enable apic_kmdb_on_nmi by default
[unleashed.git] / lib / libssl / t1_enc.c
blobb8ebf5241708879c8b95420e0f5127acc8195c05
1 /* $OpenBSD: t1_enc.c,v 1.114 2018/09/08 14:39:41 jsing Exp $ */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
58 /* ====================================================================
59 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
111 /* ====================================================================
112 * Copyright 2005 Nokia. All rights reserved.
114 * The portions of the attached software ("Contribution") is developed by
115 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
116 * license.
118 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
119 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
120 * support (see RFC 4279) to OpenSSL.
122 * No patent licenses or other rights except those expressly stated in
123 * the OpenSSL open source license shall be deemed granted or received
124 * expressly, by implication, estoppel, or otherwise.
126 * No assurances are provided by Nokia that the Contribution does not
127 * infringe the patent or other intellectual property rights of any third
128 * party or that the license provides you with all the necessary rights
129 * to make use of the Contribution.
131 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
132 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
133 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
134 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
135 * OTHERWISE.
138 #include <limits.h>
139 #include <stdio.h>
141 #include "ssl_locl.h"
143 #include <openssl/evp.h>
144 #include <openssl/hmac.h>
145 #include <openssl/md5.h>
147 int tls1_PRF(SSL *s, const unsigned char *secret, size_t secret_len,
148 const void *seed1, size_t seed1_len, const void *seed2, size_t seed2_len,
149 const void *seed3, size_t seed3_len, const void *seed4, size_t seed4_len,
150 const void *seed5, size_t seed5_len, unsigned char *out, size_t out_len);
152 void
153 tls1_cleanup_key_block(SSL *s)
155 freezero(S3I(s)->hs.key_block, S3I(s)->hs.key_block_len);
156 S3I(s)->hs.key_block = NULL;
157 S3I(s)->hs.key_block_len = 0;
161 tls1_init_finished_mac(SSL *s)
163 BIO_free(S3I(s)->handshake_buffer);
165 S3I(s)->handshake_buffer = BIO_new(BIO_s_mem());
166 if (S3I(s)->handshake_buffer == NULL)
167 return (0);
169 (void)BIO_set_close(S3I(s)->handshake_buffer, BIO_CLOSE);
171 return (1);
175 tls1_finish_mac(SSL *s, const unsigned char *buf, int len)
177 if (len < 0)
178 return 0;
180 if (!tls1_handshake_hash_update(s, buf, len))
181 return 0;
183 if (S3I(s)->handshake_buffer &&
184 !(s->s3->flags & TLS1_FLAGS_KEEP_HANDSHAKE)) {
185 BIO_write(S3I(s)->handshake_buffer, (void *)buf, len);
186 return 1;
189 return 1;
193 tls1_digest_cached_records(SSL *s)
195 long hdatalen;
196 void *hdata;
198 hdatalen = BIO_get_mem_data(S3I(s)->handshake_buffer, &hdata);
199 if (hdatalen <= 0) {
200 SSLerror(s, SSL_R_BAD_HANDSHAKE_LENGTH);
201 goto err;
204 if (!(s->s3->flags & TLS1_FLAGS_KEEP_HANDSHAKE)) {
205 BIO_free(S3I(s)->handshake_buffer);
206 S3I(s)->handshake_buffer = NULL;
209 return 1;
211 err:
212 return 0;
215 void
216 tls1_record_sequence_increment(unsigned char *seq)
218 int i;
220 for (i = SSL3_SEQUENCE_SIZE - 1; i >= 0; i--) {
221 if (++seq[i] != 0)
222 break;
227 * TLS P_hash() data expansion function - see RFC 5246, section 5.
