9506 Want support for QLogic QL41000/45000 series devices
[unleashed.git] / usr / src / uts / common / io / devpoll.c
blob4ef14a99de3cd7370a2c42e7fffc79ca639264df
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 * Copyright 2017 Joyent, Inc.
31 #include <sys/types.h>
32 #include <sys/devops.h>
33 #include <sys/conf.h>
34 #include <sys/modctl.h>
35 #include <sys/sunddi.h>
36 #include <sys/stat.h>
37 #include <sys/poll_impl.h>
38 #include <sys/errno.h>
39 #include <sys/kmem.h>
40 #include <sys/mkdev.h>
41 #include <sys/debug.h>
42 #include <sys/file.h>
43 #include <sys/sysmacros.h>
44 #include <sys/systm.h>
45 #include <sys/bitmap.h>
46 #include <sys/devpoll.h>
47 #include <sys/rctl.h>
48 #include <sys/resource.h>
49 #include <sys/schedctl.h>
50 #include <sys/epoll.h>
52 #define RESERVED 1
54 /* local data struct */
55 static dp_entry_t **devpolltbl; /* dev poll entries */
56 static size_t dptblsize;
58 static kmutex_t devpoll_lock; /* lock protecting dev tbl */
59 int devpoll_init; /* is /dev/poll initialized already */
61 /* device local functions */
63 static int dpopen(dev_t *devp, int flag, int otyp, cred_t *credp);
64 static int dpwrite(dev_t dev, struct uio *uiop, cred_t *credp);
65 static int dpioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
66 int *rvalp);
67 static int dppoll(dev_t dev, short events, int anyyet, short *reventsp,
68 struct pollhead **phpp);
69 static int dpclose(dev_t dev, int flag, int otyp, cred_t *credp);
70 static dev_info_t *dpdevi;
73 static struct cb_ops dp_cb_ops = {
74 dpopen, /* open */
75 dpclose, /* close */
76 nodev, /* strategy */
77 nodev, /* print */
78 nodev, /* dump */
79 nodev, /* read */
80 dpwrite, /* write */
81 dpioctl, /* ioctl */
82 nodev, /* devmap */
83 nodev, /* mmap */
84 nodev, /* segmap */
85 dppoll, /* poll */
86 ddi_prop_op, /* prop_op */
87 (struct streamtab *)0, /* streamtab */
88 D_MP, /* flags */
89 CB_REV, /* cb_ops revision */
90 nodev, /* aread */
91 nodev /* awrite */
94 static int dpattach(dev_info_t *, ddi_attach_cmd_t);
95 static int dpdetach(dev_info_t *, ddi_detach_cmd_t);
96 static int dpinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
98 static struct dev_ops dp_ops = {
99 DEVO_REV, /* devo_rev */
100 0, /* refcnt */
101 dpinfo, /* info */
102 nulldev, /* identify */
103 nulldev, /* probe */
104 dpattach, /* attach */
105 dpdetach, /* detach */
106 nodev, /* reset */
107 &dp_cb_ops, /* driver operations */
108 (struct bus_ops *)NULL, /* bus operations */
109 nulldev, /* power */
110 ddi_quiesce_not_needed, /* quiesce */
114 static struct modldrv modldrv = {
115 &mod_driverops, /* type of module - a driver */
116 "/dev/poll driver",
117 &dp_ops,
120 static struct modlinkage modlinkage = {
121 MODREV_1,
122 (void *)&modldrv,
123 NULL
126 static void pcachelink_assoc(pollcache_t *, pollcache_t *);
127 static void pcachelink_mark_stale(pollcache_t *);
128 static void pcachelink_purge_stale(pollcache_t *);
129 static void pcachelink_purge_all(pollcache_t *);
133 * Locking Design
135 * The /dev/poll driver shares most of its code with poll sys call whose
136 * code is in common/syscall/poll.c. In poll(2) design, the pollcache
137 * structure is per lwp. An implicit assumption is made there that some
138 * portion of pollcache will never be touched by other lwps. E.g., in
139 * poll(2) design, no lwp will ever need to grow bitmap of other lwp.
140 * This assumption is not true for /dev/poll; hence the need for extra
141 * locking.
143 * To allow more parallelism, each /dev/poll file descriptor (indexed by
144 * minor number) has its own lock. Since read (dpioctl) is a much more
145 * frequent operation than write, we want to allow multiple reads on same
146 * /dev/poll fd. However, we prevent writes from being starved by giving
147 * priority to write operation. Theoretically writes can starve reads as
148 * well. But in practical sense this is not important because (1) writes
149 * happens less often than reads, and (2) write operation defines the
150 * content of poll fd a cache set. If writes happens so often that they
151 * can starve reads, that means the cached set is very unstable. It may
152 * not make sense to read an unstable cache set anyway. Therefore, the
153 * writers starving readers case is not handled in this design.
157 _init()
159 int error;
161 dptblsize = DEVPOLLSIZE;
162 devpolltbl = kmem_zalloc(sizeof (caddr_t) * dptblsize, KM_SLEEP);
163 mutex_init(&devpoll_lock, NULL, MUTEX_DEFAULT, NULL);
164 devpoll_init = 1;
165 if ((error = mod_install(&modlinkage)) != 0) {
166 kmem_free(devpolltbl, sizeof (caddr_t) * dptblsize);
167 devpoll_init = 0;
169 return (error);
173 _fini()
175 int error;
177 if ((error = mod_remove(&modlinkage)) != 0) {
178 return (error);
180 mutex_destroy(&devpoll_lock);
181 kmem_free(devpolltbl, sizeof (caddr_t) * dptblsize);
182 return (0);
186 _info(struct modinfo *modinfop)
188 return (mod_info(&modlinkage, modinfop));
191 /*ARGSUSED*/
192 static int
193 dpattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
195 if (ddi_create_minor_node(devi, "poll", S_IFCHR, 0, DDI_PSEUDO, NULL)
196 == DDI_FAILURE) {
197 ddi_remove_minor_node(devi, NULL);
198 return (DDI_FAILURE);
200 dpdevi = devi;
201 return (DDI_SUCCESS);
204 static int
205 dpdetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
207 if (cmd != DDI_DETACH)
208 return (DDI_FAILURE);
210 ddi_remove_minor_node(devi, NULL);
211 return (DDI_SUCCESS);
214 /* ARGSUSED */
215 static int
216 dpinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
218 int error;
220 switch (infocmd) {
221 case DDI_INFO_DEVT2DEVINFO:
222 *result = (void *)dpdevi;
223 error = DDI_SUCCESS;
224 break;
225 case DDI_INFO_DEVT2INSTANCE:
226 *result = (void *)0;
227 error = DDI_SUCCESS;
228 break;
229 default:
230 error = DDI_FAILURE;
232 return (error);
236 * dp_pcache_poll has similar logic to pcache_poll() in poll.c. The major
237 * differences are: (1) /dev/poll requires scanning the bitmap starting at
238 * where it was stopped last time, instead of always starting from 0,
239 * (2) since user may not have cleaned up the cached fds when they are
240 * closed, some polldats in cache may refer to closed or reused fds. We
241 * need to check for those cases.
243 * NOTE: Upon closing an fd, automatic poll cache cleanup is done for
244 * poll(2) caches but NOT for /dev/poll caches. So expect some
245 * stale entries!
