Merge illumos-gate
[unleashed.git] / kernel / fs / zfs / zio.c
blob0e58f5ec1e4305fff233517a11a9677f7ce6b528
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
28 #include <sys/sysmacros.h>
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/txg.h>
33 #include <sys/spa_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio_impl.h>
36 #include <sys/zio_compress.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/ddt.h>
41 #include <sys/blkptr.h>
42 #include <sys/zfeature.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/abd.h>
45 #include <sys/cityhash.h>
48 * ==========================================================================
49 * I/O type descriptions
50 * ==========================================================================
52 const char *zio_type_name[ZIO_TYPES] = {
53 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
54 "zio_ioctl"
57 boolean_t zio_dva_throttle_enabled = B_TRUE;
60 * ==========================================================================
61 * I/O kmem caches
62 * ==========================================================================
64 kmem_cache_t *zio_cache;
65 kmem_cache_t *zio_link_cache;
66 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
67 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
69 #ifdef _KERNEL
70 extern vmem_t *zio_alloc_arena;
71 #endif
73 #define ZIO_PIPELINE_CONTINUE 0x100
74 #define ZIO_PIPELINE_STOP 0x101
76 #define BP_SPANB(indblkshift, level) \
77 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
78 #define COMPARE_META_LEVEL 0x80000000ul
80 * The following actions directly effect the spa's sync-to-convergence logic.
81 * The values below define the sync pass when we start performing the action.
82 * Care should be taken when changing these values as they directly impact
83 * spa_sync() performance. Tuning these values may introduce subtle performance
84 * pathologies and should only be done in the context of performance analysis.
85 * These tunables will eventually be removed and replaced with #defines once
86 * enough analysis has been done to determine optimal values.
88 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
89 * regular blocks are not deferred.
91 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
92 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
93 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
96 * An allocating zio is one that either currently has the DVA allocate
97 * stage set or will have it later in its lifetime.
99 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
101 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE;
103 #ifdef ZFS_DEBUG
104 int zio_buf_debug_limit = 16384;
105 #else
106 int zio_buf_debug_limit = 0;
107 #endif
109 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
111 void
112 zio_init(void)
114 size_t c;
115 vmem_t *data_alloc_arena = NULL;
117 #ifdef _KERNEL
118 data_alloc_arena = zio_alloc_arena;
119 #endif
120 zio_cache = kmem_cache_create("zio_cache",
121 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
122 zio_link_cache = kmem_cache_create("zio_link_cache",
123 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
126 * For small buffers, we want a cache for each multiple of
127 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
128 * for each quarter-power of 2.
130 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
131 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
132 size_t p2 = size;
133 size_t align = 0;
134 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
136 while (!ISP2(p2))
137 p2 &= p2 - 1;
139 #ifndef _KERNEL
141 * If we are using watchpoints, put each buffer on its own page,
142 * to eliminate the performance overhead of trapping to the
143 * kernel when modifying a non-watched buffer that shares the
144 * page with a watched buffer.
146 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
147 continue;
148 #endif
149 if (size <= 4 * SPA_MINBLOCKSIZE) {
150 align = SPA_MINBLOCKSIZE;
151 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
152 align = MIN(p2 >> 2, PAGESIZE);
155 if (align != 0) {
156 char name[36];
157 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
158 zio_buf_cache[c] = kmem_cache_create(name, size,
159 align, NULL, NULL, NULL, NULL, NULL, cflags);
162 * Since zio_data bufs do not appear in crash dumps, we
163 * pass KMC_NOTOUCH so that no allocator metadata is
164 * stored with the buffers.
166 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
167 zio_data_buf_cache[c] = kmem_cache_create(name, size,
168 align, NULL, NULL, NULL, NULL, data_alloc_arena,
169 cflags | KMC_NOTOUCH);
173 while (--c != 0) {
174 ASSERT(zio_buf_cache[c] != NULL);
175 if (zio_buf_cache[c - 1] == NULL)
176 zio_buf_cache[c - 1] = zio_buf_cache[c];
178 ASSERT(zio_data_buf_cache[c] != NULL);
179 if (zio_data_buf_cache[c - 1] == NULL)
180 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
183 zio_inject_init();
186 void
187 zio_fini(void)
189 size_t c;
190 kmem_cache_t *last_cache = NULL;
191 kmem_cache_t *last_data_cache = NULL;
193 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
194 if (zio_buf_cache[c] != last_cache) {
195 last_cache = zio_buf_cache[c];
196 kmem_cache_destroy(zio_buf_cache[c]);
198 zio_buf_cache[c] = NULL;
200 if (zio_data_buf_cache[c] != last_data_cache) {
201 last_data_cache = zio_data_buf_cache[c];
202 kmem_cache_destroy(zio_data_buf_cache[c]);
204 zio_data_buf_cache[c] = NULL;
207 kmem_cache_destroy(zio_link_cache);
208 kmem_cache_destroy(zio_cache);
210 zio_inject_fini();
214 * ==========================================================================
215 * Allocate and free I/O buffers
216 * ==========================================================================
220 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
221 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
222 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
223 * excess / transient data in-core during a crashdump.
225 void *
226 zio_buf_alloc(size_t size)
228 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
230 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
232 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
236 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
237 * crashdump if the kernel panics. This exists so that we will limit the amount
238 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
239 * of kernel heap dumped to disk when the kernel panics)
241 void *
242 zio_data_buf_alloc(size_t size)
244 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
246 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
248 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
251 void
252 zio_buf_free(void *buf, size_t size)
254 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
256 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
258 kmem_cache_free(zio_buf_cache[c], buf);
261 void
262 zio_data_buf_free(void *buf, size_t size)
264 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
266 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
268 kmem_cache_free(zio_data_buf_cache[c], buf);
272 * ==========================================================================
273 * Push and pop I/O transform buffers
274 * ==========================================================================
276 void
277 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
278 zio_transform_func_t *transform)
280 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
283 * Ensure that anyone expecting this zio to contain a linear ABD isn't
284 * going to get a nasty surprise when they try to access the data.
286 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
288 zt->zt_orig_abd = zio->io_abd;
289 zt->zt_orig_size = zio->io_size;
290 zt->zt_bufsize = bufsize;
291 zt->zt_transform = transform;
293 zt->zt_next = zio->io_transform_stack;
294 zio->io_transform_stack = zt;
296 zio->io_abd = data;
297 zio->io_size = size;
300 void
301 zio_pop_transforms(zio_t *zio)
303 zio_transform_t *zt;
305 while ((zt = zio->io_transform_stack) != NULL) {
306 if (zt->zt_transform != NULL)
307 zt->zt_transform(zio,
308 zt->zt_orig_abd, zt->zt_orig_size);
310 if (zt->zt_bufsize != 0)
311 abd_free(zio->io_abd);
313 zio->io_abd = zt->zt_orig_abd;
314 zio->io_size = zt->zt_orig_size;
315 zio->io_transform_stack = zt->zt_next;
317 kmem_free(zt, sizeof (zio_transform_t));
322 * ==========================================================================
323 * I/O transform callbacks for subblocks and decompression
324 * ==========================================================================
326 static void
327 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
329 ASSERT(zio->io_size > size);
331 if (zio->io_type == ZIO_TYPE_READ)
332 abd_copy(data, zio->io_abd, size);
335 static void
336 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
338 if (zio->io_error == 0) {
339 void *tmp = abd_borrow_buf(data, size);
340 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
341 zio->io_abd, tmp, zio->io_size, size);
342 abd_return_buf_copy(data, tmp, size);
344 if (ret != 0)
345 zio->io_error = SET_ERROR(EIO);
350 * ==========================================================================
351 * I/O parent/child relationships and pipeline interlocks
352 * ==========================================================================
354 zio_t *
355 zio_walk_parents(zio_t *cio, zio_link_t **zl)
357 list_t *pl = &cio->io_parent_list;
359 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
360 if (*zl == NULL)
361 return (NULL);
363 ASSERT((*zl)->zl_child == cio);
364 return ((*zl)->zl_parent);
367 zio_t *
368 zio_walk_children(zio_t *pio, zio_link_t **zl)
370 list_t *cl = &pio->io_child_list;
372 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
373 if (*zl == NULL)
374 return (NULL);
376 ASSERT((*zl)->zl_parent == pio);
377 return ((*zl)->zl_child);
380 zio_t *
381 zio_unique_parent(zio_t *cio)
383 zio_link_t *zl = NULL;
384 zio_t *pio = zio_walk_parents(cio, &zl);
386 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
387 return (pio);
390 void
391 zio_add_child(zio_t *pio, zio_t *cio)
393 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
396 * Logical I/Os can have logical, gang, or vdev children.
397 * Gang I/Os can have gang or vdev children.
398 * Vdev I/Os can only have vdev children.
399 * The following ASSERT captures all of these constraints.
401 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
403 zl->zl_parent = pio;
404 zl->zl_child = cio;
406 mutex_enter(&cio->io_lock);
407 mutex_enter(&pio->io_lock);
409 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
411 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
412 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
414 list_insert_head(&pio->io_child_list, zl);
415 list_insert_head(&cio->io_parent_list, zl);
417 pio->io_child_count++;
418 cio->io_parent_count++;
420 mutex_exit(&pio->io_lock);
421 mutex_exit(&cio->io_lock);
424 static void
425 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
427 ASSERT(zl->zl_parent == pio);
428 ASSERT(zl->zl_child == cio);
430 mutex_enter(&cio->io_lock);
431 mutex_enter(&pio->io_lock);
433 list_remove(&pio->io_child_list, zl);
434 list_remove(&cio->io_parent_list, zl);
436 pio->io_child_count--;
437 cio->io_parent_count--;
439 mutex_exit(&pio->io_lock);
440 mutex_exit(&cio->io_lock);
442 kmem_cache_free(zio_link_cache, zl);
445 static boolean_t
446 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
448 boolean_t waiting = B_FALSE;
450 mutex_enter(&zio->io_lock);
451 ASSERT(zio->io_stall == NULL);
452 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
453 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
454 continue;
456 uint64_t *countp = &zio->io_children[c][wait];
457 if (*countp != 0) {
458 zio->io_stage >>= 1;
459 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
460 zio->io_stall = countp;
461 waiting = B_TRUE;
462 break;
465 mutex_exit(&zio->io_lock);
466 return (waiting);
469 static void
470 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
472 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
473 int *errorp = &pio->io_child_error[zio->io_child_type];
475 mutex_enter(&pio->io_lock);
476 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
477 *errorp = zio_worst_error(*errorp, zio->io_error);
478 pio->io_reexecute |= zio->io_reexecute;
479 ASSERT3U(*countp, >, 0);
481 (*countp)--;
483 if (*countp == 0 && pio->io_stall == countp) {
484 zio_taskq_type_t type =
485 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
486 ZIO_TASKQ_INTERRUPT;
487 pio->io_stall = NULL;
488 mutex_exit(&pio->io_lock);
490 * Dispatch the parent zio in its own taskq so that
491 * the child can continue to make progress. This also
492 * prevents overflowing the stack when we have deeply nested
493 * parent-child relationships.
