8702 PCI addresses with physaddr > 0xffffffff can't be mapped in
[unleashed.git] / usr / src / uts / common / os / vmem.c
blobb79b1b4cf706ecf7e16447967a78518c774cd76f
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
28 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
32 * Big Theory Statement for the virtual memory allocator.
34 * For a more complete description of the main ideas, see:
36 * Jeff Bonwick and Jonathan Adams,
38 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
39 * Arbitrary Resources.
41 * Proceedings of the 2001 Usenix Conference.
42 * Available as http://www.usenix.org/event/usenix01/bonwick.html
44 * Section 1, below, is also the primary contents of vmem(9). If for some
45 * reason you are updating this comment, you will also wish to update the
46 * manual.
48 * 1. General Concepts
49 * -------------------
51 * 1.1 Overview
52 * ------------
53 * We divide the kernel address space into a number of logically distinct
54 * pieces, or *arenas*: text, data, heap, stack, and so on. Within these
55 * arenas we often subdivide further; for example, we use heap addresses
56 * not only for the kernel heap (kmem_alloc() space), but also for DVMA,
57 * bp_mapin(), /dev/kmem, and even some device mappings like the TOD chip.
58 * The kernel address space, therefore, is most accurately described as
59 * a tree of arenas in which each node of the tree *imports* some subset
60 * of its parent. The virtual memory allocator manages these arenas and
61 * supports their natural hierarchical structure.
63 * 1.2 Arenas
64 * ----------
65 * An arena is nothing more than a set of integers. These integers most
66 * commonly represent virtual addresses, but in fact they can represent
67 * anything at all. For example, we could use an arena containing the
68 * integers minpid through maxpid to allocate process IDs. vmem_create()
69 * and vmem_destroy() create and destroy vmem arenas. In order to
70 * differentiate between arenas used for adresses and arenas used for
71 * identifiers, the VMC_IDENTIFIER flag is passed to vmem_create(). This
72 * prevents identifier exhaustion from being diagnosed as general memory
73 * failure.
75 * 1.3 Spans
76 * ---------
77 * We represent the integers in an arena as a collection of *spans*, or
78 * contiguous ranges of integers. For example, the kernel heap consists
79 * of just one span: [kernelheap, ekernelheap). Spans can be added to an
80 * arena in two ways: explicitly, by vmem_add(), or implicitly, by
81 * importing, as described in Section 1.5 below.
83 * 1.4 Segments
84 * ------------
85 * Spans are subdivided into *segments*, each of which is either allocated
86 * or free. A segment, like a span, is a contiguous range of integers.
87 * Each allocated segment [addr, addr + size) represents exactly one
88 * vmem_alloc(size) that returned addr. Free segments represent the space
89 * between allocated segments. If two free segments are adjacent, we
90 * coalesce them into one larger segment; that is, if segments [a, b) and
91 * [b, c) are both free, we merge them into a single segment [a, c).
92 * The segments within a span are linked together in increasing-address order
93 * so we can easily determine whether coalescing is possible.
95 * Segments never cross span boundaries. When all segments within
96 * an imported span become free, we return the span to its source.
98 * 1.5 Imported Memory
99 * -------------------
100 * As mentioned in the overview, some arenas are logical subsets of
101 * other arenas. For example, kmem_va_arena (a virtual address cache
102 * that satisfies most kmem_slab_create() requests) is just a subset
103 * of heap_arena (the kernel heap) that provides caching for the most
104 * common slab sizes. When kmem_va_arena runs out of virtual memory,
105 * it *imports* more from the heap; we say that heap_arena is the
106 * *vmem source* for kmem_va_arena. vmem_create() allows you to
107 * specify any existing vmem arena as the source for your new arena.
108 * Topologically, since every arena is a child of at most one source,
109 * the set of all arenas forms a collection of trees.
111 * 1.6 Constrained Allocations
112 * ---------------------------
113 * Some vmem clients are quite picky about the kind of address they want.
114 * For example, the DVMA code may need an address that is at a particular
115 * phase with respect to some alignment (to get good cache coloring), or
116 * that lies within certain limits (the addressable range of a device),
117 * or that doesn't cross some boundary (a DMA counter restriction) --
118 * or all of the above. vmem_xalloc() allows the client to specify any
119 * or all of these constraints.
121 * 1.7 The Vmem Quantum
122 * --------------------
123 * Every arena has a notion of 'quantum', specified at vmem_create() time,
124 * that defines the arena's minimum unit of currency. Most commonly the
125 * quantum is either 1 or PAGESIZE, but any power of 2 is legal.
126 * All vmem allocations are guaranteed to be quantum-aligned.
128 * 1.8 Quantum Caching
129 * -------------------
130 * A vmem arena may be so hot (frequently used) that the scalability of vmem
131 * allocation is a significant concern. We address this by allowing the most
132 * common allocation sizes to be serviced by the kernel memory allocator,
133 * which provides low-latency per-cpu caching. The qcache_max argument to
134 * vmem_create() specifies the largest allocation size to cache.
136 * 1.9 Relationship to Kernel Memory Allocator
137 * -------------------------------------------
138 * Every kmem cache has a vmem arena as its slab supplier. The kernel memory
139 * allocator uses vmem_alloc() and vmem_free() to create and destroy slabs.
142 * 2. Implementation
143 * -----------------
145 * 2.1 Segment lists and markers
146 * -----------------------------
147 * The segment structure (vmem_seg_t) contains two doubly-linked lists.
149 * The arena list (vs_anext/vs_aprev) links all segments in the arena.
150 * In addition to the allocated and free segments, the arena contains
151 * special marker segments at span boundaries. Span markers simplify
152 * coalescing and importing logic by making it easy to tell both when
153 * we're at a span boundary (so we don't coalesce across it), and when
154 * a span is completely free (its neighbors will both be span markers).
156 * Imported spans will have vs_import set.
158 * The next-of-kin list (vs_knext/vs_kprev) links segments of the same type:
159 * (1) for allocated segments, vs_knext is the hash chain linkage;
160 * (2) for free segments, vs_knext is the freelist linkage;
161 * (3) for span marker segments, vs_knext is the next span marker.
163 * 2.2 Allocation hashing
164 * ----------------------
165 * We maintain a hash table of all allocated segments, hashed by address.
166 * This allows vmem_free() to discover the target segment in constant time.
167 * vmem_update() periodically resizes hash tables to keep hash chains short.
169 * 2.3 Freelist management
170 * -----------------------
171 * We maintain power-of-2 freelists for free segments, i.e. free segments
172 * of size >= 2^n reside in vmp->vm_freelist[n]. To ensure constant-time
173 * allocation, vmem_xalloc() looks not in the first freelist that *might*
174 * satisfy the allocation, but in the first freelist that *definitely*
175 * satisfies the allocation (unless VM_BESTFIT is specified, or all larger
176 * freelists are empty). For example, a 1000-byte allocation will be
177 * satisfied not from the 512..1023-byte freelist, whose members *might*
178 * contains a 1000-byte segment, but from a 1024-byte or larger freelist,
179 * the first member of which will *definitely* satisfy the allocation.
180 * This ensures that vmem_xalloc() works in constant time.
182 * We maintain a bit map to determine quickly which freelists are non-empty.
183 * vmp->vm_freemap & (1 << n) is non-zero iff vmp->vm_freelist[n] is non-empty.
185 * The different freelists are linked together into one large freelist,
186 * with the freelist heads serving as markers. Freelist markers simplify
187 * the maintenance of vm_freemap by making it easy to tell when we're taking
188 * the last member of a freelist (both of its neighbors will be markers).
190 * 2.4 Vmem Locking
191 * ----------------
192 * For simplicity, all arena state is protected by a per-arena lock.
193 * For very hot arenas, use quantum caching for scalability.
195 * 2.5 Vmem Population
196 * -------------------
197 * Any internal vmem routine that might need to allocate new segment
198 * structures must prepare in advance by calling vmem_populate(), which
199 * will preallocate enough vmem_seg_t's to get is through the entire
200 * operation without dropping the arena lock.
202 * 2.6 Auditing
203 * ------------
204 * If KMF_AUDIT is set in kmem_flags, we audit vmem allocations as well.
