8585 improve batching done in zil_commit()
[unleashed.git] / usr / src / uts / common / fs / zfs / zio.c
blobb7aba119ceb6c08f0190c9a15d4e3d09716bd97a
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
28 #include <sys/sysmacros.h>
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/txg.h>
33 #include <sys/spa_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio_impl.h>
36 #include <sys/zio_compress.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/ddt.h>
41 #include <sys/blkptr.h>
42 #include <sys/zfeature.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/abd.h>
47 * ==========================================================================
48 * I/O type descriptions
49 * ==========================================================================
51 const char *zio_type_name[ZIO_TYPES] = {
52 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
53 "zio_ioctl"
56 boolean_t zio_dva_throttle_enabled = B_TRUE;
59 * ==========================================================================
60 * I/O kmem caches
61 * ==========================================================================
63 kmem_cache_t *zio_cache;
64 kmem_cache_t *zio_link_cache;
65 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
66 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
68 #ifdef _KERNEL
69 extern vmem_t *zio_alloc_arena;
70 #endif
72 #define ZIO_PIPELINE_CONTINUE 0x100
73 #define ZIO_PIPELINE_STOP 0x101
75 #define BP_SPANB(indblkshift, level) \
76 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
77 #define COMPARE_META_LEVEL 0x80000000ul
79 * The following actions directly effect the spa's sync-to-convergence logic.
80 * The values below define the sync pass when we start performing the action.
81 * Care should be taken when changing these values as they directly impact
82 * spa_sync() performance. Tuning these values may introduce subtle performance
83 * pathologies and should only be done in the context of performance analysis.
84 * These tunables will eventually be removed and replaced with #defines once
85 * enough analysis has been done to determine optimal values.
87 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
88 * regular blocks are not deferred.
90 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
91 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
92 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
95 * An allocating zio is one that either currently has the DVA allocate
96 * stage set or will have it later in its lifetime.
98 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
100 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE;
102 #ifdef ZFS_DEBUG
103 int zio_buf_debug_limit = 16384;
104 #else
105 int zio_buf_debug_limit = 0;
106 #endif
108 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
110 void
111 zio_init(void)
113 size_t c;
114 vmem_t *data_alloc_arena = NULL;
116 #ifdef _KERNEL
117 data_alloc_arena = zio_alloc_arena;
118 #endif
119 zio_cache = kmem_cache_create("zio_cache",
120 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
121 zio_link_cache = kmem_cache_create("zio_link_cache",
122 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
125 * For small buffers, we want a cache for each multiple of
126 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
127 * for each quarter-power of 2.
129 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
130 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
131 size_t p2 = size;
132 size_t align = 0;
133 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
135 while (!ISP2(p2))
136 p2 &= p2 - 1;
138 #ifndef _KERNEL
140 * If we are using watchpoints, put each buffer on its own page,
141 * to eliminate the performance overhead of trapping to the
142 * kernel when modifying a non-watched buffer that shares the
143 * page with a watched buffer.
145 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
146 continue;
147 #endif
148 if (size <= 4 * SPA_MINBLOCKSIZE) {
149 align = SPA_MINBLOCKSIZE;
150 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
151 align = MIN(p2 >> 2, PAGESIZE);
154 if (align != 0) {
155 char name[36];
156 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
157 zio_buf_cache[c] = kmem_cache_create(name, size,
158 align, NULL, NULL, NULL, NULL, NULL, cflags);
161 * Since zio_data bufs do not appear in crash dumps, we
162 * pass KMC_NOTOUCH so that no allocator metadata is
163 * stored with the buffers.
165 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
166 zio_data_buf_cache[c] = kmem_cache_create(name, size,
167 align, NULL, NULL, NULL, NULL, data_alloc_arena,
168 cflags | KMC_NOTOUCH);
172 while (--c != 0) {
173 ASSERT(zio_buf_cache[c] != NULL);
174 if (zio_buf_cache[c - 1] == NULL)
175 zio_buf_cache[c - 1] = zio_buf_cache[c];
177 ASSERT(zio_data_buf_cache[c] != NULL);
178 if (zio_data_buf_cache[c - 1] == NULL)
179 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
182 zio_inject_init();
185 void
186 zio_fini(void)
188 size_t c;
189 kmem_cache_t *last_cache = NULL;
190 kmem_cache_t *last_data_cache = NULL;
192 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
193 if (zio_buf_cache[c] != last_cache) {
194 last_cache = zio_buf_cache[c];
195 kmem_cache_destroy(zio_buf_cache[c]);
197 zio_buf_cache[c] = NULL;
199 if (zio_data_buf_cache[c] != last_data_cache) {
200 last_data_cache = zio_data_buf_cache[c];
201 kmem_cache_destroy(zio_data_buf_cache[c]);
203 zio_data_buf_cache[c] = NULL;
206 kmem_cache_destroy(zio_link_cache);
207 kmem_cache_destroy(zio_cache);
209 zio_inject_fini();
213 * ==========================================================================
214 * Allocate and free I/O buffers
215 * ==========================================================================
219 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
220 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
221 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
222 * excess / transient data in-core during a crashdump.
224 void *
225 zio_buf_alloc(size_t size)
227 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
229 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
231 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
235 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
236 * crashdump if the kernel panics. This exists so that we will limit the amount
237 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
238 * of kernel heap dumped to disk when the kernel panics)
240 void *
241 zio_data_buf_alloc(size_t size)
243 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
245 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
247 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
250 void
251 zio_buf_free(void *buf, size_t size)
253 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
255 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
257 kmem_cache_free(zio_buf_cache[c], buf);
260 void
261 zio_data_buf_free(void *buf, size_t size)
263 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
265 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
267 kmem_cache_free(zio_data_buf_cache[c], buf);
271 * ==========================================================================
272 * Push and pop I/O transform buffers
273 * ==========================================================================
275 void
276 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
277 zio_transform_func_t *transform)
279 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
282 * Ensure that anyone expecting this zio to contain a linear ABD isn't
283 * going to get a nasty surprise when they try to access the data.
285 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
287 zt->zt_orig_abd = zio->io_abd;
288 zt->zt_orig_size = zio->io_size;
289 zt->zt_bufsize = bufsize;
290 zt->zt_transform = transform;
292 zt->zt_next = zio->io_transform_stack;
293 zio->io_transform_stack = zt;
295 zio->io_abd = data;
296 zio->io_size = size;
299 void
300 zio_pop_transforms(zio_t *zio)
302 zio_transform_t *zt;
304 while ((zt = zio->io_transform_stack) != NULL) {
305 if (zt->zt_transform != NULL)
306 zt->zt_transform(zio,
307 zt->zt_orig_abd, zt->zt_orig_size);
309 if (zt->zt_bufsize != 0)
310 abd_free(zio->io_abd);
312 zio->io_abd = zt->zt_orig_abd;
313 zio->io_size = zt->zt_orig_size;
314 zio->io_transform_stack = zt->zt_next;
316 kmem_free(zt, sizeof (zio_transform_t));
321 * ==========================================================================
322 * I/O transform callbacks for subblocks and decompression
323 * ==========================================================================
325 static void
326 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
328 ASSERT(zio->io_size > size);
330 if (zio->io_type == ZIO_TYPE_READ)
331 abd_copy(data, zio->io_abd, size);
334 static void
335 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
337 if (zio->io_error == 0) {
338 void *tmp = abd_borrow_buf(data, size);
339 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
340 zio->io_abd, tmp, zio->io_size, size);
341 abd_return_buf_copy(data, tmp, size);
343 if (ret != 0)
344 zio->io_error = SET_ERROR(EIO);
349 * ==========================================================================
350 * I/O parent/child relationships and pipeline interlocks
351 * ==========================================================================
353 zio_t *
354 zio_walk_parents(zio_t *cio, zio_link_t **zl)
356 list_t *pl = &cio->io_parent_list;
358 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
359 if (*zl == NULL)
360 return (NULL);
362 ASSERT((*zl)->zl_child == cio);
363 return ((*zl)->zl_parent);
366 zio_t *
367 zio_walk_children(zio_t *pio, zio_link_t **zl)
369 list_t *cl = &pio->io_child_list;
371 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
372 if (*zl == NULL)
373 return (NULL);
375 ASSERT((*zl)->zl_parent == pio);
376 return ((*zl)->zl_child);
379 zio_t *
380 zio_unique_parent(zio_t *cio)
382 zio_link_t *zl = NULL;
383 zio_t *pio = zio_walk_parents(cio, &zl);
385 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
386 return (pio);
389 void
390 zio_add_child(zio_t *pio, zio_t *cio)
392 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
395 * Logical I/Os can have logical, gang, or vdev children.
396 * Gang I/Os can have gang or vdev children.
397 * Vdev I/Os can only have vdev children.
398 * The following ASSERT captures all of these constraints.
400 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
402 zl->zl_parent = pio;
403 zl->zl_child = cio;
405 mutex_enter(&cio->io_lock);
406 mutex_enter(&pio->io_lock);
408 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
410 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
411 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
413 list_insert_head(&pio->io_child_list, zl);
414 list_insert_head(&cio->io_parent_list, zl);
416 pio->io_child_count++;
417 cio->io_parent_count++;
419 mutex_exit(&pio->io_lock);
420 mutex_exit(&cio->io_lock);
423 static void
424 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
426 ASSERT(zl->zl_parent == pio);
427 ASSERT(zl->zl_child == cio);
429 mutex_enter(&cio->io_lock);
430 mutex_enter(&pio->io_lock);
432 list_remove(&pio->io_child_list, zl);
433 list_remove(&cio->io_parent_list, zl);
435 pio->io_child_count--;
436 cio->io_parent_count--;
438 mutex_exit(&pio->io_lock);
439 mutex_exit(&cio->io_lock);
441 kmem_cache_free(zio_link_cache, zl);
444 static boolean_t
445 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
447 uint64_t *countp = &zio->io_children[child][wait];
448 boolean_t waiting = B_FALSE;
450 mutex_enter(&zio->io_lock);
451 ASSERT(zio->io_stall == NULL);
452 if (*countp != 0) {
453 zio->io_stage >>= 1;
454 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
455 zio->io_stall = countp;
456 waiting = B_TRUE;
458 mutex_exit(&zio->io_lock);
460 return (waiting);
463 static void
464 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
466 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
467 int *errorp = &pio->io_child_error[zio->io_child_type];
469 mutex_enter(&pio->io_lock);
470 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
471 *errorp = zio_worst_error(*errorp, zio->io_error);
472 pio->io_reexecute |= zio->io_reexecute;
473 ASSERT3U(*countp, >, 0);
475 (*countp)--;
477 if (*countp == 0 && pio->io_stall == countp) {
478 zio_taskq_type_t type =
479 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
480 ZIO_TASKQ_INTERRUPT;
481 pio->io_stall = NULL;
482 mutex_exit(&pio->io_lock);
484 * Dispatch the parent zio in its own taskq so that
485 * the child can continue to make progress. This also
486 * prevents overflowing the stack when we have deeply nested
487 * parent-child relationships.
