.
1194 * This code must put the new CPU on the active list before
1195 * starting it because it will not be paused, and will start
1196 * using the active list immediately. The real start occurs
1197 * when the CPU_QUIESCED flag is turned off.
1200 ASSERT(MUTEX_HELD(&cpu_lock));
1203 * Put all the cpus into a known safe place.
1204 * No mutexes can be entered while CPUs are paused.
1206 error = mp_cpu_start(cp); /* arch-dep hook */
1207 if (error == 0) {
1208 pg_cpupart_in(cp, cp->cpu_part);
1209 pause_cpus(NULL);
1210 cpu_add_active_internal(cp);
1211 if (cp->cpu_flags & CPU_FAULTED) {
1212 cp->cpu_flags &= ~CPU_FAULTED;
1213 mp_cpu_faulted_exit(cp);
1215 cp->cpu_flags &= ~(CPU_QUIESCED | CPU_OFFLINE | CPU_FROZEN |
1216 CPU_SPARE);
1217 CPU_NEW_GENERATION(cp);
1218 start_cpus();
1219 cpu_stats_kstat_create(cp);
1220 cpu_create_intrstat(cp);
1221 lgrp_kstat_create(cp);
1222 cpu_state_change_notify(cp->cpu_id, CPU_ON);
1223 cpu_intr_enable(cp); /* arch-dep hook */
1224 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1225 cpu_set_state(cp);
1226 cyclic_online(cp);
1228 * This has to be called only after cyclic_online(). This
1229 * function uses cyclics.
1231 callout_cpu_online(cp);
1232 poke_cpu(cp->cpu_id);
1235 return (error);
1239 * Take the indicated CPU offline.
1242 cpu_offline(cpu_t *cp, int flags)
1244 cpupart_t *pp;
1245 int error = 0;
1246 cpu_t *ncp;
1247 int intr_enable;
1248 int cyclic_off = 0;
1249 int callout_off = 0;
1250 int loop_count;
1251 int no_quiesce = 0;
1252 int (*bound_func)(struct cpu *, int);
1253 kthread_t *t;
1254 lpl_t *cpu_lpl;
1255 proc_t *p;
1256 int lgrp_diff_lpl;
1257 boolean_t unbind_all_threads = (flags & CPU_FORCED) != 0;
1259 ASSERT(MUTEX_HELD(&cpu_lock));
1262 * If we're going from faulted or spare to offline, just
1263 * clear these flags and update CPU state.
1265 if (cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) {
1266 if (cp->cpu_flags & CPU_FAULTED) {
1267 cp->cpu_flags &= ~CPU_FAULTED;
1268 mp_cpu_faulted_exit(cp);
1270 cp->cpu_flags &= ~CPU_SPARE;
1271 cpu_set_state(cp);
1272 return (0);
1276 * Handle off-line request.
1278 pp = cp->cpu_part;
1280 * Don't offline last online CPU in partition
1282 if (ncpus_online <= 1 || pp->cp_ncpus <= 1 || cpu_intr_count(cp) < 2)
1283 return (EBUSY);
1285 * Unbind all soft-bound threads bound to our CPU and hard bound threads
1286 * if we were asked to.
1288 error = cpu_unbind(cp->cpu_id, unbind_all_threads);
1289 if (error != 0)
1290 return (error);
1292 * We shouldn't be bound to this CPU ourselves.
1294 if (curthread->t_bound_cpu == cp)
1295 return (EBUSY);
1298 * Tell interested parties that this CPU is going offline.
1300 CPU_NEW_GENERATION(cp);
1301 cpu_state_change_notify(cp->cpu_id, CPU_OFF);
1304 * Tell the PG subsystem that the CPU is leaving the partition
1306 pg_cpupart_out(cp, pp);
1309 * Take the CPU out of interrupt participation so we won't find
1310 * bound kernel threads. If the architecture cannot completely
1311 * shut off interrupts on the CPU, don't quiesce it, but don't
1312 * run anything but interrupt thread... this is indicated by
1313 * the CPU_OFFLINE flag being on but the CPU_QUIESCE flag being
1314 * off.
1316 intr_enable = cp->cpu_flags & CPU_ENABLE;
1317 if (intr_enable)
1318 no_quiesce = cpu_intr_disable(cp);
1321 * Record that we are aiming to offline this cpu. This acts as
1322 * a barrier to further weak binding requests in thread_nomigrate
1323 * and also causes cpu_choose, disp_lowpri_cpu and setfrontdq to
1324 * lean away from this cpu. Further strong bindings are already
1325 * avoided since we hold cpu_lock. Since threads that are set
1326 * runnable around now and others coming off the target cpu are
1327 * directed away from the target, existing strong and weak bindings
1328 * (especially the latter) to the target cpu stand maximum chance of
1329 * being able to unbind during the short delay loop below (if other
1330 * unbound threads compete they may not see cpu in time to unbind
1331 * even if they would do so immediately.
1333 cpu_inmotion = cp;
1334 membar_enter();
1337 * Check for kernel threads (strong or weak) bound to that CPU.
1338 * Strongly bound threads may not unbind, and we'll have to return
1339 * EBUSY. Weakly bound threads should always disappear - we've
1340 * stopped more weak binding with cpu_inmotion and existing
1341 * bindings will drain imminently (they may not block). Nonetheless
1342 * we will wait for a fixed period for all bound threads to disappear.
1343 * Inactive interrupt threads are OK (they'll be in TS_FREE
1344 * state). If test finds some bound threads, wait a few ticks
1345 * to give short-lived threads (such as interrupts) chance to
1346 * complete. Note that if no_quiesce is set, i.e. this cpu
1347 * is required to service interrupts, then we take the route
1348 * that permits interrupt threads to be active (or bypassed).
1350 bound_func = no_quiesce ? disp_bound_threads : disp_bound_anythreads;
1352 again: for (loop_count = 0; (*bound_func)(cp, 0); loop_count++) {
1353 if (loop_count >= 5) {
1354 error = EBUSY; /* some threads still bound */
1355 break;
1359 * If some threads were assigned, give them
1360 * a chance to complete or move.
1362 * This assumes that the clock_thread is not bound
1363 * to any CPU, because the clock_thread is needed to
1364 * do the delay(hz/100).
1366 * Note: we still hold the cpu_lock while waiting for
1367 * the next clock tick. This is OK since it isn't
1368 * needed for anything else except processor_bind(2),
1369 * and system initialization. If we drop the lock,
1370 * we would risk another p_online disabling the last
1371 * processor.
1373 delay(hz/100);
1376 if (error == 0 && callout_off == 0) {
1377 callout_cpu_offline(cp);
1378 callout_off = 1;
1381 if (error == 0 && cyclic_off == 0) {
1382 if (!cyclic_offline(cp)) {
1384 * We must have bound cyclics...
1386 error = EBUSY;
1387 goto out;
1389 cyclic_off = 1;
1393 * Call mp_cpu_stop() to perform any special operations
1394 * needed for this machine architecture to offline a CPU.
1396 if (error == 0)
1397 error = mp_cpu_stop(cp); /* arch-dep hook */
1400 * If that all worked, take the CPU offline and decrement
1401 * ncpus_online.
1403 if (error == 0) {
1405 * Put all the cpus into a known safe place.
1406 * No mutexes can be entered while CPUs are paused.
1408 pause_cpus(cp);
1410 * Repeat the operation, if necessary, to make sure that
1411 * all outstanding low-level interrupts run to completion
1412 * before we set the CPU_QUIESCED flag. It's also possible
1413 * that a thread has weak bound to the cpu despite our raising
1414 * cpu_inmotion above since it may have loaded that
1415 * value before the barrier became visible (this would have
1416 * to be the thread that was on the target cpu at the time
1417 * we raised the barrier).
1419 if ((!no_quiesce && cp->cpu_intr_actv != 0) ||
1420 (*bound_func)(cp, 1)) {
1421 start_cpus();
1422 (void) mp_cpu_start(cp);
1423 goto again;
1425 ncp = cp->cpu_next_part;
1426 cpu_lpl = cp->cpu_lpl;
1427 ASSERT(cpu_lpl != NULL);
1430 * Remove the CPU from the list of active CPUs.
1432 cpu_remove_active(cp);
1435 * Walk the active process list and look for threads
1436 * whose home lgroup needs to be updated, or
1437 * the last CPU they run on is the one being offlined now.
1440 ASSERT(curthread->t_cpu != cp);
1441 for (p = practive; p != NULL; p = p->p_next) {
1443 t = p->p_tlist;
1445 if (t == NULL)
1446 continue;
1448 lgrp_diff_lpl = 0;
1450 do {
1451 ASSERT(t->t_lpl != NULL);
1453 * Taking last CPU in lpl offline
1454 * Rehome thread if it is in this lpl
1455 * Otherwise, update the count of how many
1456 * threads are in this CPU's lgroup but have
1457 * a different lpl.
1460 if (cpu_lpl->lpl_ncpu == 0) {
1461 if (t->t_lpl == cpu_lpl)
1462 lgrp_move_thread(t,
1463 lgrp_choose(t,
1464 t->t_cpupart), 0);
1465 else if (t->t_lpl->lpl_lgrpid ==
1466 cpu_lpl->lpl_lgrpid)
1467 lgrp_diff_lpl++;
1469 ASSERT(t->t_lpl->lpl_ncpu > 0);
1472 * Update CPU last ran on if it was this CPU
1474 if (t->t_cpu == cp && t->t_bound_cpu != cp)
1475 t->t_cpu = disp_lowpri_cpu(ncp,
1476 t->t_lpl, t->t_pri, NULL);
1477 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1478 t->t_weakbound_cpu == cp);
1480 t = t->t_forw;
1481 } while (t != p->p_tlist);
1484 * Didn't find any threads in the same lgroup as this
1485 * CPU with a different lpl, so remove the lgroup from
1486 * the process lgroup bitmask.
1489 if (lgrp_diff_lpl == 0)
1490 klgrpset_del(p->p_lgrpset, cpu_lpl->lpl_lgrpid);
1494 * Walk thread list looking for threads that need to be
1495 * rehomed, since there are some threads that are not in
1496 * their process's p_tlist.
1499 t = curthread;
1500 do {
1501 ASSERT(t != NULL && t->t_lpl != NULL);
1504 * Rehome threads with same lpl as this CPU when this
1505 * is the last CPU in the lpl.