495 zio_taskq_dispatch(pio, type, B_FALSE);
496 } else {
497 mutex_exit(&pio->io_lock);
501 static void
502 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
504 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
505 zio->io_error = zio->io_child_error[c];
509 zio_bookmark_compare(const void *x1, const void *x2)
511 const zio_t *z1 = x1;
512 const zio_t *z2 = x2;
514 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
515 return (-1);
516 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
517 return (1);
519 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
520 return (-1);
521 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
522 return (1);
524 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
525 return (-1);
526 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
527 return (1);
529 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
530 return (-1);
531 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
532 return (1);
534 if (z1 < z2)
535 return (-1);
536 if (z1 > z2)
537 return (1);
539 return (0);
543 * ==========================================================================
544 * Create the various types of I/O (read, write, free, etc)
545 * ==========================================================================
547 static zio_t *
548 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
549 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
550 void *private, zio_type_t type, zio_priority_t priority,
551 enum zio_flag flags, vdev_t *vd, uint64_t offset,
552 const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
554 zio_t *zio;
556 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
557 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
558 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
560 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
561 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
562 ASSERT(vd || stage == ZIO_STAGE_OPEN);
564 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0);
566 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
567 bzero(zio, sizeof (zio_t));
569 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
570 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
572 list_create(&zio->io_parent_list, sizeof (zio_link_t),
573 offsetof(zio_link_t, zl_parent_node));
574 list_create(&zio->io_child_list, sizeof (zio_link_t),
575 offsetof(zio_link_t, zl_child_node));
576 metaslab_trace_init(&zio->io_alloc_list);
578 if (vd != NULL)
579 zio->io_child_type = ZIO_CHILD_VDEV;
580 else if (flags & ZIO_FLAG_GANG_CHILD)
581 zio->io_child_type = ZIO_CHILD_GANG;
582 else if (flags & ZIO_FLAG_DDT_CHILD)
583 zio->io_child_type = ZIO_CHILD_DDT;
584 else
585 zio->io_child_type = ZIO_CHILD_LOGICAL;
587 if (bp != NULL) {
588 zio->io_bp = (blkptr_t *)bp;
589 zio->io_bp_copy = *bp;
590 zio->io_bp_orig = *bp;
591 if (type != ZIO_TYPE_WRITE ||
592 zio->io_child_type == ZIO_CHILD_DDT)
593 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
594 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
595 zio->io_logical = zio;
596 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
597 pipeline |= ZIO_GANG_STAGES;
600 zio->io_spa = spa;
601 zio->io_txg = txg;
602 zio->io_done = done;
603 zio->io_private = private;
604 zio->io_type = type;
605 zio->io_priority = priority;
606 zio->io_vd = vd;
607 zio->io_offset = offset;
608 zio->io_orig_abd = zio->io_abd = data;
609 zio->io_orig_size = zio->io_size = psize;
610 zio->io_lsize = lsize;
611 zio->io_orig_flags = zio->io_flags = flags;
612 zio->io_orig_stage = zio->io_stage = stage;
613 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
614 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
616 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
617 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
619 if (zb != NULL)
620 zio->io_bookmark = *zb;
622 if (pio != NULL) {
623 if (zio->io_logical == NULL)
624 zio->io_logical = pio->io_logical;
625 if (zio->io_child_type == ZIO_CHILD_GANG)
626 zio->io_gang_leader = pio->io_gang_leader;
627 zio_add_child(pio, zio);
630 return (zio);
633 static void
634 zio_destroy(zio_t *zio)
636 metaslab_trace_fini(&zio->io_alloc_list);
637 list_destroy(&zio->io_parent_list);
638 list_destroy(&zio->io_child_list);
639 mutex_destroy(&zio->io_lock);
640 cv_destroy(&zio->io_cv);
641 kmem_cache_free(zio_cache, zio);
644 zio_t *
645 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
646 void *private, enum zio_flag flags)
648 zio_t *zio;
650 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
651 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
652 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
654 return (zio);
657 zio_t *
658 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
660 return (zio_null(NULL, spa, NULL, done, private, flags));
663 void
664 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
666 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
667 zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
668 bp, (longlong_t)BP_GET_TYPE(bp));
670 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
671 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
672 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
673 bp, (longlong_t)BP_GET_CHECKSUM(bp));
675 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
676 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
677 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
678 bp, (longlong_t)BP_GET_COMPRESS(bp));
680 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
681 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
682 bp, (longlong_t)BP_GET_LSIZE(bp));
684 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
685 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
686 bp, (longlong_t)BP_GET_PSIZE(bp));
689 if (BP_IS_EMBEDDED(bp)) {
690 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
691 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
692 bp, (longlong_t)BPE_GET_ETYPE(bp));
697 * Do not verify individual DVAs if the config is not trusted. This
698 * will be done once the zio is executed in vdev_mirror_map_alloc.
700 if (!spa->spa_trust_config)
701 return;
704 * Pool-specific checks.
706 * Note: it would be nice to verify that the blk_birth and
707 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
708 * allows the birth time of log blocks (and dmu_sync()-ed blocks
709 * that are in the log) to be arbitrarily large.
711 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
712 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
713 if (vdevid >= spa->spa_root_vdev->vdev_children) {
714 zfs_panic_recover("blkptr at %p DVA %u has invalid "
715 "VDEV %llu",
716 bp, i, (longlong_t)vdevid);
717 continue;
719 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
720 if (vd == NULL) {
721 zfs_panic_recover("blkptr at %p DVA %u has invalid "
722 "VDEV %llu",
723 bp, i, (longlong_t)vdevid);
724 continue;
726 if (vd->vdev_ops == &vdev_hole_ops) {
727 zfs_panic_recover("blkptr at %p DVA %u has hole "
728 "VDEV %llu",
729 bp, i, (longlong_t)vdevid);
730 continue;
732 if (vd->vdev_ops == &vdev_missing_ops) {
734 * "missing" vdevs are valid during import, but we
735 * don't have their detailed info (e.g. asize), so
736 * we can't perform any more checks on them.
738 continue;
740 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
741 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
742 if (BP_IS_GANG(bp))
743 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
744 if (offset + asize > vd->vdev_asize) {
745 zfs_panic_recover("blkptr at %p DVA %u has invalid "
746 "OFFSET %llu",
747 bp, i, (longlong_t)offset);
752 boolean_t
753 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
755 uint64_t vdevid = DVA_GET_VDEV(dva);
757 if (vdevid >= spa->spa_root_vdev->vdev_children)
758 return (B_FALSE);
760 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
761 if (vd == NULL)
762 return (B_FALSE);
764 if (vd->vdev_ops == &vdev_hole_ops)
765 return (B_FALSE);
767 if (vd->vdev_ops == &vdev_missing_ops) {
768 return (B_FALSE);
771 uint64_t offset = DVA_GET_OFFSET(dva);
772 uint64_t asize = DVA_GET_ASIZE(dva);
774 if (BP_IS_GANG(bp))
775 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
776 if (offset + asize > vd->vdev_asize)
777 return (B_FALSE);
779 return (B_TRUE);
782 zio_t *
783 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
784 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
785 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
787 zio_t *zio;
789 zfs_blkptr_verify(spa, bp);
791 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
792 data, size, size, done, private,
793 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
794 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
795 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
797 return (zio);
800 zio_t *
801 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
802 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
803 zio_done_func_t *ready, zio_done_func_t *children_ready,
804 zio_done_func_t *physdone, zio_done_func_t *done,
805 void *private, zio_priority_t priority, enum zio_flag flags,
806 const zbookmark_phys_t *zb)
808 zio_t *zio;
810 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
811 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
812 zp->zp_compress >= ZIO_COMPRESS_OFF &&
813 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
814 DMU_OT_IS_VALID(zp->zp_type) &&
815 zp->zp_level < 32 &&
816 zp->zp_copies > 0 &&
817 zp->zp_copies <= spa_max_replication(spa));
819 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
820 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
821 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
822 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
824 zio->io_ready = ready;
825 zio->io_children_ready = children_ready;
826 zio->io_physdone = physdone;
827 zio->io_prop = *zp;
830 * Data can be NULL if we are going to call zio_write_override() to
831 * provide the already-allocated BP. But we may need the data to
832 * verify a dedup hit (if requested). In this case, don't try to
833 * dedup (just take the already-allocated BP verbatim).
835 if (data == NULL && zio->io_prop.zp_dedup_verify) {
836 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
839 return (zio);
842 zio_t *
843 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
844 uint64_t size, zio_done_func_t *done, void *private,
845 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
847 zio_t *zio;
849 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
850 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
851 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
853 return (zio);
856 void
857 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
859 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
860 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
861 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
862 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
865 * We must reset the io_prop to match the values that existed
866 * when the bp was first written by dmu_sync() keeping in mind
867 * that nopwrite and dedup are mutually exclusive.
869 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
870 zio->io_prop.zp_nopwrite = nopwrite;
871 zio->io_prop.zp_copies = copies;
872 zio->io_bp_override = bp;
875 void
876 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
879 zfs_blkptr_verify(spa, bp);
882 * The check for EMBEDDED is a performance optimization. We
883 * process the free here (by ignoring it) rather than
884 * putting it on the list and then processing it in zio_free_sync().
886 if (BP_IS_EMBEDDED(bp))
887 return;
888 metaslab_check_free(spa, bp);
891 * Frees that are for the currently-syncing txg, are not going to be
892 * deferred, and which will not need to do a read (i.e. not GANG or
893 * DEDUP), can be processed immediately. Otherwise, put them on the
894 * in-memory list for later processing.
896 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
897 txg != spa->spa_syncing_txg ||
898 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
899 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
900 } else {
901 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
905 zio_t *
906 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
907 enum zio_flag flags)
909 zio_t *zio;
910 enum zio_stage stage = ZIO_FREE_PIPELINE;
912 ASSERT(!BP_IS_HOLE(bp));
913 ASSERT(spa_syncing_txg(spa) == txg);
914 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
916 if (BP_IS_EMBEDDED(bp))
917 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
919 metaslab_check_free(spa, bp);
920 arc_freed(spa, bp);
923 * GANG and DEDUP blocks can induce a read (for the gang block header,
924 * or the DDT), so issue them asynchronously so that this thread is
925 * not tied up.
927 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
928 stage |= ZIO_STAGE_ISSUE_ASYNC;
930 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
931 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
932 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
934 return (zio);
937 zio_t *
938 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
939 zio_done_func_t *done, void *private, enum zio_flag flags)
941 zio_t *zio;
943 zfs_blkptr_verify(spa, bp);
945 if (BP_IS_EMBEDDED(bp))
946 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
949 * A claim is an allocation of a specific block. Claims are needed
950 * to support immediate writes in the intent log. The issue is that
951 * immediate writes contain committed data, but in a txg that was
952 * *not* committed. Upon opening the pool after an unclean shutdown,
953 * the intent log claims all blocks that contain immediate write data
954 * so that the SPA knows they're in use.
956 * All claims *must* be resolved in the first txg -- before the SPA
957 * starts allocating blocks -- so that nothing is allocated twice.
958 * If txg == 0 we just verify that the block is claimable.
960 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
961 spa_min_claim_txg(spa));
962 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
963 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */
965 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
966 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
967 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
968 ASSERT0(zio->io_queued_timestamp);
970 return (zio);
973 zio_t *
974 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
975 zio_done_func_t *done, void *private, enum zio_flag flags)
977 zio_t *zio;
978 int c;
980 if (vd->vdev_children == 0) {
981 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
982 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
983 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
985 zio->io_cmd = cmd;
986 } else {
987 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
989 for (c = 0; c < vd->vdev_children; c++)
990 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
991 done, private, flags));
994 return (zio);
997 zio_t *
998 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
999 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1000 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1002 zio_t *zio;
1004 ASSERT(vd->vdev_children == 0);
1005 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1006 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1007 ASSERT3U(offset + size, <=, vd->vdev_psize);
1009 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1010 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1011 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1013 zio->io_prop.zp_checksum = checksum;
1015 return (zio);
1018 zio_t *
1019 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1020 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1021 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1023 zio_t *zio;
1025 ASSERT(vd->vdev_children == 0);
1026 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1027 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1028 ASSERT3U(offset + size, <=, vd->vdev_psize);
1030 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1031 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1032 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1034 zio->io_prop.zp_checksum = checksum;
1036 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1038 * zec checksums are necessarily destructive -- they modify
1039 * the end of the write buffer to hold the verifier/checksum.
1040 * Therefore, we must make a local copy in case the data is
1041 * being written to multiple places in parallel.
1043 abd_t *wbuf = abd_alloc_sametype(data, size);
1044 abd_copy(wbuf, data, size);
1046 zio_push_transform(zio, wbuf, size, size, NULL);
1049 return (zio);
1053 * Create a child I/O to do some work for us.
1055 zio_t *
1056 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1057 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1058 enum zio_flag flags, zio_done_func_t *done, void *private)
1060 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1061 zio_t *zio;
1064 * vdev child I/Os do not propagate their error to the parent.
1065 * Therefore, for correct operation the caller *must* check for
1066 * and handle the error in the child i/o's done callback.
1067 * The only exceptions are i/os that we don't care about
1068 * (OPTIONAL or REPAIR).
1070 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1071 done != NULL);
1073 if (type == ZIO_TYPE_READ && bp != NULL) {
1075 * If we have the bp, then the child should perform the
1076 * checksum and the parent need not. This pushes error
1077 * detection as close to the leaves as possible and
1078 * eliminates redundant checksums in the interior nodes.
1080 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1081 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1084 if (vd->vdev_ops->vdev_op_leaf) {
1085 ASSERT0(vd->vdev_children);
1086 offset += VDEV_LABEL_START_SIZE;
1089 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1092 * If we've decided to do a repair, the write is not speculative --
1093 * even if the original read was.
1095 if (flags & ZIO_FLAG_IO_REPAIR)
1096 flags &= ~ZIO_FLAG_SPECULATIVE;
1099 * If we're creating a child I/O that is not associated with a
1100 * top-level vdev, then the child zio is not an allocating I/O.
1101 * If this is a retried I/O then we ignore it since we will
1102 * have already processed the original allocating I/O.
1104 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1105 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1106 metaslab_class_t *mc = spa_normal_class(pio->io_spa);
1108 ASSERT(mc->mc_alloc_throttle_enabled);
1109 ASSERT(type == ZIO_TYPE_WRITE);
1110 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1111 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1112 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1113 pio->io_child_type == ZIO_CHILD_GANG);
1115 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1118 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1119 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1120 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1121 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1123 zio->io_physdone = pio->io_physdone;
1124 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1125 zio->io_logical->io_phys_children++;
1127 return (zio);
1130 zio_t *
1131 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1132 zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1133 zio_done_func_t *done, void *private)
1135 zio_t *zio;
1137 ASSERT(vd->vdev_ops->vdev_op_leaf);
1139 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1140 data, size, size, done, private, type, priority,
1141 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1142 vd, offset, NULL,
1143 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1145 return (zio);
1148 void
1149 zio_flush(zio_t *zio, vdev_t *vd)
1151 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1152 NULL, NULL,
1153 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1156 void
1157 zio_shrink(zio_t *zio, uint64_t size)
1159 ASSERT3P(zio->io_executor, ==, NULL);
1160 ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1161 ASSERT3U(size, <=, zio->io_size);
1164 * We don't shrink for raidz because of problems with the
1165 * reconstruction when reading back less than the block size.
1166 * Note, BP_IS_RAIDZ() assumes no compression.