247 static int
248 dp_pcache_poll(dp_entry_t *dpep, void *dpbuf,
249 pollcache_t *pcp, nfds_t nfds, int *fdcntp)
251 int start, ostart, end;
252 int fdcnt, fd;
253 boolean_t done;
254 file_t *fp;
255 short revent;
256 boolean_t no_wrap;
257 pollhead_t *php;
258 polldat_t *pdp;
259 pollfd_t *pfdp;
260 epoll_event_t *epoll;
261 int error = 0;
262 short mask = POLLRDHUP | POLLWRBAND;
263 boolean_t is_epoll = (dpep->dpe_flag & DP_ISEPOLLCOMPAT) != 0;
265 ASSERT(MUTEX_HELD(&pcp->pc_lock));
266 if (pcp->pc_bitmap == NULL) {
268 * No Need to search because no poll fd
269 * has been cached.
271 return (error);
274 if (is_epoll) {
275 pfdp = NULL;
276 epoll = (epoll_event_t *)dpbuf;
277 } else {
278 pfdp = (pollfd_t *)dpbuf;
279 epoll = NULL;
281 retry:
282 start = ostart = pcp->pc_mapstart;
283 end = pcp->pc_mapend;
284 php = NULL;
286 if (start == 0) {
288 * started from every begining, no need to wrap around.
290 no_wrap = B_TRUE;
291 } else {
292 no_wrap = B_FALSE;
294 done = B_FALSE;
295 fdcnt = 0;
296 while ((fdcnt < nfds) && !done) {
297 php = NULL;
298 revent = 0;
300 * Examine the bit map in a circular fashion
301 * to avoid starvation. Always resume from
302 * last stop. Scan till end of the map. Then
303 * wrap around.
305 fd = bt_getlowbit(pcp->pc_bitmap, start, end);
306 ASSERT(fd <= end);
307 if (fd >= 0) {
308 if (fd == end) {
309 if (no_wrap) {
310 done = B_TRUE;
311 } else {
312 start = 0;
313 end = ostart - 1;
314 no_wrap = B_TRUE;
316 } else {
317 start = fd + 1;
319 pdp = pcache_lookup_fd(pcp, fd);
320 repoll:
321 ASSERT(pdp != NULL);
322 ASSERT(pdp->pd_fd == fd);
323 if (pdp->pd_fp == NULL) {
325 * The fd is POLLREMOVed. This fd is
326 * logically no longer cached. So move
327 * on to the next one.
329 continue;
331 if ((fp = getf(fd)) == NULL) {
333 * The fd has been closed, but user has not
334 * done a POLLREMOVE on this fd yet. Instead
335 * of cleaning it here implicitly, we return
336 * POLLNVAL. This is consistent with poll(2)
337 * polling a closed fd. Hope this will remind
338 * user to do a POLLREMOVE.
340 if (!is_epoll && pfdp != NULL) {
341 pfdp[fdcnt].fd = fd;
342 pfdp[fdcnt].revents = POLLNVAL;
343 fdcnt++;
344 continue;
348 * In the epoll compatibility case, we actually
349 * perform the implicit removal to remain
350 * closer to the epoll semantics.
352 if (is_epoll) {
353 pdp->pd_fp = NULL;
354 pdp->pd_events = 0;
356 if (pdp->pd_php != NULL) {
357 pollhead_delete(pdp->pd_php,
358 pdp);
359 pdp->pd_php = NULL;
362 BT_CLEAR(pcp->pc_bitmap, fd);
363 continue;
367 if (fp != pdp->pd_fp) {
369 * The user is polling on a cached fd which was
370 * closed and then reused. Unfortunately there
371 * is no good way to communicate this fact to
372 * the consumer.
374 * If the file struct is also reused, we may
375 * not be able to detect the fd reuse at all.
376 * As long as this does not cause system
377 * failure and/or memory leaks, we will play
378 * along. The man page states that if the user
379 * does not clean up closed fds, polling
380 * results will be indeterministic.
382 * XXX: perhaps log the detection of fd reuse?
384 pdp->pd_fp = fp;
387 * When this situation has been detected, it's
388 * likely that any existing pollhead is
389 * ill-suited to perform proper wake-ups.
391 * Clean up the old entry under the expectation
392 * that a valid one will be provided as part of
393 * the later VOP_POLL.
395 if (pdp->pd_php != NULL) {
396 pollhead_delete(pdp->pd_php, pdp);
397 pdp->pd_php = NULL;
401 * XXX - pollrelock() logic needs to know which
402 * which pollcache lock to grab. It'd be a
403 * cleaner solution if we could pass pcp as
404 * an arguement in VOP_POLL interface instead
405 * of implicitly passing it using thread_t
406 * struct. On the other hand, changing VOP_POLL
407 * interface will require all driver/file system
408 * poll routine to change. May want to revisit
409 * the tradeoff later.
411 curthread->t_pollcache = pcp;
412 error = VOP_POLL(fp->f_vnode, pdp->pd_events, 0,
413 &revent, &php, NULL);
416 * Recheck edge-triggered descriptors which lack a
417 * pollhead. While this check is performed when an fd
418 * is added to the pollcache in dpwrite(), subsequent
419 * descriptor manipulation could cause a different
420 * resource to be present now.
422 if ((pdp->pd_events & POLLET) && error == 0 &&
423 pdp->pd_php == NULL && php == NULL && revent != 0) {
424 short levent = 0;
427 * The same POLLET-only VOP_POLL is used in an
428 * attempt to coax a pollhead from older
429 * driver logic.
431 error = VOP_POLL(fp->f_vnode, POLLET,
432 0, &levent, &php, NULL);
435 curthread->t_pollcache = NULL;
436 releasef(fd);
437 if (error != 0) {
438 break;
442 * layered devices (e.g. console driver)
443 * may change the vnode and thus the pollhead
444 * pointer out from underneath us.
446 if (php != NULL && pdp->pd_php != NULL &&
447 php != pdp->pd_php) {
448 pollhead_delete(pdp->pd_php, pdp);
449 pdp->pd_php = php;
450 pollhead_insert(php, pdp);
452 * The bit should still be set.
454 ASSERT(BT_TEST(pcp->pc_bitmap, fd));
455 goto retry;
458 if (revent != 0) {
459 if (pfdp != NULL) {
460 pfdp[fdcnt].fd = fd;
461 pfdp[fdcnt].events = pdp->pd_events;
462 pfdp[fdcnt].revents = revent;
463 } else if (epoll != NULL) {
464 epoll_event_t *ep = &epoll[fdcnt];
466 ASSERT(epoll != NULL);
467 ep->data.u64 = pdp->pd_epolldata;
470 * Since POLLNVAL is a legal event for
471 * VOP_POLL handlers to emit, it must
472 * be translated epoll-legal.
474 if (revent & POLLNVAL) {
475 revent &= ~POLLNVAL;
476 revent |= POLLERR;
480 * If any of the event bits are set for
481 * which poll and epoll representations
482 * differ, swizzle in the native epoll
483 * values.
485 if (revent & mask) {
486 ep->events = (revent & ~mask) |
487 ((revent & POLLRDHUP) ?
488 EPOLLRDHUP : 0) |
489 ((revent & POLLWRBAND) ?
490 EPOLLWRBAND : 0);
491 } else {
492 ep->events = revent;
496 * We define POLLWRNORM to be POLLOUT,
497 * but epoll has separate definitions
498 * for them; if POLLOUT is set and the
499 * user has asked for EPOLLWRNORM, set
500 * that as well.
502 if ((revent & POLLOUT) &&
503 (pdp->pd_events & EPOLLWRNORM)) {
504 ep->events |= EPOLLWRNORM;
506 } else {
507 pollstate_t *ps =
508 curthread->t_pollstate;
510 * The devpoll handle itself is being
511 * polled. Notify the caller of any
512 * readable event(s), leaving as much
513 * state as possible untouched.