229 static int
230 tls1_P_hash(const EVP_MD *md, const unsigned char *secret, size_t secret_len,
231 const void *seed1, size_t seed1_len, const void *seed2, size_t seed2_len,
232 const void *seed3, size_t seed3_len, const void *seed4, size_t seed4_len,
233 const void *seed5, size_t seed5_len, unsigned char *out, size_t out_len)
235 unsigned char A1[EVP_MAX_MD_SIZE], hmac[EVP_MAX_MD_SIZE];
236 size_t A1_len, hmac_len;
237 EVP_MD_CTX ctx;
238 EVP_PKEY *mac_key;
239 int ret = 0;
240 int chunk;
241 size_t i;
243 chunk = EVP_MD_size(md);
244 OPENSSL_assert(chunk >= 0);
246 EVP_MD_CTX_init(&ctx);
248 mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, secret, secret_len);
249 if (!mac_key)
250 goto err;
251 if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key))
252 goto err;
253 if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len))
254 goto err;
255 if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len))
256 goto err;
257 if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len))
258 goto err;
259 if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len))
260 goto err;
261 if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len))
262 goto err;
263 if (!EVP_DigestSignFinal(&ctx, A1, &A1_len))
264 goto err;
266 for (;;) {
267 if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key))
268 goto err;
269 if (!EVP_DigestSignUpdate(&ctx, A1, A1_len))
270 goto err;
271 if (seed1 && !EVP_DigestSignUpdate(&ctx, seed1, seed1_len))
272 goto err;
273 if (seed2 && !EVP_DigestSignUpdate(&ctx, seed2, seed2_len))
274 goto err;
275 if (seed3 && !EVP_DigestSignUpdate(&ctx, seed3, seed3_len))
276 goto err;
277 if (seed4 && !EVP_DigestSignUpdate(&ctx, seed4, seed4_len))
278 goto err;
279 if (seed5 && !EVP_DigestSignUpdate(&ctx, seed5, seed5_len))
280 goto err;
281 if (!EVP_DigestSignFinal(&ctx, hmac, &hmac_len))
282 goto err;
284 if (hmac_len > out_len)
285 hmac_len = out_len;
287 for (i = 0; i < hmac_len; i++)
288 out[i] ^= hmac[i];
290 out += hmac_len;
291 out_len -= hmac_len;
293 if (out_len == 0)
294 break;
296 if (!EVP_DigestSignInit(&ctx, NULL, md, NULL, mac_key))
297 goto err;
298 if (!EVP_DigestSignUpdate(&ctx, A1, A1_len))
299 goto err;
300 if (!EVP_DigestSignFinal(&ctx, A1, &A1_len))
301 goto err;
303 ret = 1;
305 err:
306 EVP_PKEY_free(mac_key);
307 EVP_MD_CTX_cleanup(&ctx);
309 explicit_bzero(A1, sizeof(A1));
310 explicit_bzero(hmac, sizeof(hmac));
312 return ret;
316 tls1_PRF(SSL *s, const unsigned char *secret, size_t secret_len,
317 const void *seed1, size_t seed1_len, const void *seed2, size_t seed2_len,
318 const void *seed3, size_t seed3_len, const void *seed4, size_t seed4_len,
319 const void *seed5, size_t seed5_len, unsigned char *out, size_t out_len)
321 const EVP_MD *md;
322 size_t half_len;
324 memset(out, 0, out_len);
326 if (!ssl_get_handshake_evp_md(s, &md))
327 return (0);
329 if (md->type == NID_md5_sha1) {
331 * Partition secret between MD5 and SHA1, then XOR result.
332 * If the secret length is odd, a one byte overlap is used.
334 half_len = secret_len - (secret_len / 2);
335 if (!tls1_P_hash(EVP_md5(), secret, half_len, seed1, seed1_len,
336 seed2, seed2_len, seed3, seed3_len, seed4, seed4_len,
337 seed5, seed5_len, out, out_len))
338 return (0);
340 secret += secret_len - half_len;
341 if (!tls1_P_hash(EVP_sha1(), secret, half_len, seed1, seed1_len,
342 seed2, seed2_len, seed3, seed3_len, seed4, seed4_len,
343 seed5, seed5_len, out, out_len))
344 return (0);
346 return (1);
349 if (!tls1_P_hash(md, secret, secret_len, seed1, seed1_len,
350 seed2, seed2_len, seed3, seed3_len, seed4, seed4_len,
351 seed5, seed5_len, out, out_len))
352 return (0);
354 return (1);
357 static int
358 tls1_generate_key_block(SSL *s, unsigned char *km, int num)
360 if (num < 0)
361 return (0);
363 return tls1_PRF(s,
364 s->session->master_key, s->session->master_key_length,
365 TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE,
366 s->s3->server_random, SSL3_RANDOM_SIZE,
367 s->s3->client_random, SSL3_RANDOM_SIZE,
368 NULL, 0, NULL, 0, km, num);
372 * tls1_aead_ctx_init allocates aead_ctx, if needed. It returns 1 on success
373 * and 0 on failure.
375 static int
376 tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx)
378 if (*aead_ctx != NULL) {
379 EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx);
380 return (1);
383 *aead_ctx = malloc(sizeof(SSL_AEAD_CTX));
384 if (*aead_ctx == NULL) {
385 SSLerrorx(ERR_R_MALLOC_FAILURE);
386 return (0);
389 return (1);
392 static int
393 tls1_change_cipher_state_aead(SSL *s, char is_read, const unsigned char *key,
394 unsigned key_len, const unsigned char *iv, unsigned iv_len)
396 const EVP_AEAD *aead = S3I(s)->tmp.new_aead;
397 SSL_AEAD_CTX *aead_ctx;
399 if (is_read) {
400 ssl_clear_cipher_read_state(s);
401 if (!tls1_aead_ctx_init(&s->internal->aead_read_ctx))
402 return 0;
403 aead_ctx = s->internal->aead_read_ctx;
404 } else {
405 /* XXX - Need to correctly handle DTLS. */
406 ssl_clear_cipher_write_state(s);
407 if (!tls1_aead_ctx_init(&s->internal->aead_write_ctx))
408 return 0;
409 aead_ctx = s->internal->aead_write_ctx;
412 if (!EVP_AEAD_CTX_init(&aead_ctx->ctx, aead, key, key_len,
413 EVP_AEAD_DEFAULT_TAG_LENGTH, NULL))
414 return (0);
415 if (iv_len > sizeof(aead_ctx->fixed_nonce)) {
416 SSLerrorx(ERR_R_INTERNAL_ERROR);
417 return (0);
419 memcpy(aead_ctx->fixed_nonce, iv, iv_len);
420 aead_ctx->fixed_nonce_len = iv_len;
421 aead_ctx->variable_nonce_len = 8; /* always the case, currently. */
422 aead_ctx->variable_nonce_in_record =
423 (S3I(s)->hs.new_cipher->algorithm2 &
424 SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_IN_RECORD) != 0;
425 aead_ctx->xor_fixed_nonce =
426 S3I(s)->hs.new_cipher->algorithm_enc == SSL_CHACHA20POLY1305;
427 aead_ctx->tag_len = EVP_AEAD_max_overhead(aead);
429 if (aead_ctx->xor_fixed_nonce) {
430 if (aead_ctx->fixed_nonce_len != EVP_AEAD_nonce_length(aead) ||
431 aead_ctx->variable_nonce_len > EVP_AEAD_nonce_length(aead)) {
432 SSLerrorx(ERR_R_INTERNAL_ERROR);
433 return (0);
435 } else {
436 if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len !=
437 EVP_AEAD_nonce_length(aead)) {
438 SSLerrorx(ERR_R_INTERNAL_ERROR);
439 return (0);
443 return (1);
447 * tls1_change_cipher_state_cipher performs the work needed to switch cipher
448 * states when using EVP_CIPHER. The argument is_read is true iff this function
449 * is being called due to reading, as opposed to writing, a ChangeCipherSpec
450 * message.