489 zio_taskq_dispatch(pio, type, B_FALSE);
490 } else {
491 mutex_exit(&pio->io_lock);
495 static void
496 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
498 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
499 zio->io_error = zio->io_child_error[c];
503 zio_bookmark_compare(const void *x1, const void *x2)
505 const zio_t *z1 = x1;
506 const zio_t *z2 = x2;
508 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
509 return (-1);
510 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
511 return (1);
513 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
514 return (-1);
515 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
516 return (1);
518 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
519 return (-1);
520 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
521 return (1);
523 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
524 return (-1);
525 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
526 return (1);
528 if (z1 < z2)
529 return (-1);
530 if (z1 > z2)
531 return (1);
533 return (0);
537 * ==========================================================================
538 * Create the various types of I/O (read, write, free, etc)
539 * ==========================================================================
541 static zio_t *
542 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
543 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
544 void *private, zio_type_t type, zio_priority_t priority,
545 enum zio_flag flags, vdev_t *vd, uint64_t offset,
546 const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
548 zio_t *zio;
550 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
551 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
552 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
554 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
555 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
556 ASSERT(vd || stage == ZIO_STAGE_OPEN);
558 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0);
560 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
561 bzero(zio, sizeof (zio_t));
563 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
564 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
566 list_create(&zio->io_parent_list, sizeof (zio_link_t),
567 offsetof(zio_link_t, zl_parent_node));
568 list_create(&zio->io_child_list, sizeof (zio_link_t),
569 offsetof(zio_link_t, zl_child_node));
570 metaslab_trace_init(&zio->io_alloc_list);
572 if (vd != NULL)
573 zio->io_child_type = ZIO_CHILD_VDEV;
574 else if (flags & ZIO_FLAG_GANG_CHILD)
575 zio->io_child_type = ZIO_CHILD_GANG;
576 else if (flags & ZIO_FLAG_DDT_CHILD)
577 zio->io_child_type = ZIO_CHILD_DDT;
578 else
579 zio->io_child_type = ZIO_CHILD_LOGICAL;
581 if (bp != NULL) {
582 zio->io_bp = (blkptr_t *)bp;
583 zio->io_bp_copy = *bp;
584 zio->io_bp_orig = *bp;
585 if (type != ZIO_TYPE_WRITE ||
586 zio->io_child_type == ZIO_CHILD_DDT)
587 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
588 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
589 zio->io_logical = zio;
590 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
591 pipeline |= ZIO_GANG_STAGES;
594 zio->io_spa = spa;
595 zio->io_txg = txg;
596 zio->io_done = done;
597 zio->io_private = private;
598 zio->io_type = type;
599 zio->io_priority = priority;
600 zio->io_vd = vd;
601 zio->io_offset = offset;
602 zio->io_orig_abd = zio->io_abd = data;
603 zio->io_orig_size = zio->io_size = psize;
604 zio->io_lsize = lsize;
605 zio->io_orig_flags = zio->io_flags = flags;
606 zio->io_orig_stage = zio->io_stage = stage;
607 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
608 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
610 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
611 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
613 if (zb != NULL)
614 zio->io_bookmark = *zb;
616 if (pio != NULL) {
617 if (zio->io_logical == NULL)
618 zio->io_logical = pio->io_logical;
619 if (zio->io_child_type == ZIO_CHILD_GANG)
620 zio->io_gang_leader = pio->io_gang_leader;
621 zio_add_child(pio, zio);
624 return (zio);
627 static void
628 zio_destroy(zio_t *zio)
630 metaslab_trace_fini(&zio->io_alloc_list);
631 list_destroy(&zio->io_parent_list);
632 list_destroy(&zio->io_child_list);
633 mutex_destroy(&zio->io_lock);
634 cv_destroy(&zio->io_cv);
635 kmem_cache_free(zio_cache, zio);
638 zio_t *
639 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
640 void *private, enum zio_flag flags)
642 zio_t *zio;
644 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
645 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
646 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
648 return (zio);
651 zio_t *
652 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
654 return (zio_null(NULL, spa, NULL, done, private, flags));
657 void
658 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
660 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
661 zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
662 bp, (longlong_t)BP_GET_TYPE(bp));
664 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
665 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
666 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
667 bp, (longlong_t)BP_GET_CHECKSUM(bp));
669 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
670 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
671 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
672 bp, (longlong_t)BP_GET_COMPRESS(bp));
674 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
675 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
676 bp, (longlong_t)BP_GET_LSIZE(bp));
678 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
679 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
680 bp, (longlong_t)BP_GET_PSIZE(bp));
683 if (BP_IS_EMBEDDED(bp)) {
684 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
685 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
686 bp, (longlong_t)BPE_GET_ETYPE(bp));
691 * Pool-specific checks.
693 * Note: it would be nice to verify that the blk_birth and
694 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
695 * allows the birth time of log blocks (and dmu_sync()-ed blocks
696 * that are in the log) to be arbitrarily large.
698 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
699 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
700 if (vdevid >= spa->spa_root_vdev->vdev_children) {
701 zfs_panic_recover("blkptr at %p DVA %u has invalid "
702 "VDEV %llu",
703 bp, i, (longlong_t)vdevid);
704 continue;
706 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
707 if (vd == NULL) {
708 zfs_panic_recover("blkptr at %p DVA %u has invalid "
709 "VDEV %llu",
710 bp, i, (longlong_t)vdevid);
711 continue;
713 if (vd->vdev_ops == &vdev_hole_ops) {
714 zfs_panic_recover("blkptr at %p DVA %u has hole "
715 "VDEV %llu",
716 bp, i, (longlong_t)vdevid);
717 continue;
719 if (vd->vdev_ops == &vdev_missing_ops) {
721 * "missing" vdevs are valid during import, but we
722 * don't have their detailed info (e.g. asize), so
723 * we can't perform any more checks on them.
725 continue;
727 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
728 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
729 if (BP_IS_GANG(bp))
730 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
731 if (offset + asize > vd->vdev_asize) {
732 zfs_panic_recover("blkptr at %p DVA %u has invalid "
733 "OFFSET %llu",
734 bp, i, (longlong_t)offset);
739 zio_t *
740 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
741 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
742 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
744 zio_t *zio;
746 zfs_blkptr_verify(spa, bp);
748 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
749 data, size, size, done, private,
750 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
751 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
752 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
754 return (zio);
757 zio_t *
758 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
759 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
760 zio_done_func_t *ready, zio_done_func_t *children_ready,
761 zio_done_func_t *physdone, zio_done_func_t *done,
762 void *private, zio_priority_t priority, enum zio_flag flags,
763 const zbookmark_phys_t *zb)
765 zio_t *zio;
767 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
768 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
769 zp->zp_compress >= ZIO_COMPRESS_OFF &&
770 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
771 DMU_OT_IS_VALID(zp->zp_type) &&
772 zp->zp_level < 32 &&
773 zp->zp_copies > 0 &&
774 zp->zp_copies <= spa_max_replication(spa));
776 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
777 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
778 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
779 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
781 zio->io_ready = ready;
782 zio->io_children_ready = children_ready;
783 zio->io_physdone = physdone;
784 zio->io_prop = *zp;
787 * Data can be NULL if we are going to call zio_write_override() to
788 * provide the already-allocated BP. But we may need the data to
789 * verify a dedup hit (if requested). In this case, don't try to
790 * dedup (just take the already-allocated BP verbatim).
792 if (data == NULL && zio->io_prop.zp_dedup_verify) {
793 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
796 return (zio);
799 zio_t *
800 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
801 uint64_t size, zio_done_func_t *done, void *private,
802 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
804 zio_t *zio;
806 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
807 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
808 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
810 return (zio);
813 void
814 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
816 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
817 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
818 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
819 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
822 * We must reset the io_prop to match the values that existed
823 * when the bp was first written by dmu_sync() keeping in mind
824 * that nopwrite and dedup are mutually exclusive.
826 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
827 zio->io_prop.zp_nopwrite = nopwrite;
828 zio->io_prop.zp_copies = copies;
829 zio->io_bp_override = bp;
832 void
833 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
837 * The check for EMBEDDED is a performance optimization. We
838 * process the free here (by ignoring it) rather than
839 * putting it on the list and then processing it in zio_free_sync().
841 if (BP_IS_EMBEDDED(bp))
842 return;
843 metaslab_check_free(spa, bp);
846 * Frees that are for the currently-syncing txg, are not going to be
847 * deferred, and which will not need to do a read (i.e. not GANG or
848 * DEDUP), can be processed immediately. Otherwise, put them on the
849 * in-memory list for later processing.
851 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
852 txg != spa->spa_syncing_txg ||
853 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
854 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
855 } else {
856 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
860 zio_t *
861 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
862 enum zio_flag flags)
864 zio_t *zio;
865 enum zio_stage stage = ZIO_FREE_PIPELINE;
867 ASSERT(!BP_IS_HOLE(bp));
868 ASSERT(spa_syncing_txg(spa) == txg);
869 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
871 if (BP_IS_EMBEDDED(bp))
872 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
874 metaslab_check_free(spa, bp);
875 arc_freed(spa, bp);
878 * GANG and DEDUP blocks can induce a read (for the gang block header,
879 * or the DDT), so issue them asynchronously so that this thread is
880 * not tied up.