1168 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1169 if (!BP_IS_RAIDZ(zio->io_bp)) {
1170 /* we are not doing a raw write */
1171 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1172 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1177 * ==========================================================================
1178 * Prepare to read and write logical blocks
1179 * ==========================================================================
1182 static int
1183 zio_read_bp_init(zio_t *zio)
1185 blkptr_t *bp = zio->io_bp;
1187 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1189 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1190 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1191 !(zio->io_flags & ZIO_FLAG_RAW)) {
1192 uint64_t psize =
1193 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1194 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1195 psize, psize, zio_decompress);
1198 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1199 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1201 int psize = BPE_GET_PSIZE(bp);
1202 void *data = abd_borrow_buf(zio->io_abd, psize);
1203 decode_embedded_bp_compressed(bp, data);
1204 abd_return_buf_copy(zio->io_abd, data, psize);
1205 } else {
1206 ASSERT(!BP_IS_EMBEDDED(bp));
1207 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1210 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1211 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1213 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1214 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1216 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1217 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1219 return (ZIO_PIPELINE_CONTINUE);
1222 static int
1223 zio_write_bp_init(zio_t *zio)
1225 if (!IO_IS_ALLOCATING(zio))
1226 return (ZIO_PIPELINE_CONTINUE);
1228 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1230 if (zio->io_bp_override) {
1231 blkptr_t *bp = zio->io_bp;
1232 zio_prop_t *zp = &zio->io_prop;
1234 ASSERT(bp->blk_birth != zio->io_txg);
1235 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1237 *bp = *zio->io_bp_override;
1238 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1240 if (BP_IS_EMBEDDED(bp))
1241 return (ZIO_PIPELINE_CONTINUE);
1244 * If we've been overridden and nopwrite is set then
1245 * set the flag accordingly to indicate that a nopwrite
1246 * has already occurred.
1248 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1249 ASSERT(!zp->zp_dedup);
1250 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1251 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1252 return (ZIO_PIPELINE_CONTINUE);
1255 ASSERT(!zp->zp_nopwrite);
1257 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1258 return (ZIO_PIPELINE_CONTINUE);
1260 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1261 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1263 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1264 BP_SET_DEDUP(bp, 1);
1265 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1266 return (ZIO_PIPELINE_CONTINUE);
1270 * We were unable to handle this as an override bp, treat
1271 * it as a regular write I/O.
1273 zio->io_bp_override = NULL;
1274 *bp = zio->io_bp_orig;
1275 zio->io_pipeline = zio->io_orig_pipeline;
1278 return (ZIO_PIPELINE_CONTINUE);
1281 static int
1282 zio_write_compress(zio_t *zio)
1284 spa_t *spa = zio->io_spa;
1285 zio_prop_t *zp = &zio->io_prop;
1286 enum zio_compress compress = zp->zp_compress;
1287 blkptr_t *bp = zio->io_bp;
1288 uint64_t lsize = zio->io_lsize;
1289 uint64_t psize = zio->io_size;
1290 int pass = 1;
1292 EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0);
1295 * If our children haven't all reached the ready stage,
1296 * wait for them and then repeat this pipeline stage.
1298 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1299 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1300 return (ZIO_PIPELINE_STOP);
1303 if (!IO_IS_ALLOCATING(zio))
1304 return (ZIO_PIPELINE_CONTINUE);
1306 if (zio->io_children_ready != NULL) {
1308 * Now that all our children are ready, run the callback
1309 * associated with this zio in case it wants to modify the
1310 * data to be written.
1312 ASSERT3U(zp->zp_level, >, 0);
1313 zio->io_children_ready(zio);
1316 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1317 ASSERT(zio->io_bp_override == NULL);
1319 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1321 * We're rewriting an existing block, which means we're
1322 * working on behalf of spa_sync(). For spa_sync() to
1323 * converge, it must eventually be the case that we don't
1324 * have to allocate new blocks. But compression changes
1325 * the blocksize, which forces a reallocate, and makes
1326 * convergence take longer. Therefore, after the first
1327 * few passes, stop compressing to ensure convergence.
1329 pass = spa_sync_pass(spa);
1331 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1332 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1333 ASSERT(!BP_GET_DEDUP(bp));
1335 if (pass >= zfs_sync_pass_dont_compress)
1336 compress = ZIO_COMPRESS_OFF;
1338 /* Make sure someone doesn't change their mind on overwrites */
1339 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1340 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1343 /* If it's a compressed write that is not raw, compress the buffer. */
1344 if (compress != ZIO_COMPRESS_OFF && psize == lsize) {
1345 void *cbuf = zio_buf_alloc(lsize);
1346 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1347 if (psize == 0 || psize == lsize) {
1348 compress = ZIO_COMPRESS_OFF;
1349 zio_buf_free(cbuf, lsize);
1350 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1351 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1352 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1353 encode_embedded_bp_compressed(bp,
1354 cbuf, compress, lsize, psize);
1355 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1356 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1357 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1358 zio_buf_free(cbuf, lsize);
1359 bp->blk_birth = zio->io_txg;
1360 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1361 ASSERT(spa_feature_is_active(spa,
1362 SPA_FEATURE_EMBEDDED_DATA));
1363 return (ZIO_PIPELINE_CONTINUE);
1364 } else {
1366 * Round up compressed size up to the ashift
1367 * of the smallest-ashift device, and zero the tail.
1368 * This ensures that the compressed size of the BP
1369 * (and thus compressratio property) are correct,
1370 * in that we charge for the padding used to fill out
1371 * the last sector.
1373 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1374 size_t rounded = (size_t)P2ROUNDUP(psize,
1375 1ULL << spa->spa_min_ashift);
1376 if (rounded >= lsize) {
1377 compress = ZIO_COMPRESS_OFF;
1378 zio_buf_free(cbuf, lsize);
1379 psize = lsize;
1380 } else {
1381 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1382 abd_take_ownership_of_buf(cdata, B_TRUE);
1383 abd_zero_off(cdata, psize, rounded - psize);
1384 psize = rounded;
1385 zio_push_transform(zio, cdata,
1386 psize, lsize, NULL);
1391 * We were unable to handle this as an override bp, treat
1392 * it as a regular write I/O.
1394 zio->io_bp_override = NULL;
1395 *bp = zio->io_bp_orig;
1396 zio->io_pipeline = zio->io_orig_pipeline;
1397 } else {
1398 ASSERT3U(psize, !=, 0);
1402 * The final pass of spa_sync() must be all rewrites, but the first
1403 * few passes offer a trade-off: allocating blocks defers convergence,
1404 * but newly allocated blocks are sequential, so they can be written
1405 * to disk faster. Therefore, we allow the first few passes of
1406 * spa_sync() to allocate new blocks, but force rewrites after that.
1407 * There should only be a handful of blocks after pass 1 in any case.
1409 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1410 BP_GET_PSIZE(bp) == psize &&
1411 pass >= zfs_sync_pass_rewrite) {
1412 ASSERT(psize != 0);
1413 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1414 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1415 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1416 } else {
1417 BP_ZERO(bp);
1418 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1421 if (psize == 0) {
1422 if (zio->io_bp_orig.blk_birth != 0 &&
1423 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1424 BP_SET_LSIZE(bp, lsize);
1425 BP_SET_TYPE(bp, zp->zp_type);
1426 BP_SET_LEVEL(bp, zp->zp_level);
1427 BP_SET_BIRTH(bp, zio->io_txg, 0);
1429 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1430 } else {
1431 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1432 BP_SET_LSIZE(bp, lsize);
1433 BP_SET_TYPE(bp, zp->zp_type);
1434 BP_SET_LEVEL(bp, zp->zp_level);
1435 BP_SET_PSIZE(bp, psize);
1436 BP_SET_COMPRESS(bp, compress);
1437 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1438 BP_SET_DEDUP(bp, zp->zp_dedup);
1439 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1440 if (zp->zp_dedup) {
1441 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1442 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1443 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1445 if (zp->zp_nopwrite) {
1446 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1447 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1448 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1451 return (ZIO_PIPELINE_CONTINUE);
1454 static int
1455 zio_free_bp_init(zio_t *zio)
1457 blkptr_t *bp = zio->io_bp;
1459 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1460 if (BP_GET_DEDUP(bp))
1461 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1464 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1466 return (ZIO_PIPELINE_CONTINUE);
1470 * ==========================================================================
1471 * Execute the I/O pipeline
1472 * ==========================================================================
1475 static void
1476 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1478 spa_t *spa = zio->io_spa;
1479 zio_type_t t = zio->io_type;
1480 int flags = (cutinline ? TQ_FRONT : 0);
1483 * If we're a config writer or a probe, the normal issue and
1484 * interrupt threads may all be blocked waiting for the config lock.
1485 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1487 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1488 t = ZIO_TYPE_NULL;
1491 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1493 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1494 t = ZIO_TYPE_NULL;
1497 * If this is a high priority I/O, then use the high priority taskq if
1498 * available.
1500 if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1501 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1502 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1503 q++;
1505 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1508 * NB: We are assuming that the zio can only be dispatched
1509 * to a single taskq at a time. It would be a grievous error
1510 * to dispatch the zio to another taskq at the same time.
1512 ASSERT(zio->io_tqent.tqent_next == NULL);
1513 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1514 flags, &zio->io_tqent);
1517 static boolean_t
1518 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1520 kthread_t *executor = zio->io_executor;
1521 spa_t *spa = zio->io_spa;
1523 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1524 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1525 uint_t i;
1526 for (i = 0; i < tqs->stqs_count; i++) {
1527 if (taskq_member(tqs->stqs_taskq[i], executor))
1528 return (B_TRUE);
1532 return (B_FALSE);
1535 static int
1536 zio_issue_async(zio_t *zio)
1538 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1540 return (ZIO_PIPELINE_STOP);
1543 void
1544 zio_interrupt(zio_t *zio)
1546 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1549 void
1550 zio_delay_interrupt(zio_t *zio)
1553 * The timeout_generic() function isn't defined in userspace, so
1554 * rather than trying to implement the function, the zio delay
1555 * functionality has been disabled for userspace builds.
1558 #ifdef _KERNEL
1560 * If io_target_timestamp is zero, then no delay has been registered
1561 * for this IO, thus jump to the end of this function and "skip" the
1562 * delay; issuing it directly to the zio layer.
1564 if (zio->io_target_timestamp != 0) {
1565 hrtime_t now = gethrtime();
1567 if (now >= zio->io_target_timestamp) {
1569 * This IO has already taken longer than the target
1570 * delay to complete, so we don't want to delay it
1571 * any longer; we "miss" the delay and issue it
1572 * directly to the zio layer. This is likely due to
1573 * the target latency being set to a value less than
1574 * the underlying hardware can satisfy (e.g. delay
1575 * set to 1ms, but the disks take 10ms to complete an
1576 * IO request).
1579 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1580 hrtime_t, now);
1582 zio_interrupt(zio);
1583 } else {
1584 hrtime_t diff = zio->io_target_timestamp - now;
1586 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1587 hrtime_t, now, hrtime_t, diff);
1589 (void) timeout_generic(CALLOUT_NORMAL,
1590 (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1593 return;
1595 #endif
1597 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1598 zio_interrupt(zio);
1602 * Execute the I/O pipeline until one of the following occurs:
1604 * (1) the I/O completes
1605 * (2) the pipeline stalls waiting for dependent child I/Os
1606 * (3) the I/O issues, so we're waiting for an I/O completion interrupt
1607 * (4) the I/O is delegated by vdev-level caching or aggregation
1608 * (5) the I/O is deferred due to vdev-level queueing
1609 * (6) the I/O is handed off to another thread.
1611 * In all cases, the pipeline stops whenever there's no CPU work; it never
1612 * burns a thread in cv_wait().
1614 * There's no locking on io_stage because there's no legitimate way
1615 * for multiple threads to be attempting to process the same I/O.
1617 static zio_pipe_stage_t *zio_pipeline[];
1619 void
1620 zio_execute(zio_t *zio)
1622 zio->io_executor = curthread;
1624 ASSERT3U(zio->io_queued_timestamp, >, 0);
1626 while (zio->io_stage < ZIO_STAGE_DONE) {
1627 enum zio_stage pipeline = zio->io_pipeline;
1628 enum zio_stage stage = zio->io_stage;
1629 int rv;
1631 ASSERT(!MUTEX_HELD(&zio->io_lock));
1632 ASSERT(ISP2(stage));
1633 ASSERT(zio->io_stall == NULL);
1635 do {
1636 stage <<= 1;
1637 } while ((stage & pipeline) == 0);
1639 ASSERT(stage <= ZIO_STAGE_DONE);
1642 * If we are in interrupt context and this pipeline stage
1643 * will grab a config lock that is held across I/O,
1644 * or may wait for an I/O that needs an interrupt thread
1645 * to complete, issue async to avoid deadlock.
1647 * For VDEV_IO_START, we cut in line so that the io will
1648 * be sent to disk promptly.