452 static int
453 tls1_change_cipher_state_cipher(SSL *s, char is_read,
454 const unsigned char *mac_secret, unsigned int mac_secret_size,
455 const unsigned char *key, unsigned int key_len, const unsigned char *iv,
456 unsigned int iv_len)
458 EVP_CIPHER_CTX *cipher_ctx;
459 const EVP_CIPHER *cipher;
460 EVP_MD_CTX *mac_ctx;
461 EVP_PKEY *mac_key;
462 const EVP_MD *mac;
463 int mac_type;
465 cipher = S3I(s)->tmp.new_sym_enc;
466 mac = S3I(s)->tmp.new_hash;
467 mac_type = S3I(s)->tmp.new_mac_pkey_type;
469 if (is_read) {
470 if (S3I(s)->hs.new_cipher->algorithm2 & TLS1_STREAM_MAC)
471 s->internal->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM;
472 else
473 s->internal->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM;
475 ssl_clear_cipher_read_state(s);
477 if ((cipher_ctx = EVP_CIPHER_CTX_new()) == NULL)
478 goto err;
479 s->enc_read_ctx = cipher_ctx;
480 if ((mac_ctx = EVP_MD_CTX_new()) == NULL)
481 goto err;
482 s->read_hash = mac_ctx;
483 } else {
484 if (S3I(s)->hs.new_cipher->algorithm2 & TLS1_STREAM_MAC)
485 s->internal->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM;
486 else
487 s->internal->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM;
490 * DTLS fragments retain a pointer to the compression, cipher
491 * and hash contexts, so that it can restore state in order
492 * to perform retransmissions. As such, we cannot free write
493 * contexts that are used for DTLS - these are instead freed
494 * by DTLS when its frees a ChangeCipherSpec fragment.
496 if (!SSL_IS_DTLS(s))
497 ssl_clear_cipher_write_state(s);
499 if ((cipher_ctx = EVP_CIPHER_CTX_new()) == NULL)
500 goto err;
501 s->internal->enc_write_ctx = cipher_ctx;
502 if ((mac_ctx = EVP_MD_CTX_new()) == NULL)
503 goto err;
504 s->internal->write_hash = mac_ctx;
507 EVP_CipherInit_ex(cipher_ctx, cipher, NULL, key, iv, !is_read);
509 if ((mac_key = EVP_PKEY_new_mac_key(mac_type, NULL, mac_secret,
510 mac_secret_size)) == NULL)
511 goto err;
512 EVP_DigestSignInit(mac_ctx, NULL, mac, NULL, mac_key);
513 EVP_PKEY_free(mac_key);
515 if (S3I(s)->hs.new_cipher->algorithm_enc == SSL_eGOST2814789CNT) {
516 int nid;
517 if (S3I(s)->hs.new_cipher->algorithm2 & SSL_HANDSHAKE_MAC_GOST94)
518 nid = NID_id_Gost28147_89_CryptoPro_A_ParamSet;
519 else
520 nid = NID_id_tc26_gost_28147_param_Z;
522 EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_GOST_SET_SBOX, nid, 0);
523 if (S3I(s)->hs.new_cipher->algorithm_mac == SSL_GOST89MAC)
524 EVP_MD_CTX_ctrl(mac_ctx, EVP_MD_CTRL_GOST_SET_SBOX, nid, 0);
527 return (1);
529 err:
530 SSLerrorx(ERR_R_MALLOC_FAILURE);
531 return (0);
535 tls1_change_cipher_state(SSL *s, int which)
537 const unsigned char *client_write_mac_secret, *server_write_mac_secret;
538 const unsigned char *client_write_key, *server_write_key;
539 const unsigned char *client_write_iv, *server_write_iv;
540 const unsigned char *mac_secret, *key, *iv;
541 int mac_secret_size, key_len, iv_len;
542 unsigned char *key_block, *seq;
543 const EVP_CIPHER *cipher;
544 const EVP_AEAD *aead;
545 char is_read, use_client_keys;
547 cipher = S3I(s)->tmp.new_sym_enc;
548 aead = S3I(s)->tmp.new_aead;
551 * is_read is true if we have just read a ChangeCipherSpec message,
552 * that is we need to update the read cipherspec. Otherwise we have
553 * just written one.