1508 if ((cpu_lpl->lpl_ncpu == 0) && (t->t_lpl == cpu_lpl))
1509 lgrp_move_thread(t,
1510 lgrp_choose(t, t->t_cpupart), 1);
1512 ASSERT(t->t_lpl->lpl_ncpu > 0);
1515 * Update CPU last ran on if it was this CPU
1518 if (t->t_cpu == cp && t->t_bound_cpu != cp) {
1519 t->t_cpu = disp_lowpri_cpu(ncp,
1520 t->t_lpl, t->t_pri, NULL);
1522 ASSERT(t->t_cpu != cp || t->t_bound_cpu == cp ||
1523 t->t_weakbound_cpu == cp);
1524 t = t->t_next;
1526 } while (t != curthread);
1527 ASSERT((cp->cpu_flags & (CPU_FAULTED | CPU_SPARE)) == 0);
1528 cp->cpu_flags |= CPU_OFFLINE;
1529 disp_cpu_inactive(cp);
1530 if (!no_quiesce)
1531 cp->cpu_flags |= CPU_QUIESCED;
1532 ncpus_online--;
1533 cpu_set_state(cp);
1534 cpu_inmotion = NULL;
1535 start_cpus();
1536 cpu_stats_kstat_destroy(cp);
1537 cpu_delete_intrstat(cp);
1538 lgrp_kstat_destroy(cp);
1541 out:
1542 cpu_inmotion = NULL;
1545 * If we failed, re-enable interrupts.
1546 * Do this even if cpu_intr_disable returned an error, because
1547 * it may have partially disabled interrupts.
1549 if (error && intr_enable)
1550 cpu_intr_enable(cp);
1553 * If we failed, but managed to offline the cyclic subsystem on this
1554 * CPU, bring it back online.
1556 if (error && cyclic_off)
1557 cyclic_online(cp);
1560 * If we failed, but managed to offline callouts on this CPU,
1561 * bring it back online.
1563 if (error && callout_off)
1564 callout_cpu_online(cp);
1567 * If we failed, tell the PG subsystem that the CPU is back
1569 pg_cpupart_in(cp, pp);
1572 * If we failed, we need to notify everyone that this CPU is back on.
1574 if (error != 0) {
1575 CPU_NEW_GENERATION(cp);
1576 cpu_state_change_notify(cp->cpu_id, CPU_ON);
1577 cpu_state_change_notify(cp->cpu_id, CPU_INTR_ON);
1580 return (error);
1584 * Mark the indicated CPU as faulted, taking it offline.
1587 cpu_faulted(cpu_t *cp, int flags)
1589 int error = 0;
1591 ASSERT(MUTEX_HELD(&cpu_lock));
1592 ASSERT(!cpu_is_poweredoff(cp));
1594 if (cpu_is_offline(cp)) {
1595 cp->cpu_flags &= ~CPU_SPARE;
1596 cp->cpu_flags |= CPU_FAULTED;
1597 mp_cpu_faulted_enter(cp);
1598 cpu_set_state(cp);
1599 return (0);
1602 if ((error = cpu_offline(cp, flags)) == 0) {
1603 cp->cpu_flags |= CPU_FAULTED;
1604 mp_cpu_faulted_enter(cp);
1605 cpu_set_state(cp);
1608 return (error);
1612 * Mark the indicated CPU as a spare, taking it offline.
1615 cpu_spare(cpu_t *cp, int flags)
1617 int error = 0;
1619 ASSERT(MUTEX_HELD(&cpu_lock));
1620 ASSERT(!cpu_is_poweredoff(cp));
1622 if (cpu_is_offline(cp)) {
1623 if (cp->cpu_flags & CPU_FAULTED) {
1624 cp->cpu_flags &= ~CPU_FAULTED;
1625 mp_cpu_faulted_exit(cp);
1627 cp->cpu_flags |= CPU_SPARE;
1628 cpu_set_state(cp);
1629 return (0);
1632 if ((error = cpu_offline(cp, flags)) == 0) {
1633 cp->cpu_flags |= CPU_SPARE;
1634 cpu_set_state(cp);
1637 return (error);
1641 * Take the indicated CPU from poweroff to offline.
1644 cpu_poweron(cpu_t *cp)
1646 int error = ENOTSUP;
1648 ASSERT(MUTEX_HELD(&cpu_lock));
1649 ASSERT(cpu_is_poweredoff(cp));
1651 error = mp_cpu_poweron(cp); /* arch-dep hook */
1652 if (error == 0)
1653 cpu_set_state(cp);
1655 return (error);
1659 * Take the indicated CPU from any inactive state to powered off.
1662 cpu_poweroff(cpu_t *cp)
1664 int error = ENOTSUP;
1666 ASSERT(MUTEX_HELD(&cpu_lock));
1667 ASSERT(cpu_is_offline(cp));
1669 if (!(cp->cpu_flags & CPU_QUIESCED))
1670 return (EBUSY); /* not completely idle */
1672 error = mp_cpu_poweroff(cp); /* arch-dep hook */
1673 if (error == 0)
1674 cpu_set_state(cp);
1676 return (error);
1680 * Initialize the Sequential CPU id lookup table
1682 void
1683 cpu_seq_tbl_init()
1685 cpu_t **tbl;
1687 tbl = kmem_zalloc(sizeof (struct cpu *) * max_ncpus, KM_SLEEP);
1688 tbl[0] = CPU;
1690 cpu_seq = tbl;
1694 * Initialize the CPU lists for the first CPU.
1696 void
1697 cpu_list_init(cpu_t *cp)
1699 cp->cpu_next = cp;
1700 cp->cpu_prev = cp;
1701 cpu_list = cp;
1702 clock_cpu_list = cp;
1704 cp->cpu_next_onln = cp;
1705 cp->cpu_prev_onln = cp;
1706 cpu_active = cp;
1708 cp->cpu_seqid = 0;
1709 CPUSET_ADD(cpu_seqid_inuse, 0);
1712 * Bootstrap cpu_seq using cpu_list
1713 * The cpu_seq[] table will be dynamically allocated
1714 * when kmem later becomes available (but before going MP)
1716 cpu_seq = &cpu_list;
1718 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1719 cp_default.cp_cpulist = cp;
1720 cp_default.cp_ncpus = 1;
1721 cp->cpu_next_part = cp;
1722 cp->cpu_prev_part = cp;
1723 cp->cpu_part = &cp_default;
1725 CPUSET_ADD(cpu_available, cp->cpu_id);
1729 * Insert a CPU into the list of available CPUs.
1731 void
1732 cpu_add_unit(cpu_t *cp)
1734 int seqid;
1736 ASSERT(MUTEX_HELD(&cpu_lock));
1737 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */
1739 lgrp_config(LGRP_CONFIG_CPU_ADD, (uintptr_t)cp, 0);
1742 * Note: most users of the cpu_list will grab the
1743 * cpu_lock to insure that it isn't modified. However,
1744 * certain users can't or won't do that. To allow this
1745 * we pause the other cpus. Users who walk the list
1746 * without cpu_lock, must disable kernel preemption
1747 * to insure that the list isn't modified underneath
1748 * them. Also, any cached pointers to cpu structures
1749 * must be revalidated by checking to see if the
1750 * cpu_next pointer points to itself. This check must
1751 * be done with the cpu_lock held or kernel preemption
1752 * disabled. This check relies upon the fact that
1753 * old cpu structures are not free'ed or cleared after
1754 * then are removed from the cpu_list.
1756 * Note that the clock code walks the cpu list dereferencing
1757 * the cpu_part pointer, so we need to initialize it before
1758 * adding the cpu to the list.
1760 cp->cpu_part = &cp_default;
1761 (void) pause_cpus(NULL);
1762 cp->cpu_next = cpu_list;
1763 cp->cpu_prev = cpu_list->cpu_prev;
1764 cpu_list->cpu_prev->cpu_next = cp;
1765 cpu_list->cpu_prev = cp;
1766 start_cpus();
1768 for (seqid = 0; CPU_IN_SET(cpu_seqid_inuse, seqid); seqid++)
1769 continue;
1770 CPUSET_ADD(cpu_seqid_inuse, seqid);
1771 cp->cpu_seqid = seqid;
1773 if (seqid > max_cpu_seqid_ever)
1774 max_cpu_seqid_ever = seqid;
1776 ASSERT(ncpus < max_ncpus);
1777 ncpus++;
1778 cp->cpu_cache_offset = KMEM_CPU_CACHE_OFFSET(cp->cpu_seqid);
1779 cpu[cp->cpu_id] = cp;
1780 CPUSET_ADD(cpu_available, cp->cpu_id);
1781 cpu_seq[cp->cpu_seqid] = cp;
1784 * allocate a pause thread for this CPU.
1786 cpu_pause_alloc(cp);
1789 * So that new CPUs won't have NULL prev_onln and next_onln pointers,
1790 * link them into a list of just that CPU.
1791 * This is so that disp_lowpri_cpu will work for thread_create in
1792 * pause_cpus() when called from the startup thread in a new CPU.
1794 cp->cpu_next_onln = cp;
1795 cp->cpu_prev_onln = cp;
1796 cpu_info_kstat_create(cp);
1797 cp->cpu_next_part = cp;
1798 cp->cpu_prev_part = cp;
1800 init_cpu_mstate(cp, CMS_SYSTEM);
1802 pool_pset_mod = gethrtime();
1806 * Do the opposite of cpu_add_unit().
1808 void
1809 cpu_del_unit(int cpuid)
1811 struct cpu *cp, *cpnext;
1813 ASSERT(MUTEX_HELD(&cpu_lock));
1814 cp = cpu[cpuid];
1815 ASSERT(cp != NULL);
1817 ASSERT(cp->cpu_next_onln == cp);
1818 ASSERT(cp->cpu_prev_onln == cp);
1819 ASSERT(cp->cpu_next_part == cp);
1820 ASSERT(cp->cpu_prev_part == cp);
1823 * Tear down the CPU's physical ID cache, and update any
1824 * processor groups
1826 pg_cpu_fini(cp, NULL);
1827 pghw_physid_destroy(cp);
1830 * Destroy kstat stuff.
1832 cpu_info_kstat_destroy(cp);
1833 term_cpu_mstate(cp);
1835 * Free up pause thread.
1837 cpu_pause_free(cp);
1838 CPUSET_DEL(cpu_available, cp->cpu_id);
1839 cpu[cp->cpu_id] = NULL;
1840 cpu_seq[cp->cpu_seqid] = NULL;
1843 * The clock thread and mutex_vector_enter cannot hold the
1844 * cpu_lock while traversing the cpu list, therefore we pause
1845 * all other threads by pausing the other cpus. These, and any
1846 * other routines holding cpu pointers while possibly sleeping
1847 * must be sure to call kpreempt_disable before processing the
1848 * list and be sure to check that the cpu has not been deleted
1849 * after any sleeps (check cp->cpu_next != NULL). We guarantee
1850 * to keep the deleted cpu structure around.