205 * Since virtual addresses cannot be scribbled on, there is no equivalent
206 * in vmem to redzone checking, deadbeef, or other kmem debugging features.
207 * Moreover, we do not audit frees because segment coalescing destroys the
208 * association between an address and its segment structure. Auditing is
209 * thus intended primarily to keep track of who's consuming the arena.
210 * Debugging support could certainly be extended in the future if it proves
211 * necessary, but we do so much live checking via the allocation hash table
212 * that even non-DEBUG systems get quite a bit of sanity checking already.
215 #include <sys/vmem_impl.h>
216 #include <sys/kmem.h>
217 #include <sys/kstat.h>
218 #include <sys/param.h>
219 #include <sys/systm.h>
220 #include <sys/atomic.h>
221 #include <sys/bitmap.h>
222 #include <sys/sysmacros.h>
223 #include <sys/cmn_err.h>
224 #include <sys/debug.h>
225 #include <sys/panic.h>
227 #define VMEM_INITIAL 10 /* early vmem arenas */
228 #define VMEM_SEG_INITIAL 200 /* early segments */
231 * Adding a new span to an arena requires two segment structures: one to
232 * represent the span, and one to represent the free segment it contains.
234 #define VMEM_SEGS_PER_SPAN_CREATE 2
237 * Allocating a piece of an existing segment requires 0-2 segment structures
238 * depending on how much of the segment we're allocating.
240 * To allocate the entire segment, no new segment structures are needed; we
241 * simply move the existing segment structure from the freelist to the
242 * allocation hash table.
244 * To allocate a piece from the left or right end of the segment, we must
245 * split the segment into two pieces (allocated part and remainder), so we
246 * need one new segment structure to represent the remainder.
248 * To allocate from the middle of a segment, we need two new segment strucures
249 * to represent the remainders on either side of the allocated part.
251 #define VMEM_SEGS_PER_EXACT_ALLOC 0
252 #define VMEM_SEGS_PER_LEFT_ALLOC 1
253 #define VMEM_SEGS_PER_RIGHT_ALLOC 1
254 #define VMEM_SEGS_PER_MIDDLE_ALLOC 2
257 * vmem_populate() preallocates segment structures for vmem to do its work.
258 * It must preallocate enough for the worst case, which is when we must import
259 * a new span and then allocate from the middle of it.
261 #define VMEM_SEGS_PER_ALLOC_MAX \
262 (VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC)
265 * The segment structures themselves are allocated from vmem_seg_arena, so
266 * we have a recursion problem when vmem_seg_arena needs to populate itself.
267 * We address this by working out the maximum number of segment structures
268 * this act will require, and multiplying by the maximum number of threads
269 * that we'll allow to do it simultaneously.
271 * The worst-case segment consumption to populate vmem_seg_arena is as
272 * follows (depicted as a stack trace to indicate why events are occurring):
274 * (In order to lower the fragmentation in the heap_arena, we specify a
275 * minimum import size for the vmem_metadata_arena which is the same size
276 * as the kmem_va quantum cache allocations. This causes the worst-case
277 * allocation from the vmem_metadata_arena to be 3 segments.)
279 * vmem_alloc(vmem_seg_arena) -> 2 segs (span create + exact alloc)
280 * segkmem_alloc(vmem_metadata_arena)
281 * vmem_alloc(vmem_metadata_arena) -> 3 segs (span create + left alloc)
282 * vmem_alloc(heap_arena) -> 1 seg (left alloc)
283 * page_create()
284 * hat_memload()
285 * kmem_cache_alloc()
286 * kmem_slab_create()
287 * vmem_alloc(hat_memload_arena) -> 2 segs (span create + exact alloc)
288 * segkmem_alloc(heap_arena)
289 * vmem_alloc(heap_arena) -> 1 seg (left alloc)
290 * page_create()
291 * hat_memload() -> (hat layer won't recurse further)
293 * The worst-case consumption for each arena is 3 segment structures.
294 * Of course, a 3-seg reserve could easily be blown by multiple threads.
295 * Therefore, we serialize all allocations from vmem_seg_arena (which is OK
296 * because they're rare). We cannot allow a non-blocking allocation to get
297 * tied up behind a blocking allocation, however, so we use separate locks
298 * for VM_SLEEP and VM_NOSLEEP allocations. Similarly, VM_PUSHPAGE allocations
299 * must not block behind ordinary VM_SLEEPs. In addition, if the system is
300 * panicking then we must keep enough resources for panic_thread to do its
301 * work. Thus we have at most four threads trying to allocate from
302 * vmem_seg_arena, and each thread consumes at most three segment structures,
303 * so we must maintain a 12-seg reserve.
305 #define VMEM_POPULATE_RESERVE 12
308 * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures
309 * so that it can satisfy the worst-case allocation *and* participate in
310 * worst-case allocation from vmem_seg_arena.
312 #define VMEM_MINFREE (VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX)
314 static vmem_t vmem0[VMEM_INITIAL];
315 static vmem_t *vmem_populator[VMEM_INITIAL];
316 static uint32_t vmem_id;
317 static uint32_t vmem_populators;
318 static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL];
319 static vmem_seg_t *vmem_segfree;
320 static kmutex_t vmem_list_lock;
321 static kmutex_t vmem_segfree_lock;
322 static kmutex_t vmem_sleep_lock;
323 static kmutex_t vmem_nosleep_lock;
324 static kmutex_t vmem_pushpage_lock;
325 static kmutex_t vmem_panic_lock;
326 static vmem_t *vmem_list;
327 static vmem_t *vmem_metadata_arena;
328 static vmem_t *vmem_seg_arena;
329 static vmem_t *vmem_hash_arena;
330 static vmem_t *vmem_vmem_arena;
331 static long vmem_update_interval = 15; /* vmem_update() every 15 seconds */
332 uint32_t vmem_mtbf; /* mean time between failures [default: off] */
333 size_t vmem_seg_size = sizeof (vmem_seg_t);
335 static vmem_kstat_t vmem_kstat_template = {
336 { "mem_inuse", KSTAT_DATA_UINT64 },
337 { "mem_import", KSTAT_DATA_UINT64 },
338 { "mem_total", KSTAT_DATA_UINT64 },
339 { "vmem_source", KSTAT_DATA_UINT32 },
340 { "alloc", KSTAT_DATA_UINT64 },
341 { "free", KSTAT_DATA_UINT64 },
342 { "wait", KSTAT_DATA_UINT64 },
343 { "fail", KSTAT_DATA_UINT64 },
344 { "lookup", KSTAT_DATA_UINT64 },
345 { "search", KSTAT_DATA_UINT64 },
346 { "populate_wait", KSTAT_DATA_UINT64 },
347 { "populate_fail", KSTAT_DATA_UINT64 },
348 { "contains", KSTAT_DATA_UINT64 },
349 { "contains_search", KSTAT_DATA_UINT64 },
353 * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k').
355 #define VMEM_INSERT(vprev, vsp, type) \
357 vmem_seg_t *vnext = (vprev)->vs_##type##next; \
358 (vsp)->vs_##type##next = (vnext); \
359 (vsp)->vs_##type##prev = (vprev); \
360 (vprev)->vs_##type##next = (vsp); \
361 (vnext)->vs_##type##prev = (vsp); \
364 #define VMEM_DELETE(vsp, type) \
366 vmem_seg_t *vprev = (vsp)->vs_##type##prev; \
367 vmem_seg_t *vnext = (vsp)->vs_##type##next; \
368 (vprev)->vs_##type##next = (vnext); \
369 (vnext)->vs_##type##prev = (vprev); \
373 * Get a vmem_seg_t from the global segfree list.
375 static vmem_seg_t *
376 vmem_getseg_global(void)
378 vmem_seg_t *vsp;
380 mutex_enter(&vmem_segfree_lock);
381 if ((vsp = vmem_segfree) != NULL)
382 vmem_segfree = vsp->vs_knext;
383 mutex_exit(&vmem_segfree_lock);
385 return (vsp);
389 * Put a vmem_seg_t on the global segfree list.