882 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
883 stage |= ZIO_STAGE_ISSUE_ASYNC;
885 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
886 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
887 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
889 return (zio);
892 zio_t *
893 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
894 zio_done_func_t *done, void *private, enum zio_flag flags)
896 zio_t *zio;
898 dprintf_bp(bp, "claiming in txg %llu", txg);
900 if (BP_IS_EMBEDDED(bp))
901 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
904 * A claim is an allocation of a specific block. Claims are needed
905 * to support immediate writes in the intent log. The issue is that
906 * immediate writes contain committed data, but in a txg that was
907 * *not* committed. Upon opening the pool after an unclean shutdown,
908 * the intent log claims all blocks that contain immediate write data
909 * so that the SPA knows they're in use.
911 * All claims *must* be resolved in the first txg -- before the SPA
912 * starts allocating blocks -- so that nothing is allocated twice.
913 * If txg == 0 we just verify that the block is claimable.
915 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
916 ASSERT(txg == spa_first_txg(spa) || txg == 0);
917 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
919 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
920 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
921 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
922 ASSERT0(zio->io_queued_timestamp);
924 return (zio);
927 zio_t *
928 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
929 zio_done_func_t *done, void *private, enum zio_flag flags)
931 zio_t *zio;
932 int c;
934 if (vd->vdev_children == 0) {
935 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
936 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
937 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
939 zio->io_cmd = cmd;
940 } else {
941 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
943 for (c = 0; c < vd->vdev_children; c++)
944 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
945 done, private, flags));
948 return (zio);
951 zio_t *
952 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
953 abd_t *data, int checksum, zio_done_func_t *done, void *private,
954 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
956 zio_t *zio;
958 ASSERT(vd->vdev_children == 0);
959 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
960 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
961 ASSERT3U(offset + size, <=, vd->vdev_psize);
963 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
964 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
965 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
967 zio->io_prop.zp_checksum = checksum;
969 return (zio);
972 zio_t *
973 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
974 abd_t *data, int checksum, zio_done_func_t *done, void *private,
975 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
977 zio_t *zio;
979 ASSERT(vd->vdev_children == 0);
980 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
981 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
982 ASSERT3U(offset + size, <=, vd->vdev_psize);
984 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
985 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
986 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
988 zio->io_prop.zp_checksum = checksum;
990 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
992 * zec checksums are necessarily destructive -- they modify
993 * the end of the write buffer to hold the verifier/checksum.
994 * Therefore, we must make a local copy in case the data is
995 * being written to multiple places in parallel.
997 abd_t *wbuf = abd_alloc_sametype(data, size);
998 abd_copy(wbuf, data, size);
1000 zio_push_transform(zio, wbuf, size, size, NULL);
1003 return (zio);
1007 * Create a child I/O to do some work for us.
1009 zio_t *
1010 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1011 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1012 enum zio_flag flags, zio_done_func_t *done, void *private)
1014 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1015 zio_t *zio;
1017 ASSERT(vd->vdev_parent ==
1018 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1020 if (type == ZIO_TYPE_READ && bp != NULL) {
1022 * If we have the bp, then the child should perform the
1023 * checksum and the parent need not. This pushes error
1024 * detection as close to the leaves as possible and
1025 * eliminates redundant checksums in the interior nodes.
1027 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1028 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1031 if (vd->vdev_children == 0)
1032 offset += VDEV_LABEL_START_SIZE;
1034 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1037 * If we've decided to do a repair, the write is not speculative --
1038 * even if the original read was.
1040 if (flags & ZIO_FLAG_IO_REPAIR)
1041 flags &= ~ZIO_FLAG_SPECULATIVE;
1044 * If we're creating a child I/O that is not associated with a
1045 * top-level vdev, then the child zio is not an allocating I/O.
1046 * If this is a retried I/O then we ignore it since we will
1047 * have already processed the original allocating I/O.
1049 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1050 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1051 metaslab_class_t *mc = spa_normal_class(pio->io_spa);
1053 ASSERT(mc->mc_alloc_throttle_enabled);
1054 ASSERT(type == ZIO_TYPE_WRITE);
1055 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1056 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1057 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1058 pio->io_child_type == ZIO_CHILD_GANG);
1060 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1063 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1064 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1065 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1066 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1068 zio->io_physdone = pio->io_physdone;
1069 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1070 zio->io_logical->io_phys_children++;
1072 return (zio);
1075 zio_t *
1076 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1077 int type, zio_priority_t priority, enum zio_flag flags,
1078 zio_done_func_t *done, void *private)
1080 zio_t *zio;
1082 ASSERT(vd->vdev_ops->vdev_op_leaf);
1084 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1085 data, size, size, done, private, type, priority,
1086 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1087 vd, offset, NULL,
1088 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1090 return (zio);
1093 void
1094 zio_flush(zio_t *zio, vdev_t *vd)
1096 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1097 NULL, NULL,
1098 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1101 void
1102 zio_shrink(zio_t *zio, uint64_t size)
1104 ASSERT3P(zio->io_executor, ==, NULL);
1105 ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1106 ASSERT3U(size, <=, zio->io_size);
1109 * We don't shrink for raidz because of problems with the
1110 * reconstruction when reading back less than the block size.
1111 * Note, BP_IS_RAIDZ() assumes no compression.
1113 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1114 if (!BP_IS_RAIDZ(zio->io_bp)) {
1115 /* we are not doing a raw write */
1116 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1117 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1122 * ==========================================================================
1123 * Prepare to read and write logical blocks
1124 * ==========================================================================
1127 static int
1128 zio_read_bp_init(zio_t *zio)
1130 blkptr_t *bp = zio->io_bp;
1132 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1133 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1134 !(zio->io_flags & ZIO_FLAG_RAW)) {
1135 uint64_t psize =
1136 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1137 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1138 psize, psize, zio_decompress);
1141 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1142 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1144 int psize = BPE_GET_PSIZE(bp);
1145 void *data = abd_borrow_buf(zio->io_abd, psize);
1146 decode_embedded_bp_compressed(bp, data);
1147 abd_return_buf_copy(zio->io_abd, data, psize);
1148 } else {
1149 ASSERT(!BP_IS_EMBEDDED(bp));
1152 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1153 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1155 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1156 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1158 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1159 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1161 return (ZIO_PIPELINE_CONTINUE);
1164 static int
1165 zio_write_bp_init(zio_t *zio)
1167 if (!IO_IS_ALLOCATING(zio))
1168 return (ZIO_PIPELINE_CONTINUE);
1170 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1172 if (zio->io_bp_override) {
1173 blkptr_t *bp = zio->io_bp;
1174 zio_prop_t *zp = &zio->io_prop;
1176 ASSERT(bp->blk_birth != zio->io_txg);
1177 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1179 *bp = *zio->io_bp_override;
1180 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1182 if (BP_IS_EMBEDDED(bp))
1183 return (ZIO_PIPELINE_CONTINUE);
1186 * If we've been overridden and nopwrite is set then
1187 * set the flag accordingly to indicate that a nopwrite
1188 * has already occurred.
1190 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1191 ASSERT(!zp->zp_dedup);
1192 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1193 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1194 return (ZIO_PIPELINE_CONTINUE);
1197 ASSERT(!zp->zp_nopwrite);
1199 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1200 return (ZIO_PIPELINE_CONTINUE);
1202 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1203 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1205 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1206 BP_SET_DEDUP(bp, 1);
1207 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1208 return (ZIO_PIPELINE_CONTINUE);
1212 * We were unable to handle this as an override bp, treat
1213 * it as a regular write I/O.
1215 zio->io_bp_override = NULL;
1216 *bp = zio->io_bp_orig;
1217 zio->io_pipeline = zio->io_orig_pipeline;
1220 return (ZIO_PIPELINE_CONTINUE);
1223 static int
1224 zio_write_compress(zio_t *zio)
1226 spa_t *spa = zio->io_spa;
1227 zio_prop_t *zp = &zio->io_prop;
1228 enum zio_compress compress = zp->zp_compress;
1229 blkptr_t *bp = zio->io_bp;
1230 uint64_t lsize = zio->io_lsize;
1231 uint64_t psize = zio->io_size;
1232 int pass = 1;
1234 EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0);
1237 * If our children haven't all reached the ready stage,
1238 * wait for them and then repeat this pipeline stage.
1240 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1241 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1242 return (ZIO_PIPELINE_STOP);
1244 if (!IO_IS_ALLOCATING(zio))
1245 return (ZIO_PIPELINE_CONTINUE);
1247 if (zio->io_children_ready != NULL) {
1249 * Now that all our children are ready, run the callback
1250 * associated with this zio in case it wants to modify the
1251 * data to be written.
1253 ASSERT3U(zp->zp_level, >, 0);
1254 zio->io_children_ready(zio);
1257 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1258 ASSERT(zio->io_bp_override == NULL);
1260 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1262 * We're rewriting an existing block, which means we're
1263 * working on behalf of spa_sync(). For spa_sync() to
1264 * converge, it must eventually be the case that we don't
1265 * have to allocate new blocks. But compression changes
1266 * the blocksize, which forces a reallocate, and makes
1267 * convergence take longer. Therefore, after the first
1268 * few passes, stop compressing to ensure convergence.
1270 pass = spa_sync_pass(spa);
1272 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1273 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1274 ASSERT(!BP_GET_DEDUP(bp));
1276 if (pass >= zfs_sync_pass_dont_compress)
1277 compress = ZIO_COMPRESS_OFF;
1279 /* Make sure someone doesn't change their mind on overwrites */
1280 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1281 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1284 /* If it's a compressed write that is not raw, compress the buffer. */
1285 if (compress != ZIO_COMPRESS_OFF && psize == lsize) {
1286 void *cbuf = zio_buf_alloc(lsize);
1287 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1288 if (psize == 0 || psize == lsize) {
1289 compress = ZIO_COMPRESS_OFF;
1290 zio_buf_free(cbuf, lsize);
1291 } else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1292 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1293 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1294 encode_embedded_bp_compressed(bp,
1295 cbuf, compress, lsize, psize);
1296 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1297 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1298 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1299 zio_buf_free(cbuf, lsize);
1300 bp->blk_birth = zio->io_txg;
1301 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1302 ASSERT(spa_feature_is_active(spa,
1303 SPA_FEATURE_EMBEDDED_DATA));
1304 return (ZIO_PIPELINE_CONTINUE);
1305 } else {
1307 * Round up compressed size up to the ashift
1308 * of the smallest-ashift device, and zero the tail.