1852 * Note that this MUST be done AFTER cpu_available
1853 * has been updated so that we don't waste time
1854 * trying to pause the cpu we're trying to delete.
1856 (void) pause_cpus(NULL);
1858 cpnext = cp->cpu_next;
1859 cp->cpu_prev->cpu_next = cp->cpu_next;
1860 cp->cpu_next->cpu_prev = cp->cpu_prev;
1861 if (cp == cpu_list)
1862 cpu_list = cpnext;
1865 * Signals that the cpu has been deleted (see above).
1867 cp->cpu_next = NULL;
1868 cp->cpu_prev = NULL;
1870 start_cpus();
1872 CPUSET_DEL(cpu_seqid_inuse, cp->cpu_seqid);
1873 ncpus--;
1874 lgrp_config(LGRP_CONFIG_CPU_DEL, (uintptr_t)cp, 0);
1876 pool_pset_mod = gethrtime();
1880 * Add a CPU to the list of active CPUs.
1881 * This routine must not get any locks, because other CPUs are paused.
1883 static void
1884 cpu_add_active_internal(cpu_t *cp)
1886 cpupart_t *pp = cp->cpu_part;
1888 ASSERT(MUTEX_HELD(&cpu_lock));
1889 ASSERT(cpu_list != NULL); /* list started in cpu_list_init */
1891 ncpus_online++;
1892 cpu_set_state(cp);
1893 cp->cpu_next_onln = cpu_active;
1894 cp->cpu_prev_onln = cpu_active->cpu_prev_onln;
1895 cpu_active->cpu_prev_onln->cpu_next_onln = cp;
1896 cpu_active->cpu_prev_onln = cp;
1898 if (pp->cp_cpulist) {
1899 cp->cpu_next_part = pp->cp_cpulist;
1900 cp->cpu_prev_part = pp->cp_cpulist->cpu_prev_part;
1901 pp->cp_cpulist->cpu_prev_part->cpu_next_part = cp;
1902 pp->cp_cpulist->cpu_prev_part = cp;
1903 } else {
1904 ASSERT(pp->cp_ncpus == 0);
1905 pp->cp_cpulist = cp->cpu_next_part = cp->cpu_prev_part = cp;
1907 pp->cp_ncpus++;
1908 if (pp->cp_ncpus == 1) {
1909 cp_numparts_nonempty++;
1910 ASSERT(cp_numparts_nonempty != 0);
1913 pg_cpu_active(cp);
1914 lgrp_config(LGRP_CONFIG_CPU_ONLINE, (uintptr_t)cp, 0);
1916 bzero(&cp->cpu_loadavg, sizeof (cp->cpu_loadavg));
1920 * Add a CPU to the list of active CPUs.
1921 * This is called from machine-dependent layers when a new CPU is started.
1923 void
1924 cpu_add_active(cpu_t *cp)
1926 pg_cpupart_in(cp, cp->cpu_part);
1928 pause_cpus(NULL);
1929 cpu_add_active_internal(cp);
1930 start_cpus();
1932 cpu_stats_kstat_create(cp);
1933 cpu_create_intrstat(cp);
1934 lgrp_kstat_create(cp);
1935 cpu_state_change_notify(cp->cpu_id, CPU_INIT);
1940 * Remove a CPU from the list of active CPUs.
1941 * This routine must not get any locks, because other CPUs are paused.
1943 /* ARGSUSED */
1944 static void
1945 cpu_remove_active(cpu_t *cp)
1947 cpupart_t *pp = cp->cpu_part;
1949 ASSERT(MUTEX_HELD(&cpu_lock));
1950 ASSERT(cp->cpu_next_onln != cp); /* not the last one */
1951 ASSERT(cp->cpu_prev_onln != cp); /* not the last one */
1953 pg_cpu_inactive(cp);
1955 lgrp_config(LGRP_CONFIG_CPU_OFFLINE, (uintptr_t)cp, 0);
1957 if (cp == clock_cpu_list)
1958 clock_cpu_list = cp->cpu_next_onln;
1960 cp->cpu_prev_onln->cpu_next_onln = cp->cpu_next_onln;
1961 cp->cpu_next_onln->cpu_prev_onln = cp->cpu_prev_onln;
1962 if (cpu_active == cp) {
1963 cpu_active = cp->cpu_next_onln;
1965 cp->cpu_next_onln = cp;
1966 cp->cpu_prev_onln = cp;
1968 cp->cpu_prev_part->cpu_next_part = cp->cpu_next_part;
1969 cp->cpu_next_part->cpu_prev_part = cp->cpu_prev_part;
1970 if (pp->cp_cpulist == cp) {
1971 pp->cp_cpulist = cp->cpu_next_part;
1972 ASSERT(pp->cp_cpulist != cp);
1974 cp->cpu_next_part = cp;
1975 cp->cpu_prev_part = cp;
1976 pp->cp_ncpus--;
1977 if (pp->cp_ncpus == 0) {
1978 cp_numparts_nonempty--;
1979 ASSERT(cp_numparts_nonempty != 0);
1984 * Routine used to setup a newly inserted CPU in preparation for starting
1985 * it running code.
1988 cpu_configure(int cpuid)
1990 int retval = 0;
1992 ASSERT(MUTEX_HELD(&cpu_lock));
1995 * Some structures are statically allocated based upon
1996 * the maximum number of cpus the system supports. Do not
1997 * try to add anything beyond this limit.
1999 if (cpuid < 0 || cpuid >= NCPU) {
2000 return (EINVAL);
2003 if ((cpu[cpuid] != NULL) && (cpu[cpuid]->cpu_flags != 0)) {
2004 return (EALREADY);
2007 if ((retval = mp_cpu_configure(cpuid)) != 0) {
2008 return (retval);
2011 cpu[cpuid]->cpu_flags = CPU_QUIESCED | CPU_OFFLINE | CPU_POWEROFF;
2012 cpu_set_state(cpu[cpuid]);
2013 retval = cpu_state_change_hooks(cpuid, CPU_CONFIG, CPU_UNCONFIG);
2014 if (retval != 0)
2015 (void) mp_cpu_unconfigure(cpuid);
2017 return (retval);
2021 * Routine used to cleanup a CPU that has been powered off. This will
2022 * destroy all per-cpu information related to this cpu.
2025 cpu_unconfigure(int cpuid)
2027 int error;
2029 ASSERT(MUTEX_HELD(&cpu_lock));
2031 if (cpu[cpuid] == NULL) {
2032 return (ENODEV);
2035 if (cpu[cpuid]->cpu_flags == 0) {
2036 return (EALREADY);
2039 if ((cpu[cpuid]->cpu_flags & CPU_POWEROFF) == 0) {
2040 return (EBUSY);
2043 if (cpu[cpuid]->cpu_props != NULL) {
2044 (void) nvlist_free(cpu[cpuid]->cpu_props);
2045 cpu[cpuid]->cpu_props = NULL;
2048 error = cpu_state_change_hooks(cpuid, CPU_UNCONFIG, CPU_CONFIG);
2050 if (error != 0)
2051 return (error);
2053 return (mp_cpu_unconfigure(cpuid));
2057 * Routines for registering and de-registering cpu_setup callback functions.
2059 * Caller's context
2060 * These routines must not be called from a driver's attach(9E) or
2061 * detach(9E) entry point.
2063 * NOTE: CPU callbacks should not block. They are called with cpu_lock held.
2067 * Ideally, these would be dynamically allocated and put into a linked
2068 * list; however that is not feasible because the registration routine
2069 * has to be available before the kmem allocator is working (in fact,
2070 * it is called by the kmem allocator init code). In any case, there
2071 * are quite a few extra entries for future users.
2073 #define NCPU_SETUPS 20
2075 struct cpu_setup {
2076 cpu_setup_func_t *func;
2077 void *arg;
2078 } cpu_setups[NCPU_SETUPS];
2080 void
2081 register_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2083 int i;
2085 ASSERT(MUTEX_HELD(&cpu_lock));
2087 for (i = 0; i < NCPU_SETUPS; i++)
2088 if (cpu_setups[i].func == NULL)
2089 break;
2090 if (i >= NCPU_SETUPS)
2091 cmn_err(CE_PANIC, "Ran out of cpu_setup callback entries");
2093 cpu_setups[i].func = func;
2094 cpu_setups[i].arg = arg;
2097 void
2098 unregister_cpu_setup_func(cpu_setup_func_t *func, void *arg)
2100 int i;
2102 ASSERT(MUTEX_HELD(&cpu_lock));
2104 for (i = 0; i < NCPU_SETUPS; i++)
2105 if ((cpu_setups[i].func == func) &&
2106 (cpu_setups[i].arg == arg))
2107 break;
2108 if (i >= NCPU_SETUPS)
2109 cmn_err(CE_PANIC, "Could not find cpu_setup callback to "
2110 "deregister");
2112 cpu_setups[i].func = NULL;
2113 cpu_setups[i].arg = 0;
2117 * Call any state change hooks for this CPU, ignore any errors.
2119 void
2120 cpu_state_change_notify(int id, cpu_setup_t what)
2122 int i;
2124 ASSERT(MUTEX_HELD(&cpu_lock));
2126 for (i = 0; i < NCPU_SETUPS; i++) {
2127 if (cpu_setups[i].func != NULL) {
2128 cpu_setups[i].func(what, id, cpu_setups[i].arg);
2134 * Call any state change hooks for this CPU, undo it if error found.
2136 static int
2137 cpu_state_change_hooks(int id, cpu_setup_t what, cpu_setup_t undo)
2139 int i;
2140 int retval = 0;
2142 ASSERT(MUTEX_HELD(&cpu_lock));
2144 for (i = 0; i < NCPU_SETUPS; i++) {
2145 if (cpu_setups[i].func != NULL) {
2146 retval = cpu_setups[i].func(what, id,
2147 cpu_setups[i].arg);
2148 if (retval) {
2149 for (i--; i >= 0; i--) {
2150 if (cpu_setups[i].func != NULL)
2151 cpu_setups[i].func(undo,
2152 id, cpu_setups[i].arg);
2154 break;
2158 return (retval);
2162 * Export information about this CPU via the kstat mechanism.