391 static void
392 vmem_putseg_global(vmem_seg_t *vsp)
394 mutex_enter(&vmem_segfree_lock);
395 vsp->vs_knext = vmem_segfree;
396 vmem_segfree = vsp;
397 mutex_exit(&vmem_segfree_lock);
401 * Get a vmem_seg_t from vmp's segfree list.
403 static vmem_seg_t *
404 vmem_getseg(vmem_t *vmp)
406 vmem_seg_t *vsp;
408 ASSERT(vmp->vm_nsegfree > 0);
410 vsp = vmp->vm_segfree;
411 vmp->vm_segfree = vsp->vs_knext;
412 vmp->vm_nsegfree--;
414 return (vsp);
418 * Put a vmem_seg_t on vmp's segfree list.
420 static void
421 vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp)
423 vsp->vs_knext = vmp->vm_segfree;
424 vmp->vm_segfree = vsp;
425 vmp->vm_nsegfree++;
429 * Add vsp to the appropriate freelist.
431 static void
432 vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp)
434 vmem_seg_t *vprev;
436 ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
438 vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1];
439 vsp->vs_type = VMEM_FREE;
440 vmp->vm_freemap |= VS_SIZE(vprev);
441 VMEM_INSERT(vprev, vsp, k);
443 cv_broadcast(&vmp->vm_cv);
447 * Take vsp from the freelist.
449 static void
450 vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp)
452 ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
453 ASSERT(vsp->vs_type == VMEM_FREE);
455 if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) {
457 * The segments on both sides of 'vsp' are freelist heads,
458 * so taking vsp leaves the freelist at vsp->vs_kprev empty.
460 ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev));
461 vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev);
463 VMEM_DELETE(vsp, k);
467 * Add vsp to the allocated-segment hash table and update kstats.
469 static void
470 vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp)
472 vmem_seg_t **bucket;
474 vsp->vs_type = VMEM_ALLOC;
475 bucket = VMEM_HASH(vmp, vsp->vs_start);
476 vsp->vs_knext = *bucket;
477 *bucket = vsp;
479 if (vmem_seg_size == sizeof (vmem_seg_t)) {
480 vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack,
481 VMEM_STACK_DEPTH);
482 vsp->vs_thread = curthread;
483 vsp->vs_timestamp = gethrtime();
484 } else {
485 vsp->vs_depth = 0;
488 vmp->vm_kstat.vk_alloc.value.ui64++;
489 vmp->vm_kstat.vk_mem_inuse.value.ui64 += VS_SIZE(vsp);
493 * Remove vsp from the allocated-segment hash table and update kstats.
495 static vmem_seg_t *
496 vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size)
498 vmem_seg_t *vsp, **prev_vspp;
500 prev_vspp = VMEM_HASH(vmp, addr);
501 while ((vsp = *prev_vspp) != NULL) {
502 if (vsp->vs_start == addr) {
503 *prev_vspp = vsp->vs_knext;
504 break;
506 vmp->vm_kstat.vk_lookup.value.ui64++;
507 prev_vspp = &vsp->vs_knext;
510 if (vsp == NULL)
511 panic("vmem_hash_delete(%p, %lx, %lu): bad free",
512 (void *)vmp, addr, size);
513 if (VS_SIZE(vsp) != size)
514 panic("vmem_hash_delete(%p, %lx, %lu): wrong size (expect %lu)",
515 (void *)vmp, addr, size, VS_SIZE(vsp));
517 vmp->vm_kstat.vk_free.value.ui64++;
518 vmp->vm_kstat.vk_mem_inuse.value.ui64 -= size;
520 return (vsp);
524 * Create a segment spanning the range [start, end) and add it to the arena.
526 static vmem_seg_t *
527 vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end)
529 vmem_seg_t *newseg = vmem_getseg(vmp);
531 newseg->vs_start = start;
532 newseg->vs_end = end;
533 newseg->vs_type = 0;
534 newseg->vs_import = 0;
536 VMEM_INSERT(vprev, newseg, a);
538 return (newseg);
542 * Remove segment vsp from the arena.
544 static void
545 vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp)
547 ASSERT(vsp->vs_type != VMEM_ROTOR);
548 VMEM_DELETE(vsp, a);
550 vmem_putseg(vmp, vsp);
554 * Add the span [vaddr, vaddr + size) to vmp and update kstats.
556 static vmem_seg_t *
557 vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import)
559 vmem_seg_t *newseg, *span;
560 uintptr_t start = (uintptr_t)vaddr;
561 uintptr_t end = start + size;
563 ASSERT(MUTEX_HELD(&vmp->vm_lock));
565 if ((start | end) & (vmp->vm_quantum - 1))
566 panic("vmem_span_create(%p, %p, %lu): misaligned",
567 (void *)vmp, vaddr, size);
569 span = vmem_seg_create(vmp, vmp->vm_seg0.vs_aprev, start, end);
570 span->vs_type = VMEM_SPAN;
571 span->vs_import = import;
572 VMEM_INSERT(vmp->vm_seg0.vs_kprev, span, k);
574 newseg = vmem_seg_create(vmp, span, start, end);
575 vmem_freelist_insert(vmp, newseg);
577 if (import)
578 vmp->vm_kstat.vk_mem_import.value.ui64 += size;
579 vmp->vm_kstat.vk_mem_total.value.ui64 += size;
581 return (newseg);
585 * Remove span vsp from vmp and update kstats.
587 static void
588 vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp)
590 vmem_seg_t *span = vsp->vs_aprev;
591 size_t size = VS_SIZE(vsp);
593 ASSERT(MUTEX_HELD(&vmp->vm_lock));
594 ASSERT(span->vs_type == VMEM_SPAN);
596 if (span->vs_import)
597 vmp->vm_kstat.vk_mem_import.value.ui64 -= size;
598 vmp->vm_kstat.vk_mem_total.value.ui64 -= size;
600 VMEM_DELETE(span, k);
602 vmem_seg_destroy(vmp, vsp);
603 vmem_seg_destroy(vmp, span);
607 * Allocate the subrange [addr, addr + size) from segment vsp.
608 * If there are leftovers on either side, place them on the freelist.
609 * Returns a pointer to the segment representing [addr, addr + size).
611 static vmem_seg_t *
612 vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size)
614 uintptr_t vs_start = vsp->vs_start;
615 uintptr_t vs_end = vsp->vs_end;
616 size_t vs_size = vs_end - vs_start;
617 size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
618 uintptr_t addr_end = addr + realsize;
620 ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0);
621 ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0);
622 ASSERT(vsp->vs_type == VMEM_FREE);
623 ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1);
624 ASSERT(addr - 1 <= addr_end - 1);
627 * If we're allocating from the start of the segment, and the
628 * remainder will be on the same freelist, we can save quite
629 * a bit of work.
631 if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) {
632 ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
633 vsp->vs_start = addr_end;
634 vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size);
635 vmem_hash_insert(vmp, vsp);
636 return (vsp);
639 vmem_freelist_delete(vmp, vsp);
641 if (vs_end != addr_end)
642 vmem_freelist_insert(vmp,
643 vmem_seg_create(vmp, vsp, addr_end, vs_end));
645 if (vs_start != addr)
646 vmem_freelist_insert(vmp,
647 vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr));
649 vsp->vs_start = addr;
650 vsp->vs_end = addr + size;
652 vmem_hash_insert(vmp, vsp);
653 return (vsp);
657 * Returns 1 if we are populating, 0 otherwise.
658 * Call it if we want to prevent recursion from HAT.
661 vmem_is_populator()
663 return (mutex_owner(&vmem_sleep_lock) == curthread ||
664 mutex_owner(&vmem_nosleep_lock) == curthread ||
665 mutex_owner(&vmem_pushpage_lock) == curthread ||
666 mutex_owner(&vmem_panic_lock) == curthread);
670 * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures.
672 static int
673 vmem_populate(vmem_t *vmp, int vmflag)
675 char *p;
676 vmem_seg_t *vsp;
677 ssize_t nseg;
678 size_t size;
679 kmutex_t *lp;
680 int i;
682 while (vmp->vm_nsegfree < VMEM_MINFREE &&
683 (vsp = vmem_getseg_global()) != NULL)
684 vmem_putseg(vmp, vsp);
686 if (vmp->vm_nsegfree >= VMEM_MINFREE)
687 return (1);
690 * If we're already populating, tap the reserve.