515 VERIFY(fdcnt == 0);
516 VERIFY(ps != NULL);
519 * If a call to pollunlock() fails
520 * during VOP_POLL, skip over the fd
521 * and continue polling.
523 * Otherwise, report that there is an
524 * event pending.
526 if ((ps->ps_flags & POLLSTATE_ULFAIL)
527 != 0) {
528 ps->ps_flags &=
529 ~POLLSTATE_ULFAIL;
530 continue;
531 } else {
532 fdcnt++;
533 break;
537 /* Handle special polling modes. */
538 if (pdp->pd_events & POLLONESHOT) {
540 * If POLLONESHOT is set, perform the
541 * implicit POLLREMOVE.
543 pdp->pd_fp = NULL;
544 pdp->pd_events = 0;
546 if (pdp->pd_php != NULL) {
547 pollhead_delete(pdp->pd_php,
548 pdp);
549 pdp->pd_php = NULL;
552 BT_CLEAR(pcp->pc_bitmap, fd);
553 } else if (pdp->pd_events & POLLET) {
555 * Wire up the pollhead which should
556 * have been provided. Edge-triggered
557 * polling cannot function properly
558 * with drivers which do not emit one.
560 if (php != NULL &&
561 pdp->pd_php == NULL) {
562 pollhead_insert(php, pdp);
563 pdp->pd_php = php;
567 * If the driver has emitted a pollhead,
568 * clear the bit in the bitmap which
569 * effectively latches the edge on a
570 * pollwakeup() from the driver.
572 if (pdp->pd_php != NULL) {
573 BT_CLEAR(pcp->pc_bitmap, fd);
577 fdcnt++;
578 } else if (php != NULL) {
580 * We clear a bit or cache a poll fd if
581 * the driver returns a poll head ptr,
582 * which is expected in the case of 0
583 * revents. Some buggy driver may return
584 * NULL php pointer with 0 revents. In
585 * this case, we just treat the driver as
586 * "noncachable" and not clearing the bit
587 * in bitmap.
589 if ((pdp->pd_php != NULL) &&
590 ((pcp->pc_flag & PC_POLLWAKE) == 0)) {
591 BT_CLEAR(pcp->pc_bitmap, fd);
593 if (pdp->pd_php == NULL) {
594 pollhead_insert(php, pdp);
595 pdp->pd_php = php;
597 * An event of interest may have
598 * arrived between the VOP_POLL() and
599 * the pollhead_insert(); check again.
601 goto repoll;
604 } else {
606 * No bit set in the range. Check for wrap around.
608 if (!no_wrap) {
609 start = 0;
610 end = ostart - 1;
611 no_wrap = B_TRUE;
612 } else {
613 done = B_TRUE;
618 if (!done) {
619 pcp->pc_mapstart = start;
621 ASSERT(*fdcntp == 0);
622 *fdcntp = fdcnt;
623 return (error);
626 /*ARGSUSED*/
627 static int
628 dpopen(dev_t *devp, int flag, int otyp, cred_t *credp)
630 minor_t minordev;
631 dp_entry_t *dpep;
632 pollcache_t *pcp;
634 ASSERT(devpoll_init);
635 ASSERT(dptblsize <= MAXMIN);
636 mutex_enter(&devpoll_lock);
637 for (minordev = 0; minordev < dptblsize; minordev++) {
638 if (devpolltbl[minordev] == NULL) {
639 devpolltbl[minordev] = (dp_entry_t *)RESERVED;
640 break;
643 if (minordev == dptblsize) {
644 dp_entry_t **newtbl;
645 size_t oldsize;
648 * Used up every entry in the existing devpoll table.
649 * Grow the table by DEVPOLLSIZE.
651 if ((oldsize = dptblsize) >= MAXMIN) {
652 mutex_exit(&devpoll_lock);
653 return (ENXIO);
655 dptblsize += DEVPOLLSIZE;
656 if (dptblsize > MAXMIN) {
657 dptblsize = MAXMIN;
659 newtbl = kmem_zalloc(sizeof (caddr_t) * dptblsize, KM_SLEEP);
660 bcopy(devpolltbl, newtbl, sizeof (caddr_t) * oldsize);
661 kmem_free(devpolltbl, sizeof (caddr_t) * oldsize);
662 devpolltbl = newtbl;
663 devpolltbl[minordev] = (dp_entry_t *)RESERVED;
665 mutex_exit(&devpoll_lock);
667 dpep = kmem_zalloc(sizeof (dp_entry_t), KM_SLEEP);
669 * allocate a pollcache skeleton here. Delay allocating bitmap
670 * structures until dpwrite() time, since we don't know the
671 * optimal size yet. We also delay setting the pid until either
672 * dpwrite() or attempt to poll on the instance, allowing parents
673 * to create instances of /dev/poll for their children. (In the
674 * epoll compatibility case, this check isn't performed to maintain
675 * semantic compatibility.)
677 pcp = pcache_alloc();
678 dpep->dpe_pcache = pcp;
679 pcp->pc_pid = -1;
680 *devp = makedevice(getmajor(*devp), minordev); /* clone the driver */
681 mutex_enter(&devpoll_lock);
682 ASSERT(minordev < dptblsize);
683 ASSERT(devpolltbl[minordev] == (dp_entry_t *)RESERVED);
684 devpolltbl[minordev] = dpep;
685 mutex_exit(&devpoll_lock);
686 return (0);
690 * Write to dev/poll add/remove fd's to/from a cached poll fd set,
691 * or change poll events for a watched fd.
693 /*ARGSUSED*/
694 static int
695 dpwrite(dev_t dev, struct uio *uiop, cred_t *credp)
697 minor_t minor;
698 dp_entry_t *dpep;
699 pollcache_t *pcp;
700 pollfd_t *pollfdp, *pfdp;
701 dvpoll_epollfd_t *epfdp;
702 uintptr_t limit;
703 int error, size;
704 ssize_t uiosize;
705 size_t copysize;
706 nfds_t pollfdnum;
707 struct pollhead *php = NULL;
708 polldat_t *pdp;
709 int fd;
710 file_t *fp;
711 boolean_t is_epoll, fds_added = B_FALSE;
713 minor = getminor(dev);
715 mutex_enter(&devpoll_lock);
716 ASSERT(minor < dptblsize);
717 dpep = devpolltbl[minor];
718 ASSERT(dpep != NULL);
719 mutex_exit(&devpoll_lock);
721 mutex_enter(&dpep->dpe_lock);
722 pcp = dpep->dpe_pcache;
723 is_epoll = (dpep->dpe_flag & DP_ISEPOLLCOMPAT) != 0;
724 size = (is_epoll) ? sizeof (dvpoll_epollfd_t) : sizeof (pollfd_t);
725 mutex_exit(&dpep->dpe_lock);
727 if (!is_epoll && curproc->p_pid != pcp->pc_pid) {
728 if (pcp->pc_pid != -1) {
729 return (EACCES);
732 pcp->pc_pid = curproc->p_pid;
735 uiosize = uiop->uio_resid;
736 pollfdnum = uiosize / size;
739 * We want to make sure that pollfdnum isn't large enough to DoS us,
740 * but we also don't want to grab p_lock unnecessarily -- so we
741 * perform the full check against our resource limits if and only if
742 * pollfdnum is larger than the known-to-be-sane value of UINT8_MAX.