2164 static struct {
2165 kstat_named_t ci_state;
2166 kstat_named_t ci_state_begin;
2167 kstat_named_t ci_cpu_type;
2168 kstat_named_t ci_fpu_type;
2169 kstat_named_t ci_clock_MHz;
2170 kstat_named_t ci_chip_id;
2171 kstat_named_t ci_implementation;
2172 kstat_named_t ci_brandstr;
2173 kstat_named_t ci_core_id;
2174 kstat_named_t ci_curr_clock_Hz;
2175 kstat_named_t ci_supp_freq_Hz;
2176 kstat_named_t ci_pg_id;
2177 #if defined(__sparcv9)
2178 kstat_named_t ci_device_ID;
2179 kstat_named_t ci_cpu_fru;
2180 #endif
2181 #if defined(__x86)
2182 kstat_named_t ci_vendorstr;
2183 kstat_named_t ci_family;
2184 kstat_named_t ci_model;
2185 kstat_named_t ci_step;
2186 kstat_named_t ci_clogid;
2187 kstat_named_t ci_pkg_core_id;
2188 kstat_named_t ci_ncpuperchip;
2189 kstat_named_t ci_ncoreperchip;
2190 kstat_named_t ci_max_cstates;
2191 kstat_named_t ci_curr_cstate;
2192 kstat_named_t ci_cacheid;
2193 kstat_named_t ci_sktstr;
2194 #endif
2195 } cpu_info_template = {
2196 { "state", KSTAT_DATA_CHAR },
2197 { "state_begin", KSTAT_DATA_LONG },
2198 { "cpu_type", KSTAT_DATA_CHAR },
2199 { "fpu_type", KSTAT_DATA_CHAR },
2200 { "clock_MHz", KSTAT_DATA_LONG },
2201 { "chip_id", KSTAT_DATA_LONG },
2202 { "implementation", KSTAT_DATA_STRING },
2203 { "brand", KSTAT_DATA_STRING },
2204 { "core_id", KSTAT_DATA_LONG },
2205 { "current_clock_Hz", KSTAT_DATA_UINT64 },
2206 { "supported_frequencies_Hz", KSTAT_DATA_STRING },
2207 { "pg_id", KSTAT_DATA_LONG },
2208 #if defined(__sparcv9)
2209 { "device_ID", KSTAT_DATA_UINT64 },
2210 { "cpu_fru", KSTAT_DATA_STRING },
2211 #endif
2212 #if defined(__x86)
2213 { "vendor_id", KSTAT_DATA_STRING },
2214 { "family", KSTAT_DATA_INT32 },
2215 { "model", KSTAT_DATA_INT32 },
2216 { "stepping", KSTAT_DATA_INT32 },
2217 { "clog_id", KSTAT_DATA_INT32 },
2218 { "pkg_core_id", KSTAT_DATA_LONG },
2219 { "ncpu_per_chip", KSTAT_DATA_INT32 },
2220 { "ncore_per_chip", KSTAT_DATA_INT32 },
2221 { "supported_max_cstates", KSTAT_DATA_INT32 },
2222 { "current_cstate", KSTAT_DATA_INT32 },
2223 { "cache_id", KSTAT_DATA_INT32 },
2224 { "socket_type", KSTAT_DATA_STRING },
2225 #endif
2228 static kmutex_t cpu_info_template_lock;
2230 static int
2231 cpu_info_kstat_update(kstat_t *ksp, int rw)
2233 cpu_t *cp = ksp->ks_private;
2234 const char *pi_state;
2236 if (rw == KSTAT_WRITE)
2237 return (EACCES);
2239 #if defined(__x86)
2240 /* Is the cpu still initialising itself? */
2241 if (cpuid_checkpass(cp, 1) == 0)
2242 return (ENXIO);
2243 #endif
2244 switch (cp->cpu_type_info.pi_state) {
2245 case P_ONLINE:
2246 pi_state = PS_ONLINE;
2247 break;
2248 case P_POWEROFF:
2249 pi_state = PS_POWEROFF;
2250 break;
2251 case P_NOINTR:
2252 pi_state = PS_NOINTR;
2253 break;
2254 case P_FAULTED:
2255 pi_state = PS_FAULTED;
2256 break;
2257 case P_SPARE:
2258 pi_state = PS_SPARE;
2259 break;
2260 case P_OFFLINE:
2261 pi_state = PS_OFFLINE;
2262 break;
2263 default:
2264 pi_state = "unknown";
2266 (void) strcpy(cpu_info_template.ci_state.value.c, pi_state);
2267 cpu_info_template.ci_state_begin.value.l = cp->cpu_state_begin;
2268 (void) strncpy(cpu_info_template.ci_cpu_type.value.c,
2269 cp->cpu_type_info.pi_processor_type, 15);
2270 (void) strncpy(cpu_info_template.ci_fpu_type.value.c,
2271 cp->cpu_type_info.pi_fputypes, 15);
2272 cpu_info_template.ci_clock_MHz.value.l = cp->cpu_type_info.pi_clock;
2273 cpu_info_template.ci_chip_id.value.l =
2274 pg_plat_hw_instance_id(cp, PGHW_CHIP);
2275 kstat_named_setstr(&cpu_info_template.ci_implementation,
2276 cp->cpu_idstr);
2277 kstat_named_setstr(&cpu_info_template.ci_brandstr, cp->cpu_brandstr);
2278 cpu_info_template.ci_core_id.value.l = pg_plat_get_core_id(cp);
2279 cpu_info_template.ci_curr_clock_Hz.value.ui64 =
2280 cp->cpu_curr_clock;
2281 cpu_info_template.ci_pg_id.value.l =
2282 cp->cpu_pg && cp->cpu_pg->cmt_lineage ?
2283 cp->cpu_pg->cmt_lineage->pg_id : -1;
2284 kstat_named_setstr(&cpu_info_template.ci_supp_freq_Hz,
2285 cp->cpu_supp_freqs);
2286 #if defined(__sparcv9)
2287 cpu_info_template.ci_device_ID.value.ui64 =
2288 cpunodes[cp->cpu_id].device_id;
2289 kstat_named_setstr(&cpu_info_template.ci_cpu_fru, cpu_fru_fmri(cp));
2290 #endif
2291 #if defined(__x86)
2292 kstat_named_setstr(&cpu_info_template.ci_vendorstr,
2293 cpuid_getvendorstr(cp));
2294 cpu_info_template.ci_family.value.l = cpuid_getfamily(cp);
2295 cpu_info_template.ci_model.value.l = cpuid_getmodel(cp);
2296 cpu_info_template.ci_step.value.l = cpuid_getstep(cp);
2297 cpu_info_template.ci_clogid.value.l = cpuid_get_clogid(cp);
2298 cpu_info_template.ci_ncpuperchip.value.l = cpuid_get_ncpu_per_chip(cp);
2299 cpu_info_template.ci_ncoreperchip.value.l =
2300 cpuid_get_ncore_per_chip(cp);
2301 cpu_info_template.ci_pkg_core_id.value.l = cpuid_get_pkgcoreid(cp);
2302 cpu_info_template.ci_max_cstates.value.l = cp->cpu_m.max_cstates;
2303 cpu_info_template.ci_curr_cstate.value.l = cpu_idle_get_cpu_state(cp);
2304 cpu_info_template.ci_cacheid.value.i32 = cpuid_get_cacheid(cp);
2305 kstat_named_setstr(&cpu_info_template.ci_sktstr,
2306 cpuid_getsocketstr(cp));
2307 #endif
2309 return (0);
2312 static void
2313 cpu_info_kstat_create(cpu_t *cp)
2315 zoneid_t zoneid;
2317 ASSERT(MUTEX_HELD(&cpu_lock));
2319 if (pool_pset_enabled())
2320 zoneid = GLOBAL_ZONEID;
2321 else
2322 zoneid = ALL_ZONES;
2323 if ((cp->cpu_info_kstat = kstat_create_zone("cpu_info", cp->cpu_id,
2324 NULL, "misc", KSTAT_TYPE_NAMED,
2325 sizeof (cpu_info_template) / sizeof (kstat_named_t),
2326 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE, zoneid)) != NULL) {
2327 cp->cpu_info_kstat->ks_data_size += 2 * CPU_IDSTRLEN;
2328 #if defined(__sparcv9)
2329 cp->cpu_info_kstat->ks_data_size +=
2330 strlen(cpu_fru_fmri(cp)) + 1;
2331 #endif
2332 #if defined(__x86)
2333 cp->cpu_info_kstat->ks_data_size += X86_VENDOR_STRLEN;
2334 #endif
2335 if (cp->cpu_supp_freqs != NULL)
2336 cp->cpu_info_kstat->ks_data_size +=
2337 strlen(cp->cpu_supp_freqs) + 1;
2338 cp->cpu_info_kstat->ks_lock = &cpu_info_template_lock;
2339 cp->cpu_info_kstat->ks_data = &cpu_info_template;
2340 cp->cpu_info_kstat->ks_private = cp;
2341 cp->cpu_info_kstat->ks_update = cpu_info_kstat_update;
2342 kstat_install(cp->cpu_info_kstat);
2346 static void
2347 cpu_info_kstat_destroy(cpu_t *cp)
2349 ASSERT(MUTEX_HELD(&cpu_lock));
2351 kstat_delete(cp->cpu_info_kstat);
2352 cp->cpu_info_kstat = NULL;
2356 * Create and install kstats for the boot CPU.
2358 void
2359 cpu_kstat_init(cpu_t *cp)
2361 mutex_enter(&cpu_lock);
2362 cpu_info_kstat_create(cp);
2363 cpu_stats_kstat_create(cp);
2364 cpu_create_intrstat(cp);
2365 cpu_set_state(cp);
2366 mutex_exit(&cpu_lock);
2370 * Make visible to the zone that subset of the cpu information that would be
2371 * initialized when a cpu is configured (but still offline).
2373 void
2374 cpu_visibility_configure(cpu_t *cp, zone_t *zone)
2376 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2378 ASSERT(MUTEX_HELD(&cpu_lock));
2379 ASSERT(pool_pset_enabled());
2380 ASSERT(cp != NULL);
2382 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2383 zone->zone_ncpus++;
2384 ASSERT(zone->zone_ncpus <= ncpus);
2386 if (cp->cpu_info_kstat != NULL)
2387 kstat_zone_add(cp->cpu_info_kstat, zoneid);
2391 * Make visible to the zone that subset of the cpu information that would be
2392 * initialized when a previously configured cpu is onlined.
2394 void
2395 cpu_visibility_online(cpu_t *cp, zone_t *zone)
2397 kstat_t *ksp;
2398 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */
2399 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2400 processorid_t cpun;
2402 ASSERT(MUTEX_HELD(&cpu_lock));
2403 ASSERT(pool_pset_enabled());
2404 ASSERT(cp != NULL);
2405 ASSERT(cpu_is_active(cp));
2407 cpun = cp->cpu_id;
2408 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2409 zone->zone_ncpus_online++;
2410 ASSERT(zone->zone_ncpus_online <= ncpus_online);
2412 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2413 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2414 != NULL) {
2415 kstat_zone_add(ksp, zoneid);
2416 kstat_rele(ksp);
2418 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2419 kstat_zone_add(ksp, zoneid);
2420 kstat_rele(ksp);
2422 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2423 kstat_zone_add(ksp, zoneid);
2424 kstat_rele(ksp);
2426 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2427 NULL) {
2428 kstat_zone_add(ksp, zoneid);
2429 kstat_rele(ksp);
2434 * Update relevant kstats such that cpu is now visible to processes
2435 * executing in specified zone.