555 is_read = (which & SSL3_CC_READ) != 0;
558 * use_client_keys is true if we wish to use the keys for the "client
559 * write" direction. This is the case if we're a client sending a
560 * ChangeCipherSpec, or a server reading a client's ChangeCipherSpec.
562 use_client_keys = ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) ||
563 (which == SSL3_CHANGE_CIPHER_SERVER_READ));
566 * Reset sequence number to zero - for DTLS this is handled in
567 * dtls1_reset_seq_numbers().
569 if (!SSL_IS_DTLS(s)) {
570 seq = is_read ? S3I(s)->read_sequence : S3I(s)->write_sequence;
571 memset(seq, 0, SSL3_SEQUENCE_SIZE);
574 if (aead != NULL) {
575 key_len = EVP_AEAD_key_length(aead);
576 iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(S3I(s)->hs.new_cipher);
577 } else {
578 key_len = EVP_CIPHER_key_length(cipher);
579 iv_len = EVP_CIPHER_iv_length(cipher);
582 mac_secret_size = s->s3->tmp.new_mac_secret_size;
584 key_block = S3I(s)->hs.key_block;
585 client_write_mac_secret = key_block;
586 key_block += mac_secret_size;
587 server_write_mac_secret = key_block;
588 key_block += mac_secret_size;
589 client_write_key = key_block;
590 key_block += key_len;
591 server_write_key = key_block;
592 key_block += key_len;
593 client_write_iv = key_block;
594 key_block += iv_len;
595 server_write_iv = key_block;
596 key_block += iv_len;
598 if (use_client_keys) {
599 mac_secret = client_write_mac_secret;
600 key = client_write_key;
601 iv = client_write_iv;
602 } else {
603 mac_secret = server_write_mac_secret;
604 key = server_write_key;
605 iv = server_write_iv;
608 if (key_block - S3I(s)->hs.key_block != S3I(s)->hs.key_block_len) {
609 SSLerror(s, ERR_R_INTERNAL_ERROR);
610 goto err2;
613 if (is_read) {
614 memcpy(S3I(s)->read_mac_secret, mac_secret, mac_secret_size);
615 S3I(s)->read_mac_secret_size = mac_secret_size;
616 } else {
617 memcpy(S3I(s)->write_mac_secret, mac_secret, mac_secret_size);
618 S3I(s)->write_mac_secret_size = mac_secret_size;
621 if (aead != NULL) {
622 return tls1_change_cipher_state_aead(s, is_read, key, key_len,
623 iv, iv_len);
626 return tls1_change_cipher_state_cipher(s, is_read,
627 mac_secret, mac_secret_size, key, key_len, iv, iv_len);
629 err2:
630 return (0);
634 tls1_setup_key_block(SSL *s)
636 unsigned char *key_block;
637 int mac_type = NID_undef, mac_secret_size = 0;
638 int key_block_len, key_len, iv_len;
639 const EVP_CIPHER *cipher = NULL;
640 const EVP_AEAD *aead = NULL;
641 const EVP_MD *mac = NULL;
642 int ret = 0;
644 if (S3I(s)->hs.key_block_len != 0)
645 return (1);
647 if (s->session->cipher &&
648 (s->session->cipher->algorithm_mac & SSL_AEAD)) {
649 if (!ssl_cipher_get_evp_aead(s->session, &aead)) {
650 SSLerror(s, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
651 return (0);
653 key_len = EVP_AEAD_key_length(aead);
654 iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->session->cipher);
655 } else {
656 if (!ssl_cipher_get_evp(s->session, &cipher, &mac, &mac_type,
657 &mac_secret_size)) {
658 SSLerror(s, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
659 return (0);
661 key_len = EVP_CIPHER_key_length(cipher);
662 iv_len = EVP_CIPHER_iv_length(cipher);
665 S3I(s)->tmp.new_aead = aead;
666 S3I(s)->tmp.new_sym_enc = cipher;
667 S3I(s)->tmp.new_hash = mac;
668 S3I(s)->tmp.new_mac_pkey_type = mac_type;
669 s->s3->tmp.new_mac_secret_size = mac_secret_size;
671 tls1_cleanup_key_block(s);
673 if ((key_block = reallocarray(NULL, mac_secret_size + key_len + iv_len,
674 2)) == NULL) {
675 SSLerror(s, ERR_R_MALLOC_FAILURE);
676 goto err;
678 key_block_len = (mac_secret_size + key_len + iv_len) * 2;
680 S3I(s)->hs.key_block_len = key_block_len;
681 S3I(s)->hs.key_block = key_block;
683 if (!tls1_generate_key_block(s, key_block, key_block_len))
684 goto err;
686 if (!(s->internal->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) &&
687 s->method->internal->version <= TLS1_VERSION) {
689 * Enable vulnerability countermeasure for CBC ciphers with
690 * known-IV problem (http://www.openssl.org/~bodo/tls-cbc.txt)
692 S3I(s)->need_empty_fragments = 1;
694 if (s->session->cipher != NULL) {
695 if (s->session->cipher->algorithm_enc == SSL_eNULL)
696 S3I(s)->need_empty_fragments = 0;
698 #ifndef OPENSSL_NO_RC4
699 if (s->session->cipher->algorithm_enc == SSL_RC4)
700 S3I(s)->need_empty_fragments = 0;
701 #endif
705 ret = 1;
707 err:
708 return (ret);
711 /* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively.