1650 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1651 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1652 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1653 zio_requeue_io_start_cut_in_line : B_FALSE;
1654 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1655 return;
1658 zio->io_stage = stage;
1659 zio->io_pipeline_trace |= zio->io_stage;
1660 rv = zio_pipeline[highbit64(stage) - 1](zio);
1662 if (rv == ZIO_PIPELINE_STOP)
1663 return;
1665 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1670 * ==========================================================================
1671 * Initiate I/O, either sync or async
1672 * ==========================================================================
1675 zio_wait(zio_t *zio)
1677 int error;
1679 ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1680 ASSERT3P(zio->io_executor, ==, NULL);
1682 zio->io_waiter = curthread;
1683 ASSERT0(zio->io_queued_timestamp);
1684 zio->io_queued_timestamp = gethrtime();
1686 zio_execute(zio);
1688 mutex_enter(&zio->io_lock);
1689 while (zio->io_executor != NULL)
1690 cv_wait(&zio->io_cv, &zio->io_lock);
1691 mutex_exit(&zio->io_lock);
1693 error = zio->io_error;
1694 zio_destroy(zio);
1696 return (error);
1699 void
1700 zio_nowait(zio_t *zio)
1702 ASSERT3P(zio->io_executor, ==, NULL);
1704 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1705 zio_unique_parent(zio) == NULL) {
1707 * This is a logical async I/O with no parent to wait for it.
1708 * We add it to the spa_async_root_zio "Godfather" I/O which
1709 * will ensure they complete prior to unloading the pool.
1711 spa_t *spa = zio->io_spa;
1713 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1716 ASSERT0(zio->io_queued_timestamp);
1717 zio->io_queued_timestamp = gethrtime();
1718 zio_execute(zio);
1722 * ==========================================================================
1723 * Reexecute, cancel, or suspend/resume failed I/O
1724 * ==========================================================================
1727 static void
1728 zio_reexecute(zio_t *pio)
1730 zio_t *cio, *cio_next;
1732 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1733 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1734 ASSERT(pio->io_gang_leader == NULL);
1735 ASSERT(pio->io_gang_tree == NULL);
1737 pio->io_flags = pio->io_orig_flags;
1738 pio->io_stage = pio->io_orig_stage;
1739 pio->io_pipeline = pio->io_orig_pipeline;
1740 pio->io_reexecute = 0;
1741 pio->io_flags |= ZIO_FLAG_REEXECUTED;
1742 pio->io_pipeline_trace = 0;
1743 pio->io_error = 0;
1744 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1745 pio->io_state[w] = 0;
1746 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1747 pio->io_child_error[c] = 0;
1749 if (IO_IS_ALLOCATING(pio))
1750 BP_ZERO(pio->io_bp);
1753 * As we reexecute pio's children, new children could be created.
1754 * New children go to the head of pio's io_child_list, however,
1755 * so we will (correctly) not reexecute them. The key is that
1756 * the remainder of pio's io_child_list, from 'cio_next' onward,
1757 * cannot be affected by any side effects of reexecuting 'cio'.
1759 zio_link_t *zl = NULL;
1760 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1761 cio_next = zio_walk_children(pio, &zl);
1762 mutex_enter(&pio->io_lock);
1763 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1764 pio->io_children[cio->io_child_type][w]++;
1765 mutex_exit(&pio->io_lock);
1766 zio_reexecute(cio);
1770 * Now that all children have been reexecuted, execute the parent.
1771 * We don't reexecute "The Godfather" I/O here as it's the
1772 * responsibility of the caller to wait on it.
1774 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1775 pio->io_queued_timestamp = gethrtime();
1776 zio_execute(pio);
1780 void
1781 zio_suspend(spa_t *spa, zio_t *zio)
1783 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1784 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1785 "failure and the failure mode property for this pool "
1786 "is set to panic.", spa_name(spa));
1788 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1790 mutex_enter(&spa->spa_suspend_lock);
1792 if (spa->spa_suspend_zio_root == NULL)
1793 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1794 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1795 ZIO_FLAG_GODFATHER);
1797 spa->spa_suspended = B_TRUE;
1799 if (zio != NULL) {
1800 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1801 ASSERT(zio != spa->spa_suspend_zio_root);
1802 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1803 ASSERT(zio_unique_parent(zio) == NULL);
1804 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1805 zio_add_child(spa->spa_suspend_zio_root, zio);
1808 mutex_exit(&spa->spa_suspend_lock);
1812 zio_resume(spa_t *spa)
1814 zio_t *pio;
1817 * Reexecute all previously suspended i/o.
1819 mutex_enter(&spa->spa_suspend_lock);
1820 spa->spa_suspended = B_FALSE;
1821 cv_broadcast(&spa->spa_suspend_cv);
1822 pio = spa->spa_suspend_zio_root;
1823 spa->spa_suspend_zio_root = NULL;
1824 mutex_exit(&spa->spa_suspend_lock);
1826 if (pio == NULL)
1827 return (0);
1829 zio_reexecute(pio);
1830 return (zio_wait(pio));
1833 void
1834 zio_resume_wait(spa_t *spa)
1836 mutex_enter(&spa->spa_suspend_lock);
1837 while (spa_suspended(spa))
1838 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1839 mutex_exit(&spa->spa_suspend_lock);
1843 * ==========================================================================
1844 * Gang blocks.
1846 * A gang block is a collection of small blocks that looks to the DMU
1847 * like one large block. When zio_dva_allocate() cannot find a block
1848 * of the requested size, due to either severe fragmentation or the pool
1849 * being nearly full, it calls zio_write_gang_block() to construct the
1850 * block from smaller fragments.
1852 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1853 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
1854 * an indirect block: it's an array of block pointers. It consumes
1855 * only one sector and hence is allocatable regardless of fragmentation.
1856 * The gang header's bps point to its gang members, which hold the data.
1858 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1859 * as the verifier to ensure uniqueness of the SHA256 checksum.
1860 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1861 * not the gang header. This ensures that data block signatures (needed for
1862 * deduplication) are independent of how the block is physically stored.
1864 * Gang blocks can be nested: a gang member may itself be a gang block.
1865 * Thus every gang block is a tree in which root and all interior nodes are
1866 * gang headers, and the leaves are normal blocks that contain user data.
1867 * The root of the gang tree is called the gang leader.
1869 * To perform any operation (read, rewrite, free, claim) on a gang block,
1870 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1871 * in the io_gang_tree field of the original logical i/o by recursively
1872 * reading the gang leader and all gang headers below it. This yields
1873 * an in-core tree containing the contents of every gang header and the
1874 * bps for every constituent of the gang block.
1876 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1877 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
1878 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1879 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1880 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1881 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
1882 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1883 * of the gang header plus zio_checksum_compute() of the data to update the
1884 * gang header's blk_cksum as described above.
1886 * The two-phase assemble/issue model solves the problem of partial failure --
1887 * what if you'd freed part of a gang block but then couldn't read the
1888 * gang header for another part? Assembling the entire gang tree first
1889 * ensures that all the necessary gang header I/O has succeeded before
1890 * starting the actual work of free, claim, or write. Once the gang tree
1891 * is assembled, free and claim are in-memory operations that cannot fail.
1893 * In the event that a gang write fails, zio_dva_unallocate() walks the
1894 * gang tree to immediately free (i.e. insert back into the space map)
1895 * everything we've allocated. This ensures that we don't get ENOSPC
1896 * errors during repeated suspend/resume cycles due to a flaky device.
1898 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
1899 * the gang tree, we won't modify the block, so we can safely defer the free
1900 * (knowing that the block is still intact). If we *can* assemble the gang
1901 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1902 * each constituent bp and we can allocate a new block on the next sync pass.
1904 * In all cases, the gang tree allows complete recovery from partial failure.
1905 * ==========================================================================
1908 static void
1909 zio_gang_issue_func_done(zio_t *zio)
1911 abd_put(zio->io_abd);
1914 static zio_t *
1915 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1916 uint64_t offset)
1918 if (gn != NULL)
1919 return (pio);
1921 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
1922 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
1923 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1924 &pio->io_bookmark));
1927 static zio_t *
1928 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1929 uint64_t offset)
1931 zio_t *zio;
1933 if (gn != NULL) {
1934 abd_t *gbh_abd =
1935 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1936 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1937 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
1938 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1939 &pio->io_bookmark);
1941 * As we rewrite each gang header, the pipeline will compute
1942 * a new gang block header checksum for it; but no one will
1943 * compute a new data checksum, so we do that here. The one
1944 * exception is the gang leader: the pipeline already computed
1945 * its data checksum because that stage precedes gang assembly.
1946 * (Presently, nothing actually uses interior data checksums;
1947 * this is just good hygiene.)
1949 if (gn != pio->io_gang_leader->io_gang_tree) {
1950 abd_t *buf = abd_get_offset(data, offset);
1952 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1953 buf, BP_GET_PSIZE(bp));
1955 abd_put(buf);
1958 * If we are here to damage data for testing purposes,
1959 * leave the GBH alone so that we can detect the damage.
1961 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1962 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1963 } else {
1964 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1965 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
1966 zio_gang_issue_func_done, NULL, pio->io_priority,
1967 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1970 return (zio);
1973 /* ARGSUSED */
1974 static zio_t *
1975 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1976 uint64_t offset)
1978 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1979 ZIO_GANG_CHILD_FLAGS(pio)));
1982 /* ARGSUSED */
1983 static zio_t *
1984 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1985 uint64_t offset)
1987 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1988 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1991 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1992 NULL,
1993 zio_read_gang,
1994 zio_rewrite_gang,
1995 zio_free_gang,
1996 zio_claim_gang,
1997 NULL
2000 static void zio_gang_tree_assemble_done(zio_t *zio);
2002 static zio_gang_node_t *
2003 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2005 zio_gang_node_t *gn;
2007 ASSERT(*gnpp == NULL);
2009 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2010 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2011 *gnpp = gn;
2013 return (gn);
2016 static void
2017 zio_gang_node_free(zio_gang_node_t **gnpp)
2019 zio_gang_node_t *gn = *gnpp;
2021 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2022 ASSERT(gn->gn_child[g] == NULL);
2024 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2025 kmem_free(gn, sizeof (*gn));
2026 *gnpp = NULL;
2029 static void
2030 zio_gang_tree_free(zio_gang_node_t **gnpp)
2032 zio_gang_node_t *gn = *gnpp;
2034 if (gn == NULL)
2035 return;
2037 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2038 zio_gang_tree_free(&gn->gn_child[g]);
2040 zio_gang_node_free(gnpp);
2043 static void
2044 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2046 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2047 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2049 ASSERT(gio->io_gang_leader == gio);
2050 ASSERT(BP_IS_GANG(bp));
2052 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2053 zio_gang_tree_assemble_done, gn, gio->io_priority,
2054 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2057 static void
2058 zio_gang_tree_assemble_done(zio_t *zio)
2060 zio_t *gio = zio->io_gang_leader;
2061 zio_gang_node_t *gn = zio->io_private;
2062 blkptr_t *bp = zio->io_bp;
2064 ASSERT(gio == zio_unique_parent(zio));
2065 ASSERT(zio->io_child_count == 0);
2067 if (zio->io_error)
2068 return;
2070 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2071 if (BP_SHOULD_BYTESWAP(bp))
2072 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2074 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2075 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2076 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2078 abd_put(zio->io_abd);
2080 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2081 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2082 if (!BP_IS_GANG(gbp))
2083 continue;
2084 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2088 static void
2089 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2090 uint64_t offset)
2092 zio_t *gio = pio->io_gang_leader;
2093 zio_t *zio;
2095 ASSERT(BP_IS_GANG(bp) == !!gn);
2096 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2097 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2100 * If you're a gang header, your data is in gn->gn_gbh.
2101 * If you're a gang member, your data is in 'data' and gn == NULL.
2103 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2105 if (gn != NULL) {
2106 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2108 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2109 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2110 if (BP_IS_HOLE(gbp))
2111 continue;
2112 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2113 offset);
2114 offset += BP_GET_PSIZE(gbp);
2118 if (gn == gio->io_gang_tree)
2119 ASSERT3U(gio->io_size, ==, offset);
2121 if (zio != pio)
2122 zio_nowait(zio);
2125 static int
2126 zio_gang_assemble(zio_t *zio)
2128 blkptr_t *bp = zio->io_bp;
2130 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2131 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2133 zio->io_gang_leader = zio;
2135 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2137 return (ZIO_PIPELINE_CONTINUE);
2140 static int
2141 zio_gang_issue(zio_t *zio)
2143 blkptr_t *bp = zio->io_bp;
2145 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2146 return (ZIO_PIPELINE_STOP);
2149 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2150 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2152 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2153 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2155 else
2156 zio_gang_tree_free(&zio->io_gang_tree);
2158 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2160 return (ZIO_PIPELINE_CONTINUE);
2163 static void
2164 zio_write_gang_member_ready(zio_t *zio)
2166 zio_t *pio = zio_unique_parent(zio);
2167 zio_t *gio = zio->io_gang_leader;
2168 dva_t *cdva = zio->io_bp->blk_dva;
2169 dva_t *pdva = pio->io_bp->blk_dva;
2170 uint64_t asize;
2172 if (BP_IS_HOLE(zio->io_bp))
2173 return;
2175 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2177 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2178 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2179 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2180 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2181 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2183 mutex_enter(&pio->io_lock);
2184 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2185 ASSERT(DVA_GET_GANG(&pdva[d]));
2186 asize = DVA_GET_ASIZE(&pdva[d]);
2187 asize += DVA_GET_ASIZE(&cdva[d]);
2188 DVA_SET_ASIZE(&pdva[d], asize);
2190 mutex_exit(&pio->io_lock);
2193 static void
2194 zio_write_gang_done(zio_t *zio)
2197 * The io_abd field will be NULL for a zio with no data. The io_flags
2198 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2199 * check for it here as it is cleared in zio_ready.