2437 void
2438 cpu_visibility_add(cpu_t *cp, zone_t *zone)
2440 cpu_visibility_configure(cp, zone);
2441 if (cpu_is_active(cp))
2442 cpu_visibility_online(cp, zone);
2446 * Make invisible to the zone that subset of the cpu information that would be
2447 * torn down when a previously offlined cpu is unconfigured.
2449 void
2450 cpu_visibility_unconfigure(cpu_t *cp, zone_t *zone)
2452 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2454 ASSERT(MUTEX_HELD(&cpu_lock));
2455 ASSERT(pool_pset_enabled());
2456 ASSERT(cp != NULL);
2458 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2459 ASSERT(zone->zone_ncpus != 0);
2460 zone->zone_ncpus--;
2462 if (cp->cpu_info_kstat)
2463 kstat_zone_remove(cp->cpu_info_kstat, zoneid);
2467 * Make invisible to the zone that subset of the cpu information that would be
2468 * torn down when a cpu is offlined (but still configured).
2470 void
2471 cpu_visibility_offline(cpu_t *cp, zone_t *zone)
2473 kstat_t *ksp;
2474 char name[sizeof ("cpu_stat") + 10]; /* enough for 32-bit cpuids */
2475 zoneid_t zoneid = zone ? zone->zone_id : ALL_ZONES;
2476 processorid_t cpun;
2478 ASSERT(MUTEX_HELD(&cpu_lock));
2479 ASSERT(pool_pset_enabled());
2480 ASSERT(cp != NULL);
2481 ASSERT(cpu_is_active(cp));
2483 cpun = cp->cpu_id;
2484 if (zoneid != ALL_ZONES && zoneid != GLOBAL_ZONEID) {
2485 ASSERT(zone->zone_ncpus_online != 0);
2486 zone->zone_ncpus_online--;
2489 if ((ksp = kstat_hold_byname("cpu", cpun, "intrstat", ALL_ZONES)) !=
2490 NULL) {
2491 kstat_zone_remove(ksp, zoneid);
2492 kstat_rele(ksp);
2494 if ((ksp = kstat_hold_byname("cpu", cpun, "vm", ALL_ZONES)) != NULL) {
2495 kstat_zone_remove(ksp, zoneid);
2496 kstat_rele(ksp);
2498 if ((ksp = kstat_hold_byname("cpu", cpun, "sys", ALL_ZONES)) != NULL) {
2499 kstat_zone_remove(ksp, zoneid);
2500 kstat_rele(ksp);
2502 (void) snprintf(name, sizeof (name), "cpu_stat%d", cpun);
2503 if ((ksp = kstat_hold_byname("cpu_stat", cpun, name, ALL_ZONES))
2504 != NULL) {
2505 kstat_zone_remove(ksp, zoneid);
2506 kstat_rele(ksp);
2511 * Update relevant kstats such that cpu is no longer visible to processes
2512 * executing in specified zone.
2514 void
2515 cpu_visibility_remove(cpu_t *cp, zone_t *zone)
2517 if (cpu_is_active(cp))
2518 cpu_visibility_offline(cp, zone);
2519 cpu_visibility_unconfigure(cp, zone);
2523 * Bind a thread to a CPU as requested.
2526 cpu_bind_thread(kthread_id_t tp, processorid_t bind, processorid_t *obind,
2527 int *error)
2529 processorid_t binding;
2530 cpu_t *cp = NULL;
2532 ASSERT(MUTEX_HELD(&cpu_lock));
2533 ASSERT(MUTEX_HELD(&ttoproc(tp)->p_lock));
2535 thread_lock(tp);
2538 * Record old binding, but change the obind, which was initialized
2539 * to PBIND_NONE, only if this thread has a binding. This avoids
2540 * reporting PBIND_NONE for a process when some LWPs are bound.
2542 binding = tp->t_bind_cpu;
2543 if (binding != PBIND_NONE)
2544 *obind = binding; /* record old binding */
2546 switch (bind) {
2547 case PBIND_QUERY:
2548 /* Just return the old binding */
2549 thread_unlock(tp);
2550 return (0);
2552 case PBIND_QUERY_TYPE:
2553 /* Return the binding type */
2554 *obind = TB_CPU_IS_SOFT(tp) ? PBIND_SOFT : PBIND_HARD;
2555 thread_unlock(tp);
2556 return (0);
2558 case PBIND_SOFT:
2560 * Set soft binding for this thread and return the actual
2561 * binding
2563 TB_CPU_SOFT_SET(tp);
2564 thread_unlock(tp);
2565 return (0);
2567 case PBIND_HARD:
2569 * Set hard binding for this thread and return the actual
2570 * binding
2572 TB_CPU_HARD_SET(tp);
2573 thread_unlock(tp);
2574 return (0);
2576 default:
2577 break;
2581 * If this thread/LWP cannot be bound because of permission
2582 * problems, just note that and return success so that the
2583 * other threads/LWPs will be bound. This is the way
2584 * processor_bind() is defined to work.
2586 * Binding will get EPERM if the thread is of system class
2587 * or hasprocperm() fails.
2589 if (tp->t_cid == 0 || !hasprocperm(tp->t_cred, CRED())) {
2590 *error = EPERM;
2591 thread_unlock(tp);
2592 return (0);
2595 binding = bind;
2596 if (binding != PBIND_NONE) {
2597 cp = cpu_get((processorid_t)binding);
2599 * Make sure binding is valid and is in right partition.
2601 if (cp == NULL || tp->t_cpupart != cp->cpu_part) {
2602 *error = EINVAL;
2603 thread_unlock(tp);
2604 return (0);
2607 tp->t_bind_cpu = binding; /* set new binding */
2610 * If there is no system-set reason for affinity, set
2611 * the t_bound_cpu field to reflect the binding.
2613 if (tp->t_affinitycnt == 0) {
2614 if (binding == PBIND_NONE) {
2616 * We may need to adjust disp_max_unbound_pri
2617 * since we're becoming unbound.
2619 disp_adjust_unbound_pri(tp);
2621 tp->t_bound_cpu = NULL; /* set new binding */
2624 * Move thread to lgroup with strongest affinity
2625 * after unbinding
2627 if (tp->t_lgrp_affinity)
2628 lgrp_move_thread(tp,
2629 lgrp_choose(tp, tp->t_cpupart), 1);
2631 if (tp->t_state == TS_ONPROC &&
2632 tp->t_cpu->cpu_part != tp->t_cpupart)
2633 cpu_surrender(tp);
2634 } else {
2635 lpl_t *lpl;
2637 tp->t_bound_cpu = cp;
2638 ASSERT(cp->cpu_lpl != NULL);
2641 * Set home to lgroup with most affinity containing CPU
2642 * that thread is being bound or minimum bounding
2643 * lgroup if no affinities set
2645 if (tp->t_lgrp_affinity)
2646 lpl = lgrp_affinity_best(tp, tp->t_cpupart,
2647 LGRP_NONE, B_FALSE);
2648 else
2649 lpl = cp->cpu_lpl;
2651 if (tp->t_lpl != lpl) {
2652 /* can't grab cpu_lock */
2653 lgrp_move_thread(tp, lpl, 1);
2657 * Make the thread switch to the bound CPU.
2658 * If the thread is runnable, we need to
2659 * requeue it even if t_cpu is already set
2660 * to the right CPU, since it may be on a
2661 * kpreempt queue and need to move to a local
2662 * queue. We could check t_disp_queue to
2663 * avoid unnecessary overhead if it's already
2664 * on the right queue, but since this isn't
2665 * a performance-critical operation it doesn't
2666 * seem worth the extra code and complexity.
2668 * If the thread is weakbound to the cpu then it will
2669 * resist the new binding request until the weak
2670 * binding drops. The cpu_surrender or requeueing
2671 * below could be skipped in such cases (since it
2672 * will have no effect), but that would require
2673 * thread_allowmigrate to acquire thread_lock so
2674 * we'll take the very occasional hit here instead.
2676 if (tp->t_state == TS_ONPROC) {
2677 cpu_surrender(tp);
2678 } else if (tp->t_state == TS_RUN) {
2679 cpu_t *ocp = tp->t_cpu;
2681 (void) dispdeq(tp);
2682 setbackdq(tp);
2684 * Either on the bound CPU's disp queue now,
2685 * or swapped out or on the swap queue.
2687 ASSERT(tp->t_disp_queue == cp->cpu_disp ||
2688 tp->t_weakbound_cpu == ocp ||
2689 (tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ))
2690 != TS_LOAD);
2696 * Our binding has changed; set TP_CHANGEBIND.
2698 tp->t_proc_flag |= TP_CHANGEBIND;
2699 aston(tp);
2701 thread_unlock(tp);
2703 return (0);
2706 #if CPUSET_WORDS > 1
2709 * Functions for implementing cpuset operations when a cpuset is more
2710 * than one word. On platforms where a cpuset is a single word these
2711 * are implemented as macros in cpuvar.h.
2714 void
2715 cpuset_all(cpuset_t *s)
2717 int i;
2719 for (i = 0; i < CPUSET_WORDS; i++)
2720 s->cpub[i] = ~0UL;
2723 void
2724 cpuset_all_but(cpuset_t *s, uint_t cpu)
2726 cpuset_all(s);
2727 CPUSET_DEL(*s, cpu);
2730 void
2731 cpuset_only(cpuset_t *s, uint_t cpu)
2733 CPUSET_ZERO(*s);
2734 CPUSET_ADD(*s, cpu);
2738 cpuset_isnull(cpuset_t *s)
2740 int i;
2742 for (i = 0; i < CPUSET_WORDS; i++)
2743 if (s->cpub[i] != 0)
2744 return (0);
2745 return (1);
2749 cpuset_cmp(cpuset_t *s1, cpuset_t *s2)
2751 int i;
2753 for (i = 0; i < CPUSET_WORDS; i++)
2754 if (s1->cpub[i] != s2->cpub[i])
2755 return (0);
2756 return (1);
2759 uint_t
2760 cpuset_find(cpuset_t *s)
2763 uint_t i;
2764 uint_t cpu = (uint_t)-1;
2767 * Find a cpu in the cpuset
2769 for (i = 0; i < CPUSET_WORDS; i++) {
2770 cpu = (uint_t)(lowbit(s->cpub[i]) - 1);
2771 if (cpu != (uint_t)-1) {
2772 cpu += i * BT_NBIPUL;
2773 break;
2776 return (cpu);
2779 void
2780 cpuset_bounds(cpuset_t *s, uint_t *smallestid, uint_t *largestid)
2782 int i, j;
2783 uint_t bit;
2786 * First, find the smallest cpu id in the set.