713 * Returns:
714 * 0: (in non-constant time) if the record is publically invalid (i.e. too
715 * short etc).
716 * 1: if the record's padding is valid / the encryption was successful.
717 * -1: if the record's padding/AEAD-authenticator is invalid or, if sending,
718 * an internal error occured.
721 tls1_enc(SSL *s, int send)
723 const SSL_AEAD_CTX *aead;
724 const EVP_CIPHER *enc;
725 EVP_CIPHER_CTX *ds;
726 SSL3_RECORD *rec;
727 unsigned char *seq;
728 unsigned long l;
729 int bs, i, j, k, pad = 0, ret, mac_size = 0;
731 if (send) {
732 aead = s->internal->aead_write_ctx;
733 rec = &S3I(s)->wrec;
734 seq = S3I(s)->write_sequence;
735 } else {
736 aead = s->internal->aead_read_ctx;
737 rec = &S3I(s)->rrec;
738 seq = S3I(s)->read_sequence;
741 if (aead) {
742 unsigned char ad[13], *in, *out, nonce[16];
743 size_t out_len, pad_len = 0;
744 unsigned int nonce_used;
746 if (SSL_IS_DTLS(s)) {
747 dtls1_build_sequence_number(ad, seq,
748 send ? D1I(s)->w_epoch : D1I(s)->r_epoch);
749 } else {
750 memcpy(ad, seq, SSL3_SEQUENCE_SIZE);
751 tls1_record_sequence_increment(seq);
754 ad[8] = rec->type;
755 ad[9] = (unsigned char)(s->version >> 8);
756 ad[10] = (unsigned char)(s->version);
758 if (aead->variable_nonce_len > 8 ||
759 aead->variable_nonce_len > sizeof(nonce))
760 return -1;
762 if (aead->xor_fixed_nonce) {
763 if (aead->fixed_nonce_len > sizeof(nonce) ||
764 aead->variable_nonce_len > aead->fixed_nonce_len)
765 return -1; /* Should never happen. */
766 pad_len = aead->fixed_nonce_len - aead->variable_nonce_len;
767 } else {
768 if (aead->fixed_nonce_len +
769 aead->variable_nonce_len > sizeof(nonce))
770 return -1; /* Should never happen. */
773 if (send) {
774 size_t len = rec->length;
775 size_t eivlen = 0;
776 in = rec->input;
777 out = rec->data;
779 if (aead->xor_fixed_nonce) {
781 * The sequence number is left zero
782 * padded, then xored with the fixed
783 * nonce.
785 memset(nonce, 0, pad_len);
786 memcpy(nonce + pad_len, ad,
787 aead->variable_nonce_len);
788 for (i = 0; i < aead->fixed_nonce_len; i++)
789 nonce[i] ^= aead->fixed_nonce[i];
790 nonce_used = aead->fixed_nonce_len;
791 } else {
793 * When sending we use the sequence number as
794 * the variable part of the nonce.
796 memcpy(nonce, aead->fixed_nonce,
797 aead->fixed_nonce_len);
798 nonce_used = aead->fixed_nonce_len;
799 memcpy(nonce + nonce_used, ad,
800 aead->variable_nonce_len);
801 nonce_used += aead->variable_nonce_len;
805 * In do_ssl3_write, rec->input is moved forward by
806 * variable_nonce_len in order to leave space for the
807 * variable nonce. Thus we can copy the sequence number
808 * bytes into place without overwriting any of the
809 * plaintext.
811 if (aead->variable_nonce_in_record) {
812 memcpy(out, ad, aead->variable_nonce_len);
813 len -= aead->variable_nonce_len;
814 eivlen = aead->variable_nonce_len;
817 ad[11] = len >> 8;
818 ad[12] = len & 0xff;
820 if (!EVP_AEAD_CTX_seal(&aead->ctx,
821 out + eivlen, &out_len, len + aead->tag_len, nonce,
822 nonce_used, in + eivlen, len, ad, sizeof(ad)))
823 return -1;
824 if (aead->variable_nonce_in_record)
825 out_len += aead->variable_nonce_len;
826 } else {
827 /* receive */
828 size_t len = rec->length;
830 if (rec->data != rec->input)
831 return -1; /* internal error - should never happen. */
832 out = in = rec->input;
834 if (len < aead->variable_nonce_len)
835 return 0;
837 if (aead->xor_fixed_nonce) {
839 * The sequence number is left zero
840 * padded, then xored with the fixed
841 * nonce.