2201 if (zio->io_abd != NULL)
2202 abd_put(zio->io_abd);
2205 static int
2206 zio_write_gang_block(zio_t *pio)
2208 spa_t *spa = pio->io_spa;
2209 metaslab_class_t *mc = spa_normal_class(spa);
2210 blkptr_t *bp = pio->io_bp;
2211 zio_t *gio = pio->io_gang_leader;
2212 zio_t *zio;
2213 zio_gang_node_t *gn, **gnpp;
2214 zio_gbh_phys_t *gbh;
2215 abd_t *gbh_abd;
2216 uint64_t txg = pio->io_txg;
2217 uint64_t resid = pio->io_size;
2218 uint64_t lsize;
2219 int copies = gio->io_prop.zp_copies;
2220 int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2221 zio_prop_t zp;
2222 int error;
2223 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2225 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2226 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2227 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2228 ASSERT(has_data);
2230 flags |= METASLAB_ASYNC_ALLOC;
2231 VERIFY(refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2232 pio));
2235 * The logical zio has already placed a reservation for
2236 * 'copies' allocation slots but gang blocks may require
2237 * additional copies. These additional copies
2238 * (i.e. gbh_copies - copies) are guaranteed to succeed
2239 * since metaslab_class_throttle_reserve() always allows
2240 * additional reservations for gang blocks.
2242 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2243 pio->io_allocator, pio, flags));
2246 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2247 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2248 &pio->io_alloc_list, pio, pio->io_allocator);
2249 if (error) {
2250 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2251 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2252 ASSERT(has_data);
2255 * If we failed to allocate the gang block header then
2256 * we remove any additional allocation reservations that
2257 * we placed here. The original reservation will
2258 * be removed when the logical I/O goes to the ready
2259 * stage.
2261 metaslab_class_throttle_unreserve(mc,
2262 gbh_copies - copies, pio->io_allocator, pio);
2264 pio->io_error = error;
2265 return (ZIO_PIPELINE_CONTINUE);
2268 if (pio == gio) {
2269 gnpp = &gio->io_gang_tree;
2270 } else {
2271 gnpp = pio->io_private;
2272 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2275 gn = zio_gang_node_alloc(gnpp);
2276 gbh = gn->gn_gbh;
2277 bzero(gbh, SPA_GANGBLOCKSIZE);
2278 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2281 * Create the gang header.
2283 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2284 zio_write_gang_done, NULL, pio->io_priority,
2285 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2288 * Create and nowait the gang children.
2290 for (int g = 0; resid != 0; resid -= lsize, g++) {
2291 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2292 SPA_MINBLOCKSIZE);
2293 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2295 zp.zp_checksum = gio->io_prop.zp_checksum;
2296 zp.zp_compress = ZIO_COMPRESS_OFF;
2297 zp.zp_type = DMU_OT_NONE;
2298 zp.zp_level = 0;
2299 zp.zp_copies = gio->io_prop.zp_copies;
2300 zp.zp_dedup = B_FALSE;
2301 zp.zp_dedup_verify = B_FALSE;
2302 zp.zp_nopwrite = B_FALSE;
2304 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2305 has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2306 resid) : NULL, lsize, lsize, &zp,
2307 zio_write_gang_member_ready, NULL, NULL,
2308 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2309 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2311 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2312 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2313 ASSERT(has_data);
2316 * Gang children won't throttle but we should
2317 * account for their work, so reserve an allocation
2318 * slot for them here.
2320 VERIFY(metaslab_class_throttle_reserve(mc,
2321 zp.zp_copies, cio->io_allocator, cio, flags));
2323 zio_nowait(cio);
2327 * Set pio's pipeline to just wait for zio to finish.
2329 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2331 zio_nowait(zio);
2333 return (ZIO_PIPELINE_CONTINUE);
2337 * The zio_nop_write stage in the pipeline determines if allocating a
2338 * new bp is necessary. The nopwrite feature can handle writes in
2339 * either syncing or open context (i.e. zil writes) and as a result is
2340 * mutually exclusive with dedup.
2342 * By leveraging a cryptographically secure checksum, such as SHA256, we
2343 * can compare the checksums of the new data and the old to determine if
2344 * allocating a new block is required. Note that our requirements for
2345 * cryptographic strength are fairly weak: there can't be any accidental
2346 * hash collisions, but we don't need to be secure against intentional
2347 * (malicious) collisions. To trigger a nopwrite, you have to be able
2348 * to write the file to begin with, and triggering an incorrect (hash
2349 * collision) nopwrite is no worse than simply writing to the file.
2350 * That said, there are no known attacks against the checksum algorithms
2351 * used for nopwrite, assuming that the salt and the checksums
2352 * themselves remain secret.
2354 static int
2355 zio_nop_write(zio_t *zio)
2357 blkptr_t *bp = zio->io_bp;
2358 blkptr_t *bp_orig = &zio->io_bp_orig;
2359 zio_prop_t *zp = &zio->io_prop;
2361 ASSERT(BP_GET_LEVEL(bp) == 0);
2362 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2363 ASSERT(zp->zp_nopwrite);
2364 ASSERT(!zp->zp_dedup);
2365 ASSERT(zio->io_bp_override == NULL);
2366 ASSERT(IO_IS_ALLOCATING(zio));
2369 * Check to see if the original bp and the new bp have matching
2370 * characteristics (i.e. same checksum, compression algorithms, etc).
2371 * If they don't then just continue with the pipeline which will
2372 * allocate a new bp.
2374 if (BP_IS_HOLE(bp_orig) ||
2375 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2376 ZCHECKSUM_FLAG_NOPWRITE) ||
2377 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2378 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2379 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2380 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2381 return (ZIO_PIPELINE_CONTINUE);
2384 * If the checksums match then reset the pipeline so that we
2385 * avoid allocating a new bp and issuing any I/O.
2387 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2388 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2389 ZCHECKSUM_FLAG_NOPWRITE);
2390 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2391 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2392 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2393 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2394 sizeof (uint64_t)) == 0);
2396 *bp = *bp_orig;
2397 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2398 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2401 return (ZIO_PIPELINE_CONTINUE);
2405 * ==========================================================================
2406 * Dedup
2407 * ==========================================================================
2409 static void
2410 zio_ddt_child_read_done(zio_t *zio)
2412 blkptr_t *bp = zio->io_bp;
2413 ddt_entry_t *dde = zio->io_private;
2414 ddt_phys_t *ddp;
2415 zio_t *pio = zio_unique_parent(zio);
2417 mutex_enter(&pio->io_lock);
2418 ddp = ddt_phys_select(dde, bp);
2419 if (zio->io_error == 0)
2420 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
2422 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2423 dde->dde_repair_abd = zio->io_abd;
2424 else
2425 abd_free(zio->io_abd);
2426 mutex_exit(&pio->io_lock);
2429 static int
2430 zio_ddt_read_start(zio_t *zio)
2432 blkptr_t *bp = zio->io_bp;
2434 ASSERT(BP_GET_DEDUP(bp));
2435 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2436 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2438 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2439 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2440 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2441 ddt_phys_t *ddp = dde->dde_phys;
2442 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2443 blkptr_t blk;
2445 ASSERT(zio->io_vsd == NULL);
2446 zio->io_vsd = dde;
2448 if (ddp_self == NULL)
2449 return (ZIO_PIPELINE_CONTINUE);
2451 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2452 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2453 continue;
2454 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2455 &blk);
2456 zio_nowait(zio_read(zio, zio->io_spa, &blk,
2457 abd_alloc_for_io(zio->io_size, B_TRUE),
2458 zio->io_size, zio_ddt_child_read_done, dde,
2459 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2460 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2462 return (ZIO_PIPELINE_CONTINUE);
2465 zio_nowait(zio_read(zio, zio->io_spa, bp,
2466 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2467 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2469 return (ZIO_PIPELINE_CONTINUE);
2472 static int
2473 zio_ddt_read_done(zio_t *zio)
2475 blkptr_t *bp = zio->io_bp;
2477 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2478 return (ZIO_PIPELINE_STOP);
2481 ASSERT(BP_GET_DEDUP(bp));
2482 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2483 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2485 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2486 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2487 ddt_entry_t *dde = zio->io_vsd;
2488 if (ddt == NULL) {
2489 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2490 return (ZIO_PIPELINE_CONTINUE);
2492 if (dde == NULL) {
2493 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2494 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2495 return (ZIO_PIPELINE_STOP);
2497 if (dde->dde_repair_abd != NULL) {
2498 abd_copy(zio->io_abd, dde->dde_repair_abd,
2499 zio->io_size);
2500 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2502 ddt_repair_done(ddt, dde);
2503 zio->io_vsd = NULL;
2506 ASSERT(zio->io_vsd == NULL);
2508 return (ZIO_PIPELINE_CONTINUE);
2511 static boolean_t
2512 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2514 spa_t *spa = zio->io_spa;
2515 boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW);
2517 /* We should never get a raw, override zio */
2518 ASSERT(!(zio->io_bp_override && do_raw));
2521 * Note: we compare the original data, not the transformed data,
2522 * because when zio->io_bp is an override bp, we will not have
2523 * pushed the I/O transforms. That's an important optimization
2524 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2526 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2527 zio_t *lio = dde->dde_lead_zio[p];
2529 if (lio != NULL) {
2530 return (lio->io_orig_size != zio->io_orig_size ||
2531 abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2532 zio->io_orig_size) != 0);
2536 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2537 ddt_phys_t *ddp = &dde->dde_phys[p];
2539 if (ddp->ddp_phys_birth != 0) {
2540 arc_buf_t *abuf = NULL;
2541 arc_flags_t aflags = ARC_FLAG_WAIT;
2542 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2543 blkptr_t blk = *zio->io_bp;
2544 int error;
2546 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2548 ddt_exit(ddt);
2551 * Intuitively, it would make more sense to compare
2552 * io_abd than io_orig_abd in the raw case since you
2553 * don't want to look at any transformations that have
2554 * happened to the data. However, for raw I/Os the
2555 * data will actually be the same in io_abd and
2556 * io_orig_abd, so all we have to do is issue this as
2557 * a raw ARC read.
2559 if (do_raw) {
2560 zio_flags |= ZIO_FLAG_RAW;
2561 ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2562 ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2563 zio->io_size));
2564 ASSERT3P(zio->io_transform_stack, ==, NULL);
2567 error = arc_read(NULL, spa, &blk,
2568 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2569 zio_flags, &aflags, &zio->io_bookmark);
2571 if (error == 0) {
2572 if (arc_buf_size(abuf) != zio->io_orig_size ||
2573 abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2574 zio->io_orig_size) != 0)
2575 error = SET_ERROR(EEXIST);
2576 arc_buf_destroy(abuf, &abuf);
2579 ddt_enter(ddt);
2580 return (error != 0);
2584 return (B_FALSE);
2587 static void
2588 zio_ddt_child_write_ready(zio_t *zio)
2590 int p = zio->io_prop.zp_copies;
2591 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2592 ddt_entry_t *dde = zio->io_private;
2593 ddt_phys_t *ddp = &dde->dde_phys[p];
2594 zio_t *pio;
2596 if (zio->io_error)
2597 return;
2599 ddt_enter(ddt);
2601 ASSERT(dde->dde_lead_zio[p] == zio);
2603 ddt_phys_fill(ddp, zio->io_bp);
2605 zio_link_t *zl = NULL;
2606 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2607 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2609 ddt_exit(ddt);
2612 static void
2613 zio_ddt_child_write_done(zio_t *zio)
2615 int p = zio->io_prop.zp_copies;
2616 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2617 ddt_entry_t *dde = zio->io_private;
2618 ddt_phys_t *ddp = &dde->dde_phys[p];
2620 ddt_enter(ddt);
2622 ASSERT(ddp->ddp_refcnt == 0);
2623 ASSERT(dde->dde_lead_zio[p] == zio);
2624 dde->dde_lead_zio[p] = NULL;
2626 if (zio->io_error == 0) {
2627 zio_link_t *zl = NULL;
2628 while (zio_walk_parents(zio, &zl) != NULL)
2629 ddt_phys_addref(ddp);
2630 } else {
2631 ddt_phys_clear(ddp);
2634 ddt_exit(ddt);
2637 static void
2638 zio_ddt_ditto_write_done(zio_t *zio)
2640 int p = DDT_PHYS_DITTO;
2641 zio_prop_t *zp = &zio->io_prop;
2642 blkptr_t *bp = zio->io_bp;
2643 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2644 ddt_entry_t *dde = zio->io_private;
2645 ddt_phys_t *ddp = &dde->dde_phys[p];
2646 ddt_key_t *ddk = &dde->dde_key;
2648 ddt_enter(ddt);
2650 ASSERT(ddp->ddp_refcnt == 0);
2651 ASSERT(dde->dde_lead_zio[p] == zio);
2652 dde->dde_lead_zio[p] = NULL;
2654 if (zio->io_error == 0) {
2655 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2656 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2657 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2658 if (ddp->ddp_phys_birth != 0)
2659 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2660 ddt_phys_fill(ddp, bp);
2663 ddt_exit(ddt);
2666 static int
2667 zio_ddt_write(zio_t *zio)
2669 spa_t *spa = zio->io_spa;
2670 blkptr_t *bp = zio->io_bp;
2671 uint64_t txg = zio->io_txg;
2672 zio_prop_t *zp = &zio->io_prop;
2673 int p = zp->zp_copies;
2674 int ditto_copies;
2675 zio_t *cio = NULL;
2676 zio_t *dio = NULL;
2677 ddt_t *ddt = ddt_select(spa, bp);
2678 ddt_entry_t *dde;
2679 ddt_phys_t *ddp;
2681 ASSERT(BP_GET_DEDUP(bp));
2682 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2683 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2684 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2686 ddt_enter(ddt);
2687 dde = ddt_lookup(ddt, bp, B_TRUE);
2688 ddp = &dde->dde_phys[p];
2690 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2692 * If we're using a weak checksum, upgrade to a strong checksum
2693 * and try again. If we're already using a strong checksum,
2694 * we can't resolve it, so just convert to an ordinary write.