2788 for (i = 0; i < CPUSET_WORDS; i++) {
2789 if (s->cpub[i] != 0) {
2790 bit = (uint_t)(lowbit(s->cpub[i]) - 1);
2791 ASSERT(bit != (uint_t)-1);
2792 *smallestid = bit + (i * BT_NBIPUL);
2795 * Now find the largest cpu id in
2796 * the set and return immediately.
2797 * Done in an inner loop to avoid
2798 * having to break out of the first
2799 * loop.
2801 for (j = CPUSET_WORDS - 1; j >= i; j--) {
2802 if (s->cpub[j] != 0) {
2803 bit = (uint_t)(highbit(s->cpub[j]) - 1);
2804 ASSERT(bit != (uint_t)-1);
2805 *largestid = bit + (j * BT_NBIPUL);
2806 ASSERT(*largestid >= *smallestid);
2807 return;
2812 * If this code is reached, a
2813 * smallestid was found, but not a
2814 * largestid. The cpuset must have
2815 * been changed during the course
2816 * of this function call.
2818 ASSERT(0);
2821 *smallestid = *largestid = CPUSET_NOTINSET;
2824 #endif /* CPUSET_WORDS */
2827 * Unbind threads bound to specified CPU.
2829 * If `unbind_all_threads' is true, unbind all user threads bound to a given
2830 * CPU. Otherwise unbind all soft-bound user threads.
2833 cpu_unbind(processorid_t cpu, boolean_t unbind_all_threads)
2835 processorid_t obind;
2836 kthread_t *tp;
2837 int ret = 0;
2838 proc_t *pp;
2839 int err, berr = 0;
2841 ASSERT(MUTEX_HELD(&cpu_lock));
2843 mutex_enter(&pidlock);
2844 for (pp = practive; pp != NULL; pp = pp->p_next) {
2845 mutex_enter(&pp->p_lock);
2846 tp = pp->p_tlist;
2848 * Skip zombies, kernel processes, and processes in
2849 * other zones, if called from a non-global zone.
2851 if (tp == NULL || (pp->p_flag & SSYS) ||
2852 !HASZONEACCESS(curproc, pp->p_zone->zone_id)) {
2853 mutex_exit(&pp->p_lock);
2854 continue;
2856 do {
2857 if (tp->t_bind_cpu != cpu)
2858 continue;
2860 * Skip threads with hard binding when
2861 * `unbind_all_threads' is not specified.
2863 if (!unbind_all_threads && TB_CPU_IS_HARD(tp))
2864 continue;
2865 err = cpu_bind_thread(tp, PBIND_NONE, &obind, &berr);
2866 if (ret == 0)
2867 ret = err;
2868 } while ((tp = tp->t_forw) != pp->p_tlist);
2869 mutex_exit(&pp->p_lock);
2871 mutex_exit(&pidlock);
2872 if (ret == 0)
2873 ret = berr;
2874 return (ret);
2879 * Destroy all remaining bound threads on a cpu.
2881 void
2882 cpu_destroy_bound_threads(cpu_t *cp)
2884 extern id_t syscid;
2885 register kthread_id_t t, tlist, tnext;
2888 * Destroy all remaining bound threads on the cpu. This
2889 * should include both the interrupt threads and the idle thread.
2890 * This requires some care, since we need to traverse the
2891 * thread list with the pidlock mutex locked, but thread_free
2892 * also locks the pidlock mutex. So, we collect the threads
2893 * we're going to reap in a list headed by "tlist", then we
2894 * unlock the pidlock mutex and traverse the tlist list,
2895 * doing thread_free's on the thread's. Simple, n'est pas?
2896 * Also, this depends on thread_free not mucking with the
2897 * t_next and t_prev links of the thread.
2900 if ((t = curthread) != NULL) {
2902 tlist = NULL;
2903 mutex_enter(&pidlock);
2904 do {
2905 tnext = t->t_next;
2906 if (t->t_bound_cpu == cp) {
2909 * We've found a bound thread, carefully unlink
2910 * it out of the thread list, and add it to
2911 * our "tlist". We "know" we don't have to
2912 * worry about unlinking curthread (the thread
2913 * that is executing this code).
2915 t->t_next->t_prev = t->t_prev;
2916 t->t_prev->t_next = t->t_next;
2917 t->t_next = tlist;
2918 tlist = t;
2919 ASSERT(t->t_cid == syscid);
2920 /* wake up anyone blocked in thread_join */
2921 cv_broadcast(&t->t_joincv);
2923 * t_lwp set by interrupt threads and not
2924 * cleared.
2926 t->t_lwp = NULL;
2928 * Pause and idle threads always have
2929 * t_state set to TS_ONPROC.
2931 t->t_state = TS_FREE;
2932 t->t_prev = NULL; /* Just in case */
2935 } while ((t = tnext) != curthread);
2937 mutex_exit(&pidlock);
2939 mutex_sync();
2940 for (t = tlist; t != NULL; t = tnext) {
2941 tnext = t->t_next;
2942 thread_free(t);
2948 * Update the cpu_supp_freqs of this cpu. This information is returned
2949 * as part of cpu_info kstats. If the cpu_info_kstat exists already, then
2950 * maintain the kstat data size.
2952 void
2953 cpu_set_supp_freqs(cpu_t *cp, const char *freqs)
2955 char clkstr[sizeof ("18446744073709551615") + 1]; /* ui64 MAX */
2956 const char *lfreqs = clkstr;
2957 boolean_t kstat_exists = B_FALSE;
2958 kstat_t *ksp;
2959 size_t len;
2962 * A NULL pointer means we only support one speed.
2964 if (freqs == NULL)
2965 (void) snprintf(clkstr, sizeof (clkstr), "%"PRIu64,
2966 cp->cpu_curr_clock);
2967 else
2968 lfreqs = freqs;
2971 * Make sure the frequency doesn't change while a snapshot is
2972 * going on. Of course, we only need to worry about this if
2973 * the kstat exists.
2975 if ((ksp = cp->cpu_info_kstat) != NULL) {
2976 mutex_enter(ksp->ks_lock);
2977 kstat_exists = B_TRUE;
2981 * Free any previously allocated string and if the kstat
2982 * already exists, then update its data size.
2984 if (cp->cpu_supp_freqs != NULL) {
2985 len = strlen(cp->cpu_supp_freqs) + 1;
2986 kmem_free(cp->cpu_supp_freqs, len);
2987 if (kstat_exists)
2988 ksp->ks_data_size -= len;
2992 * Allocate the new string and set the pointer.
2994 len = strlen(lfreqs) + 1;
2995 cp->cpu_supp_freqs = kmem_alloc(len, KM_SLEEP);
2996 (void) strcpy(cp->cpu_supp_freqs, lfreqs);
2999 * If the kstat already exists then update the data size and
3000 * free the lock.
3002 if (kstat_exists) {
3003 ksp->ks_data_size += len;
3004 mutex_exit(ksp->ks_lock);
3009 * Indicate the current CPU's clock freqency (in Hz).
3010 * The calling context must be such that CPU references are safe.
3012 void
3013 cpu_set_curr_clock(uint64_t new_clk)
3015 uint64_t old_clk;
3017 old_clk = CPU->cpu_curr_clock;
3018 CPU->cpu_curr_clock = new_clk;
3021 * The cpu-change-speed DTrace probe exports the frequency in Hz
3023 DTRACE_PROBE3(cpu__change__speed, processorid_t, CPU->cpu_id,
3024 uint64_t, old_clk, uint64_t, new_clk);
3028 * processor_info(2) and p_online(2) status support functions
3029 * The constants returned by the cpu_get_state() and cpu_get_state_str() are
3030 * for use in communicating processor state information to userland. Kernel
3031 * subsystems should only be using the cpu_flags value directly. Subsystems
3032 * modifying cpu_flags should record the state change via a call to the
3033 * cpu_set_state().
3037 * Update the pi_state of this CPU. This function provides the CPU status for
3038 * the information returned by processor_info(2).
3040 void
3041 cpu_set_state(cpu_t *cpu)
3043 ASSERT(MUTEX_HELD(&cpu_lock));
3044 cpu->cpu_type_info.pi_state = cpu_get_state(cpu);
3045 cpu->cpu_state_begin = gethrestime_sec();
3046 pool_cpu_mod = gethrtime();
3050 * Return offline/online/other status for the indicated CPU. Use only for
3051 * communication with user applications; cpu_flags provides the in-kernel
3052 * interface.
3055 cpu_get_state(cpu_t *cpu)
3057 ASSERT(MUTEX_HELD(&cpu_lock));
3058 if (cpu->cpu_flags & CPU_POWEROFF)
3059 return (P_POWEROFF);
3060 else if (cpu->cpu_flags & CPU_FAULTED)
3061 return (P_FAULTED);
3062 else if (cpu->cpu_flags & CPU_SPARE)
3063 return (P_SPARE);
3064 else if ((cpu->cpu_flags & (CPU_READY | CPU_OFFLINE)) != CPU_READY)
3065 return (P_OFFLINE);
3066 else if (cpu->cpu_flags & CPU_ENABLE)
3067 return (P_ONLINE);
3068 else
3069 return (P_NOINTR);
3073 * Return processor_info(2) state as a string.
3075 const char *
3076 cpu_get_state_str(cpu_t *cpu)
3078 const char *string;
3080 switch (cpu_get_state(cpu)) {
3081 case P_ONLINE:
3082 string = PS_ONLINE;
3083 break;
3084 case P_POWEROFF:
3085 string = PS_POWEROFF;
3086 break;
3087 case P_NOINTR:
3088 string = PS_NOINTR;
3089 break;
3090 case P_SPARE:
3091 string = PS_SPARE;
3092 break;
3093 case P_FAULTED:
3094 string = PS_FAULTED;
3095 break;
3096 case P_OFFLINE:
3097 string = PS_OFFLINE;
3098 break;
3099 default:
3100 string = "unknown";
3101 break;
3103 return (string);
3107 * Export this CPU's statistics (cpu_stat_t and cpu_stats_t) as raw and named
3108 * kstats, respectively. This is done when a CPU is initialized or placed
3109 * online via p_online(2).