744 if (pollfdnum > UINT8_MAX) {
745 mutex_enter(&curproc->p_lock);
746 if (pollfdnum >
747 (uint_t)rctl_enforced_value(rctlproc_legacy[RLIMIT_NOFILE],
748 curproc->p_rctls, curproc)) {
749 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
750 curproc->p_rctls, curproc, RCA_SAFE);
751 mutex_exit(&curproc->p_lock);
752 return (EINVAL);
754 mutex_exit(&curproc->p_lock);
758 * Copy in the pollfd array. Walk through the array and add
759 * each polled fd to the cached set.
761 pollfdp = kmem_alloc(uiosize, KM_SLEEP);
762 limit = (uintptr_t)pollfdp + (pollfdnum * size);
765 * Although /dev/poll uses the write(2) interface to cache fds, it's
766 * not supposed to function as a seekable device. To prevent offset
767 * from growing and eventually exceed the maximum, reset the offset
768 * here for every call.
770 uiop->uio_loffset = 0;
773 * Use uiocopy instead of uiomove when populating pollfdp, keeping
774 * uio_resid untouched for now. Write syscalls will translate EINTR
775 * into a success if they detect "successfully transfered" data via an
776 * updated uio_resid. Falsely suppressing such errors is disastrous.
778 if ((error = uiocopy((caddr_t)pollfdp, uiosize, UIO_WRITE, uiop,
779 &copysize)) != 0) {
780 kmem_free(pollfdp, uiosize);
781 return (error);
785 * We are about to enter the core portion of dpwrite(). Make sure this
786 * write has exclusive access in this portion of the code, i.e., no
787 * other writers in this code.
789 * Waiting for all readers to drop their references to the dpe is
790 * unecessary since the pollcache itself is protected by pc_lock.
792 mutex_enter(&dpep->dpe_lock);
793 dpep->dpe_writerwait++;
794 while ((dpep->dpe_flag & DP_WRITER_PRESENT) != 0) {
795 ASSERT(dpep->dpe_refcnt != 0);
797 if (!cv_wait_sig_swap(&dpep->dpe_cv, &dpep->dpe_lock)) {
798 dpep->dpe_writerwait--;
799 mutex_exit(&dpep->dpe_lock);
800 kmem_free(pollfdp, uiosize);
801 return (EINTR);
804 dpep->dpe_writerwait--;
805 dpep->dpe_flag |= DP_WRITER_PRESENT;
806 dpep->dpe_refcnt++;
808 if (!is_epoll && (dpep->dpe_flag & DP_ISEPOLLCOMPAT) != 0) {
810 * The epoll compat mode was enabled while we were waiting to
811 * establish write access. It is not safe to continue since
812 * state was prepared for non-epoll operation.
814 error = EBUSY;
815 goto bypass;
817 mutex_exit(&dpep->dpe_lock);
820 * Since the dpwrite() may recursively walk an added /dev/poll handle,
821 * pollstate_enter() deadlock and loop detection must be used.
823 (void) pollstate_create();
824 VERIFY(pollstate_enter(pcp) == PSE_SUCCESS);
826 if (pcp->pc_bitmap == NULL) {
827 pcache_create(pcp, pollfdnum);
829 for (pfdp = pollfdp; (uintptr_t)pfdp < limit;
830 pfdp = (pollfd_t *)((uintptr_t)pfdp + size)) {
831 fd = pfdp->fd;
832 if ((uint_t)fd >= P_FINFO(curproc)->fi_nfiles) {
834 * epoll semantics demand that we return EBADF if our
835 * specified fd is invalid.
837 if (is_epoll) {
838 error = EBADF;
839 break;
842 continue;
845 pdp = pcache_lookup_fd(pcp, fd);
846 if (pfdp->events != POLLREMOVE) {
848 fp = NULL;
850 if (pdp == NULL) {
852 * If we're in epoll compatibility mode, check
853 * that the fd is valid before allocating
854 * anything for it; epoll semantics demand that
855 * we return EBADF if our specified fd is
856 * invalid.
858 if (is_epoll) {
859 if ((fp = getf(fd)) == NULL) {
860 error = EBADF;
861 break;
865 pdp = pcache_alloc_fd(0);
866 pdp->pd_fd = fd;
867 pdp->pd_pcache = pcp;
868 pcache_insert_fd(pcp, pdp, pollfdnum);
869 } else {
871 * epoll semantics demand that we error out if
872 * a file descriptor is added twice, which we
873 * check (imperfectly) by checking if we both
874 * have the file descriptor cached and the
875 * file pointer that correponds to the file
876 * descriptor matches our cached value. If
877 * there is a pointer mismatch, the file
878 * descriptor was closed without being removed.
879 * The converse is clearly not true, however,
880 * so to narrow the window by which a spurious
881 * EEXIST may be returned, we also check if
882 * this fp has been added to an epoll control
883 * descriptor in the past; if it hasn't, we
884 * know that this is due to fp reuse -- it's
885 * not a true EEXIST case. (By performing this
886 * additional check, we limit the window of
887 * spurious EEXIST to situations where a single
888 * file descriptor is being used across two or
889 * more epoll control descriptors -- and even
890 * then, the file descriptor must be closed and
891 * reused in a relatively tight time span.)
893 if (is_epoll) {
894 if (pdp->pd_fp != NULL &&
895 (fp = getf(fd)) != NULL &&
896 fp == pdp->pd_fp &&
897 (fp->f_flag2 & FEPOLLED)) {
898 error = EEXIST;
899 releasef(fd);
900 break;
904 * We have decided that the cached
905 * information was stale: it either
906 * didn't match, or the fp had never
907 * actually been epoll()'d on before.
908 * We need to now clear our pd_events
909 * to assure that we don't mistakenly
910 * operate on cached event disposition.
912 pdp->pd_events = 0;
916 if (is_epoll) {
917 epfdp = (dvpoll_epollfd_t *)pfdp;
918 pdp->pd_epolldata = epfdp->dpep_data;
921 ASSERT(pdp->pd_fd == fd);
922 ASSERT(pdp->pd_pcache == pcp);
923 if (fd >= pcp->pc_mapsize) {
924 mutex_exit(&pcp->pc_lock);
925 pcache_grow_map(pcp, fd);
926 mutex_enter(&pcp->pc_lock);
928 if (fd > pcp->pc_mapend) {
929 pcp->pc_mapend = fd;
931 if (fp == NULL && (fp = getf(fd)) == NULL) {
933 * The fd is not valid. Since we can't pass
934 * this error back in the write() call, set
935 * the bit in bitmap to force DP_POLL ioctl
936 * to examine it.
938 BT_SET(pcp->pc_bitmap, fd);
939 pdp->pd_events |= pfdp->events;
940 continue;
944 * To (greatly) reduce EEXIST false positives, we
945 * denote that this fp has been epoll()'d. We do this
946 * regardless of epoll compatibility mode, as the flag
947 * is harmless if not in epoll compatibility mode.
949 fp->f_flag2 |= FEPOLLED;
952 * Don't do VOP_POLL for an already cached fd with
953 * same poll events.
955 if ((pdp->pd_events == pfdp->events) &&
956 (pdp->pd_fp == fp)) {
958 * the events are already cached
960 releasef(fd);
961 continue;
965 * do VOP_POLL and cache this poll fd.
968 * XXX - pollrelock() logic needs to know which
969 * which pollcache lock to grab. It'd be a
970 * cleaner solution if we could pass pcp as
971 * an arguement in VOP_POLL interface instead
972 * of implicitly passing it using thread_t
973 * struct. On the other hand, changing VOP_POLL
974 * interface will require all driver/file system
975 * poll routine to change. May want to revisit
976 * the tradeoff later.