2695 * (And automatically e-mail a paper to Nature?)
2697 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2698 ZCHECKSUM_FLAG_DEDUP)) {
2699 zp->zp_checksum = spa_dedup_checksum(spa);
2700 zio_pop_transforms(zio);
2701 zio->io_stage = ZIO_STAGE_OPEN;
2702 BP_ZERO(bp);
2703 } else {
2704 zp->zp_dedup = B_FALSE;
2705 BP_SET_DEDUP(bp, B_FALSE);
2707 ASSERT(!BP_GET_DEDUP(bp));
2708 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2709 ddt_exit(ddt);
2710 return (ZIO_PIPELINE_CONTINUE);
2713 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2714 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2716 if (ditto_copies > ddt_ditto_copies_present(dde) &&
2717 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2718 zio_prop_t czp = *zp;
2720 czp.zp_copies = ditto_copies;
2723 * If we arrived here with an override bp, we won't have run
2724 * the transform stack, so we won't have the data we need to
2725 * generate a child i/o. So, toss the override bp and restart.
2726 * This is safe, because using the override bp is just an
2727 * optimization; and it's rare, so the cost doesn't matter.
2729 if (zio->io_bp_override) {
2730 zio_pop_transforms(zio);
2731 zio->io_stage = ZIO_STAGE_OPEN;
2732 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2733 zio->io_bp_override = NULL;
2734 BP_ZERO(bp);
2735 ddt_exit(ddt);
2736 return (ZIO_PIPELINE_CONTINUE);
2739 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2740 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2741 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2742 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2744 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2745 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2748 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2749 if (ddp->ddp_phys_birth != 0)
2750 ddt_bp_fill(ddp, bp, txg);
2751 if (dde->dde_lead_zio[p] != NULL)
2752 zio_add_child(zio, dde->dde_lead_zio[p]);
2753 else
2754 ddt_phys_addref(ddp);
2755 } else if (zio->io_bp_override) {
2756 ASSERT(bp->blk_birth == txg);
2757 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2758 ddt_phys_fill(ddp, bp);
2759 ddt_phys_addref(ddp);
2760 } else {
2761 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2762 zio->io_orig_size, zio->io_orig_size, zp,
2763 zio_ddt_child_write_ready, NULL, NULL,
2764 zio_ddt_child_write_done, dde, zio->io_priority,
2765 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2767 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
2768 dde->dde_lead_zio[p] = cio;
2771 ddt_exit(ddt);
2773 if (cio)
2774 zio_nowait(cio);
2775 if (dio)
2776 zio_nowait(dio);
2778 return (ZIO_PIPELINE_CONTINUE);
2781 ddt_entry_t *freedde; /* for debugging */
2783 static int
2784 zio_ddt_free(zio_t *zio)
2786 spa_t *spa = zio->io_spa;
2787 blkptr_t *bp = zio->io_bp;
2788 ddt_t *ddt = ddt_select(spa, bp);
2789 ddt_entry_t *dde;
2790 ddt_phys_t *ddp;
2792 ASSERT(BP_GET_DEDUP(bp));
2793 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2795 ddt_enter(ddt);
2796 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2797 ddp = ddt_phys_select(dde, bp);
2798 ddt_phys_decref(ddp);
2799 ddt_exit(ddt);
2801 return (ZIO_PIPELINE_CONTINUE);
2805 * ==========================================================================
2806 * Allocate and free blocks
2807 * ==========================================================================
2810 static zio_t *
2811 zio_io_to_allocate(spa_t *spa, int allocator)
2813 zio_t *zio;
2815 ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
2817 zio = avl_first(&spa->spa_alloc_trees[allocator]);
2818 if (zio == NULL)
2819 return (NULL);
2821 ASSERT(IO_IS_ALLOCATING(zio));
2824 * Try to place a reservation for this zio. If we're unable to
2825 * reserve then we throttle.
2827 ASSERT3U(zio->io_allocator, ==, allocator);
2828 if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
2829 zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
2830 return (NULL);
2833 avl_remove(&spa->spa_alloc_trees[allocator], zio);
2834 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2836 return (zio);
2839 static int
2840 zio_dva_throttle(zio_t *zio)
2842 spa_t *spa = zio->io_spa;
2843 zio_t *nio;
2845 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2846 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
2847 zio->io_child_type == ZIO_CHILD_GANG ||
2848 zio->io_flags & ZIO_FLAG_NODATA) {
2849 return (ZIO_PIPELINE_CONTINUE);
2852 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2854 ASSERT3U(zio->io_queued_timestamp, >, 0);
2855 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2857 zbookmark_phys_t *bm = &zio->io_bookmark;
2859 * We want to try to use as many allocators as possible to help improve
2860 * performance, but we also want logically adjacent IOs to be physically
2861 * adjacent to improve sequential read performance. We chunk each object
2862 * into 2^20 block regions, and then hash based on the objset, object,
2863 * level, and region to accomplish both of these goals.
2865 zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
2866 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
2867 mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
2869 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2870 avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
2872 nio = zio_io_to_allocate(zio->io_spa, zio->io_allocator);
2873 mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
2875 if (nio == zio)
2876 return (ZIO_PIPELINE_CONTINUE);
2878 if (nio != NULL) {
2879 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2881 * We are passing control to a new zio so make sure that
2882 * it is processed by a different thread. We do this to
2883 * avoid stack overflows that can occur when parents are
2884 * throttled and children are making progress. We allow
2885 * it to go to the head of the taskq since it's already
2886 * been waiting.
2888 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2890 return (ZIO_PIPELINE_STOP);
2893 void
2894 zio_allocate_dispatch(spa_t *spa, int allocator)
2896 zio_t *zio;
2898 mutex_enter(&spa->spa_alloc_locks[allocator]);
2899 zio = zio_io_to_allocate(spa, allocator);
2900 mutex_exit(&spa->spa_alloc_locks[allocator]);
2901 if (zio == NULL)
2902 return;
2904 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
2905 ASSERT0(zio->io_error);
2906 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
2909 static int
2910 zio_dva_allocate(zio_t *zio)
2912 spa_t *spa = zio->io_spa;
2913 metaslab_class_t *mc = spa_normal_class(spa);
2914 blkptr_t *bp = zio->io_bp;
2915 int error;
2916 int flags = 0;
2918 if (zio->io_gang_leader == NULL) {
2919 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2920 zio->io_gang_leader = zio;
2923 ASSERT(BP_IS_HOLE(bp));
2924 ASSERT0(BP_GET_NDVAS(bp));
2925 ASSERT3U(zio->io_prop.zp_copies, >, 0);
2926 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2927 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2929 if (zio->io_flags & ZIO_FLAG_NODATA) {
2930 flags |= METASLAB_DONT_THROTTLE;
2932 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) {
2933 flags |= METASLAB_GANG_CHILD;
2935 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) {
2936 flags |= METASLAB_ASYNC_ALLOC;
2939 error = metaslab_alloc(spa, mc, zio->io_size, bp,
2940 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
2941 &zio->io_alloc_list, zio, zio->io_allocator);
2943 if (error != 0) {
2944 zfs_dbgmsg("%s: metaslab allocation failure: zio %p, "
2945 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2946 error);
2947 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2948 return (zio_write_gang_block(zio));
2949 zio->io_error = error;
2952 return (ZIO_PIPELINE_CONTINUE);
2955 static int
2956 zio_dva_free(zio_t *zio)
2958 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2960 return (ZIO_PIPELINE_CONTINUE);
2963 static int
2964 zio_dva_claim(zio_t *zio)
2966 int error;
2968 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2969 if (error)
2970 zio->io_error = error;
2972 return (ZIO_PIPELINE_CONTINUE);
2976 * Undo an allocation. This is used by zio_done() when an I/O fails
2977 * and we want to give back the block we just allocated.
2978 * This handles both normal blocks and gang blocks.
2980 static void
2981 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2983 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2984 ASSERT(zio->io_bp_override == NULL);
2986 if (!BP_IS_HOLE(bp))
2987 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2989 if (gn != NULL) {
2990 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2991 zio_dva_unallocate(zio, gn->gn_child[g],
2992 &gn->gn_gbh->zg_blkptr[g]);
2998 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3001 zio_alloc_zil(spa_t *spa, uint64_t objset, uint64_t txg, blkptr_t *new_bp,
3002 blkptr_t *old_bp, uint64_t size, boolean_t *slog)
3004 int error = 1;
3005 zio_alloc_list_t io_alloc_list;
3007 ASSERT(txg > spa_syncing_txg(spa));
3009 metaslab_trace_init(&io_alloc_list);
3011 * When allocating a zil block, we don't have information about
3012 * the final destination of the block except the objset it's part
3013 * of, so we just hash the objset ID to pick the allocator to get
3014 * some parallelism.
3016 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3017 txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL,
3018 cityhash4(0, 0, 0, objset) % spa->spa_alloc_count);
3019 if (error == 0) {
3020 *slog = TRUE;
3021 } else {
3022 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3023 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
3024 &io_alloc_list, NULL, cityhash4(0, 0, 0, objset) %
3025 spa->spa_alloc_count);
3026 if (error == 0)
3027 *slog = FALSE;
3029 metaslab_trace_fini(&io_alloc_list);
3031 if (error == 0) {
3032 BP_SET_LSIZE(new_bp, size);
3033 BP_SET_PSIZE(new_bp, size);
3034 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3035 BP_SET_CHECKSUM(new_bp,
3036 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3037 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3038 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3039 BP_SET_LEVEL(new_bp, 0);
3040 BP_SET_DEDUP(new_bp, 0);
3041 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3042 } else {
3043 zfs_dbgmsg("%s: zil block allocation failure: "
3044 "size %llu, error %d", spa_name(spa), size, error);
3047 return (error);
3051 * ==========================================================================
3052 * Read and write to physical devices
3053 * ==========================================================================
3058 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3059 * stops after this stage and will resume upon I/O completion.
3060 * However, there are instances where the vdev layer may need to
3061 * continue the pipeline when an I/O was not issued. Since the I/O
3062 * that was sent to the vdev layer might be different than the one
3063 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3064 * force the underlying vdev layers to call either zio_execute() or
3065 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3067 static int
3068 zio_vdev_io_start(zio_t *zio)
3070 vdev_t *vd = zio->io_vd;
3071 uint64_t align;
3072 spa_t *spa = zio->io_spa;
3074 ASSERT(zio->io_error == 0);
3075 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3077 if (vd == NULL) {
3078 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3079 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3082 * The mirror_ops handle multiple DVAs in a single BP.
3084 vdev_mirror_ops.vdev_op_io_start(zio);
3085 return (ZIO_PIPELINE_STOP);
3088 ASSERT3P(zio->io_logical, !=, zio);
3089 if (zio->io_type == ZIO_TYPE_WRITE) {
3090 ASSERT(spa->spa_trust_config);
3092 if (zio->io_vd->vdev_removing) {
3094 * Note: the code can handle other kinds of writes,
3095 * but we don't expect them.
3097 ASSERT(zio->io_flags &
3098 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3099 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3104 * We keep track of time-sensitive I/Os so that the scan thread
3105 * can quickly react to certain workloads. In particular, we care
3106 * about non-scrubbing, top-level reads and writes with the following
3107 * characteristics:
3108 * - synchronous writes of user data to non-slog devices
3109 * - any reads of user data
3110 * When these conditions are met, adjust the timestamp of spa_last_io
3111 * which allows the scan thread to adjust its workload accordingly.
3113 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
3114 vd == vd->vdev_top && !vd->vdev_islog &&
3115 zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
3116 zio->io_txg != spa_syncing_txg(spa)) {
3117 uint64_t old = spa->spa_last_io;
3118 uint64_t new = ddi_get_lbolt64();
3119 if (old != new)
3120 (void) atomic_cas_64(&spa->spa_last_io, old, new);
3123 align = 1ULL << vd->vdev_top->vdev_ashift;
3125 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3126 P2PHASE(zio->io_size, align) != 0) {
3127 /* Transform logical writes to be a full physical block size. */
3128 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3129 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3130 ASSERT(vd == vd->vdev_top);
3131 if (zio->io_type == ZIO_TYPE_WRITE) {
3132 abd_copy(abuf, zio->io_abd, zio->io_size);
3133 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3135 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3139 * If this is not a physical io, make sure that it is properly aligned
3140 * before proceeding.