1309 * This ensures that the compressed size of the BP
1310 * (and thus compressratio property) are correct,
1311 * in that we charge for the padding used to fill out
1312 * the last sector.
1314 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1315 size_t rounded = (size_t)P2ROUNDUP(psize,
1316 1ULL << spa->spa_min_ashift);
1317 if (rounded >= lsize) {
1318 compress = ZIO_COMPRESS_OFF;
1319 zio_buf_free(cbuf, lsize);
1320 psize = lsize;
1321 } else {
1322 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1323 abd_take_ownership_of_buf(cdata, B_TRUE);
1324 abd_zero_off(cdata, psize, rounded - psize);
1325 psize = rounded;
1326 zio_push_transform(zio, cdata,
1327 psize, lsize, NULL);
1332 * We were unable to handle this as an override bp, treat
1333 * it as a regular write I/O.
1335 zio->io_bp_override = NULL;
1336 *bp = zio->io_bp_orig;
1337 zio->io_pipeline = zio->io_orig_pipeline;
1338 } else {
1339 ASSERT3U(psize, !=, 0);
1343 * The final pass of spa_sync() must be all rewrites, but the first
1344 * few passes offer a trade-off: allocating blocks defers convergence,
1345 * but newly allocated blocks are sequential, so they can be written
1346 * to disk faster. Therefore, we allow the first few passes of
1347 * spa_sync() to allocate new blocks, but force rewrites after that.
1348 * There should only be a handful of blocks after pass 1 in any case.
1350 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1351 BP_GET_PSIZE(bp) == psize &&
1352 pass >= zfs_sync_pass_rewrite) {
1353 ASSERT(psize != 0);
1354 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1355 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1356 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1357 } else {
1358 BP_ZERO(bp);
1359 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1362 if (psize == 0) {
1363 if (zio->io_bp_orig.blk_birth != 0 &&
1364 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1365 BP_SET_LSIZE(bp, lsize);
1366 BP_SET_TYPE(bp, zp->zp_type);
1367 BP_SET_LEVEL(bp, zp->zp_level);
1368 BP_SET_BIRTH(bp, zio->io_txg, 0);
1370 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1371 } else {
1372 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1373 BP_SET_LSIZE(bp, lsize);
1374 BP_SET_TYPE(bp, zp->zp_type);
1375 BP_SET_LEVEL(bp, zp->zp_level);
1376 BP_SET_PSIZE(bp, psize);
1377 BP_SET_COMPRESS(bp, compress);
1378 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1379 BP_SET_DEDUP(bp, zp->zp_dedup);
1380 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1381 if (zp->zp_dedup) {
1382 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1383 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1384 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1386 if (zp->zp_nopwrite) {
1387 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1388 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1389 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1392 return (ZIO_PIPELINE_CONTINUE);
1395 static int
1396 zio_free_bp_init(zio_t *zio)
1398 blkptr_t *bp = zio->io_bp;
1400 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1401 if (BP_GET_DEDUP(bp))
1402 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1405 return (ZIO_PIPELINE_CONTINUE);
1409 * ==========================================================================
1410 * Execute the I/O pipeline
1411 * ==========================================================================
1414 static void
1415 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1417 spa_t *spa = zio->io_spa;
1418 zio_type_t t = zio->io_type;
1419 int flags = (cutinline ? TQ_FRONT : 0);
1422 * If we're a config writer or a probe, the normal issue and
1423 * interrupt threads may all be blocked waiting for the config lock.
1424 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1426 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1427 t = ZIO_TYPE_NULL;
1430 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1432 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1433 t = ZIO_TYPE_NULL;
1436 * If this is a high priority I/O, then use the high priority taskq if
1437 * available.
1439 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1440 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1441 q++;
1443 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1446 * NB: We are assuming that the zio can only be dispatched
1447 * to a single taskq at a time. It would be a grievous error
1448 * to dispatch the zio to another taskq at the same time.
1450 ASSERT(zio->io_tqent.tqent_next == NULL);
1451 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1452 flags, &zio->io_tqent);
1455 static boolean_t
1456 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1458 kthread_t *executor = zio->io_executor;
1459 spa_t *spa = zio->io_spa;
1461 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1462 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1463 uint_t i;
1464 for (i = 0; i < tqs->stqs_count; i++) {
1465 if (taskq_member(tqs->stqs_taskq[i], executor))
1466 return (B_TRUE);
1470 return (B_FALSE);
1473 static int
1474 zio_issue_async(zio_t *zio)
1476 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1478 return (ZIO_PIPELINE_STOP);
1481 void
1482 zio_interrupt(zio_t *zio)
1484 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1487 void
1488 zio_delay_interrupt(zio_t *zio)
1491 * The timeout_generic() function isn't defined in userspace, so
1492 * rather than trying to implement the function, the zio delay
1493 * functionality has been disabled for userspace builds.
1496 #ifdef _KERNEL
1498 * If io_target_timestamp is zero, then no delay has been registered
1499 * for this IO, thus jump to the end of this function and "skip" the
1500 * delay; issuing it directly to the zio layer.
1502 if (zio->io_target_timestamp != 0) {
1503 hrtime_t now = gethrtime();
1505 if (now >= zio->io_target_timestamp) {
1507 * This IO has already taken longer than the target
1508 * delay to complete, so we don't want to delay it
1509 * any longer; we "miss" the delay and issue it
1510 * directly to the zio layer. This is likely due to
1511 * the target latency being set to a value less than
1512 * the underlying hardware can satisfy (e.g. delay
1513 * set to 1ms, but the disks take 10ms to complete an
1514 * IO request).
1517 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1518 hrtime_t, now);
1520 zio_interrupt(zio);
1521 } else {
1522 hrtime_t diff = zio->io_target_timestamp - now;
1524 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1525 hrtime_t, now, hrtime_t, diff);
1527 (void) timeout_generic(CALLOUT_NORMAL,
1528 (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1531 return;
1533 #endif
1535 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1536 zio_interrupt(zio);
1540 * Execute the I/O pipeline until one of the following occurs:
1542 * (1) the I/O completes
1543 * (2) the pipeline stalls waiting for dependent child I/Os
1544 * (3) the I/O issues, so we're waiting for an I/O completion interrupt
1545 * (4) the I/O is delegated by vdev-level caching or aggregation
1546 * (5) the I/O is deferred due to vdev-level queueing
1547 * (6) the I/O is handed off to another thread.
1549 * In all cases, the pipeline stops whenever there's no CPU work; it never
1550 * burns a thread in cv_wait().
1552 * There's no locking on io_stage because there's no legitimate way
1553 * for multiple threads to be attempting to process the same I/O.
1555 static zio_pipe_stage_t *zio_pipeline[];
1557 void
1558 zio_execute(zio_t *zio)
1560 zio->io_executor = curthread;
1562 ASSERT3U(zio->io_queued_timestamp, >, 0);
1564 while (zio->io_stage < ZIO_STAGE_DONE) {
1565 enum zio_stage pipeline = zio->io_pipeline;
1566 enum zio_stage stage = zio->io_stage;
1567 int rv;
1569 ASSERT(!MUTEX_HELD(&zio->io_lock));
1570 ASSERT(ISP2(stage));
1571 ASSERT(zio->io_stall == NULL);
1573 do {
1574 stage <<= 1;
1575 } while ((stage & pipeline) == 0);
1577 ASSERT(stage <= ZIO_STAGE_DONE);
1580 * If we are in interrupt context and this pipeline stage
1581 * will grab a config lock that is held across I/O,
1582 * or may wait for an I/O that needs an interrupt thread
1583 * to complete, issue async to avoid deadlock.
1585 * For VDEV_IO_START, we cut in line so that the io will
1586 * be sent to disk promptly.
1588 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1589 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1590 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1591 zio_requeue_io_start_cut_in_line : B_FALSE;
1592 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1593 return;
1596 zio->io_stage = stage;
1597 zio->io_pipeline_trace |= zio->io_stage;
1598 rv = zio_pipeline[highbit64(stage) - 1](zio);
1600 if (rv == ZIO_PIPELINE_STOP)
1601 return;
1603 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1608 * ==========================================================================
1609 * Initiate I/O, either sync or async
1610 * ==========================================================================
1613 zio_wait(zio_t *zio)
1615 int error;
1617 ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1618 ASSERT3P(zio->io_executor, ==, NULL);
1620 zio->io_waiter = curthread;
1621 ASSERT0(zio->io_queued_timestamp);
1622 zio->io_queued_timestamp = gethrtime();
1624 zio_execute(zio);
1626 mutex_enter(&zio->io_lock);
1627 while (zio->io_executor != NULL)
1628 cv_wait(&zio->io_cv, &zio->io_lock);
1629 mutex_exit(&zio->io_lock);
1631 error = zio->io_error;
1632 zio_destroy(zio);
1634 return (error);
1637 void
1638 zio_nowait(zio_t *zio)
1640 ASSERT3P(zio->io_executor, ==, NULL);
1642 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1643 zio_unique_parent(zio) == NULL) {
1645 * This is a logical async I/O with no parent to wait for it.
1646 * We add it to the spa_async_root_zio "Godfather" I/O which
1647 * will ensure they complete prior to unloading the pool.