843 memset(nonce, 0, pad_len);
844 memcpy(nonce + pad_len, ad,
845 aead->variable_nonce_len);
846 for (i = 0; i < aead->fixed_nonce_len; i++)
847 nonce[i] ^= aead->fixed_nonce[i];
848 nonce_used = aead->fixed_nonce_len;
849 } else {
850 memcpy(nonce, aead->fixed_nonce,
851 aead->fixed_nonce_len);
852 nonce_used = aead->fixed_nonce_len;
854 memcpy(nonce + nonce_used,
855 aead->variable_nonce_in_record ? in : ad,
856 aead->variable_nonce_len);
857 nonce_used += aead->variable_nonce_len;
860 if (aead->variable_nonce_in_record) {
861 in += aead->variable_nonce_len;
862 len -= aead->variable_nonce_len;
863 out += aead->variable_nonce_len;
866 if (len < aead->tag_len)
867 return 0;
868 len -= aead->tag_len;
870 ad[11] = len >> 8;
871 ad[12] = len & 0xff;
873 if (!EVP_AEAD_CTX_open(&aead->ctx, out, &out_len, len,
874 nonce, nonce_used, in, len + aead->tag_len, ad,
875 sizeof(ad)))
876 return -1;
878 rec->data = rec->input = out;
881 rec->length = out_len;
883 return 1;
886 if (send) {
887 if (EVP_MD_CTX_md(s->internal->write_hash)) {
888 int n = EVP_MD_CTX_size(s->internal->write_hash);
889 OPENSSL_assert(n >= 0);
891 ds = s->internal->enc_write_ctx;
892 if (s->internal->enc_write_ctx == NULL)
893 enc = NULL;
894 else {
895 int ivlen = 0;
896 enc = EVP_CIPHER_CTX_cipher(s->internal->enc_write_ctx);
897 if (SSL_USE_EXPLICIT_IV(s) &&
898 EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE)
899 ivlen = EVP_CIPHER_iv_length(enc);
900 if (ivlen > 1) {
901 if (rec->data != rec->input) {
902 #ifdef DEBUG
903 /* we can't write into the input stream:
904 * Can this ever happen?? (steve)
906 fprintf(stderr,
907 "%s:%d: rec->data != rec->input\n",
908 __FILE__, __LINE__);
909 #endif
910 } else
911 arc4random_buf(rec->input, ivlen);
914 } else {
915 if (EVP_MD_CTX_md(s->read_hash)) {
916 int n = EVP_MD_CTX_size(s->read_hash);
917 OPENSSL_assert(n >= 0);
919 ds = s->enc_read_ctx;
920 if (s->enc_read_ctx == NULL)
921 enc = NULL;
922 else
923 enc = EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
926 if ((s->session == NULL) || (ds == NULL) || (enc == NULL)) {
927 memmove(rec->data, rec->input, rec->length);
928 rec->input = rec->data;
929 ret = 1;
930 } else {
931 l = rec->length;
932 bs = EVP_CIPHER_block_size(ds->cipher);
934 if (bs != 1 && send) {
935 i = bs - ((int)l % bs);
937 /* Add weird padding of upto 256 bytes */
939 /* we need to add 'i' padding bytes of value j */
940 j = i - 1;
941 for (k = (int)l; k < (int)(l + i); k++)
942 rec->input[k] = j;
943 l += i;
944 rec->length += i;
947 if (!send) {
948 if (l == 0 || l % bs != 0)
949 return 0;
952 i = EVP_Cipher(ds, rec->data, rec->input, l);
953 if ((EVP_CIPHER_flags(ds->cipher) &
954 EVP_CIPH_FLAG_CUSTOM_CIPHER) ? (i < 0) : (i == 0))
955 return -1; /* AEAD can fail to verify MAC */
957 ret = 1;
958 if (EVP_MD_CTX_md(s->read_hash) != NULL)
959 mac_size = EVP_MD_CTX_size(s->read_hash);
960 if ((bs != 1) && !send)
961 ret = tls1_cbc_remove_padding(s, rec, bs, mac_size);
962 if (pad && !send)
963 rec->length -= pad;
965 return ret;
969 tls1_final_finish_mac(SSL *s, const char *str, int str_len, unsigned char *out)
971 unsigned char buf[EVP_MAX_MD_SIZE];
972 size_t hash_len;
974 if (str_len < 0)
975 return 0;
977 if (!tls1_handshake_hash_value(s, buf, sizeof(buf), &hash_len))
978 return 0;
980 if (!tls1_PRF(s, s->session->master_key, s->session->master_key_length,
981 str, str_len, buf, hash_len, NULL, 0, NULL, 0, NULL, 0,
982 out, TLS1_FINISH_MAC_LENGTH))
983 return 0;
985 return TLS1_FINISH_MAC_LENGTH;
989 tls1_mac(SSL *ssl, unsigned char *md, int send)
991 SSL3_RECORD *rec;
992 unsigned char *seq;
993 EVP_MD_CTX *hash;
994 size_t md_size, orig_len;
995 EVP_MD_CTX hmac, *mac_ctx;
996 unsigned char header[13];
997 int stream_mac = (send ?