3142 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3143 ASSERT0(P2PHASE(zio->io_offset, align));
3144 ASSERT0(P2PHASE(zio->io_size, align));
3145 } else {
3147 * For physical writes, we allow 512b aligned writes and assume
3148 * the device will perform a read-modify-write as necessary.
3150 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3151 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3154 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3157 * If this is a repair I/O, and there's no self-healing involved --
3158 * that is, we're just resilvering what we expect to resilver --
3159 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3160 * This prevents spurious resilvering.
3162 * There are a few ways that we can end up creating these spurious
3163 * resilver i/os:
3165 * 1. A resilver i/o will be issued if any DVA in the BP has a
3166 * dirty DTL. The mirror code will issue resilver writes to
3167 * each DVA, including the one(s) that are not on vdevs with dirty
3168 * DTLs.
3170 * 2. With nested replication, which happens when we have a
3171 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3172 * For example, given mirror(replacing(A+B), C), it's likely that
3173 * only A is out of date (it's the new device). In this case, we'll
3174 * read from C, then use the data to resilver A+B -- but we don't
3175 * actually want to resilver B, just A. The top-level mirror has no
3176 * way to know this, so instead we just discard unnecessary repairs
3177 * as we work our way down the vdev tree.
3179 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3180 * The same logic applies to any form of nested replication: ditto
3181 * + mirror, RAID-Z + replacing, etc.
3183 * However, indirect vdevs point off to other vdevs which may have
3184 * DTL's, so we never bypass them. The child i/os on concrete vdevs
3185 * will be properly bypassed instead.
3187 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3188 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3189 zio->io_txg != 0 && /* not a delegated i/o */
3190 vd->vdev_ops != &vdev_indirect_ops &&
3191 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3192 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3193 zio_vdev_io_bypass(zio);
3194 return (ZIO_PIPELINE_CONTINUE);
3197 if (vd->vdev_ops->vdev_op_leaf &&
3198 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3200 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3201 return (ZIO_PIPELINE_CONTINUE);
3203 if ((zio = vdev_queue_io(zio)) == NULL)
3204 return (ZIO_PIPELINE_STOP);
3206 if (!vdev_accessible(vd, zio)) {
3207 zio->io_error = SET_ERROR(ENXIO);
3208 zio_interrupt(zio);
3209 return (ZIO_PIPELINE_STOP);
3213 vd->vdev_ops->vdev_op_io_start(zio);
3214 return (ZIO_PIPELINE_STOP);
3217 static int
3218 zio_vdev_io_done(zio_t *zio)
3220 vdev_t *vd = zio->io_vd;
3221 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3222 boolean_t unexpected_error = B_FALSE;
3224 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3225 return (ZIO_PIPELINE_STOP);
3228 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3230 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3232 vdev_queue_io_done(zio);
3234 if (zio->io_type == ZIO_TYPE_WRITE)
3235 vdev_cache_write(zio);
3237 if (zio_injection_enabled && zio->io_error == 0)
3238 zio->io_error = zio_handle_device_injection(vd,
3239 zio, EIO);
3241 if (zio_injection_enabled && zio->io_error == 0)
3242 zio->io_error = zio_handle_label_injection(zio, EIO);
3244 if (zio->io_error) {
3245 if (!vdev_accessible(vd, zio)) {
3246 zio->io_error = SET_ERROR(ENXIO);
3247 } else {
3248 unexpected_error = B_TRUE;
3253 ops->vdev_op_io_done(zio);
3255 if (unexpected_error)
3256 VERIFY(vdev_probe(vd, zio) == NULL);
3258 return (ZIO_PIPELINE_CONTINUE);
3262 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3263 * disk, and use that to finish the checksum ereport later.
3265 static void
3266 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3267 const void *good_buf)
3269 /* no processing needed */
3270 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3273 /*ARGSUSED*/
3274 void
3275 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3277 void *buf = zio_buf_alloc(zio->io_size);
3279 abd_copy_to_buf(buf, zio->io_abd, zio->io_size);
3281 zcr->zcr_cbinfo = zio->io_size;
3282 zcr->zcr_cbdata = buf;
3283 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3284 zcr->zcr_free = zio_buf_free;
3287 static int
3288 zio_vdev_io_assess(zio_t *zio)
3290 vdev_t *vd = zio->io_vd;
3292 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3293 return (ZIO_PIPELINE_STOP);
3296 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3297 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3299 if (zio->io_vsd != NULL) {
3300 zio->io_vsd_ops->vsd_free(zio);
3301 zio->io_vsd = NULL;
3304 if (zio_injection_enabled && zio->io_error == 0)
3305 zio->io_error = zio_handle_fault_injection(zio, EIO);
3308 * If the I/O failed, determine whether we should attempt to retry it.
3310 * On retry, we cut in line in the issue queue, since we don't want
3311 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3313 if (zio->io_error && vd == NULL &&
3314 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3315 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
3316 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
3317 zio->io_error = 0;
3318 zio->io_flags |= ZIO_FLAG_IO_RETRY |
3319 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3320 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3321 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3322 zio_requeue_io_start_cut_in_line);
3323 return (ZIO_PIPELINE_STOP);
3327 * If we got an error on a leaf device, convert it to ENXIO
3328 * if the device is not accessible at all.
3330 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3331 !vdev_accessible(vd, zio))
3332 zio->io_error = SET_ERROR(ENXIO);
3335 * If we can't write to an interior vdev (mirror or RAID-Z),
3336 * set vdev_cant_write so that we stop trying to allocate from it.
3338 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3339 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3340 vd->vdev_cant_write = B_TRUE;
3344 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3345 * attempts will ever succeed. In this case we set a persistent bit so
3346 * that we don't bother with it in the future.
3348 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3349 zio->io_type == ZIO_TYPE_IOCTL &&
3350 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3351 vd->vdev_nowritecache = B_TRUE;
3353 if (zio->io_error)
3354 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3356 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3357 zio->io_physdone != NULL) {
3358 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3359 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3360 zio->io_physdone(zio->io_logical);
3363 return (ZIO_PIPELINE_CONTINUE);
3366 void
3367 zio_vdev_io_reissue(zio_t *zio)
3369 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3370 ASSERT(zio->io_error == 0);
3372 zio->io_stage >>= 1;
3375 void
3376 zio_vdev_io_redone(zio_t *zio)
3378 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3380 zio->io_stage >>= 1;
3383 void
3384 zio_vdev_io_bypass(zio_t *zio)
3386 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3387 ASSERT(zio->io_error == 0);
3389 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3390 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3394 * ==========================================================================
3395 * Generate and verify checksums
3396 * ==========================================================================
3398 static int
3399 zio_checksum_generate(zio_t *zio)
3401 blkptr_t *bp = zio->io_bp;
3402 enum zio_checksum checksum;
3404 if (bp == NULL) {
3406 * This is zio_write_phys().
3407 * We're either generating a label checksum, or none at all.
3409 checksum = zio->io_prop.zp_checksum;
3411 if (checksum == ZIO_CHECKSUM_OFF)
3412 return (ZIO_PIPELINE_CONTINUE);
3414 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3415 } else {
3416 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3417 ASSERT(!IO_IS_ALLOCATING(zio));
3418 checksum = ZIO_CHECKSUM_GANG_HEADER;
3419 } else {
3420 checksum = BP_GET_CHECKSUM(bp);
3424 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3426 return (ZIO_PIPELINE_CONTINUE);
3429 static int
3430 zio_checksum_verify(zio_t *zio)
3432 zio_bad_cksum_t info;
3433 blkptr_t *bp = zio->io_bp;
3434 int error;
3436 ASSERT(zio->io_vd != NULL);
3438 if (bp == NULL) {
3440 * This is zio_read_phys().
3441 * We're either verifying a label checksum, or nothing at all.
3443 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3444 return (ZIO_PIPELINE_CONTINUE);
3446 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3449 if ((error = zio_checksum_error(zio, &info)) != 0) {
3450 zio->io_error = error;
3451 if (error == ECKSUM &&
3452 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3453 zfs_ereport_start_checksum(zio->io_spa,
3454 zio->io_vd, zio, zio->io_offset,
3455 zio->io_size, NULL, &info);
3459 return (ZIO_PIPELINE_CONTINUE);
3463 * Called by RAID-Z to ensure we don't compute the checksum twice.
3465 void
3466 zio_checksum_verified(zio_t *zio)
3468 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3472 * ==========================================================================
3473 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3474 * An error of 0 indicates success. ENXIO indicates whole-device failure,
3475 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
3476 * indicate errors that are specific to one I/O, and most likely permanent.
3477 * Any other error is presumed to be worse because we weren't expecting it.
3478 * ==========================================================================
3481 zio_worst_error(int e1, int e2)
3483 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3484 int r1, r2;
3486 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3487 if (e1 == zio_error_rank[r1])
3488 break;
3490 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3491 if (e2 == zio_error_rank[r2])
3492 break;
3494 return (r1 > r2 ? e1 : e2);
3498 * ==========================================================================
3499 * I/O completion
3500 * ==========================================================================
3502 static int
3503 zio_ready(zio_t *zio)
3505 blkptr_t *bp = zio->io_bp;
3506 zio_t *pio, *pio_next;
3507 zio_link_t *zl = NULL;
3509 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
3510 ZIO_WAIT_READY)) {
3511 return (ZIO_PIPELINE_STOP);
3514 if (zio->io_ready) {
3515 ASSERT(IO_IS_ALLOCATING(zio));
3516 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3517 (zio->io_flags & ZIO_FLAG_NOPWRITE));
3518 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3520 zio->io_ready(zio);
3523 if (bp != NULL && bp != &zio->io_bp_copy)
3524 zio->io_bp_copy = *bp;
3526 if (zio->io_error != 0) {
3527 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3529 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3530 ASSERT(IO_IS_ALLOCATING(zio));
3531 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3533 * We were unable to allocate anything, unreserve and
3534 * issue the next I/O to allocate.
3536 metaslab_class_throttle_unreserve(
3537 spa_normal_class(zio->io_spa),
3538 zio->io_prop.zp_copies, zio->io_allocator, zio);
3539 zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
3543 mutex_enter(&zio->io_lock);
3544 zio->io_state[ZIO_WAIT_READY] = 1;
3545 pio = zio_walk_parents(zio, &zl);
3546 mutex_exit(&zio->io_lock);
3549 * As we notify zio's parents, new parents could be added.
3550 * New parents go to the head of zio's io_parent_list, however,
3551 * so we will (correctly) not notify them. The remainder of zio's
3552 * io_parent_list, from 'pio_next' onward, cannot change because
3553 * all parents must wait for us to be done before they can be done.
3555 for (; pio != NULL; pio = pio_next) {
3556 pio_next = zio_walk_parents(zio, &zl);
3557 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3560 if (zio->io_flags & ZIO_FLAG_NODATA) {
3561 if (BP_IS_GANG(bp)) {
3562 zio->io_flags &= ~ZIO_FLAG_NODATA;
3563 } else {
3564 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
3565 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3569 if (zio_injection_enabled &&
3570 zio->io_spa->spa_syncing_txg == zio->io_txg)
3571 zio_handle_ignored_writes(zio);
3573 return (ZIO_PIPELINE_CONTINUE);
3577 * Update the allocation throttle accounting.
3579 static void
3580 zio_dva_throttle_done(zio_t *zio)
3582 zio_t *lio = zio->io_logical;
3583 zio_t *pio = zio_unique_parent(zio);
3584 vdev_t *vd = zio->io_vd;
3585 int flags = METASLAB_ASYNC_ALLOC;
3587 ASSERT3P(zio->io_bp, !=, NULL);
3588 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3589 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3590 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3591 ASSERT(vd != NULL);
3592 ASSERT3P(vd, ==, vd->vdev_top);
3593 ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3594 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3595 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3596 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3599 * Parents of gang children can have two flavors -- ones that
3600 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3601 * and ones that allocated the constituent blocks. The allocation
3602 * throttle needs to know the allocating parent zio so we must find
3603 * it here.
3605 if (pio->io_child_type == ZIO_CHILD_GANG) {
3607 * If our parent is a rewrite gang child then our grandparent
3608 * would have been the one that performed the allocation.
3610 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3611 pio = zio_unique_parent(pio);
3612 flags |= METASLAB_GANG_CHILD;
3615 ASSERT(IO_IS_ALLOCATING(pio));
3616 ASSERT3P(zio, !=, zio->io_logical);
3617 ASSERT(zio->io_logical != NULL);
3618 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3619 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3621 mutex_enter(&pio->io_lock);
3622 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
3623 pio->io_allocator, B_TRUE);
3624 mutex_exit(&pio->io_lock);
3626 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
3627 1, pio->io_allocator, pio);
3630 * Call into the pipeline to see if there is more work that
3631 * needs to be done. If there is work to be done it will be
3632 * dispatched to another taskq thread.
3634 zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
3637 static int
3638 zio_done(zio_t *zio)
3640 spa_t *spa = zio->io_spa;
3641 zio_t *lio = zio->io_logical;
3642 blkptr_t *bp = zio->io_bp;
3643 vdev_t *vd = zio->io_vd;
3644 uint64_t psize = zio->io_size;
3645 zio_t *pio, *pio_next;
3646 metaslab_class_t *mc = spa_normal_class(spa);
3647 zio_link_t *zl = NULL;
3650 * If our children haven't all completed,
3651 * wait for them and then repeat this pipeline stage.