1649 spa_t *spa = zio->io_spa;
1651 zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1654 ASSERT0(zio->io_queued_timestamp);
1655 zio->io_queued_timestamp = gethrtime();
1656 zio_execute(zio);
1660 * ==========================================================================
1661 * Reexecute, cancel, or suspend/resume failed I/O
1662 * ==========================================================================
1665 static void
1666 zio_reexecute(zio_t *pio)
1668 zio_t *cio, *cio_next;
1670 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1671 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1672 ASSERT(pio->io_gang_leader == NULL);
1673 ASSERT(pio->io_gang_tree == NULL);
1675 pio->io_flags = pio->io_orig_flags;
1676 pio->io_stage = pio->io_orig_stage;
1677 pio->io_pipeline = pio->io_orig_pipeline;
1678 pio->io_reexecute = 0;
1679 pio->io_flags |= ZIO_FLAG_REEXECUTED;
1680 pio->io_pipeline_trace = 0;
1681 pio->io_error = 0;
1682 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1683 pio->io_state[w] = 0;
1684 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1685 pio->io_child_error[c] = 0;
1687 if (IO_IS_ALLOCATING(pio))
1688 BP_ZERO(pio->io_bp);
1691 * As we reexecute pio's children, new children could be created.
1692 * New children go to the head of pio's io_child_list, however,
1693 * so we will (correctly) not reexecute them. The key is that
1694 * the remainder of pio's io_child_list, from 'cio_next' onward,
1695 * cannot be affected by any side effects of reexecuting 'cio'.
1697 zio_link_t *zl = NULL;
1698 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1699 cio_next = zio_walk_children(pio, &zl);
1700 mutex_enter(&pio->io_lock);
1701 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1702 pio->io_children[cio->io_child_type][w]++;
1703 mutex_exit(&pio->io_lock);
1704 zio_reexecute(cio);
1708 * Now that all children have been reexecuted, execute the parent.
1709 * We don't reexecute "The Godfather" I/O here as it's the
1710 * responsibility of the caller to wait on it.
1712 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1713 pio->io_queued_timestamp = gethrtime();
1714 zio_execute(pio);
1718 void
1719 zio_cancel(zio_t *zio)
1722 * Disallow cancellation of a zio that's already been issued.
1724 VERIFY3P(zio->io_executor, ==, NULL);
1726 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1727 zio->io_done = NULL;
1729 zio_nowait(zio);
1732 void
1733 zio_suspend(spa_t *spa, zio_t *zio)
1735 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1736 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1737 "failure and the failure mode property for this pool "
1738 "is set to panic.", spa_name(spa));
1740 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1742 mutex_enter(&spa->spa_suspend_lock);
1744 if (spa->spa_suspend_zio_root == NULL)
1745 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1746 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1747 ZIO_FLAG_GODFATHER);
1749 spa->spa_suspended = B_TRUE;
1751 if (zio != NULL) {
1752 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1753 ASSERT(zio != spa->spa_suspend_zio_root);
1754 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1755 ASSERT(zio_unique_parent(zio) == NULL);
1756 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1757 zio_add_child(spa->spa_suspend_zio_root, zio);
1760 mutex_exit(&spa->spa_suspend_lock);
1764 zio_resume(spa_t *spa)
1766 zio_t *pio;
1769 * Reexecute all previously suspended i/o.
1771 mutex_enter(&spa->spa_suspend_lock);
1772 spa->spa_suspended = B_FALSE;
1773 cv_broadcast(&spa->spa_suspend_cv);
1774 pio = spa->spa_suspend_zio_root;
1775 spa->spa_suspend_zio_root = NULL;
1776 mutex_exit(&spa->spa_suspend_lock);
1778 if (pio == NULL)
1779 return (0);
1781 zio_reexecute(pio);
1782 return (zio_wait(pio));
1785 void
1786 zio_resume_wait(spa_t *spa)
1788 mutex_enter(&spa->spa_suspend_lock);
1789 while (spa_suspended(spa))
1790 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1791 mutex_exit(&spa->spa_suspend_lock);
1795 * ==========================================================================
1796 * Gang blocks.
1798 * A gang block is a collection of small blocks that looks to the DMU
1799 * like one large block. When zio_dva_allocate() cannot find a block
1800 * of the requested size, due to either severe fragmentation or the pool
1801 * being nearly full, it calls zio_write_gang_block() to construct the
1802 * block from smaller fragments.
1804 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1805 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
1806 * an indirect block: it's an array of block pointers. It consumes
1807 * only one sector and hence is allocatable regardless of fragmentation.
1808 * The gang header's bps point to its gang members, which hold the data.
1810 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1811 * as the verifier to ensure uniqueness of the SHA256 checksum.
1812 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1813 * not the gang header. This ensures that data block signatures (needed for
1814 * deduplication) are independent of how the block is physically stored.
1816 * Gang blocks can be nested: a gang member may itself be a gang block.
1817 * Thus every gang block is a tree in which root and all interior nodes are
1818 * gang headers, and the leaves are normal blocks that contain user data.
1819 * The root of the gang tree is called the gang leader.
1821 * To perform any operation (read, rewrite, free, claim) on a gang block,
1822 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1823 * in the io_gang_tree field of the original logical i/o by recursively
1824 * reading the gang leader and all gang headers below it. This yields
1825 * an in-core tree containing the contents of every gang header and the
1826 * bps for every constituent of the gang block.
1828 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1829 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
1830 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1831 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1832 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1833 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
1834 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1835 * of the gang header plus zio_checksum_compute() of the data to update the
1836 * gang header's blk_cksum as described above.
1838 * The two-phase assemble/issue model solves the problem of partial failure --
1839 * what if you'd freed part of a gang block but then couldn't read the
1840 * gang header for another part? Assembling the entire gang tree first
1841 * ensures that all the necessary gang header I/O has succeeded before
1842 * starting the actual work of free, claim, or write. Once the gang tree
1843 * is assembled, free and claim are in-memory operations that cannot fail.
1845 * In the event that a gang write fails, zio_dva_unallocate() walks the
1846 * gang tree to immediately free (i.e. insert back into the space map)
1847 * everything we've allocated. This ensures that we don't get ENOSPC
1848 * errors during repeated suspend/resume cycles due to a flaky device.
1850 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
1851 * the gang tree, we won't modify the block, so we can safely defer the free
1852 * (knowing that the block is still intact). If we *can* assemble the gang
1853 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1854 * each constituent bp and we can allocate a new block on the next sync pass.
1856 * In all cases, the gang tree allows complete recovery from partial failure.
1857 * ==========================================================================
1860 static void
1861 zio_gang_issue_func_done(zio_t *zio)
1863 abd_put(zio->io_abd);
1866 static zio_t *
1867 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1868 uint64_t offset)
1870 if (gn != NULL)
1871 return (pio);
1873 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
1874 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
1875 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1876 &pio->io_bookmark));
1879 static zio_t *
1880 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1881 uint64_t offset)
1883 zio_t *zio;
1885 if (gn != NULL) {
1886 abd_t *gbh_abd =
1887 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1888 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1889 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
1890 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1891 &pio->io_bookmark);
1893 * As we rewrite each gang header, the pipeline will compute
1894 * a new gang block header checksum for it; but no one will
1895 * compute a new data checksum, so we do that here. The one
1896 * exception is the gang leader: the pipeline already computed
1897 * its data checksum because that stage precedes gang assembly.
1898 * (Presently, nothing actually uses interior data checksums;
1899 * this is just good hygiene.)
1901 if (gn != pio->io_gang_leader->io_gang_tree) {
1902 abd_t *buf = abd_get_offset(data, offset);
1904 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1905 buf, BP_GET_PSIZE(bp));
1907 abd_put(buf);
1910 * If we are here to damage data for testing purposes,
1911 * leave the GBH alone so that we can detect the damage.
1913 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1914 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1915 } else {
1916 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1917 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
1918 zio_gang_issue_func_done, NULL, pio->io_priority,
1919 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1922 return (zio);
1925 /* ARGSUSED */
1926 static zio_t *
1927 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1928 uint64_t offset)
1930 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1931 ZIO_GANG_CHILD_FLAGS(pio)));
1934 /* ARGSUSED */
1935 static zio_t *
1936 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1937 uint64_t offset)
1939 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1940 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1943 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1944 NULL,
1945 zio_read_gang,
1946 zio_rewrite_gang,
1947 zio_free_gang,
1948 zio_claim_gang,
1949 NULL
1952 static void zio_gang_tree_assemble_done(zio_t *zio);
1954 static zio_gang_node_t *
1955 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1957 zio_gang_node_t *gn;
1959 ASSERT(*gnpp == NULL);
1961 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1962 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1963 *gnpp = gn;
1965 return (gn);
1968 static void
1969 zio_gang_node_free(zio_gang_node_t **gnpp)
1971 zio_gang_node_t *gn = *gnpp;
1973 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1974 ASSERT(gn->gn_child[g] == NULL);
1976 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1977 kmem_free(gn, sizeof (*gn));
1978 *gnpp = NULL;
1981 static void
1982 zio_gang_tree_free(zio_gang_node_t **gnpp)
1984 zio_gang_node_t *gn = *gnpp;
1986 if (gn == NULL)
1987 return;
1989 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1990 zio_gang_tree_free(&gn->gn_child[g]);
1992 zio_gang_node_free(gnpp);
1995 static void
1996 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1998 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1999 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2001 ASSERT(gio->io_gang_leader == gio);
2002 ASSERT(BP_IS_GANG(bp));
2004 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2005 zio_gang_tree_assemble_done, gn, gio->io_priority,
2006 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2009 static void
2010 zio_gang_tree_assemble_done(zio_t *zio)
2012 zio_t *gio = zio->io_gang_leader;
2013 zio_gang_node_t *gn = zio->io_private;
2014 blkptr_t *bp = zio->io_bp;
2016 ASSERT(gio == zio_unique_parent(zio));
2017 ASSERT(zio->io_child_count == 0);
2019 if (zio->io_error)
2020 return;
2022 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2023 if (BP_SHOULD_BYTESWAP(bp))
2024 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2026 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2027 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2028 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2030 abd_put(zio->io_abd);
2032 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2033 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2034 if (!BP_IS_GANG(gbp))
2035 continue;
2036 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2040 static void
2041 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2042 uint64_t offset)
2044 zio_t *gio = pio->io_gang_leader;
2045 zio_t *zio;
2047 ASSERT(BP_IS_GANG(bp) == !!gn);
2048 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2049 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2052 * If you're a gang header, your data is in gn->gn_gbh.
2053 * If you're a gang member, your data is in 'data' and gn == NULL.