692 if (vmem_is_populator()) {
693 ASSERT(vmp->vm_cflags & VMC_POPULATOR);
694 return (1);
697 mutex_exit(&vmp->vm_lock);
699 if (panic_thread == curthread)
700 lp = &vmem_panic_lock;
701 else if (vmflag & VM_NOSLEEP)
702 lp = &vmem_nosleep_lock;
703 else if (vmflag & VM_PUSHPAGE)
704 lp = &vmem_pushpage_lock;
705 else
706 lp = &vmem_sleep_lock;
708 mutex_enter(lp);
710 nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE;
711 size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum);
712 nseg = size / vmem_seg_size;
715 * The following vmem_alloc() may need to populate vmem_seg_arena
716 * and all the things it imports from. When doing so, it will tap
717 * each arena's reserve to prevent recursion (see the block comment
718 * above the definition of VMEM_POPULATE_RESERVE).
720 p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_KMFLAGS);
721 if (p == NULL) {
722 mutex_exit(lp);
723 mutex_enter(&vmp->vm_lock);
724 vmp->vm_kstat.vk_populate_fail.value.ui64++;
725 return (0);
729 * Restock the arenas that may have been depleted during population.
731 for (i = 0; i < vmem_populators; i++) {
732 mutex_enter(&vmem_populator[i]->vm_lock);
733 while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE)
734 vmem_putseg(vmem_populator[i],
735 (vmem_seg_t *)(p + --nseg * vmem_seg_size));
736 mutex_exit(&vmem_populator[i]->vm_lock);
739 mutex_exit(lp);
740 mutex_enter(&vmp->vm_lock);
743 * Now take our own segments.
745 ASSERT(nseg >= VMEM_MINFREE);
746 while (vmp->vm_nsegfree < VMEM_MINFREE)
747 vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size));
750 * Give the remainder to charity.
752 while (nseg > 0)
753 vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size));
755 return (1);
759 * Advance a walker from its previous position to 'afterme'.
760 * Note: may drop and reacquire vmp->vm_lock.
762 static void
763 vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme)
765 vmem_seg_t *vprev = walker->vs_aprev;
766 vmem_seg_t *vnext = walker->vs_anext;
767 vmem_seg_t *vsp = NULL;
769 VMEM_DELETE(walker, a);
771 if (afterme != NULL)
772 VMEM_INSERT(afterme, walker, a);
775 * The walker segment's presence may have prevented its neighbors
776 * from coalescing. If so, coalesce them now.
778 if (vprev->vs_type == VMEM_FREE) {
779 if (vnext->vs_type == VMEM_FREE) {
780 ASSERT(vprev->vs_end == vnext->vs_start);
781 vmem_freelist_delete(vmp, vnext);
782 vmem_freelist_delete(vmp, vprev);
783 vprev->vs_end = vnext->vs_end;
784 vmem_freelist_insert(vmp, vprev);
785 vmem_seg_destroy(vmp, vnext);
787 vsp = vprev;
788 } else if (vnext->vs_type == VMEM_FREE) {
789 vsp = vnext;
793 * vsp could represent a complete imported span,
794 * in which case we must return it to the source.
796 if (vsp != NULL && vsp->vs_aprev->vs_import &&
797 vmp->vm_source_free != NULL &&
798 vsp->vs_aprev->vs_type == VMEM_SPAN &&
799 vsp->vs_anext->vs_type == VMEM_SPAN) {
800 void *vaddr = (void *)vsp->vs_start;
801 size_t size = VS_SIZE(vsp);
802 ASSERT(size == VS_SIZE(vsp->vs_aprev));
803 vmem_freelist_delete(vmp, vsp);
804 vmem_span_destroy(vmp, vsp);
805 mutex_exit(&vmp->vm_lock);
806 vmp->vm_source_free(vmp->vm_source, vaddr, size);
807 mutex_enter(&vmp->vm_lock);
812 * VM_NEXTFIT allocations deliberately cycle through all virtual addresses
813 * in an arena, so that we avoid reusing addresses for as long as possible.
814 * This helps to catch used-after-freed bugs. It's also the perfect policy
815 * for allocating things like process IDs, where we want to cycle through
816 * all values in order.
818 static void *
819 vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag)
821 vmem_seg_t *vsp, *rotor;
822 uintptr_t addr;
823 size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
824 size_t vs_size;
826 mutex_enter(&vmp->vm_lock);
828 if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) {
829 mutex_exit(&vmp->vm_lock);
830 return (NULL);
834 * The common case is that the segment right after the rotor is free,
835 * and large enough that extracting 'size' bytes won't change which
836 * freelist it's on. In this case we can avoid a *lot* of work.
837 * Instead of the normal vmem_seg_alloc(), we just advance the start
838 * address of the victim segment. Instead of moving the rotor, we
839 * create the new segment structure *behind the rotor*, which has
840 * the same effect. And finally, we know we don't have to coalesce
841 * the rotor's neighbors because the new segment lies between them.
843 rotor = &vmp->vm_rotor;
844 vsp = rotor->vs_anext;
845 if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize &&
846 P2SAMEHIGHBIT(vs_size, vs_size - realsize)) {
847 ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
848 addr = vsp->vs_start;
849 vsp->vs_start = addr + realsize;
850 vmem_hash_insert(vmp,
851 vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size));
852 mutex_exit(&vmp->vm_lock);
853 return ((void *)addr);
857 * Starting at the rotor, look for a segment large enough to
858 * satisfy the allocation.
860 for (;;) {
861 vmp->vm_kstat.vk_search.value.ui64++;
862 if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
863 break;
864 vsp = vsp->vs_anext;
865 if (vsp == rotor) {
867 * We've come full circle. One possibility is that the
868 * there's actually enough space, but the rotor itself
869 * is preventing the allocation from succeeding because
870 * it's sitting between two free segments. Therefore,
871 * we advance the rotor and see if that liberates a
872 * suitable segment.
874 vmem_advance(vmp, rotor, rotor->vs_anext);
875 vsp = rotor->vs_aprev;
876 if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
877 break;
879 * If there's a lower arena we can import from, or it's
880 * a VM_NOSLEEP allocation, let vmem_xalloc() handle it.
881 * Otherwise, wait until another thread frees something.
883 if (vmp->vm_source_alloc != NULL ||
884 (vmflag & VM_NOSLEEP)) {
885 mutex_exit(&vmp->vm_lock);
886 return (vmem_xalloc(vmp, size, vmp->vm_quantum,
887 0, 0, NULL, NULL, vmflag & VM_KMFLAGS));
889 vmp->vm_kstat.vk_wait.value.ui64++;
890 cv_wait(&vmp->vm_cv, &vmp->vm_lock);
891 vsp = rotor->vs_anext;
896 * We found a segment. Extract enough space to satisfy the allocation.
898 addr = vsp->vs_start;
899 vsp = vmem_seg_alloc(vmp, vsp, addr, size);
900 ASSERT(vsp->vs_type == VMEM_ALLOC &&
901 vsp->vs_start == addr && vsp->vs_end == addr + size);
904 * Advance the rotor to right after the newly-allocated segment.
905 * That's where the next VM_NEXTFIT allocation will begin searching.
907 vmem_advance(vmp, rotor, vsp);
908 mutex_exit(&vmp->vm_lock);
909 return ((void *)addr);
913 * Checks if vmp is guaranteed to have a size-byte buffer somewhere on its
914 * freelist. If size is not a power-of-2, it can return a false-negative.
916 * Used to decide if a newly imported span is superfluous after re-acquiring
917 * the arena lock.
919 static int
920 vmem_canalloc(vmem_t *vmp, size_t size)
922 int hb;
923 int flist = 0;
924 ASSERT(MUTEX_HELD(&vmp->vm_lock));
926 if (ISP2(size))
927 flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
928 else if ((hb = highbit(size)) < VMEM_FREELISTS)
929 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
931 return (flist);
935 * Allocate size bytes at offset phase from an align boundary such that the
936 * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr)
937 * that does not straddle a nocross-aligned boundary.