3111 static void
3112 cpu_stats_kstat_create(cpu_t *cp)
3114 int instance = cp->cpu_id;
3115 char *module = "cpu";
3116 char *class = "misc";
3117 kstat_t *ksp;
3118 zoneid_t zoneid;
3120 ASSERT(MUTEX_HELD(&cpu_lock));
3122 if (pool_pset_enabled())
3123 zoneid = GLOBAL_ZONEID;
3124 else
3125 zoneid = ALL_ZONES;
3127 * Create named kstats
3129 #define CPU_STATS_KS_CREATE(name, tsize, update_func) \
3130 ksp = kstat_create_zone(module, instance, (name), class, \
3131 KSTAT_TYPE_NAMED, (tsize) / sizeof (kstat_named_t), 0, \
3132 zoneid); \
3133 if (ksp != NULL) { \
3134 ksp->ks_private = cp; \
3135 ksp->ks_update = (update_func); \
3136 kstat_install(ksp); \
3137 } else \
3138 cmn_err(CE_WARN, "cpu: unable to create %s:%d:%s kstat", \
3139 module, instance, (name));
3141 CPU_STATS_KS_CREATE("sys", sizeof (cpu_sys_stats_ks_data_template),
3142 cpu_sys_stats_ks_update);
3143 CPU_STATS_KS_CREATE("vm", sizeof (cpu_vm_stats_ks_data_template),
3144 cpu_vm_stats_ks_update);
3147 * Export the familiar cpu_stat_t KSTAT_TYPE_RAW kstat.
3149 ksp = kstat_create_zone("cpu_stat", cp->cpu_id, NULL,
3150 "misc", KSTAT_TYPE_RAW, sizeof (cpu_stat_t), 0, zoneid);
3151 if (ksp != NULL) {
3152 ksp->ks_update = cpu_stat_ks_update;
3153 ksp->ks_private = cp;
3154 kstat_install(ksp);
3158 static void
3159 cpu_stats_kstat_destroy(cpu_t *cp)
3161 char ks_name[KSTAT_STRLEN];
3163 (void) sprintf(ks_name, "cpu_stat%d", cp->cpu_id);
3164 kstat_delete_byname("cpu_stat", cp->cpu_id, ks_name);
3166 kstat_delete_byname("cpu", cp->cpu_id, "sys");
3167 kstat_delete_byname("cpu", cp->cpu_id, "vm");
3170 static int
3171 cpu_sys_stats_ks_update(kstat_t *ksp, int rw)
3173 cpu_t *cp = (cpu_t *)ksp->ks_private;
3174 struct cpu_sys_stats_ks_data *csskd;
3175 cpu_sys_stats_t *css;
3176 hrtime_t msnsecs[NCMSTATES];
3177 int i;
3179 if (rw == KSTAT_WRITE)
3180 return (EACCES);
3182 csskd = ksp->ks_data;
3183 css = &cp->cpu_stats.sys;
3186 * Read CPU mstate, but compare with the last values we
3187 * received to make sure that the returned kstats never
3188 * decrease.
3191 get_cpu_mstate(cp, msnsecs);
3192 if (csskd->cpu_nsec_idle.value.ui64 > msnsecs[CMS_IDLE])
3193 msnsecs[CMS_IDLE] = csskd->cpu_nsec_idle.value.ui64;
3194 if (csskd->cpu_nsec_user.value.ui64 > msnsecs[CMS_USER])
3195 msnsecs[CMS_USER] = csskd->cpu_nsec_user.value.ui64;
3196 if (csskd->cpu_nsec_kernel.value.ui64 > msnsecs[CMS_SYSTEM])
3197 msnsecs[CMS_SYSTEM] = csskd->cpu_nsec_kernel.value.ui64;
3199 bcopy(&cpu_sys_stats_ks_data_template, ksp->ks_data,
3200 sizeof (cpu_sys_stats_ks_data_template));
3202 csskd->cpu_ticks_wait.value.ui64 = 0;
3203 csskd->wait_ticks_io.value.ui64 = 0;
3205 csskd->cpu_nsec_idle.value.ui64 = msnsecs[CMS_IDLE];
3206 csskd->cpu_nsec_user.value.ui64 = msnsecs[CMS_USER];
3207 csskd->cpu_nsec_kernel.value.ui64 = msnsecs[CMS_SYSTEM];
3208 csskd->cpu_ticks_idle.value.ui64 =
3209 NSEC_TO_TICK(csskd->cpu_nsec_idle.value.ui64);
3210 csskd->cpu_ticks_user.value.ui64 =
3211 NSEC_TO_TICK(csskd->cpu_nsec_user.value.ui64);
3212 csskd->cpu_ticks_kernel.value.ui64 =
3213 NSEC_TO_TICK(csskd->cpu_nsec_kernel.value.ui64);
3214 csskd->cpu_nsec_dtrace.value.ui64 = cp->cpu_dtrace_nsec;
3215 csskd->dtrace_probes.value.ui64 = cp->cpu_dtrace_probes;
3216 csskd->cpu_nsec_intr.value.ui64 = cp->cpu_intrlast;
3217 csskd->cpu_load_intr.value.ui64 = cp->cpu_intrload;
3218 csskd->bread.value.ui64 = css->bread;
3219 csskd->bwrite.value.ui64 = css->bwrite;
3220 csskd->lread.value.ui64 = css->lread;
3221 csskd->lwrite.value.ui64 = css->lwrite;
3222 csskd->phread.value.ui64 = css->phread;
3223 csskd->phwrite.value.ui64 = css->phwrite;
3224 csskd->pswitch.value.ui64 = css->pswitch;
3225 csskd->trap.value.ui64 = css->trap;
3226 csskd->intr.value.ui64 = 0;
3227 for (i = 0; i < PIL_MAX; i++)
3228 csskd->intr.value.ui64 += css->intr[i];
3229 csskd->syscall.value.ui64 = css->syscall;
3230 csskd->sysread.value.ui64 = css->sysread;
3231 csskd->syswrite.value.ui64 = css->syswrite;
3232 csskd->sysfork.value.ui64 = css->sysfork;
3233 csskd->sysvfork.value.ui64 = css->sysvfork;
3234 csskd->sysexec.value.ui64 = css->sysexec;
3235 csskd->readch.value.ui64 = css->readch;
3236 csskd->writech.value.ui64 = css->writech;
3237 csskd->rcvint.value.ui64 = css->rcvint;
3238 csskd->xmtint.value.ui64 = css->xmtint;
3239 csskd->mdmint.value.ui64 = css->mdmint;
3240 csskd->rawch.value.ui64 = css->rawch;
3241 csskd->canch.value.ui64 = css->canch;
3242 csskd->outch.value.ui64 = css->outch;
3243 csskd->msg.value.ui64 = css->msg;
3244 csskd->sema.value.ui64 = css->sema;
3245 csskd->namei.value.ui64 = css->namei;
3246 csskd->ufsiget.value.ui64 = css->ufsiget;
3247 csskd->ufsdirblk.value.ui64 = css->ufsdirblk;
3248 csskd->ufsipage.value.ui64 = css->ufsipage;
3249 csskd->ufsinopage.value.ui64 = css->ufsinopage;
3250 csskd->procovf.value.ui64 = css->procovf;
3251 csskd->intrthread.value.ui64 = 0;
3252 for (i = 0; i < LOCK_LEVEL - 1; i++)
3253 csskd->intrthread.value.ui64 += css->intr[i];
3254 csskd->intrblk.value.ui64 = css->intrblk;
3255 csskd->intrunpin.value.ui64 = css->intrunpin;
3256 csskd->idlethread.value.ui64 = css->idlethread;
3257 csskd->inv_swtch.value.ui64 = css->inv_swtch;
3258 csskd->nthreads.value.ui64 = css->nthreads;
3259 csskd->cpumigrate.value.ui64 = css->cpumigrate;
3260 csskd->xcalls.value.ui64 = css->xcalls;
3261 csskd->mutex_adenters.value.ui64 = css->mutex_adenters;
3262 csskd->rw_rdfails.value.ui64 = css->rw_rdfails;
3263 csskd->rw_wrfails.value.ui64 = css->rw_wrfails;
3264 csskd->modload.value.ui64 = css->modload;
3265 csskd->modunload.value.ui64 = css->modunload;
3266 csskd->bawrite.value.ui64 = css->bawrite;
3267 csskd->iowait.value.ui64 = css->iowait;
3269 return (0);
3272 static int
3273 cpu_vm_stats_ks_update(kstat_t *ksp, int rw)
3275 cpu_t *cp = (cpu_t *)ksp->ks_private;
3276 struct cpu_vm_stats_ks_data *cvskd;
3277 cpu_vm_stats_t *cvs;
3279 if (rw == KSTAT_WRITE)
3280 return (EACCES);
3282 cvs = &cp->cpu_stats.vm;
3283 cvskd = ksp->ks_data;
3285 bcopy(&cpu_vm_stats_ks_data_template, ksp->ks_data,
3286 sizeof (cpu_vm_stats_ks_data_template));
3287 cvskd->pgrec.value.ui64 = cvs->pgrec;
3288 cvskd->pgfrec.value.ui64 = cvs->pgfrec;
3289 cvskd->pgin.value.ui64 = cvs->pgin;
3290 cvskd->pgpgin.value.ui64 = cvs->pgpgin;
3291 cvskd->pgout.value.ui64 = cvs->pgout;
3292 cvskd->pgpgout.value.ui64 = cvs->pgpgout;
3293 cvskd->swapin.value.ui64 = cvs->swapin;
3294 cvskd->pgswapin.value.ui64 = cvs->pgswapin;
3295 cvskd->swapout.value.ui64 = cvs->swapout;
3296 cvskd->pgswapout.value.ui64 = cvs->pgswapout;
3297 cvskd->zfod.value.ui64 = cvs->zfod;
3298 cvskd->dfree.value.ui64 = cvs->dfree;
3299 cvskd->scan.value.ui64 = cvs->scan;
3300 cvskd->rev.value.ui64 = cvs->rev;
3301 cvskd->hat_fault.value.ui64 = cvs->hat_fault;
3302 cvskd->as_fault.value.ui64 = cvs->as_fault;
3303 cvskd->maj_fault.value.ui64 = cvs->maj_fault;
3304 cvskd->cow_fault.value.ui64 = cvs->cow_fault;
3305 cvskd->prot_fault.value.ui64 = cvs->prot_fault;
3306 cvskd->softlock.value.ui64 = cvs->softlock;
3307 cvskd->kernel_asflt.value.ui64 = cvs->kernel_asflt;
3308 cvskd->pgrrun.value.ui64 = cvs->pgrrun;
3309 cvskd->execpgin.value.ui64 = cvs->execpgin;
3310 cvskd->execpgout.value.ui64 = cvs->execpgout;
3311 cvskd->execfree.value.ui64 = cvs->execfree;
3312 cvskd->anonpgin.value.ui64 = cvs->anonpgin;
3313 cvskd->anonpgout.value.ui64 = cvs->anonpgout;
3314 cvskd->anonfree.value.ui64 = cvs->anonfree;
3315 cvskd->fspgin.value.ui64 = cvs->fspgin;
3316 cvskd->fspgout.value.ui64 = cvs->fspgout;
3317 cvskd->fsfree.value.ui64 = cvs->fsfree;
3319 return (0);
3322 static int
3323 cpu_stat_ks_update(kstat_t *ksp, int rw)
3325 cpu_stat_t *cso;
3326 cpu_t *cp;
3327 int i;
3328 hrtime_t msnsecs[NCMSTATES];
3330 cso = (cpu_stat_t *)ksp->ks_data;
3331 cp = (cpu_t *)ksp->ks_private;
3333 if (rw == KSTAT_WRITE)
3334 return (EACCES);
3337 * Read CPU mstate, but compare with the last values we
3338 * received to make sure that the returned kstats never
3339 * decrease.