2055 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2057 if (gn != NULL) {
2058 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2060 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2061 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2062 if (BP_IS_HOLE(gbp))
2063 continue;
2064 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2065 offset);
2066 offset += BP_GET_PSIZE(gbp);
2070 if (gn == gio->io_gang_tree)
2071 ASSERT3U(gio->io_size, ==, offset);
2073 if (zio != pio)
2074 zio_nowait(zio);
2077 static int
2078 zio_gang_assemble(zio_t *zio)
2080 blkptr_t *bp = zio->io_bp;
2082 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2083 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2085 zio->io_gang_leader = zio;
2087 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2089 return (ZIO_PIPELINE_CONTINUE);
2092 static int
2093 zio_gang_issue(zio_t *zio)
2095 blkptr_t *bp = zio->io_bp;
2097 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
2098 return (ZIO_PIPELINE_STOP);
2100 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2101 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2103 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2104 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2106 else
2107 zio_gang_tree_free(&zio->io_gang_tree);
2109 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2111 return (ZIO_PIPELINE_CONTINUE);
2114 static void
2115 zio_write_gang_member_ready(zio_t *zio)
2117 zio_t *pio = zio_unique_parent(zio);
2118 zio_t *gio = zio->io_gang_leader;
2119 dva_t *cdva = zio->io_bp->blk_dva;
2120 dva_t *pdva = pio->io_bp->blk_dva;
2121 uint64_t asize;
2123 if (BP_IS_HOLE(zio->io_bp))
2124 return;
2126 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2128 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2129 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2130 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2131 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2132 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2134 mutex_enter(&pio->io_lock);
2135 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2136 ASSERT(DVA_GET_GANG(&pdva[d]));
2137 asize = DVA_GET_ASIZE(&pdva[d]);
2138 asize += DVA_GET_ASIZE(&cdva[d]);
2139 DVA_SET_ASIZE(&pdva[d], asize);
2141 mutex_exit(&pio->io_lock);
2144 static void
2145 zio_write_gang_done(zio_t *zio)
2147 abd_put(zio->io_abd);
2150 static int
2151 zio_write_gang_block(zio_t *pio)
2153 spa_t *spa = pio->io_spa;
2154 metaslab_class_t *mc = spa_normal_class(spa);
2155 blkptr_t *bp = pio->io_bp;
2156 zio_t *gio = pio->io_gang_leader;
2157 zio_t *zio;
2158 zio_gang_node_t *gn, **gnpp;
2159 zio_gbh_phys_t *gbh;
2160 abd_t *gbh_abd;
2161 uint64_t txg = pio->io_txg;
2162 uint64_t resid = pio->io_size;
2163 uint64_t lsize;
2164 int copies = gio->io_prop.zp_copies;
2165 int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2166 zio_prop_t zp;
2167 int error;
2169 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2170 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2171 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2172 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2174 flags |= METASLAB_ASYNC_ALLOC;
2175 VERIFY(refcount_held(&mc->mc_alloc_slots, pio));
2178 * The logical zio has already placed a reservation for
2179 * 'copies' allocation slots but gang blocks may require
2180 * additional copies. These additional copies
2181 * (i.e. gbh_copies - copies) are guaranteed to succeed
2182 * since metaslab_class_throttle_reserve() always allows
2183 * additional reservations for gang blocks.
2185 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2186 pio, flags));
2189 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2190 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2191 &pio->io_alloc_list, pio);
2192 if (error) {
2193 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2194 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2195 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2198 * If we failed to allocate the gang block header then
2199 * we remove any additional allocation reservations that
2200 * we placed here. The original reservation will
2201 * be removed when the logical I/O goes to the ready
2202 * stage.
2204 metaslab_class_throttle_unreserve(mc,
2205 gbh_copies - copies, pio);
2207 pio->io_error = error;
2208 return (ZIO_PIPELINE_CONTINUE);
2211 if (pio == gio) {
2212 gnpp = &gio->io_gang_tree;
2213 } else {
2214 gnpp = pio->io_private;
2215 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2218 gn = zio_gang_node_alloc(gnpp);
2219 gbh = gn->gn_gbh;
2220 bzero(gbh, SPA_GANGBLOCKSIZE);
2221 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2224 * Create the gang header.
2226 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2227 zio_write_gang_done, NULL, pio->io_priority,
2228 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2231 * Create and nowait the gang children.
2233 for (int g = 0; resid != 0; resid -= lsize, g++) {
2234 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2235 SPA_MINBLOCKSIZE);
2236 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2238 zp.zp_checksum = gio->io_prop.zp_checksum;
2239 zp.zp_compress = ZIO_COMPRESS_OFF;
2240 zp.zp_type = DMU_OT_NONE;
2241 zp.zp_level = 0;
2242 zp.zp_copies = gio->io_prop.zp_copies;
2243 zp.zp_dedup = B_FALSE;
2244 zp.zp_dedup_verify = B_FALSE;
2245 zp.zp_nopwrite = B_FALSE;
2247 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2248 abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
2249 lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
2250 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2251 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2253 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2254 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2255 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2258 * Gang children won't throttle but we should
2259 * account for their work, so reserve an allocation
2260 * slot for them here.
2262 VERIFY(metaslab_class_throttle_reserve(mc,
2263 zp.zp_copies, cio, flags));
2265 zio_nowait(cio);
2269 * Set pio's pipeline to just wait for zio to finish.
2271 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2273 zio_nowait(zio);
2275 return (ZIO_PIPELINE_CONTINUE);
2279 * The zio_nop_write stage in the pipeline determines if allocating a
2280 * new bp is necessary. The nopwrite feature can handle writes in
2281 * either syncing or open context (i.e. zil writes) and as a result is
2282 * mutually exclusive with dedup.
2284 * By leveraging a cryptographically secure checksum, such as SHA256, we
2285 * can compare the checksums of the new data and the old to determine if
2286 * allocating a new block is required. Note that our requirements for
2287 * cryptographic strength are fairly weak: there can't be any accidental
2288 * hash collisions, but we don't need to be secure against intentional
2289 * (malicious) collisions. To trigger a nopwrite, you have to be able
2290 * to write the file to begin with, and triggering an incorrect (hash
2291 * collision) nopwrite is no worse than simply writing to the file.
2292 * That said, there are no known attacks against the checksum algorithms
2293 * used for nopwrite, assuming that the salt and the checksums
2294 * themselves remain secret.
2296 static int
2297 zio_nop_write(zio_t *zio)
2299 blkptr_t *bp = zio->io_bp;
2300 blkptr_t *bp_orig = &zio->io_bp_orig;
2301 zio_prop_t *zp = &zio->io_prop;
2303 ASSERT(BP_GET_LEVEL(bp) == 0);
2304 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2305 ASSERT(zp->zp_nopwrite);
2306 ASSERT(!zp->zp_dedup);
2307 ASSERT(zio->io_bp_override == NULL);
2308 ASSERT(IO_IS_ALLOCATING(zio));
2311 * Check to see if the original bp and the new bp have matching
2312 * characteristics (i.e. same checksum, compression algorithms, etc).
2313 * If they don't then just continue with the pipeline which will
2314 * allocate a new bp.
2316 if (BP_IS_HOLE(bp_orig) ||
2317 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2318 ZCHECKSUM_FLAG_NOPWRITE) ||
2319 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2320 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2321 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2322 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2323 return (ZIO_PIPELINE_CONTINUE);
2326 * If the checksums match then reset the pipeline so that we
2327 * avoid allocating a new bp and issuing any I/O.
2329 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2330 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2331 ZCHECKSUM_FLAG_NOPWRITE);
2332 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2333 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2334 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2335 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2336 sizeof (uint64_t)) == 0);
2338 *bp = *bp_orig;
2339 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2340 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2343 return (ZIO_PIPELINE_CONTINUE);
2347 * ==========================================================================
2348 * Dedup
2349 * ==========================================================================
2351 static void
2352 zio_ddt_child_read_done(zio_t *zio)
2354 blkptr_t *bp = zio->io_bp;
2355 ddt_entry_t *dde = zio->io_private;
2356 ddt_phys_t *ddp;
2357 zio_t *pio = zio_unique_parent(zio);
2359 mutex_enter(&pio->io_lock);
2360 ddp = ddt_phys_select(dde, bp);
2361 if (zio->io_error == 0)
2362 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
2364 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2365 dde->dde_repair_abd = zio->io_abd;
2366 else
2367 abd_free(zio->io_abd);
2368 mutex_exit(&pio->io_lock);
2371 static int
2372 zio_ddt_read_start(zio_t *zio)
2374 blkptr_t *bp = zio->io_bp;
2376 ASSERT(BP_GET_DEDUP(bp));
2377 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2378 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2380 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2381 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2382 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2383 ddt_phys_t *ddp = dde->dde_phys;
2384 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2385 blkptr_t blk;
2387 ASSERT(zio->io_vsd == NULL);
2388 zio->io_vsd = dde;
2390 if (ddp_self == NULL)
2391 return (ZIO_PIPELINE_CONTINUE);
2393 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2394 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2395 continue;
2396 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2397 &blk);
2398 zio_nowait(zio_read(zio, zio->io_spa, &blk,
2399 abd_alloc_for_io(zio->io_size, B_TRUE),
2400 zio->io_size, zio_ddt_child_read_done, dde,
2401 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2402 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2404 return (ZIO_PIPELINE_CONTINUE);
2407 zio_nowait(zio_read(zio, zio->io_spa, bp,
2408 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2409 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2411 return (ZIO_PIPELINE_CONTINUE);
2414 static int
2415 zio_ddt_read_done(zio_t *zio)
2417 blkptr_t *bp = zio->io_bp;
2419 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2420 return (ZIO_PIPELINE_STOP);
2422 ASSERT(BP_GET_DEDUP(bp));
2423 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2424 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2426 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2427 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2428 ddt_entry_t *dde = zio->io_vsd;
2429 if (ddt == NULL) {
2430 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2431 return (ZIO_PIPELINE_CONTINUE);
2433 if (dde == NULL) {
2434 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2435 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2436 return (ZIO_PIPELINE_STOP);
2438 if (dde->dde_repair_abd != NULL) {
2439 abd_copy(zio->io_abd, dde->dde_repair_abd,
2440 zio->io_size);
2441 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2443 ddt_repair_done(ddt, dde);
2444 zio->io_vsd = NULL;
2447 ASSERT(zio->io_vsd == NULL);
2449 return (ZIO_PIPELINE_CONTINUE);
2452 static boolean_t
2453 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2455 spa_t *spa = zio->io_spa;
2456 boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW);
2458 /* We should never get a raw, override zio */
2459 ASSERT(!(zio->io_bp_override && do_raw));
2462 * Note: we compare the original data, not the transformed data,
2463 * because when zio->io_bp is an override bp, we will not have
2464 * pushed the I/O transforms. That's an important optimization
2465 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2467 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2468 zio_t *lio = dde->dde_lead_zio[p];
2470 if (lio != NULL) {
2471 return (lio->io_orig_size != zio->io_orig_size ||
2472 abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2473 zio->io_orig_size) != 0);
2477 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2478 ddt_phys_t *ddp = &dde->dde_phys[p];
2480 if (ddp->ddp_phys_birth != 0) {
2481 arc_buf_t *abuf = NULL;
2482 arc_flags_t aflags = ARC_FLAG_WAIT;
2483 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2484 blkptr_t blk = *zio->io_bp;
2485 int error;
2487 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2489 ddt_exit(ddt);
2492 * Intuitively, it would make more sense to compare
2493 * io_abd than io_orig_abd in the raw case since you
2494 * don't want to look at any transformations that have
2495 * happened to the data. However, for raw I/Os the
2496 * data will actually be the same in io_abd and
2497 * io_orig_abd, so all we have to do is issue this as
2498 * a raw ARC read.