998 (ssl->internal->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) :
999 (ssl->internal->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM));
1000 int t;
1002 if (send) {
1003 rec = &(ssl->s3->internal->wrec);
1004 seq = &(ssl->s3->internal->write_sequence[0]);
1005 hash = ssl->internal->write_hash;
1006 } else {
1007 rec = &(ssl->s3->internal->rrec);
1008 seq = &(ssl->s3->internal->read_sequence[0]);
1009 hash = ssl->read_hash;
1012 t = EVP_MD_CTX_size(hash);
1013 OPENSSL_assert(t >= 0);
1014 md_size = t;
1016 /* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */
1017 if (stream_mac) {
1018 mac_ctx = hash;
1019 } else {
1020 if (!EVP_MD_CTX_copy(&hmac, hash))
1021 return -1;
1022 mac_ctx = &hmac;
1025 if (SSL_IS_DTLS(ssl))
1026 dtls1_build_sequence_number(header, seq,
1027 send ? D1I(ssl)->w_epoch : D1I(ssl)->r_epoch);
1028 else
1029 memcpy(header, seq, SSL3_SEQUENCE_SIZE);
1031 /* kludge: tls1_cbc_remove_padding passes padding length in rec->type */
1032 orig_len = rec->length + md_size + ((unsigned int)rec->type >> 8);
1033 rec->type &= 0xff;
1035 header[8] = rec->type;
1036 header[9] = (unsigned char)(ssl->version >> 8);
1037 header[10] = (unsigned char)(ssl->version);
1038 header[11] = (rec->length) >> 8;
1039 header[12] = (rec->length) & 0xff;
1041 if (!send &&
1042 EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
1043 ssl3_cbc_record_digest_supported(mac_ctx)) {
1044 /* This is a CBC-encrypted record. We must avoid leaking any
1045 * timing-side channel information about how many blocks of
1046 * data we are hashing because that gives an attacker a
1047 * timing-oracle. */
1048 if (!ssl3_cbc_digest_record(mac_ctx,
1049 md, &md_size, header, rec->input,
1050 rec->length + md_size, orig_len,
1051 ssl->s3->internal->read_mac_secret,
1052 ssl->s3->internal->read_mac_secret_size))
1053 return -1;
1054 } else {
1055 EVP_DigestSignUpdate(mac_ctx, header, sizeof(header));
1056 EVP_DigestSignUpdate(mac_ctx, rec->input, rec->length);
1057 t = EVP_DigestSignFinal(mac_ctx, md, &md_size);
1058 OPENSSL_assert(t > 0);
1061 if (!stream_mac)
1062 EVP_MD_CTX_cleanup(&hmac);
1064 if (!SSL_IS_DTLS(ssl))
1065 tls1_record_sequence_increment(seq);
1067 return (md_size);
1071 tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
1072 int len)
1074 if (len < 0)
1075 return 0;
1077 if (!tls1_PRF(s, p, len,
1078 TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE,
1079 s->s3->client_random, SSL3_RANDOM_SIZE, NULL, 0,
1080 s->s3->server_random, SSL3_RANDOM_SIZE, NULL, 0,
1081 s->session->master_key, SSL_MAX_MASTER_KEY_LENGTH))
1082 return 0;
1084 return (SSL_MAX_MASTER_KEY_LENGTH);
1088 tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen,
1089 const char *label, size_t llen, const unsigned char *context,
1090 size_t contextlen, int use_context)
1092 unsigned char *val = NULL;
1093 size_t vallen, currentvalpos;
1094 int rv;
1096 /* construct PRF arguments
1097 * we construct the PRF argument ourself rather than passing separate
1098 * values into the TLS PRF to ensure that the concatenation of values
1099 * does not create a prohibited label.