939 void *
940 vmem_xalloc(vmem_t *vmp, size_t size, size_t align_arg, size_t phase,
941 size_t nocross, void *minaddr, void *maxaddr, int vmflag)
943 vmem_seg_t *vsp;
944 vmem_seg_t *vbest = NULL;
945 uintptr_t addr, taddr, start, end;
946 uintptr_t align = (align_arg != 0) ? align_arg : vmp->vm_quantum;
947 void *vaddr, *xvaddr = NULL;
948 size_t xsize;
949 int hb, flist, resv;
950 uint32_t mtbf;
952 if ((align | phase | nocross) & (vmp->vm_quantum - 1))
953 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
954 "parameters not vm_quantum aligned",
955 (void *)vmp, size, align_arg, phase, nocross,
956 minaddr, maxaddr, vmflag);
958 if (nocross != 0 &&
959 (align > nocross || P2ROUNDUP(phase + size, align) > nocross))
960 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
961 "overconstrained allocation",
962 (void *)vmp, size, align_arg, phase, nocross,
963 minaddr, maxaddr, vmflag);
965 if (phase >= align || !ISP2(align) || !ISP2(nocross))
966 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
967 "parameters inconsistent or invalid",
968 (void *)vmp, size, align_arg, phase, nocross,
969 minaddr, maxaddr, vmflag);
971 if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
972 (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
973 return (NULL);
975 mutex_enter(&vmp->vm_lock);
976 for (;;) {
977 if (vmp->vm_nsegfree < VMEM_MINFREE &&
978 !vmem_populate(vmp, vmflag))
979 break;
980 do_alloc:
982 * highbit() returns the highest bit + 1, which is exactly
983 * what we want: we want to search the first freelist whose
984 * members are *definitely* large enough to satisfy our
985 * allocation. However, there are certain cases in which we
986 * want to look at the next-smallest freelist (which *might*
987 * be able to satisfy the allocation):
989 * (1) The size is exactly a power of 2, in which case
990 * the smaller freelist is always big enough;
992 * (2) All other freelists are empty;
994 * (3) We're in the highest possible freelist, which is
995 * always empty (e.g. the 4GB freelist on 32-bit systems);
997 * (4) We're doing a best-fit or first-fit allocation.
999 if (ISP2(size)) {
1000 flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
1001 } else {
1002 hb = highbit(size);
1003 if ((vmp->vm_freemap >> hb) == 0 ||
1004 hb == VMEM_FREELISTS ||
1005 (vmflag & (VM_BESTFIT | VM_FIRSTFIT)))
1006 hb--;
1007 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
1010 for (vbest = NULL, vsp = (flist == 0) ? NULL :
1011 vmp->vm_freelist[flist - 1].vs_knext;
1012 vsp != NULL; vsp = vsp->vs_knext) {
1013 vmp->vm_kstat.vk_search.value.ui64++;
1014 if (vsp->vs_start == 0) {
1016 * We're moving up to a larger freelist,
1017 * so if we've already found a candidate,
1018 * the fit can't possibly get any better.
1020 if (vbest != NULL)
1021 break;
1023 * Find the next non-empty freelist.
1025 flist = lowbit(P2ALIGN(vmp->vm_freemap,
1026 VS_SIZE(vsp)));
1027 if (flist-- == 0)
1028 break;
1029 vsp = (vmem_seg_t *)&vmp->vm_freelist[flist];
1030 ASSERT(vsp->vs_knext->vs_type == VMEM_FREE);
1031 continue;
1033 if (vsp->vs_end - 1 < (uintptr_t)minaddr)
1034 continue;
1035 if (vsp->vs_start > (uintptr_t)maxaddr - 1)
1036 continue;
1037 start = MAX(vsp->vs_start, (uintptr_t)minaddr);
1038 end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1;
1039 taddr = P2PHASEUP(start, align, phase);
1040 if (P2BOUNDARY(taddr, size, nocross))
1041 taddr +=
1042 P2ROUNDUP(P2NPHASE(taddr, nocross), align);
1043 if ((taddr - start) + size > end - start ||
1044 (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest)))
1045 continue;
1046 vbest = vsp;
1047 addr = taddr;
1048 if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size)
1049 break;
1051 if (vbest != NULL)
1052 break;
1053 ASSERT(xvaddr == NULL);
1054 if (size == 0)
1055 panic("vmem_xalloc(): size == 0");
1056 if (vmp->vm_source_alloc != NULL && nocross == 0 &&
1057 minaddr == NULL && maxaddr == NULL) {
1058 size_t aneeded, asize;
1059 size_t aquantum = MAX(vmp->vm_quantum,
1060 vmp->vm_source->vm_quantum);
1061 size_t aphase = phase;
1062 if ((align > aquantum) &&
1063 !(vmp->vm_cflags & VMC_XALIGN)) {
1064 aphase = (P2PHASE(phase, aquantum) != 0) ?
1065 align - vmp->vm_quantum : align - aquantum;
1066 ASSERT(aphase >= phase);
1068 aneeded = MAX(size + aphase, vmp->vm_min_import);
1069 asize = P2ROUNDUP(aneeded, aquantum);
1071 if (asize < size) {
1073 * The rounding induced overflow; return NULL
1074 * if we are permitted to fail the allocation
1075 * (and explicitly panic if we aren't).
1077 if ((vmflag & VM_NOSLEEP) &&
1078 !(vmflag & VM_PANIC)) {
1079 mutex_exit(&vmp->vm_lock);
1080 return (NULL);
1083 panic("vmem_xalloc(): size overflow");
1087 * Determine how many segment structures we'll consume.
1088 * The calculation must be precise because if we're
1089 * here on behalf of vmem_populate(), we are taking
1090 * segments from a very limited reserve.
1092 if (size == asize && !(vmp->vm_cflags & VMC_XALLOC))
1093 resv = VMEM_SEGS_PER_SPAN_CREATE +
1094 VMEM_SEGS_PER_EXACT_ALLOC;
1095 else if (phase == 0 &&
1096 align <= vmp->vm_source->vm_quantum)
1097 resv = VMEM_SEGS_PER_SPAN_CREATE +
1098 VMEM_SEGS_PER_LEFT_ALLOC;
1099 else
1100 resv = VMEM_SEGS_PER_ALLOC_MAX;
1102 ASSERT(vmp->vm_nsegfree >= resv);
1103 vmp->vm_nsegfree -= resv; /* reserve our segs */
1104 mutex_exit(&vmp->vm_lock);
1105 if (vmp->vm_cflags & VMC_XALLOC) {
1106 size_t oasize = asize;
1107 vaddr = ((vmem_ximport_t *)
1108 vmp->vm_source_alloc)(vmp->vm_source,
1109 &asize, align, vmflag & VM_KMFLAGS);
1110 ASSERT(asize >= oasize);
1111 ASSERT(P2PHASE(asize,
1112 vmp->vm_source->vm_quantum) == 0);
1113 ASSERT(!(vmp->vm_cflags & VMC_XALIGN) ||
1114 IS_P2ALIGNED(vaddr, align));
1115 } else {
1116 vaddr = vmp->vm_source_alloc(vmp->vm_source,
1117 asize, vmflag & VM_KMFLAGS);
1119 mutex_enter(&vmp->vm_lock);
1120 vmp->vm_nsegfree += resv; /* claim reservation */
1121 aneeded = size + align - vmp->vm_quantum;
1122 aneeded = P2ROUNDUP(aneeded, vmp->vm_quantum);
1123 if (vaddr != NULL) {
1125 * Since we dropped the vmem lock while
1126 * calling the import function, other
1127 * threads could have imported space
1128 * and made our import unnecessary. In
1129 * order to save space, we return
1130 * excess imports immediately.
1132 if (asize > aneeded &&
1133 vmp->vm_source_free != NULL &&
1134 vmem_canalloc(vmp, aneeded)) {
1135 ASSERT(resv >=
1136 VMEM_SEGS_PER_MIDDLE_ALLOC);
1137 xvaddr = vaddr;
1138 xsize = asize;
1139 goto do_alloc;
1141 vbest = vmem_span_create(vmp, vaddr, asize, 1);
1142 addr = P2PHASEUP(vbest->vs_start, align, phase);
1143 break;
1144 } else if (vmem_canalloc(vmp, aneeded)) {
1146 * Our import failed, but another thread
1147 * added sufficient free memory to the arena
1148 * to satisfy our request. Go back and
1149 * grab it.