978 curthread->t_pollcache = pcp;
979 error = VOP_POLL(fp->f_vnode, pfdp->events, 0,
980 &pfdp->revents, &php, NULL);
983 * Edge-triggered polling requires a pollhead in order
984 * to initiate wake-ups properly. Drivers which are
985 * savvy to POLLET presence, which should include
986 * everything in-gate, will always emit one, regardless
987 * of revent status. Older drivers which only emit a
988 * pollhead if 'revents == 0' are given a second chance
989 * here via a second VOP_POLL, with only POLLET set in
990 * the events of interest. These circumstances should
991 * induce any cacheable drivers to emit a pollhead for
992 * wake-ups.
994 * Drivers which never emit a pollhead will simply
995 * disobey the exectation of edge-triggered behavior.
996 * This includes recursive epoll which, even on Linux,
997 * yields its events in a level-triggered fashion only.
999 if ((pdp->pd_events & POLLET) && error == 0 &&
1000 php == NULL) {
1001 short levent = 0;
1003 error = VOP_POLL(fp->f_vnode, POLLET, 0,
1004 &levent, &php, NULL);
1007 curthread->t_pollcache = NULL;
1009 * We always set the bit when this fd is cached;
1010 * this forces the first DP_POLL to poll this fd.
1011 * Real performance gain comes from subsequent
1012 * DP_POLL. We also attempt a pollhead_insert();
1013 * if it's not possible, we'll do it in dpioctl().
1015 BT_SET(pcp->pc_bitmap, fd);
1016 if (error != 0) {
1017 releasef(fd);
1018 break;
1020 pdp->pd_fp = fp;
1021 pdp->pd_events |= pfdp->events;
1022 if (php != NULL) {
1023 if (pdp->pd_php == NULL) {
1024 pollhead_insert(php, pdp);
1025 pdp->pd_php = php;
1026 } else {
1027 if (pdp->pd_php != php) {
1028 pollhead_delete(pdp->pd_php,
1029 pdp);
1030 pollhead_insert(php, pdp);
1031 pdp->pd_php = php;
1035 fds_added = B_TRUE;
1036 releasef(fd);
1037 } else {
1038 if (pdp == NULL || pdp->pd_fp == NULL) {
1039 if (is_epoll) {
1041 * As with the add case (above), epoll
1042 * semantics demand that we error out
1043 * in this case.
1045 error = ENOENT;
1046 break;
1049 continue;
1051 ASSERT(pdp->pd_fd == fd);
1052 pdp->pd_fp = NULL;
1053 pdp->pd_events = 0;
1054 ASSERT(pdp->pd_thread == NULL);
1055 if (pdp->pd_php != NULL) {
1056 pollhead_delete(pdp->pd_php, pdp);
1057 pdp->pd_php = NULL;
1059 BT_CLEAR(pcp->pc_bitmap, fd);
1063 * Wake any pollcache waiters so they can check the new descriptors.
1065 * Any fds added to an recursive-capable pollcache could themselves be
1066 * /dev/poll handles. To ensure that proper event propagation occurs,
1067 * parent pollcaches are woken too, so that they can create any needed
1068 * pollcache links.
1070 if (fds_added) {
1071 cv_broadcast(&pcp->pc_cv);
1072 pcache_wake_parents(pcp);
1074 pollstate_exit(pcp);
1075 mutex_enter(&dpep->dpe_lock);
1076 bypass:
1077 dpep->dpe_flag &= ~DP_WRITER_PRESENT;
1078 dpep->dpe_refcnt--;
1079 cv_broadcast(&dpep->dpe_cv);
1080 mutex_exit(&dpep->dpe_lock);
1081 kmem_free(pollfdp, uiosize);
1082 if (error == 0) {
1084 * The state of uio_resid is updated only after the pollcache
1085 * is successfully modified.
1087 uioskip(uiop, copysize);
1089 return (error);
1092 #define DP_SIGMASK_RESTORE(ksetp) { \
1093 if (ksetp != NULL) { \
1094 mutex_enter(&p->p_lock); \
1095 if (lwp->lwp_cursig == 0) { \
1096 t->t_hold = lwp->lwp_sigoldmask; \
1097 t->t_flag &= ~T_TOMASK; \
1099 mutex_exit(&p->p_lock); \
1103 /*ARGSUSED*/
1104 static int
1105 dpioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
1107 minor_t minor;
1108 dp_entry_t *dpep;
1109 pollcache_t *pcp;
1110 hrtime_t now;
1111 int error = 0;
1112 boolean_t is_epoll;
1113 STRUCT_DECL(dvpoll, dvpoll);
1115 if (cmd == DP_POLL || cmd == DP_PPOLL) {
1116 /* do this now, before we sleep on DP_WRITER_PRESENT */
1117 now = gethrtime();
1120 minor = getminor(dev);
1121 mutex_enter(&devpoll_lock);
1122 ASSERT(minor < dptblsize);
1123 dpep = devpolltbl[minor];
1124 mutex_exit(&devpoll_lock);
1125 ASSERT(dpep != NULL);
1126 pcp = dpep->dpe_pcache;
1128 mutex_enter(&dpep->dpe_lock);
1129 is_epoll = (dpep->dpe_flag & DP_ISEPOLLCOMPAT) != 0;
1131 if (cmd == DP_EPOLLCOMPAT) {
1132 if (dpep->dpe_refcnt != 0) {
1134 * We can't turn on epoll compatibility while there
1135 * are outstanding operations.
1137 mutex_exit(&dpep->dpe_lock);
1138 return (EBUSY);
1142 * epoll compatibility is a one-way street: there's no way
1143 * to turn it off for a particular open.
1145 dpep->dpe_flag |= DP_ISEPOLLCOMPAT;
1146 mutex_exit(&dpep->dpe_lock);
1148 return (0);
1151 if (!is_epoll && curproc->p_pid != pcp->pc_pid) {
1152 if (pcp->pc_pid != -1) {
1153 mutex_exit(&dpep->dpe_lock);
1154 return (EACCES);
1157 pcp->pc_pid = curproc->p_pid;
1160 /* Wait until all writers have cleared the handle before continuing */
1161 while ((dpep->dpe_flag & DP_WRITER_PRESENT) != 0 ||
1162 (dpep->dpe_writerwait != 0)) {
1163 if (!cv_wait_sig_swap(&dpep->dpe_cv, &dpep->dpe_lock)) {
1164 mutex_exit(&dpep->dpe_lock);
1165 return (EINTR);
1168 dpep->dpe_refcnt++;
1169 mutex_exit(&dpep->dpe_lock);
1171 switch (cmd) {
1172 case DP_POLL:
1173 case DP_PPOLL:
1175 pollstate_t *ps;
1176 nfds_t nfds;
1177 int fdcnt = 0;
1178 size_t size, fdsize, dpsize;
1179 hrtime_t deadline = 0;
1180 k_sigset_t *ksetp = NULL;
1181 k_sigset_t kset;
1182 sigset_t set;
1183 kthread_t *t = curthread;
1184 klwp_t *lwp = ttolwp(t);
1185 struct proc *p = ttoproc(curthread);
1187 STRUCT_INIT(dvpoll, mode);
1190 * The dp_setp member is only required/consumed for DP_PPOLL,
1191 * which otherwise uses the same structure as DP_POLL.