3653 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
3654 return (ZIO_PIPELINE_STOP);
3658 * If the allocation throttle is enabled, then update the accounting.
3659 * We only track child I/Os that are part of an allocating async
3660 * write. We must do this since the allocation is performed
3661 * by the logical I/O but the actual write is done by child I/Os.
3663 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3664 zio->io_child_type == ZIO_CHILD_VDEV) {
3665 ASSERT(mc->mc_alloc_throttle_enabled);
3666 zio_dva_throttle_done(zio);
3670 * If the allocation throttle is enabled, verify that
3671 * we have decremented the refcounts for every I/O that was throttled.
3673 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3674 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3675 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3676 ASSERT(bp != NULL);
3677 metaslab_group_alloc_verify(spa, zio->io_bp, zio,
3678 zio->io_allocator);
3679 VERIFY(refcount_not_held(&mc->mc_alloc_slots[zio->io_allocator],
3680 zio));
3683 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3684 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3685 ASSERT(zio->io_children[c][w] == 0);
3687 if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3688 ASSERT(bp->blk_pad[0] == 0);
3689 ASSERT(bp->blk_pad[1] == 0);
3690 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3691 (bp == zio_unique_parent(zio)->io_bp));
3692 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3693 zio->io_bp_override == NULL &&
3694 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3695 ASSERT(!BP_SHOULD_BYTESWAP(bp));
3696 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3697 ASSERT(BP_COUNT_GANG(bp) == 0 ||
3698 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3700 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3701 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3705 * If there were child vdev/gang/ddt errors, they apply to us now.
3707 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3708 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3709 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3712 * If the I/O on the transformed data was successful, generate any
3713 * checksum reports now while we still have the transformed data.
3715 if (zio->io_error == 0) {
3716 while (zio->io_cksum_report != NULL) {
3717 zio_cksum_report_t *zcr = zio->io_cksum_report;
3718 uint64_t align = zcr->zcr_align;
3719 uint64_t asize = P2ROUNDUP(psize, align);
3720 char *abuf = NULL;
3721 abd_t *adata = zio->io_abd;
3723 if (asize != psize) {
3724 adata = abd_alloc_linear(asize, B_TRUE);
3725 abd_copy(adata, zio->io_abd, psize);
3726 abd_zero_off(adata, psize, asize - psize);
3729 if (adata != NULL)
3730 abuf = abd_borrow_buf_copy(adata, asize);
3732 zio->io_cksum_report = zcr->zcr_next;
3733 zcr->zcr_next = NULL;
3734 zcr->zcr_finish(zcr, abuf);
3735 zfs_ereport_free_checksum(zcr);
3737 if (adata != NULL)
3738 abd_return_buf(adata, abuf, asize);
3740 if (asize != psize)
3741 abd_free(adata);
3745 zio_pop_transforms(zio); /* note: may set zio->io_error */
3747 vdev_stat_update(zio, psize);
3749 if (zio->io_error) {
3751 * If this I/O is attached to a particular vdev,
3752 * generate an error message describing the I/O failure
3753 * at the block level. We ignore these errors if the
3754 * device is currently unavailable.
3756 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3757 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3759 if ((zio->io_error == EIO || !(zio->io_flags &
3760 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3761 zio == lio) {
3763 * For logical I/O requests, tell the SPA to log the
3764 * error and generate a logical data ereport.
3766 spa_log_error(spa, zio);
3767 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3768 0, 0);
3772 if (zio->io_error && zio == lio) {
3774 * Determine whether zio should be reexecuted. This will
3775 * propagate all the way to the root via zio_notify_parent().
3777 ASSERT(vd == NULL && bp != NULL);
3778 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3780 if (IO_IS_ALLOCATING(zio) &&
3781 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3782 if (zio->io_error != ENOSPC)
3783 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3784 else
3785 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3788 if ((zio->io_type == ZIO_TYPE_READ ||
3789 zio->io_type == ZIO_TYPE_FREE) &&
3790 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3791 zio->io_error == ENXIO &&
3792 spa_load_state(spa) == SPA_LOAD_NONE &&
3793 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3794 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3796 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3797 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3800 * Here is a possibly good place to attempt to do
3801 * either combinatorial reconstruction or error correction
3802 * based on checksums. It also might be a good place
3803 * to send out preliminary ereports before we suspend
3804 * processing.
3809 * If there were logical child errors, they apply to us now.
3810 * We defer this until now to avoid conflating logical child
3811 * errors with errors that happened to the zio itself when
3812 * updating vdev stats and reporting FMA events above.
3814 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3816 if ((zio->io_error || zio->io_reexecute) &&
3817 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3818 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3819 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3821 zio_gang_tree_free(&zio->io_gang_tree);
3824 * Godfather I/Os should never suspend.
3826 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3827 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3828 zio->io_reexecute = 0;
3830 if (zio->io_reexecute) {
3832 * This is a logical I/O that wants to reexecute.
3834 * Reexecute is top-down. When an i/o fails, if it's not
3835 * the root, it simply notifies its parent and sticks around.
3836 * The parent, seeing that it still has children in zio_done(),
3837 * does the same. This percolates all the way up to the root.
3838 * The root i/o will reexecute or suspend the entire tree.
3840 * This approach ensures that zio_reexecute() honors
3841 * all the original i/o dependency relationships, e.g.
3842 * parents not executing until children are ready.
3844 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3846 zio->io_gang_leader = NULL;
3848 mutex_enter(&zio->io_lock);
3849 zio->io_state[ZIO_WAIT_DONE] = 1;
3850 mutex_exit(&zio->io_lock);
3853 * "The Godfather" I/O monitors its children but is
3854 * not a true parent to them. It will track them through
3855 * the pipeline but severs its ties whenever they get into
3856 * trouble (e.g. suspended). This allows "The Godfather"
3857 * I/O to return status without blocking.
3859 zl = NULL;
3860 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
3861 pio = pio_next) {
3862 zio_link_t *remove_zl = zl;
3863 pio_next = zio_walk_parents(zio, &zl);
3865 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3866 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3867 zio_remove_child(pio, zio, remove_zl);
3868 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3872 if ((pio = zio_unique_parent(zio)) != NULL) {
3874 * We're not a root i/o, so there's nothing to do
3875 * but notify our parent. Don't propagate errors
3876 * upward since we haven't permanently failed yet.
3878 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3879 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3880 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3881 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3883 * We'd fail again if we reexecuted now, so suspend
3884 * until conditions improve (e.g. device comes online).
3886 zio_suspend(spa, zio);
3887 } else {
3889 * Reexecution is potentially a huge amount of work.
3890 * Hand it off to the otherwise-unused claim taskq.
3892 ASSERT(zio->io_tqent.tqent_next == NULL);
3893 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3894 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3895 0, &zio->io_tqent);
3897 return (ZIO_PIPELINE_STOP);
3900 ASSERT(zio->io_child_count == 0);
3901 ASSERT(zio->io_reexecute == 0);
3902 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3905 * Report any checksum errors, since the I/O is complete.
3907 while (zio->io_cksum_report != NULL) {
3908 zio_cksum_report_t *zcr = zio->io_cksum_report;
3909 zio->io_cksum_report = zcr->zcr_next;
3910 zcr->zcr_next = NULL;
3911 zcr->zcr_finish(zcr, NULL);
3912 zfs_ereport_free_checksum(zcr);
3916 * It is the responsibility of the done callback to ensure that this
3917 * particular zio is no longer discoverable for adoption, and as
3918 * such, cannot acquire any new parents.
3920 if (zio->io_done)
3921 zio->io_done(zio);
3923 mutex_enter(&zio->io_lock);
3924 zio->io_state[ZIO_WAIT_DONE] = 1;
3925 mutex_exit(&zio->io_lock);
3927 zl = NULL;
3928 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
3929 zio_link_t *remove_zl = zl;
3930 pio_next = zio_walk_parents(zio, &zl);
3931 zio_remove_child(pio, zio, remove_zl);
3932 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3935 if (zio->io_waiter != NULL) {
3936 mutex_enter(&zio->io_lock);
3937 zio->io_executor = NULL;
3938 cv_broadcast(&zio->io_cv);
3939 mutex_exit(&zio->io_lock);
3940 } else {
3941 zio_destroy(zio);
3944 return (ZIO_PIPELINE_STOP);
3948 * ==========================================================================
3949 * I/O pipeline definition
3950 * ==========================================================================
3952 static zio_pipe_stage_t *zio_pipeline[] = {
3953 NULL,
3954 zio_read_bp_init,
3955 zio_write_bp_init,
3956 zio_free_bp_init,
3957 zio_issue_async,
3958 zio_write_compress,
3959 zio_checksum_generate,
3960 zio_nop_write,
3961 zio_ddt_read_start,
3962 zio_ddt_read_done,
3963 zio_ddt_write,
3964 zio_ddt_free,
3965 zio_gang_assemble,
3966 zio_gang_issue,
3967 zio_dva_throttle,
3968 zio_dva_allocate,
3969 zio_dva_free,
3970 zio_dva_claim,
3971 zio_ready,
3972 zio_vdev_io_start,
3973 zio_vdev_io_done,
3974 zio_vdev_io_assess,
3975 zio_checksum_verify,
3976 zio_done
3983 * Compare two zbookmark_phys_t's to see which we would reach first in a
3984 * pre-order traversal of the object tree.
3986 * This is simple in every case aside from the meta-dnode object. For all other
3987 * objects, we traverse them in order (object 1 before object 2, and so on).
3988 * However, all of these objects are traversed while traversing object 0, since
3989 * the data it points to is the list of objects. Thus, we need to convert to a
3990 * canonical representation so we can compare meta-dnode bookmarks to
3991 * non-meta-dnode bookmarks.
3993 * We do this by calculating "equivalents" for each field of the zbookmark.
3994 * zbookmarks outside of the meta-dnode use their own object and level, and
3995 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3996 * blocks this bookmark refers to) by multiplying their blkid by their span
3997 * (the number of L0 blocks contained within one block at their level).
3998 * zbookmarks inside the meta-dnode calculate their object equivalent
3999 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4000 * level + 1<<31 (any value larger than a level could ever be) for their level.
4001 * This causes them to always compare before a bookmark in their object
4002 * equivalent, compare appropriately to bookmarks in other objects, and to
4003 * compare appropriately to other bookmarks in the meta-dnode.
4006 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4007 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4010 * These variables represent the "equivalent" values for the zbookmark,
4011 * after converting zbookmarks inside the meta dnode to their
4012 * normal-object equivalents.
4014 uint64_t zb1obj, zb2obj;
4015 uint64_t zb1L0, zb2L0;
4016 uint64_t zb1level, zb2level;
4018 if (zb1->zb_object == zb2->zb_object &&
4019 zb1->zb_level == zb2->zb_level &&
4020 zb1->zb_blkid == zb2->zb_blkid)
4021 return (0);
4024 * BP_SPANB calculates the span in blocks.
4026 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4027 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4029 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4030 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4031 zb1L0 = 0;
4032 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4033 } else {
4034 zb1obj = zb1->zb_object;
4035 zb1level = zb1->zb_level;
4038 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4039 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4040 zb2L0 = 0;
4041 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4042 } else {
4043 zb2obj = zb2->zb_object;
4044 zb2level = zb2->zb_level;
4047 /* Now that we have a canonical representation, do the comparison. */
4048 if (zb1obj != zb2obj)
4049 return (zb1obj < zb2obj ? -1 : 1);
4050 else if (zb1L0 != zb2L0)
4051 return (zb1L0 < zb2L0 ? -1 : 1);
4052 else if (zb1level != zb2level)
4053 return (zb1level > zb2level ? -1 : 1);
4055 * This can (theoretically) happen if the bookmarks have the same object
4056 * and level, but different blkids, if the block sizes are not the same.
4057 * There is presently no way to change the indirect block sizes
4059 return (0);
4063 * This function checks the following: given that last_block is the place that
4064 * our traversal stopped last time, does that guarantee that we've visited
4065 * every node under subtree_root? Therefore, we can't just use the raw output
4066 * of zbookmark_compare. We have to pass in a modified version of
4067 * subtree_root; by incrementing the block id, and then checking whether
4068 * last_block is before or equal to that, we can tell whether or not having
4069 * visited last_block implies that all of subtree_root's children have been
4070 * visited.
4072 boolean_t
4073 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4074 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4076 zbookmark_phys_t mod_zb = *subtree_root;
4077 mod_zb.zb_blkid++;
4078 ASSERT(last_block->zb_level == 0);
4080 /* The objset_phys_t isn't before anything. */
4081 if (dnp == NULL)
4082 return (B_FALSE);
4085 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4086 * data block size in sectors, because that variable is only used if
4087 * the bookmark refers to a block in the meta-dnode. Since we don't
4088 * know without examining it what object it refers to, and there's no
4089 * harm in passing in this value in other cases, we always pass it in.
4091 * We pass in 0 for the indirect block size shift because zb2 must be
4092 * level 0. The indirect block size is only used to calculate the span
4093 * of the bookmark, but since the bookmark must be level 0, the span is
4094 * always 1, so the math works out.
4096 * If you make changes to how the zbookmark_compare code works, be sure
4097 * to make sure that this code still works afterwards.
4099 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4100 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4101 last_block) <= 0);