1151 ASSERT(resv >= VMEM_SEGS_PER_MIDDLE_ALLOC);
1152 goto do_alloc;
1157 * If the requestor chooses to fail the allocation attempt
1158 * rather than reap wait and retry - get out of the loop.
1160 if (vmflag & VM_ABORT)
1161 break;
1162 mutex_exit(&vmp->vm_lock);
1163 if (vmp->vm_cflags & VMC_IDENTIFIER)
1164 kmem_reap_idspace();
1165 else
1166 kmem_reap();
1167 mutex_enter(&vmp->vm_lock);
1168 if (vmflag & VM_NOSLEEP)
1169 break;
1170 vmp->vm_kstat.vk_wait.value.ui64++;
1171 cv_wait(&vmp->vm_cv, &vmp->vm_lock);
1173 if (vbest != NULL) {
1174 ASSERT(vbest->vs_type == VMEM_FREE);
1175 ASSERT(vbest->vs_knext != vbest);
1176 /* re-position to end of buffer */
1177 if (vmflag & VM_ENDALLOC) {
1178 addr += ((vbest->vs_end - (addr + size)) / align) *
1179 align;
1181 (void) vmem_seg_alloc(vmp, vbest, addr, size);
1182 mutex_exit(&vmp->vm_lock);
1183 if (xvaddr)
1184 vmp->vm_source_free(vmp->vm_source, xvaddr, xsize);
1185 ASSERT(P2PHASE(addr, align) == phase);
1186 ASSERT(!P2BOUNDARY(addr, size, nocross));
1187 ASSERT(addr >= (uintptr_t)minaddr);
1188 ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1);
1189 return ((void *)addr);
1191 vmp->vm_kstat.vk_fail.value.ui64++;
1192 mutex_exit(&vmp->vm_lock);
1193 if (vmflag & VM_PANIC)
1194 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
1195 "cannot satisfy mandatory allocation",
1196 (void *)vmp, size, align_arg, phase, nocross,
1197 minaddr, maxaddr, vmflag);
1198 ASSERT(xvaddr == NULL);
1199 return (NULL);
1203 * Free the segment [vaddr, vaddr + size), where vaddr was a constrained
1204 * allocation. vmem_xalloc() and vmem_xfree() must always be paired because
1205 * both routines bypass the quantum caches.
1207 void
1208 vmem_xfree(vmem_t *vmp, void *vaddr, size_t size)
1210 vmem_seg_t *vsp, *vnext, *vprev;
1212 mutex_enter(&vmp->vm_lock);
1214 vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size);
1215 vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum);
1218 * Attempt to coalesce with the next segment.
1220 vnext = vsp->vs_anext;
1221 if (vnext->vs_type == VMEM_FREE) {
1222 ASSERT(vsp->vs_end == vnext->vs_start);
1223 vmem_freelist_delete(vmp, vnext);
1224 vsp->vs_end = vnext->vs_end;
1225 vmem_seg_destroy(vmp, vnext);
1229 * Attempt to coalesce with the previous segment.
1231 vprev = vsp->vs_aprev;
1232 if (vprev->vs_type == VMEM_FREE) {
1233 ASSERT(vprev->vs_end == vsp->vs_start);
1234 vmem_freelist_delete(vmp, vprev);
1235 vprev->vs_end = vsp->vs_end;
1236 vmem_seg_destroy(vmp, vsp);
1237 vsp = vprev;
1241 * If the entire span is free, return it to the source.
1243 if (vsp->vs_aprev->vs_import && vmp->vm_source_free != NULL &&
1244 vsp->vs_aprev->vs_type == VMEM_SPAN &&
1245 vsp->vs_anext->vs_type == VMEM_SPAN) {
1246 vaddr = (void *)vsp->vs_start;
1247 size = VS_SIZE(vsp);
1248 ASSERT(size == VS_SIZE(vsp->vs_aprev));
1249 vmem_span_destroy(vmp, vsp);
1250 mutex_exit(&vmp->vm_lock);
1251 vmp->vm_source_free(vmp->vm_source, vaddr, size);
1252 } else {
1253 vmem_freelist_insert(vmp, vsp);
1254 mutex_exit(&vmp->vm_lock);
1259 * Allocate size bytes from arena vmp. Returns the allocated address
1260 * on success, NULL on failure. vmflag specifies VM_SLEEP or VM_NOSLEEP,
1261 * and may also specify best-fit, first-fit, or next-fit allocation policy
1262 * instead of the default instant-fit policy. VM_SLEEP allocations are
1263 * guaranteed to succeed.
1265 void *
1266 vmem_alloc(vmem_t *vmp, size_t size, int vmflag)
1268 vmem_seg_t *vsp;
1269 uintptr_t addr;
1270 int hb;
1271 int flist = 0;
1272 uint32_t mtbf;
1274 if (size - 1 < vmp->vm_qcache_max)
1275 return (kmem_cache_alloc(vmp->vm_qcache[(size - 1) >>
1276 vmp->vm_qshift], vmflag & VM_KMFLAGS));
1278 if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
1279 (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
1280 return (NULL);
1282 if (vmflag & VM_NEXTFIT)
1283 return (vmem_nextfit_alloc(vmp, size, vmflag));
1285 if (vmflag & (VM_BESTFIT | VM_FIRSTFIT))
1286 return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0,
1287 NULL, NULL, vmflag));
1290 * Unconstrained instant-fit allocation from the segment list.
1292 mutex_enter(&vmp->vm_lock);
1294 if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) {
1295 if (ISP2(size))
1296 flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
1297 else if ((hb = highbit(size)) < VMEM_FREELISTS)
1298 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
1301 if (flist-- == 0) {
1302 mutex_exit(&vmp->vm_lock);
1303 return (vmem_xalloc(vmp, size, vmp->vm_quantum,
1304 0, 0, NULL, NULL, vmflag));
1307 ASSERT(size <= (1UL << flist));
1308 vsp = vmp->vm_freelist[flist].vs_knext;
1309 addr = vsp->vs_start;
1310 if (vmflag & VM_ENDALLOC) {
1311 addr += vsp->vs_end - (addr + size);
1313 (void) vmem_seg_alloc(vmp, vsp, addr, size);
1314 mutex_exit(&vmp->vm_lock);
1315 return ((void *)addr);
1319 * Free the segment [vaddr, vaddr + size).
1321 void
1322 vmem_free(vmem_t *vmp, void *vaddr, size_t size)
1324 if (size - 1 < vmp->vm_qcache_max)
1325 kmem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift],
1326 vaddr);
1327 else
1328 vmem_xfree(vmp, vaddr, size);
1332 * Determine whether arena vmp contains the segment [vaddr, vaddr + size).
1335 vmem_contains(vmem_t *vmp, void *vaddr, size_t size)
1337 uintptr_t start = (uintptr_t)vaddr;
1338 uintptr_t end = start + size;
1339 vmem_seg_t *vsp;
1340 vmem_seg_t *seg0 = &vmp->vm_seg0;
1342 mutex_enter(&vmp->vm_lock);
1343 vmp->vm_kstat.vk_contains.value.ui64++;
1344 for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) {
1345 vmp->vm_kstat.vk_contains_search.value.ui64++;
1346 ASSERT(vsp->vs_type == VMEM_SPAN);
1347 if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1)
1348 break;
1350 mutex_exit(&vmp->vm_lock);
1351 return (vsp != seg0);
1355 * Add the span [vaddr, vaddr + size) to arena vmp.
1357 void *
1358 vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag)
1360 if (vaddr == NULL || size == 0)
1361 panic("vmem_add(%p, %p, %lu): bad arguments",
1362 (void *)vmp, vaddr, size);
1364 ASSERT(!vmem_contains(vmp, vaddr, size));
1366 mutex_enter(&vmp->vm_lock);
1367 if (vmem_populate(vmp, vmflag))
1368 (void) vmem_span_create(vmp, vaddr, size, 0);
1369 else
1370 vaddr = NULL;
1371 mutex_exit(&vmp->vm_lock);
1372 return (vaddr);
1376 * Walk the vmp arena, applying func to each segment matching typemask.