1193 if (cmd == DP_POLL) {
1194 dpsize = (uintptr_t)STRUCT_FADDR(dvpoll, dp_setp) -
1195 (uintptr_t)STRUCT_FADDR(dvpoll, dp_fds);
1196 } else {
1197 ASSERT(cmd == DP_PPOLL);
1198 dpsize = STRUCT_SIZE(dvpoll);
1201 if ((mode & FKIOCTL) != 0) {
1202 /* Kernel-internal ioctl call */
1203 bcopy((caddr_t)arg, STRUCT_BUF(dvpoll), dpsize);
1204 error = 0;
1205 } else {
1206 error = copyin((caddr_t)arg, STRUCT_BUF(dvpoll),
1207 dpsize);
1210 if (error) {
1211 DP_REFRELE(dpep);
1212 return (EFAULT);
1215 deadline = STRUCT_FGET(dvpoll, dp_timeout);
1216 if (deadline > 0) {
1218 * Convert the deadline from relative milliseconds
1219 * to absolute nanoseconds. They must wait for at
1220 * least a tick.
1222 deadline = MSEC2NSEC(deadline);
1223 deadline = MAX(deadline, nsec_per_tick);
1224 deadline += now;
1227 if (cmd == DP_PPOLL) {
1228 void *setp = STRUCT_FGETP(dvpoll, dp_setp);
1230 if (setp != NULL) {
1231 if ((mode & FKIOCTL) != 0) {
1232 /* Use the signal set directly */
1233 ksetp = (k_sigset_t *)setp;
1234 } else {
1235 if (copyin(setp, &set, sizeof (set))) {
1236 DP_REFRELE(dpep);
1237 return (EFAULT);
1239 sigutok(&set, &kset);
1240 ksetp = &kset;
1243 mutex_enter(&p->p_lock);
1244 schedctl_finish_sigblock(t);
1245 lwp->lwp_sigoldmask = t->t_hold;
1246 t->t_hold = *ksetp;
1247 t->t_flag |= T_TOMASK;
1250 * Like ppoll() with a non-NULL sigset, we'll
1251 * call cv_reltimedwait_sig() just to check for
1252 * signals. This call will return immediately
1253 * with either 0 (signalled) or -1 (no signal).
1254 * There are some conditions whereby we can
1255 * get 0 from cv_reltimedwait_sig() without
1256 * a true signal (e.g., a directed stop), so
1257 * we restore our signal mask in the unlikely
1258 * event that lwp_cursig is 0.
1260 if (!cv_reltimedwait_sig(&t->t_delay_cv,
1261 &p->p_lock, 0, TR_CLOCK_TICK)) {
1262 if (lwp->lwp_cursig == 0) {
1263 t->t_hold = lwp->lwp_sigoldmask;
1264 t->t_flag &= ~T_TOMASK;
1267 mutex_exit(&p->p_lock);
1269 DP_REFRELE(dpep);
1270 return (EINTR);
1273 mutex_exit(&p->p_lock);
1277 if ((nfds = STRUCT_FGET(dvpoll, dp_nfds)) == 0) {
1279 * We are just using DP_POLL to sleep, so
1280 * we don't any of the devpoll apparatus.
1281 * Do not check for signals if we have a zero timeout.
1283 DP_REFRELE(dpep);
1284 if (deadline == 0) {
1285 DP_SIGMASK_RESTORE(ksetp);
1286 return (0);
1289 mutex_enter(&curthread->t_delay_lock);
1290 while ((error =
1291 cv_timedwait_sig_hrtime(&curthread->t_delay_cv,
1292 &curthread->t_delay_lock, deadline)) > 0)
1293 continue;
1294 mutex_exit(&curthread->t_delay_lock);
1296 DP_SIGMASK_RESTORE(ksetp);
1298 return (error == 0 ? EINTR : 0);
1301 if (is_epoll) {
1302 size = nfds * (fdsize = sizeof (epoll_event_t));
1303 } else {
1304 size = nfds * (fdsize = sizeof (pollfd_t));
1308 * XXX It would be nice not to have to alloc each time, but it
1309 * requires another per thread structure hook. This can be
1310 * implemented later if data suggests that it's necessary.
1312 ps = pollstate_create();
1314 if (ps->ps_dpbufsize < size) {
1316 * If nfds is larger than twice the current maximum
1317 * open file count, we'll silently clamp it. This
1318 * only limits our exposure to allocating an
1319 * inordinate amount of kernel memory; it doesn't
1320 * otherwise affect the semantics. (We have this
1321 * check at twice the maximum instead of merely the
1322 * maximum because some applications pass an nfds that
1323 * is only slightly larger than their limit.)
1325 mutex_enter(&p->p_lock);
1326 if ((nfds >> 1) > p->p_fno_ctl) {
1327 nfds = p->p_fno_ctl;
1328 size = nfds * fdsize;
1330 mutex_exit(&p->p_lock);
1332 if (ps->ps_dpbufsize < size) {
1333 kmem_free(ps->ps_dpbuf, ps->ps_dpbufsize);
1334 ps->ps_dpbuf = kmem_zalloc(size, KM_SLEEP);
1335 ps->ps_dpbufsize = size;
1339 VERIFY(pollstate_enter(pcp) == PSE_SUCCESS);
1340 for (;;) {
1341 pcp->pc_flag &= ~PC_POLLWAKE;
1344 * Mark all child pcachelinks as stale.
1345 * Those which are still part of the tree will be
1346 * marked as valid during the poll.
1348 pcachelink_mark_stale(pcp);
1350 error = dp_pcache_poll(dpep, ps->ps_dpbuf,
1351 pcp, nfds, &fdcnt);
1352 if (fdcnt > 0 || error != 0)
1353 break;
1355 /* Purge still-stale child pcachelinks */
1356 pcachelink_purge_stale(pcp);
1359 * A pollwake has happened since we polled cache.
1361 if (pcp->pc_flag & PC_POLLWAKE)
1362 continue;
1365 * Sleep until we are notified, signaled, or timed out.
1367 if (deadline == 0) {
1368 /* immediate timeout; do not check signals */
1369 break;
1372 error = cv_timedwait_sig_hrtime(&pcp->pc_cv,
1373 &pcp->pc_lock, deadline);
1376 * If we were awakened by a signal or timeout then
1377 * break the loop, else poll again.
1379 if (error <= 0) {
1380 error = (error == 0) ? EINTR : 0;
1381 break;
1382 } else {
1383 error = 0;
1386 pollstate_exit(pcp);
1388 DP_SIGMASK_RESTORE(ksetp);
1390 if (error == 0 && fdcnt > 0) {
1392 * It should be noted that FKIOCTL does not influence
1393 * the copyout (vs bcopy) of dp_fds at this time.
1395 if (copyout(ps->ps_dpbuf,
1396 STRUCT_FGETP(dvpoll, dp_fds), fdcnt * fdsize)) {
1397 DP_REFRELE(dpep);
1398 return (EFAULT);
1400 *rvalp = fdcnt;
1402 break;
1405 case DP_ISPOLLED:
1407 pollfd_t pollfd;
1408 polldat_t *pdp;
1410 STRUCT_INIT(dvpoll, mode);
1411 error = copyin((caddr_t)arg, &pollfd, sizeof (pollfd_t));
1412 if (error) {
1413 DP_REFRELE(dpep);
1414 return (EFAULT);
1416 mutex_enter(&pcp->pc_lock);
1417 if (pcp->pc_hash == NULL) {
1419 * No Need to search because no poll fd
1420 * has been cached.