2500 if (do_raw) {
2501 zio_flags |= ZIO_FLAG_RAW;
2502 ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2503 ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2504 zio->io_size));
2505 ASSERT3P(zio->io_transform_stack, ==, NULL);
2508 error = arc_read(NULL, spa, &blk,
2509 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2510 zio_flags, &aflags, &zio->io_bookmark);
2512 if (error == 0) {
2513 if (arc_buf_size(abuf) != zio->io_orig_size ||
2514 abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2515 zio->io_orig_size) != 0)
2516 error = SET_ERROR(EEXIST);
2517 arc_buf_destroy(abuf, &abuf);
2520 ddt_enter(ddt);
2521 return (error != 0);
2525 return (B_FALSE);
2528 static void
2529 zio_ddt_child_write_ready(zio_t *zio)
2531 int p = zio->io_prop.zp_copies;
2532 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2533 ddt_entry_t *dde = zio->io_private;
2534 ddt_phys_t *ddp = &dde->dde_phys[p];
2535 zio_t *pio;
2537 if (zio->io_error)
2538 return;
2540 ddt_enter(ddt);
2542 ASSERT(dde->dde_lead_zio[p] == zio);
2544 ddt_phys_fill(ddp, zio->io_bp);
2546 zio_link_t *zl = NULL;
2547 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2548 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2550 ddt_exit(ddt);
2553 static void
2554 zio_ddt_child_write_done(zio_t *zio)
2556 int p = zio->io_prop.zp_copies;
2557 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2558 ddt_entry_t *dde = zio->io_private;
2559 ddt_phys_t *ddp = &dde->dde_phys[p];
2561 ddt_enter(ddt);
2563 ASSERT(ddp->ddp_refcnt == 0);
2564 ASSERT(dde->dde_lead_zio[p] == zio);
2565 dde->dde_lead_zio[p] = NULL;
2567 if (zio->io_error == 0) {
2568 zio_link_t *zl = NULL;
2569 while (zio_walk_parents(zio, &zl) != NULL)
2570 ddt_phys_addref(ddp);
2571 } else {
2572 ddt_phys_clear(ddp);
2575 ddt_exit(ddt);
2578 static void
2579 zio_ddt_ditto_write_done(zio_t *zio)
2581 int p = DDT_PHYS_DITTO;
2582 zio_prop_t *zp = &zio->io_prop;
2583 blkptr_t *bp = zio->io_bp;
2584 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2585 ddt_entry_t *dde = zio->io_private;
2586 ddt_phys_t *ddp = &dde->dde_phys[p];
2587 ddt_key_t *ddk = &dde->dde_key;
2589 ddt_enter(ddt);
2591 ASSERT(ddp->ddp_refcnt == 0);
2592 ASSERT(dde->dde_lead_zio[p] == zio);
2593 dde->dde_lead_zio[p] = NULL;
2595 if (zio->io_error == 0) {
2596 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2597 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2598 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2599 if (ddp->ddp_phys_birth != 0)
2600 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2601 ddt_phys_fill(ddp, bp);
2604 ddt_exit(ddt);
2607 static int
2608 zio_ddt_write(zio_t *zio)
2610 spa_t *spa = zio->io_spa;
2611 blkptr_t *bp = zio->io_bp;
2612 uint64_t txg = zio->io_txg;
2613 zio_prop_t *zp = &zio->io_prop;
2614 int p = zp->zp_copies;
2615 int ditto_copies;
2616 zio_t *cio = NULL;
2617 zio_t *dio = NULL;
2618 ddt_t *ddt = ddt_select(spa, bp);
2619 ddt_entry_t *dde;
2620 ddt_phys_t *ddp;
2622 ASSERT(BP_GET_DEDUP(bp));
2623 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2624 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2625 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2627 ddt_enter(ddt);
2628 dde = ddt_lookup(ddt, bp, B_TRUE);
2629 ddp = &dde->dde_phys[p];
2631 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2633 * If we're using a weak checksum, upgrade to a strong checksum
2634 * and try again. If we're already using a strong checksum,
2635 * we can't resolve it, so just convert to an ordinary write.
2636 * (And automatically e-mail a paper to Nature?)
2638 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2639 ZCHECKSUM_FLAG_DEDUP)) {
2640 zp->zp_checksum = spa_dedup_checksum(spa);
2641 zio_pop_transforms(zio);
2642 zio->io_stage = ZIO_STAGE_OPEN;
2643 BP_ZERO(bp);
2644 } else {
2645 zp->zp_dedup = B_FALSE;
2646 BP_SET_DEDUP(bp, B_FALSE);
2648 ASSERT(!BP_GET_DEDUP(bp));
2649 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2650 ddt_exit(ddt);
2651 return (ZIO_PIPELINE_CONTINUE);
2654 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2655 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2657 if (ditto_copies > ddt_ditto_copies_present(dde) &&
2658 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2659 zio_prop_t czp = *zp;
2661 czp.zp_copies = ditto_copies;
2664 * If we arrived here with an override bp, we won't have run
2665 * the transform stack, so we won't have the data we need to
2666 * generate a child i/o. So, toss the override bp and restart.
2667 * This is safe, because using the override bp is just an
2668 * optimization; and it's rare, so the cost doesn't matter.
2670 if (zio->io_bp_override) {
2671 zio_pop_transforms(zio);
2672 zio->io_stage = ZIO_STAGE_OPEN;
2673 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2674 zio->io_bp_override = NULL;
2675 BP_ZERO(bp);
2676 ddt_exit(ddt);
2677 return (ZIO_PIPELINE_CONTINUE);
2680 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2681 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2682 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2683 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2685 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2686 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2689 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2690 if (ddp->ddp_phys_birth != 0)
2691 ddt_bp_fill(ddp, bp, txg);
2692 if (dde->dde_lead_zio[p] != NULL)
2693 zio_add_child(zio, dde->dde_lead_zio[p]);
2694 else
2695 ddt_phys_addref(ddp);
2696 } else if (zio->io_bp_override) {
2697 ASSERT(bp->blk_birth == txg);
2698 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2699 ddt_phys_fill(ddp, bp);
2700 ddt_phys_addref(ddp);
2701 } else {
2702 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2703 zio->io_orig_size, zio->io_orig_size, zp,
2704 zio_ddt_child_write_ready, NULL, NULL,
2705 zio_ddt_child_write_done, dde, zio->io_priority,
2706 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2708 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
2709 dde->dde_lead_zio[p] = cio;
2712 ddt_exit(ddt);
2714 if (cio)
2715 zio_nowait(cio);
2716 if (dio)
2717 zio_nowait(dio);
2719 return (ZIO_PIPELINE_CONTINUE);
2722 ddt_entry_t *freedde; /* for debugging */
2724 static int
2725 zio_ddt_free(zio_t *zio)
2727 spa_t *spa = zio->io_spa;
2728 blkptr_t *bp = zio->io_bp;
2729 ddt_t *ddt = ddt_select(spa, bp);
2730 ddt_entry_t *dde;
2731 ddt_phys_t *ddp;
2733 ASSERT(BP_GET_DEDUP(bp));
2734 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2736 ddt_enter(ddt);
2737 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2738 ddp = ddt_phys_select(dde, bp);
2739 ddt_phys_decref(ddp);
2740 ddt_exit(ddt);
2742 return (ZIO_PIPELINE_CONTINUE);
2746 * ==========================================================================
2747 * Allocate and free blocks
2748 * ==========================================================================
2751 static zio_t *
2752 zio_io_to_allocate(spa_t *spa)
2754 zio_t *zio;
2756 ASSERT(MUTEX_HELD(&spa->spa_alloc_lock));
2758 zio = avl_first(&spa->spa_alloc_tree);
2759 if (zio == NULL)
2760 return (NULL);
2762 ASSERT(IO_IS_ALLOCATING(zio));
2765 * Try to place a reservation for this zio. If we're unable to
2766 * reserve then we throttle.