3342 get_cpu_mstate(cp, msnsecs);
3343 msnsecs[CMS_IDLE] = NSEC_TO_TICK(msnsecs[CMS_IDLE]);
3344 msnsecs[CMS_USER] = NSEC_TO_TICK(msnsecs[CMS_USER]);
3345 msnsecs[CMS_SYSTEM] = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]);
3346 if (cso->cpu_sysinfo.cpu[CPU_IDLE] < msnsecs[CMS_IDLE])
3347 cso->cpu_sysinfo.cpu[CPU_IDLE] = msnsecs[CMS_IDLE];
3348 if (cso->cpu_sysinfo.cpu[CPU_USER] < msnsecs[CMS_USER])
3349 cso->cpu_sysinfo.cpu[CPU_USER] = msnsecs[CMS_USER];
3350 if (cso->cpu_sysinfo.cpu[CPU_KERNEL] < msnsecs[CMS_SYSTEM])
3351 cso->cpu_sysinfo.cpu[CPU_KERNEL] = msnsecs[CMS_SYSTEM];
3352 cso->cpu_sysinfo.cpu[CPU_WAIT] = 0;
3353 cso->cpu_sysinfo.wait[W_IO] = 0;
3354 cso->cpu_sysinfo.wait[W_SWAP] = 0;
3355 cso->cpu_sysinfo.wait[W_PIO] = 0;
3356 cso->cpu_sysinfo.bread = CPU_STATS(cp, sys.bread);
3357 cso->cpu_sysinfo.bwrite = CPU_STATS(cp, sys.bwrite);
3358 cso->cpu_sysinfo.lread = CPU_STATS(cp, sys.lread);
3359 cso->cpu_sysinfo.lwrite = CPU_STATS(cp, sys.lwrite);
3360 cso->cpu_sysinfo.phread = CPU_STATS(cp, sys.phread);
3361 cso->cpu_sysinfo.phwrite = CPU_STATS(cp, sys.phwrite);
3362 cso->cpu_sysinfo.pswitch = CPU_STATS(cp, sys.pswitch);
3363 cso->cpu_sysinfo.trap = CPU_STATS(cp, sys.trap);
3364 cso->cpu_sysinfo.intr = 0;
3365 for (i = 0; i < PIL_MAX; i++)
3366 cso->cpu_sysinfo.intr += CPU_STATS(cp, sys.intr[i]);
3367 cso->cpu_sysinfo.syscall = CPU_STATS(cp, sys.syscall);
3368 cso->cpu_sysinfo.sysread = CPU_STATS(cp, sys.sysread);
3369 cso->cpu_sysinfo.syswrite = CPU_STATS(cp, sys.syswrite);
3370 cso->cpu_sysinfo.sysfork = CPU_STATS(cp, sys.sysfork);
3371 cso->cpu_sysinfo.sysvfork = CPU_STATS(cp, sys.sysvfork);
3372 cso->cpu_sysinfo.sysexec = CPU_STATS(cp, sys.sysexec);
3373 cso->cpu_sysinfo.readch = CPU_STATS(cp, sys.readch);
3374 cso->cpu_sysinfo.writech = CPU_STATS(cp, sys.writech);
3375 cso->cpu_sysinfo.rcvint = CPU_STATS(cp, sys.rcvint);
3376 cso->cpu_sysinfo.xmtint = CPU_STATS(cp, sys.xmtint);
3377 cso->cpu_sysinfo.mdmint = CPU_STATS(cp, sys.mdmint);
3378 cso->cpu_sysinfo.rawch = CPU_STATS(cp, sys.rawch);
3379 cso->cpu_sysinfo.canch = CPU_STATS(cp, sys.canch);
3380 cso->cpu_sysinfo.outch = CPU_STATS(cp, sys.outch);
3381 cso->cpu_sysinfo.msg = CPU_STATS(cp, sys.msg);
3382 cso->cpu_sysinfo.sema = CPU_STATS(cp, sys.sema);
3383 cso->cpu_sysinfo.namei = CPU_STATS(cp, sys.namei);
3384 cso->cpu_sysinfo.ufsiget = CPU_STATS(cp, sys.ufsiget);
3385 cso->cpu_sysinfo.ufsdirblk = CPU_STATS(cp, sys.ufsdirblk);
3386 cso->cpu_sysinfo.ufsipage = CPU_STATS(cp, sys.ufsipage);
3387 cso->cpu_sysinfo.ufsinopage = CPU_STATS(cp, sys.ufsinopage);
3388 cso->cpu_sysinfo.inodeovf = 0;
3389 cso->cpu_sysinfo.fileovf = 0;
3390 cso->cpu_sysinfo.procovf = CPU_STATS(cp, sys.procovf);
3391 cso->cpu_sysinfo.intrthread = 0;
3392 for (i = 0; i < LOCK_LEVEL - 1; i++)
3393 cso->cpu_sysinfo.intrthread += CPU_STATS(cp, sys.intr[i]);
3394 cso->cpu_sysinfo.intrblk = CPU_STATS(cp, sys.intrblk);
3395 cso->cpu_sysinfo.idlethread = CPU_STATS(cp, sys.idlethread);
3396 cso->cpu_sysinfo.inv_swtch = CPU_STATS(cp, sys.inv_swtch);
3397 cso->cpu_sysinfo.nthreads = CPU_STATS(cp, sys.nthreads);
3398 cso->cpu_sysinfo.cpumigrate = CPU_STATS(cp, sys.cpumigrate);
3399 cso->cpu_sysinfo.xcalls = CPU_STATS(cp, sys.xcalls);
3400 cso->cpu_sysinfo.mutex_adenters = CPU_STATS(cp, sys.mutex_adenters);
3401 cso->cpu_sysinfo.rw_rdfails = CPU_STATS(cp, sys.rw_rdfails);
3402 cso->cpu_sysinfo.rw_wrfails = CPU_STATS(cp, sys.rw_wrfails);
3403 cso->cpu_sysinfo.modload = CPU_STATS(cp, sys.modload);
3404 cso->cpu_sysinfo.modunload = CPU_STATS(cp, sys.modunload);
3405 cso->cpu_sysinfo.bawrite = CPU_STATS(cp, sys.bawrite);
3406 cso->cpu_sysinfo.rw_enters = 0;
3407 cso->cpu_sysinfo.win_uo_cnt = 0;
3408 cso->cpu_sysinfo.win_uu_cnt = 0;
3409 cso->cpu_sysinfo.win_so_cnt = 0;
3410 cso->cpu_sysinfo.win_su_cnt = 0;
3411 cso->cpu_sysinfo.win_suo_cnt = 0;
3413 cso->cpu_syswait.iowait = CPU_STATS(cp, sys.iowait);
3414 cso->cpu_syswait.swap = 0;
3415 cso->cpu_syswait.physio = 0;
3417 cso->cpu_vminfo.pgrec = CPU_STATS(cp, vm.pgrec);
3418 cso->cpu_vminfo.pgfrec = CPU_STATS(cp, vm.pgfrec);
3419 cso->cpu_vminfo.pgin = CPU_STATS(cp, vm.pgin);
3420 cso->cpu_vminfo.pgpgin = CPU_STATS(cp, vm.pgpgin);
3421 cso->cpu_vminfo.pgout = CPU_STATS(cp, vm.pgout);
3422 cso->cpu_vminfo.pgpgout = CPU_STATS(cp, vm.pgpgout);
3423 cso->cpu_vminfo.swapin = CPU_STATS(cp, vm.swapin);
3424 cso->cpu_vminfo.pgswapin = CPU_STATS(cp, vm.pgswapin);
3425 cso->cpu_vminfo.swapout = CPU_STATS(cp, vm.swapout);
3426 cso->cpu_vminfo.pgswapout = CPU_STATS(cp, vm.pgswapout);
3427 cso->cpu_vminfo.zfod = CPU_STATS(cp, vm.zfod);
3428 cso->cpu_vminfo.dfree = CPU_STATS(cp, vm.dfree);
3429 cso->cpu_vminfo.scan = CPU_STATS(cp, vm.scan);
3430 cso->cpu_vminfo.rev = CPU_STATS(cp, vm.rev);
3431 cso->cpu_vminfo.hat_fault = CPU_STATS(cp, vm.hat_fault);
3432 cso->cpu_vminfo.as_fault = CPU_STATS(cp, vm.as_fault);
3433 cso->cpu_vminfo.maj_fault = CPU_STATS(cp, vm.maj_fault);
3434 cso->cpu_vminfo.cow_fault = CPU_STATS(cp, vm.cow_fault);
3435 cso->cpu_vminfo.prot_fault = CPU_STATS(cp, vm.prot_fault);
3436 cso->cpu_vminfo.softlock = CPU_STATS(cp, vm.softlock);
3437 cso->cpu_vminfo.kernel_asflt = CPU_STATS(cp, vm.kernel_asflt);
3438 cso->cpu_vminfo.pgrrun = CPU_STATS(cp, vm.pgrrun);
3439 cso->cpu_vminfo.execpgin = CPU_STATS(cp, vm.execpgin);
3440 cso->cpu_vminfo.execpgout = CPU_STATS(cp, vm.execpgout);
3441 cso->cpu_vminfo.execfree = CPU_STATS(cp, vm.execfree);
3442 cso->cpu_vminfo.anonpgin = CPU_STATS(cp, vm.anonpgin);
3443 cso->cpu_vminfo.anonpgout = CPU_STATS(cp, vm.anonpgout);
3444 cso->cpu_vminfo.anonfree = CPU_STATS(cp, vm.anonfree);
3445 cso->cpu_vminfo.fspgin = CPU_STATS(cp, vm.fspgin);
3446 cso->cpu_vminfo.fspgout = CPU_STATS(cp, vm.fspgout);
3447 cso->cpu_vminfo.fsfree = CPU_STATS(cp, vm.fsfree);
3449 return (0);