1422 mutex_exit(&pcp->pc_lock);
1423 DP_REFRELE(dpep);
1424 return (0);
1426 if (pollfd.fd < 0) {
1427 mutex_exit(&pcp->pc_lock);
1428 break;
1430 pdp = pcache_lookup_fd(pcp, pollfd.fd);
1431 if ((pdp != NULL) && (pdp->pd_fd == pollfd.fd) &&
1432 (pdp->pd_fp != NULL)) {
1433 pollfd.revents = pdp->pd_events;
1434 if (copyout(&pollfd, (caddr_t)arg, sizeof (pollfd_t))) {
1435 mutex_exit(&pcp->pc_lock);
1436 DP_REFRELE(dpep);
1437 return (EFAULT);
1439 *rvalp = 1;
1441 mutex_exit(&pcp->pc_lock);
1442 break;
1445 default:
1446 DP_REFRELE(dpep);
1447 return (EINVAL);
1449 DP_REFRELE(dpep);
1450 return (error);
1454 * Overview of Recursive Polling
1456 * It is possible for /dev/poll to poll for events on file descriptors which
1457 * themselves are /dev/poll handles. Pending events in the child handle are
1458 * represented as readable data via the POLLIN flag. To limit surface area,
1459 * this recursion is presently allowed on only /dev/poll handles which have
1460 * been placed in epoll mode via the DP_EPOLLCOMPAT ioctl. Recursion depth is
1461 * limited to 5 in order to be consistent with Linux epoll.
1463 * Extending dppoll() for VOP_POLL:
1465 * The recursive /dev/poll implementation begins by extending dppoll() to
1466 * report when resources contained in the pollcache have relevant event state.
1467 * At the highest level, it means calling dp_pcache_poll() so it indicates if
1468 * fd events are present without consuming them or altering the pollcache
1469 * bitmap. This ensures that a subsequent DP_POLL operation on the bitmap will
1470 * yield the initiating event. Additionally, the VOP_POLL should return in
1471 * such a way that dp_pcache_poll() does not clear the parent bitmap entry
1472 * which corresponds to the child /dev/poll fd. This means that child
1473 * pollcaches will be checked during every poll which facilitates wake-up
1474 * behavior detailed below.
1476 * Pollcache Links and Wake Events:
1478 * Recursive /dev/poll avoids complicated pollcache locking constraints during
1479 * pollwakeup events by eschewing the traditional pollhead mechanism in favor
1480 * of a different approach. For each pollcache at the root of a recursive
1481 * /dev/poll "tree", pcachelink_t structures are established to all child
1482 * /dev/poll pollcaches. During pollnotify() in a child pollcache, the
1483 * linked list of pcachelink_t entries is walked, where those marked as valid
1484 * incur a cv_broadcast to their parent pollcache. Most notably, these
1485 * pcachelink_t cv wakeups are performed without acquiring pc_lock on the
1486 * parent pollcache (which would require careful deadlock avoidance). This
1487 * still allows the woken poll on the parent to discover the pertinent events
1488 * due to the fact that bitmap entires for the child pollcache are always
1489 * maintained by the dppoll() logic above.
1491 * Depth Limiting and Loop Prevention:
1493 * As each pollcache is encountered (either via DP_POLL or dppoll()), depth and
1494 * loop constraints are enforced via pollstate_enter(). The pollcache_t
1495 * pointer is compared against any existing entries in ps_pc_stack and is added
1496 * to the end if no match (and therefore loop) is found. Once poll operations
1497 * for a given pollcache_t are complete, pollstate_exit() clears the pointer
1498 * from the list. The pollstate_enter() and pollstate_exit() functions are
1499 * responsible for acquiring and releasing pc_lock, respectively.
1501 * Deadlock Safety:
1503 * Descending through a tree of recursive /dev/poll handles involves the tricky
1504 * business of sequentially entering multiple pollcache locks. This tree
1505 * topology cannot define a lock acquisition order in such a way that it is
1506 * immune to deadlocks between threads. The pollstate_enter() and
1507 * pollstate_exit() functions provide an interface for recursive /dev/poll
1508 * operations to safely lock pollcaches while failing gracefully in the face of
1509 * deadlocking topologies. (See pollstate_contend() for more detail about how
1510 * deadlocks are detected and resolved.)
1513 /*ARGSUSED*/
1514 static int
1515 dppoll(dev_t dev, short events, int anyyet, short *reventsp,
1516 struct pollhead **phpp)
1518 minor_t minor;
1519 dp_entry_t *dpep;
1520 pollcache_t *pcp;
1521 int res, rc = 0;
1523 minor = getminor(dev);
1524 mutex_enter(&devpoll_lock);
1525 ASSERT(minor < dptblsize);
1526 dpep = devpolltbl[minor];
1527 ASSERT(dpep != NULL);
1528 mutex_exit(&devpoll_lock);
1530 mutex_enter(&dpep->dpe_lock);
1531 if ((dpep->dpe_flag & DP_ISEPOLLCOMPAT) == 0) {
1532 /* Poll recursion is not yet supported for non-epoll handles */
1533 *reventsp = POLLERR;
1534 mutex_exit(&dpep->dpe_lock);
1535 return (0);
1536 } else {
1537 dpep->dpe_refcnt++;
1538 pcp = dpep->dpe_pcache;
1539 mutex_exit(&dpep->dpe_lock);
1542 res = pollstate_enter(pcp);
1543 if (res == PSE_SUCCESS) {
1544 nfds_t nfds = 1;
1545 int fdcnt = 0;
1546 pollstate_t *ps = curthread->t_pollstate;
1549 * Recursive polling will only emit certain events. Skip a
1550 * scan of the pollcache if those events are not of interest.
1552 if (events & (POLLIN|POLLRDNORM)) {
1553 rc = dp_pcache_poll(dpep, NULL, pcp, nfds, &fdcnt);
1554 } else {
1555 rc = 0;
1556 fdcnt = 0;
1559 if (rc == 0 && fdcnt > 0) {
1560 *reventsp = POLLIN|POLLRDNORM;
1561 } else {
1562 *reventsp = 0;
1564 pcachelink_assoc(pcp, ps->ps_pc_stack[0]);
1565 pollstate_exit(pcp);
1566 } else {
1567 switch (res) {
1568 case PSE_FAIL_DEPTH:
1569 rc = EINVAL;
1570 break;
1571 case PSE_FAIL_LOOP:
1572 case PSE_FAIL_DEADLOCK:
1573 rc = ELOOP;
1574 break;
1575 default:
1577 * If anything else has gone awry, such as being polled
1578 * from an unexpected context, fall back to the
1579 * recursion-intolerant response.
1581 *reventsp = POLLERR;
1582 rc = 0;
1583 break;
1587 DP_REFRELE(dpep);
1588 return (rc);
1592 * devpoll close should do enough clean up before the pollcache is deleted,
1593 * i.e., it should ensure no one still references the pollcache later.
1594 * There is no "permission" check in here. Any process having the last
1595 * reference of this /dev/poll fd can close.
1597 /*ARGSUSED*/
1598 static int
1599 dpclose(dev_t dev, int flag, int otyp, cred_t *credp)
1601 minor_t minor;
1602 dp_entry_t *dpep;
1603 pollcache_t *pcp;
1604 int i;
1605 polldat_t **hashtbl;
1606 polldat_t *pdp;
1608 minor = getminor(dev);
1610 mutex_enter(&devpoll_lock);
1611 dpep = devpolltbl[minor];
1612 ASSERT(dpep != NULL);
1613 devpolltbl[minor] = NULL;
1614 mutex_exit(&devpoll_lock);
1615 pcp = dpep->dpe_pcache;
1616 ASSERT(pcp != NULL);
1618 * At this point, no other lwp can access this pollcache via the
1619 * /dev/poll fd. This pollcache is going away, so do the clean
1620 * up without the pc_lock.