1101 vallen = llen + SSL3_RANDOM_SIZE * 2;
1102 if (use_context) {
1103 vallen += 2 + contextlen;
1106 val = malloc(vallen);
1107 if (val == NULL)
1108 goto err2;
1109 currentvalpos = 0;
1110 memcpy(val + currentvalpos, (unsigned char *) label, llen);
1111 currentvalpos += llen;
1112 memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE);
1113 currentvalpos += SSL3_RANDOM_SIZE;
1114 memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE);
1115 currentvalpos += SSL3_RANDOM_SIZE;
1117 if (use_context) {
1118 val[currentvalpos] = (contextlen >> 8) & 0xff;
1119 currentvalpos++;
1120 val[currentvalpos] = contextlen & 0xff;
1121 currentvalpos++;
1122 if ((contextlen > 0) || (context != NULL)) {
1123 memcpy(val + currentvalpos, context, contextlen);
1127 /* disallow prohibited labels
1128 * note that SSL3_RANDOM_SIZE > max(prohibited label len) =
1129 * 15, so size of val > max(prohibited label len) = 15 and the
1130 * comparisons won't have buffer overflow
1132 if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
1133 TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0)
1134 goto err1;
1135 if (memcmp(val, TLS_MD_SERVER_FINISH_CONST,
1136 TLS_MD_SERVER_FINISH_CONST_SIZE) == 0)
1137 goto err1;
1138 if (memcmp(val, TLS_MD_MASTER_SECRET_CONST,
1139 TLS_MD_MASTER_SECRET_CONST_SIZE) == 0)
1140 goto err1;
1141 if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
1142 TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0)
1143 goto err1;
1145 rv = tls1_PRF(s, s->session->master_key, s->session->master_key_length,
1146 val, vallen, NULL, 0, NULL, 0, NULL, 0, NULL, 0, out, olen);
1148 goto ret;
1149 err1:
1150 SSLerror(s, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
1151 rv = 0;
1152 goto ret;
1153 err2:
1154 SSLerror(s, ERR_R_MALLOC_FAILURE);
1155 rv = 0;
1156 ret:
1157 free(val);
1159 return (rv);
1163 tls1_alert_code(int code)
1165 switch (code) {
1166 case SSL_AD_CLOSE_NOTIFY:
1167 return (SSL3_AD_CLOSE_NOTIFY);
1168 case SSL_AD_UNEXPECTED_MESSAGE:
1169 return (SSL3_AD_UNEXPECTED_MESSAGE);
1170 case SSL_AD_BAD_RECORD_MAC:
1171 return (SSL3_AD_BAD_RECORD_MAC);
1172 case SSL_AD_DECRYPTION_FAILED:
1173 return (TLS1_AD_DECRYPTION_FAILED);
1174 case SSL_AD_RECORD_OVERFLOW:
1175 return (TLS1_AD_RECORD_OVERFLOW);
1176 case SSL_AD_DECOMPRESSION_FAILURE:
1177 return (SSL3_AD_DECOMPRESSION_FAILURE);
1178 case SSL_AD_HANDSHAKE_FAILURE:
1179 return (SSL3_AD_HANDSHAKE_FAILURE);
1180 case SSL_AD_NO_CERTIFICATE:
1181 return (-1);
1182 case SSL_AD_BAD_CERTIFICATE:
1183 return (SSL3_AD_BAD_CERTIFICATE);
1184 case SSL_AD_UNSUPPORTED_CERTIFICATE:
1185 return (SSL3_AD_UNSUPPORTED_CERTIFICATE);
1186 case SSL_AD_CERTIFICATE_REVOKED:
1187 return (SSL3_AD_CERTIFICATE_REVOKED);
1188 case SSL_AD_CERTIFICATE_EXPIRED:
1189 return (SSL3_AD_CERTIFICATE_EXPIRED);
1190 case SSL_AD_CERTIFICATE_UNKNOWN:
1191 return (SSL3_AD_CERTIFICATE_UNKNOWN);
1192 case SSL_AD_ILLEGAL_PARAMETER:
1193 return (SSL3_AD_ILLEGAL_PARAMETER);
1194 case SSL_AD_UNKNOWN_CA:
1195 return (TLS1_AD_UNKNOWN_CA);
1196 case SSL_AD_ACCESS_DENIED:
1197 return (TLS1_AD_ACCESS_DENIED);
1198 case SSL_AD_DECODE_ERROR:
1199 return (TLS1_AD_DECODE_ERROR);
1200 case SSL_AD_DECRYPT_ERROR:
1201 return (TLS1_AD_DECRYPT_ERROR);
1202 case SSL_AD_EXPORT_RESTRICTION:
1203 return (TLS1_AD_EXPORT_RESTRICTION);
1204 case SSL_AD_PROTOCOL_VERSION:
1205 return (TLS1_AD_PROTOCOL_VERSION);
1206 case SSL_AD_INSUFFICIENT_SECURITY:
1207 return (TLS1_AD_INSUFFICIENT_SECURITY);
1208 case SSL_AD_INTERNAL_ERROR:
1209 return (TLS1_AD_INTERNAL_ERROR);
1210 case SSL_AD_INAPPROPRIATE_FALLBACK:
1211 return(TLS1_AD_INAPPROPRIATE_FALLBACK);
1212 case SSL_AD_USER_CANCELLED:
1213 return (TLS1_AD_USER_CANCELLED);
1214 case SSL_AD_NO_RENEGOTIATION:
1215 return (TLS1_AD_NO_RENEGOTIATION);
1216 case SSL_AD_UNSUPPORTED_EXTENSION:
1217 return (TLS1_AD_UNSUPPORTED_EXTENSION);
1218 case SSL_AD_CERTIFICATE_UNOBTAINABLE:
1219 return (TLS1_AD_CERTIFICATE_UNOBTAINABLE);
1220 case SSL_AD_UNRECOGNIZED_NAME:
1221 return (TLS1_AD_UNRECOGNIZED_NAME);
1222 case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE:
1223 return (TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE);
1224 case SSL_AD_BAD_CERTIFICATE_HASH_VALUE:
1225 return (TLS1_AD_BAD_CERTIFICATE_HASH_VALUE);
1226 case SSL_AD_UNKNOWN_PSK_IDENTITY:
1227 return (TLS1_AD_UNKNOWN_PSK_IDENTITY);
1228 default:
1229 return (-1);