1377 * If VMEM_REENTRANT is specified, the arena lock is dropped across each
1378 * call to func(); otherwise, it is held for the duration of vmem_walk()
1379 * to ensure a consistent snapshot. Note that VMEM_REENTRANT callbacks
1380 * are *not* necessarily consistent, so they may only be used when a hint
1381 * is adequate.
1383 void
1384 vmem_walk(vmem_t *vmp, int typemask,
1385 void (*func)(void *, void *, size_t), void *arg)
1387 vmem_seg_t *vsp;
1388 vmem_seg_t *seg0 = &vmp->vm_seg0;
1389 vmem_seg_t walker;
1391 if (typemask & VMEM_WALKER)
1392 return;
1394 bzero(&walker, sizeof (walker));
1395 walker.vs_type = VMEM_WALKER;
1397 mutex_enter(&vmp->vm_lock);
1398 VMEM_INSERT(seg0, &walker, a);
1399 for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) {
1400 if (vsp->vs_type & typemask) {
1401 void *start = (void *)vsp->vs_start;
1402 size_t size = VS_SIZE(vsp);
1403 if (typemask & VMEM_REENTRANT) {
1404 vmem_advance(vmp, &walker, vsp);
1405 mutex_exit(&vmp->vm_lock);
1406 func(arg, start, size);
1407 mutex_enter(&vmp->vm_lock);
1408 vsp = &walker;
1409 } else {
1410 func(arg, start, size);
1414 vmem_advance(vmp, &walker, NULL);
1415 mutex_exit(&vmp->vm_lock);
1419 * Return the total amount of memory whose type matches typemask. Thus:
1421 * typemask VMEM_ALLOC yields total memory allocated (in use).
1422 * typemask VMEM_FREE yields total memory free (available).
1423 * typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size.
1425 size_t
1426 vmem_size(vmem_t *vmp, int typemask)
1428 uint64_t size = 0;
1430 if (typemask & VMEM_ALLOC)
1431 size += vmp->vm_kstat.vk_mem_inuse.value.ui64;
1432 if (typemask & VMEM_FREE)
1433 size += vmp->vm_kstat.vk_mem_total.value.ui64 -
1434 vmp->vm_kstat.vk_mem_inuse.value.ui64;
1435 return ((size_t)size);
1439 * Create an arena called name whose initial span is [base, base + size).
1440 * The arena's natural unit of currency is quantum, so vmem_alloc()
1441 * guarantees quantum-aligned results. The arena may import new spans
1442 * by invoking afunc() on source, and may return those spans by invoking
1443 * ffunc() on source. To make small allocations fast and scalable,
1444 * the arena offers high-performance caching for each integer multiple
1445 * of quantum up to qcache_max.
1447 static vmem_t *
1448 vmem_create_common(const char *name, void *base, size_t size, size_t quantum,
1449 void *(*afunc)(vmem_t *, size_t, int),
1450 void (*ffunc)(vmem_t *, void *, size_t),
1451 vmem_t *source, size_t qcache_max, int vmflag)
1453 int i;
1454 size_t nqcache;
1455 vmem_t *vmp, *cur, **vmpp;
1456 vmem_seg_t *vsp;
1457 vmem_freelist_t *vfp;
1458 uint32_t id = atomic_inc_32_nv(&vmem_id);
1460 if (vmem_vmem_arena != NULL) {
1461 vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t),
1462 vmflag & VM_KMFLAGS);
1463 } else {
1464 ASSERT(id <= VMEM_INITIAL);
1465 vmp = &vmem0[id - 1];
1468 /* An identifier arena must inherit from another identifier arena */
1469 ASSERT(source == NULL || ((source->vm_cflags & VMC_IDENTIFIER) ==
1470 (vmflag & VMC_IDENTIFIER)));
1472 if (vmp == NULL)
1473 return (NULL);
1474 bzero(vmp, sizeof (vmem_t));
1476 (void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name);
1477 mutex_init(&vmp->vm_lock, NULL, MUTEX_DEFAULT, NULL);
1478 cv_init(&vmp->vm_cv, NULL, CV_DEFAULT, NULL);
1479 vmp->vm_cflags = vmflag;
1480 vmflag &= VM_KMFLAGS;
1482 vmp->vm_quantum = quantum;
1483 vmp->vm_qshift = highbit(quantum) - 1;
1484 nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX);
1486 for (i = 0; i <= VMEM_FREELISTS; i++) {
1487 vfp = &vmp->vm_freelist[i];
1488 vfp->vs_end = 1UL << i;
1489 vfp->vs_knext = (vmem_seg_t *)(vfp + 1);
1490 vfp->vs_kprev = (vmem_seg_t *)(vfp - 1);
1493 vmp->vm_freelist[0].vs_kprev = NULL;
1494 vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL;
1495 vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0;
1496 vmp->vm_hash_table = vmp->vm_hash0;
1497 vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1;
1498 vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
1500 vsp = &vmp->vm_seg0;
1501 vsp->vs_anext = vsp;
1502 vsp->vs_aprev = vsp;
1503 vsp->vs_knext = vsp;
1504 vsp->vs_kprev = vsp;
1505 vsp->vs_type = VMEM_SPAN;
1507 vsp = &vmp->vm_rotor;
1508 vsp->vs_type = VMEM_ROTOR;
1509 VMEM_INSERT(&vmp->vm_seg0, vsp, a);
1511 bcopy(&vmem_kstat_template, &vmp->vm_kstat, sizeof (vmem_kstat_t));
1513 vmp->vm_id = id;
1514 if (source != NULL)
1515 vmp->vm_kstat.vk_source_id.value.ui32 = source->vm_id;
1516 vmp->vm_source = source;
1517 vmp->vm_source_alloc = afunc;
1518 vmp->vm_source_free = ffunc;
1521 * Some arenas (like vmem_metadata and kmem_metadata) cannot
1522 * use quantum caching to lower fragmentation. Instead, we
1523 * increase their imports, giving a similar effect.
1525 if (vmp->vm_cflags & VMC_NO_QCACHE) {
1526 vmp->vm_min_import =
1527 VMEM_QCACHE_SLABSIZE(nqcache << vmp->vm_qshift);
1528 nqcache = 0;
1531 if (nqcache != 0) {
1532 ASSERT(!(vmflag & VM_NOSLEEP));
1533 vmp->vm_qcache_max = nqcache << vmp->vm_qshift;
1534 for (i = 0; i < nqcache; i++) {
1535 char buf[VMEM_NAMELEN + 21];
1536 (void) sprintf(buf, "%s_%lu", vmp->vm_name,
1537 (i + 1) * quantum);
1538 vmp->vm_qcache[i] = kmem_cache_create(buf,
1539 (i + 1) * quantum, quantum, NULL, NULL, NULL,
1540 NULL, vmp, KMC_QCACHE | KMC_NOTOUCH);
1544 if ((vmp->vm_ksp = kstat_create("vmem", vmp->vm_id, vmp->vm_name,
1545 "vmem", KSTAT_TYPE_NAMED, sizeof (vmem_kstat_t) /
1546 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) != NULL) {
1547 vmp->vm_ksp->ks_data = &vmp->vm_kstat;
1548 kstat_install(vmp->vm_ksp);
1551 mutex_enter(&vmem_list_lock);
1552 vmpp = &vmem_list;
1553 while ((cur = *vmpp) != NULL)
1554 vmpp = &cur->vm_next;
1555 *vmpp = vmp;
1556 mutex_exit(&vmem_list_lock);
1558 if (vmp->vm_cflags & VMC_POPULATOR) {
1559 ASSERT(vmem_populators < VMEM_INITIAL);
1560 vmem_populator[atomic_inc_32_nv(&vmem_populators) - 1] = vmp;
1561 mutex_enter(&vmp->vm_lock);
1562 (void) vmem_populate(vmp, vmflag | VM_PANIC);
1563 mutex_exit(&vmp->vm_lock);
1566 if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) {
1567 vmem_destroy(vmp);
1568 return (NULL);
1571 return (vmp);
1574 vmem_t *
1575 vmem_xcreate(const char *name, void *base, size_t size, size_t quantum,
1576 vmem_ximport_t *afunc, vmem_free_t *ffunc, vmem_t *source,
1577 size_t qcache_max, int vmflag)
1579 ASSERT(!(vmflag & (VMC_POPULATOR | VMC_XALLOC)));
1580 vmflag &= ~(VMC_POPULATOR | VMC_XALLOC);
1582 return (vmem_create_common(name, base, size, quantum,
1583 (vmem_alloc_t *)afunc, ffunc, source, qcache_max,
1584 vmflag | VMC_XALLOC));
1587 vmem_t *
1588 vmem_create(const char *name, void *base, size_t size, size_t quantum,
1589 vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source,
1590 size_t qcache_max, int vmflag)
1592 ASSERT(!(vmflag & (VMC_XALLOC | VMC_XALIGN)));
1593 vmflag &= ~(VMC_XALLOC | VMC_XALIGN);
1595 return (vmem_create_common(name, base, size, quantum,
1596 afunc, ffunc, source, qcache_max, vmflag));
1600 * Destroy arena vmp.