1622 hashtbl = pcp->pc_hash;
1623 for (i = 0; i < pcp->pc_hashsize; i++) {
1624 for (pdp = hashtbl[i]; pdp; pdp = pdp->pd_hashnext) {
1625 if (pdp->pd_php != NULL) {
1626 pollhead_delete(pdp->pd_php, pdp);
1627 pdp->pd_php = NULL;
1628 pdp->pd_fp = NULL;
1633 * pollwakeup() may still interact with this pollcache. Wait until
1634 * it is done.
1636 mutex_enter(&pcp->pc_no_exit);
1637 ASSERT(pcp->pc_busy >= 0);
1638 while (pcp->pc_busy > 0)
1639 cv_wait(&pcp->pc_busy_cv, &pcp->pc_no_exit);
1640 mutex_exit(&pcp->pc_no_exit);
1642 /* Clean up any pollcache links created via recursive /dev/poll */
1643 if (pcp->pc_parents != NULL || pcp->pc_children != NULL) {
1645 * Because of the locking rules for pcachelink manipulation,
1646 * acquring pc_lock is required for this step.
1648 mutex_enter(&pcp->pc_lock);
1649 pcachelink_purge_all(pcp);
1650 mutex_exit(&pcp->pc_lock);
1653 pcache_destroy(pcp);
1654 ASSERT(dpep->dpe_refcnt == 0);
1655 kmem_free(dpep, sizeof (dp_entry_t));
1656 return (0);
1659 static void
1660 pcachelink_locked_rele(pcachelink_t *pl)
1662 ASSERT(MUTEX_HELD(&pl->pcl_lock));
1663 VERIFY(pl->pcl_refcnt >= 1);
1665 pl->pcl_refcnt--;
1666 if (pl->pcl_refcnt == 0) {
1667 VERIFY(pl->pcl_state == PCL_INVALID);
1668 ASSERT(pl->pcl_parent_pc == NULL);
1669 ASSERT(pl->pcl_child_pc == NULL);
1670 ASSERT(pl->pcl_parent_next == NULL);
1671 ASSERT(pl->pcl_child_next == NULL);
1673 pl->pcl_state = PCL_FREE;
1674 mutex_destroy(&pl->pcl_lock);
1675 kmem_free(pl, sizeof (pcachelink_t));
1676 } else {
1677 mutex_exit(&pl->pcl_lock);
1682 * Associate parent and child pollcaches via a pcachelink_t. If an existing
1683 * link (stale or valid) between the two is found, it will be reused. If a
1684 * suitable link is not found for reuse, a new one will be allocated.
1686 static void
1687 pcachelink_assoc(pollcache_t *child, pollcache_t *parent)
1689 pcachelink_t *pl, **plpn;
1691 ASSERT(MUTEX_HELD(&child->pc_lock));
1692 ASSERT(MUTEX_HELD(&parent->pc_lock));
1694 /* Search for an existing link we can reuse. */
1695 plpn = &child->pc_parents;
1696 for (pl = child->pc_parents; pl != NULL; pl = *plpn) {
1697 mutex_enter(&pl->pcl_lock);
1698 if (pl->pcl_state == PCL_INVALID) {
1699 /* Clean any invalid links while walking the list */
1700 *plpn = pl->pcl_parent_next;
1701 pl->pcl_child_pc = NULL;
1702 pl->pcl_parent_next = NULL;
1703 pcachelink_locked_rele(pl);
1704 } else if (pl->pcl_parent_pc == parent) {
1705 /* Successfully found parent link */
1706 ASSERT(pl->pcl_state == PCL_VALID ||
1707 pl->pcl_state == PCL_STALE);
1708 pl->pcl_state = PCL_VALID;
1709 mutex_exit(&pl->pcl_lock);
1710 return;
1711 } else {
1712 plpn = &pl->pcl_parent_next;
1713 mutex_exit(&pl->pcl_lock);
1717 /* No existing link to the parent was found. Create a fresh one. */
1718 pl = kmem_zalloc(sizeof (pcachelink_t), KM_SLEEP);
1719 mutex_init(&pl->pcl_lock, NULL, MUTEX_DEFAULT, NULL);
1721 pl->pcl_parent_pc = parent;
1722 pl->pcl_child_next = parent->pc_children;
1723 parent->pc_children = pl;
1724 pl->pcl_refcnt++;
1726 pl->pcl_child_pc = child;
1727 pl->pcl_parent_next = child->pc_parents;
1728 child->pc_parents = pl;
1729 pl->pcl_refcnt++;
1731 pl->pcl_state = PCL_VALID;
1735 * Mark all child links in a pollcache as stale. Any invalid child links found
1736 * during iteration are purged.
1738 static void
1739 pcachelink_mark_stale(pollcache_t *pcp)
1741 pcachelink_t *pl, **plpn;
1743 ASSERT(MUTEX_HELD(&pcp->pc_lock));
1745 plpn = &pcp->pc_children;
1746 for (pl = pcp->pc_children; pl != NULL; pl = *plpn) {
1747 mutex_enter(&pl->pcl_lock);
1748 if (pl->pcl_state == PCL_INVALID) {
1750 * Remove any invalid links while we are going to the
1751 * trouble of walking the list.
1753 *plpn = pl->pcl_child_next;
1754 pl->pcl_parent_pc = NULL;
1755 pl->pcl_child_next = NULL;
1756 pcachelink_locked_rele(pl);
1757 } else {
1758 pl->pcl_state = PCL_STALE;
1759 plpn = &pl->pcl_child_next;
1760 mutex_exit(&pl->pcl_lock);
1766 * Purge all stale (or invalid) child links from a pollcache.
1768 static void
1769 pcachelink_purge_stale(pollcache_t *pcp)
1771 pcachelink_t *pl, **plpn;
1773 ASSERT(MUTEX_HELD(&pcp->pc_lock));
1775 plpn = &pcp->pc_children;
1776 for (pl = pcp->pc_children; pl != NULL; pl = *plpn) {
1777 mutex_enter(&pl->pcl_lock);
1778 switch (pl->pcl_state) {
1779 case PCL_STALE:
1780 pl->pcl_state = PCL_INVALID;
1781 /* FALLTHROUGH */
1782 case PCL_INVALID:
1783 *plpn = pl->pcl_child_next;
1784 pl->pcl_parent_pc = NULL;
1785 pl->pcl_child_next = NULL;
1786 pcachelink_locked_rele(pl);
1787 break;
1788 default:
1789 plpn = &pl->pcl_child_next;
1790 mutex_exit(&pl->pcl_lock);
1796 * Purge all child and parent links from a pollcache, regardless of status.
1798 static void
1799 pcachelink_purge_all(pollcache_t *pcp)
1801 pcachelink_t *pl, **plpn;
1803 ASSERT(MUTEX_HELD(&pcp->pc_lock));
1805 plpn = &pcp->pc_parents;
1806 for (pl = pcp->pc_parents; pl != NULL; pl = *plpn) {
1807 mutex_enter(&pl->pcl_lock);
1808 pl->pcl_state = PCL_INVALID;
1809 *plpn = pl->pcl_parent_next;
1810 pl->pcl_child_pc = NULL;
1811 pl->pcl_parent_next = NULL;
1812 pcachelink_locked_rele(pl);
1815 plpn = &pcp->pc_children;
1816 for (pl = pcp->pc_children; pl != NULL; pl = *plpn) {
1817 mutex_enter(&pl->pcl_lock);
1818 pl->pcl_state = PCL_INVALID;
1819 *plpn = pl->pcl_child_next;
1820 pl->pcl_parent_pc = NULL;
1821 pl->pcl_child_next = NULL;
1822 pcachelink_locked_rele(pl);
1825 ASSERT(pcp->pc_parents == NULL);
1826 ASSERT(pcp->pc_children == NULL);