1602 void
1603 vmem_destroy(vmem_t *vmp)
1605 vmem_t *cur, **vmpp;
1606 vmem_seg_t *seg0 = &vmp->vm_seg0;
1607 vmem_seg_t *vsp, *anext;
1608 size_t leaked;
1609 int i;
1611 mutex_enter(&vmem_list_lock);
1612 vmpp = &vmem_list;
1613 while ((cur = *vmpp) != vmp)
1614 vmpp = &cur->vm_next;
1615 *vmpp = vmp->vm_next;
1616 mutex_exit(&vmem_list_lock);
1618 for (i = 0; i < VMEM_NQCACHE_MAX; i++)
1619 if (vmp->vm_qcache[i])
1620 kmem_cache_destroy(vmp->vm_qcache[i]);
1622 leaked = vmem_size(vmp, VMEM_ALLOC);
1623 if (leaked != 0)
1624 cmn_err(CE_WARN, "vmem_destroy('%s'): leaked %lu %s",
1625 vmp->vm_name, leaked, (vmp->vm_cflags & VMC_IDENTIFIER) ?
1626 "identifiers" : "bytes");
1628 if (vmp->vm_hash_table != vmp->vm_hash0)
1629 vmem_free(vmem_hash_arena, vmp->vm_hash_table,
1630 (vmp->vm_hash_mask + 1) * sizeof (void *));
1633 * Give back the segment structures for anything that's left in the
1634 * arena, e.g. the primary spans and their free segments.
1636 VMEM_DELETE(&vmp->vm_rotor, a);
1637 for (vsp = seg0->vs_anext; vsp != seg0; vsp = anext) {
1638 anext = vsp->vs_anext;
1639 vmem_putseg_global(vsp);
1642 while (vmp->vm_nsegfree > 0)
1643 vmem_putseg_global(vmem_getseg(vmp));
1645 kstat_delete(vmp->vm_ksp);
1647 mutex_destroy(&vmp->vm_lock);
1648 cv_destroy(&vmp->vm_cv);
1649 vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t));
1653 * Only shrink vmem hashtable if it is 1<<vmem_rescale_minshift times (8x)
1654 * larger than necessary.
1656 int vmem_rescale_minshift = 3;
1659 * Resize vmp's hash table to keep the average lookup depth near 1.0.
1661 static void
1662 vmem_hash_rescale(vmem_t *vmp)
1664 vmem_seg_t **old_table, **new_table, *vsp;
1665 size_t old_size, new_size, h, nseg;
1667 nseg = (size_t)(vmp->vm_kstat.vk_alloc.value.ui64 -
1668 vmp->vm_kstat.vk_free.value.ui64);
1670 new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2));
1671 old_size = vmp->vm_hash_mask + 1;
1673 if ((old_size >> vmem_rescale_minshift) <= new_size &&
1674 new_size <= (old_size << 1))
1675 return;
1677 new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *),
1678 VM_NOSLEEP);
1679 if (new_table == NULL)
1680 return;
1681 bzero(new_table, new_size * sizeof (void *));
1683 mutex_enter(&vmp->vm_lock);
1685 old_size = vmp->vm_hash_mask + 1;
1686 old_table = vmp->vm_hash_table;
1688 vmp->vm_hash_mask = new_size - 1;
1689 vmp->vm_hash_table = new_table;
1690 vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
1692 for (h = 0; h < old_size; h++) {
1693 vsp = old_table[h];
1694 while (vsp != NULL) {
1695 uintptr_t addr = vsp->vs_start;
1696 vmem_seg_t *next_vsp = vsp->vs_knext;
1697 vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr);
1698 vsp->vs_knext = *hash_bucket;
1699 *hash_bucket = vsp;
1700 vsp = next_vsp;
1704 mutex_exit(&vmp->vm_lock);
1706 if (old_table != vmp->vm_hash0)
1707 vmem_free(vmem_hash_arena, old_table,
1708 old_size * sizeof (void *));
1712 * Perform periodic maintenance on all vmem arenas.
1714 void
1715 vmem_update(void *dummy)
1717 vmem_t *vmp;
1719 mutex_enter(&vmem_list_lock);
1720 for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) {
1722 * If threads are waiting for resources, wake them up
1723 * periodically so they can issue another kmem_reap()
1724 * to reclaim resources cached by the slab allocator.
1726 cv_broadcast(&vmp->vm_cv);
1729 * Rescale the hash table to keep the hash chains short.
1731 vmem_hash_rescale(vmp);
1733 mutex_exit(&vmem_list_lock);
1735 (void) timeout(vmem_update, dummy, vmem_update_interval * hz);
1738 void
1739 vmem_qcache_reap(vmem_t *vmp)
1741 int i;
1744 * Reap any quantum caches that may be part of this vmem.
1746 for (i = 0; i < VMEM_NQCACHE_MAX; i++)
1747 if (vmp->vm_qcache[i])
1748 kmem_cache_reap_now(vmp->vm_qcache[i]);
1752 * Prepare vmem for use.
1754 vmem_t *
1755 vmem_init(const char *heap_name,
1756 void *heap_start, size_t heap_size, size_t heap_quantum,
1757 void *(*heap_alloc)(vmem_t *, size_t, int),
1758 void (*heap_free)(vmem_t *, void *, size_t))
1760 uint32_t id;
1761 int nseg = VMEM_SEG_INITIAL;
1762 vmem_t *heap;
1764 while (--nseg >= 0)
1765 vmem_putseg_global(&vmem_seg0[nseg]);
1767 heap = vmem_create(heap_name,
1768 heap_start, heap_size, heap_quantum,
1769 NULL, NULL, NULL, 0,
1770 VM_SLEEP | VMC_POPULATOR);
1772 vmem_metadata_arena = vmem_create("vmem_metadata",
1773 NULL, 0, heap_quantum,
1774 vmem_alloc, vmem_free, heap, 8 * heap_quantum,
1775 VM_SLEEP | VMC_POPULATOR | VMC_NO_QCACHE);
1777 vmem_seg_arena = vmem_create("vmem_seg",
1778 NULL, 0, heap_quantum,
1779 heap_alloc, heap_free, vmem_metadata_arena, 0,
1780 VM_SLEEP | VMC_POPULATOR);
1782 vmem_hash_arena = vmem_create("vmem_hash",
1783 NULL, 0, 8,
1784 heap_alloc, heap_free, vmem_metadata_arena, 0,
1785 VM_SLEEP);
1787 vmem_vmem_arena = vmem_create("vmem_vmem",
1788 vmem0, sizeof (vmem0), 1,
1789 heap_alloc, heap_free, vmem_metadata_arena, 0,
1790 VM_SLEEP);
1792 for (id = 0; id < vmem_id; id++)
1793 (void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t),
1794 1, 0, 0, &vmem0[id], &vmem0[id + 1],
1795 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1797 return (heap);