2768 if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
2769 zio->io_prop.zp_copies, zio, 0)) {
2770 return (NULL);
2773 avl_remove(&spa->spa_alloc_tree, zio);
2774 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2776 return (zio);
2779 static int
2780 zio_dva_throttle(zio_t *zio)
2782 spa_t *spa = zio->io_spa;
2783 zio_t *nio;
2785 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2786 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
2787 zio->io_child_type == ZIO_CHILD_GANG ||
2788 zio->io_flags & ZIO_FLAG_NODATA) {
2789 return (ZIO_PIPELINE_CONTINUE);
2792 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2794 ASSERT3U(zio->io_queued_timestamp, >, 0);
2795 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2797 mutex_enter(&spa->spa_alloc_lock);
2799 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2800 avl_add(&spa->spa_alloc_tree, zio);
2802 nio = zio_io_to_allocate(zio->io_spa);
2803 mutex_exit(&spa->spa_alloc_lock);
2805 if (nio == zio)
2806 return (ZIO_PIPELINE_CONTINUE);
2808 if (nio != NULL) {
2809 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2811 * We are passing control to a new zio so make sure that
2812 * it is processed by a different thread. We do this to
2813 * avoid stack overflows that can occur when parents are
2814 * throttled and children are making progress. We allow
2815 * it to go to the head of the taskq since it's already
2816 * been waiting.
2818 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2820 return (ZIO_PIPELINE_STOP);
2823 void
2824 zio_allocate_dispatch(spa_t *spa)
2826 zio_t *zio;
2828 mutex_enter(&spa->spa_alloc_lock);
2829 zio = zio_io_to_allocate(spa);
2830 mutex_exit(&spa->spa_alloc_lock);
2831 if (zio == NULL)
2832 return;
2834 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
2835 ASSERT0(zio->io_error);
2836 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
2839 static int
2840 zio_dva_allocate(zio_t *zio)
2842 spa_t *spa = zio->io_spa;
2843 metaslab_class_t *mc = spa_normal_class(spa);
2844 blkptr_t *bp = zio->io_bp;
2845 int error;
2846 int flags = 0;
2848 if (zio->io_gang_leader == NULL) {
2849 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2850 zio->io_gang_leader = zio;
2853 ASSERT(BP_IS_HOLE(bp));
2854 ASSERT0(BP_GET_NDVAS(bp));
2855 ASSERT3U(zio->io_prop.zp_copies, >, 0);
2856 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2857 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2859 if (zio->io_flags & ZIO_FLAG_NODATA) {
2860 flags |= METASLAB_DONT_THROTTLE;
2862 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) {
2863 flags |= METASLAB_GANG_CHILD;
2865 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) {
2866 flags |= METASLAB_ASYNC_ALLOC;
2869 error = metaslab_alloc(spa, mc, zio->io_size, bp,
2870 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
2871 &zio->io_alloc_list, zio);
2873 if (error != 0) {
2874 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2875 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2876 error);
2877 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2878 return (zio_write_gang_block(zio));
2879 zio->io_error = error;
2882 return (ZIO_PIPELINE_CONTINUE);
2885 static int
2886 zio_dva_free(zio_t *zio)
2888 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2890 return (ZIO_PIPELINE_CONTINUE);
2893 static int
2894 zio_dva_claim(zio_t *zio)
2896 int error;
2898 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2899 if (error)
2900 zio->io_error = error;
2902 return (ZIO_PIPELINE_CONTINUE);
2906 * Undo an allocation. This is used by zio_done() when an I/O fails
2907 * and we want to give back the block we just allocated.
2908 * This handles both normal blocks and gang blocks.
2910 static void
2911 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2913 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2914 ASSERT(zio->io_bp_override == NULL);
2916 if (!BP_IS_HOLE(bp))
2917 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2919 if (gn != NULL) {
2920 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2921 zio_dva_unallocate(zio, gn->gn_child[g],
2922 &gn->gn_gbh->zg_blkptr[g]);
2928 * Try to allocate an intent log block. Return 0 on success, errno on failure.
2931 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2932 uint64_t size, boolean_t *slog)
2934 int error = 1;
2935 zio_alloc_list_t io_alloc_list;
2937 ASSERT(txg > spa_syncing_txg(spa));
2939 metaslab_trace_init(&io_alloc_list);
2940 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
2941 txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL);
2942 if (error == 0) {
2943 *slog = TRUE;
2944 } else {
2945 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2946 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
2947 &io_alloc_list, NULL);
2948 if (error == 0)
2949 *slog = FALSE;
2951 metaslab_trace_fini(&io_alloc_list);
2953 if (error == 0) {
2954 BP_SET_LSIZE(new_bp, size);
2955 BP_SET_PSIZE(new_bp, size);
2956 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2957 BP_SET_CHECKSUM(new_bp,
2958 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2959 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2960 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2961 BP_SET_LEVEL(new_bp, 0);
2962 BP_SET_DEDUP(new_bp, 0);
2963 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2964 } else {
2965 zfs_dbgmsg("%s: zil block allocation failure: "
2966 "size %llu, error %d", spa_name(spa), size, error);
2969 return (error);
2973 * Free an intent log block.
2975 void
2976 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2978 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2979 ASSERT(!BP_IS_GANG(bp));
2981 zio_free(spa, txg, bp);
2985 * ==========================================================================
2986 * Read and write to physical devices
2987 * ==========================================================================
2992 * Issue an I/O to the underlying vdev. Typically the issue pipeline
2993 * stops after this stage and will resume upon I/O completion.
2994 * However, there are instances where the vdev layer may need to
2995 * continue the pipeline when an I/O was not issued. Since the I/O
2996 * that was sent to the vdev layer might be different than the one
2997 * currently active in the pipeline (see vdev_queue_io()), we explicitly
2998 * force the underlying vdev layers to call either zio_execute() or
2999 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3001 static int
3002 zio_vdev_io_start(zio_t *zio)
3004 vdev_t *vd = zio->io_vd;
3005 uint64_t align;
3006 spa_t *spa = zio->io_spa;
3008 ASSERT(zio->io_error == 0);
3009 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3011 if (vd == NULL) {
3012 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3013 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3016 * The mirror_ops handle multiple DVAs in a single BP.
3018 vdev_mirror_ops.vdev_op_io_start(zio);
3019 return (ZIO_PIPELINE_STOP);
3022 ASSERT3P(zio->io_logical, !=, zio);
3025 * We keep track of time-sensitive I/Os so that the scan thread
3026 * can quickly react to certain workloads. In particular, we care
3027 * about non-scrubbing, top-level reads and writes with the following
3028 * characteristics:
3029 * - synchronous writes of user data to non-slog devices
3030 * - any reads of user data
3031 * When these conditions are met, adjust the timestamp of spa_last_io
3032 * which allows the scan thread to adjust its workload accordingly.
3034 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
3035 vd == vd->vdev_top && !vd->vdev_islog &&
3036 zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
3037 zio->io_txg != spa_syncing_txg(spa)) {
3038 uint64_t old = spa->spa_last_io;
3039 uint64_t new = ddi_get_lbolt64();
3040 if (old != new)
3041 (void) atomic_cas_64(&spa->spa_last_io, old, new);
3044 align = 1ULL << vd->vdev_top->vdev_ashift;
3046 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3047 P2PHASE(zio->io_size, align) != 0) {
3048 /* Transform logical writes to be a full physical block size. */
3049 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3050 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3051 ASSERT(vd == vd->vdev_top);
3052 if (zio->io_type == ZIO_TYPE_WRITE) {
3053 abd_copy(abuf, zio->io_abd, zio->io_size);
3054 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3056 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3060 * If this is not a physical io, make sure that it is properly aligned
3061 * before proceeding.
3063 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3064 ASSERT0(P2PHASE(zio->io_offset, align));
3065 ASSERT0(P2PHASE(zio->io_size, align));
3066 } else {
3068 * For physical writes, we allow 512b aligned writes and assume
3069 * the device will perform a read-modify-write as necessary.
3071 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3072 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3075 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3078 * If this is a repair I/O, and there's no self-healing involved --
3079 * that is, we're just resilvering what we expect to resilver --
3080 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3081 * This prevents spurious resilvering with nested replication.
3082 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
3083 * A is out of date, we'll read from C+D, then use the data to
3084 * resilver A+B -- but we don't actually want to resilver B, just A.
3085 * The top-level mirror has no way to know this, so instead we just
3086 * discard unnecessary repairs as we work our way down the vdev tree.
3087 * The same logic applies to any form of nested replication:
3088 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
3090 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3091 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3092 zio->io_txg != 0 && /* not a delegated i/o */
3093 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3094 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3095 zio_vdev_io_bypass(zio);
3096 return (ZIO_PIPELINE_CONTINUE);
3099 if (vd->vdev_ops->vdev_op_leaf &&
3100 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3102 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3103 return (ZIO_PIPELINE_CONTINUE);
3105 if ((zio = vdev_queue_io(zio)) == NULL)
3106 return (ZIO_PIPELINE_STOP);
3108 if (!vdev_accessible(vd, zio)) {
3109 zio->io_error = SET_ERROR(ENXIO);
3110 zio_interrupt(zio);
3111 return (ZIO_PIPELINE_STOP);
3115 vd->vdev_ops->vdev_op_io_start(zio);
3116 return (ZIO_PIPELINE_STOP);
3119 static int
3120 zio_vdev_io_done(zio_t *zio)
3122 vdev_t *vd = zio->io_vd;
3123 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3124 boolean_t unexpected_error = B_FALSE;
3126 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3127 return (ZIO_PIPELINE_STOP);
3129 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3131 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3133 vdev_queue_io_done(zio);
3135 if (zio->io_type == ZIO_TYPE_WRITE)
3136 vdev_cache_write(zio);
3138 if (zio_injection_enabled && zio->io_error == 0)
3139 zio->io_error = zio_handle_device_injection(vd,
3140 zio, EIO);
3142 if (zio_injection_enabled && zio->io_error == 0)
3143 zio->io_error = zio_handle_label_injection(zio, EIO);
3145 if (zio->io_error) {
3146 if (!vdev_accessible(vd, zio)) {
3147 zio->io_error = SET_ERROR(ENXIO);
3148 } else {
3149 unexpected_error = B_TRUE;
3154 ops->vdev_op_io_done(zio);
3156 if (unexpected_error)
3157 VERIFY(vdev_probe(vd, zio) == NULL);
3159 return (ZIO_PIPELINE_CONTINUE);
3163 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3164 * disk, and use that to finish the checksum ereport later.
3166 static void
3167 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3168 const void *good_buf)
3170 /* no processing needed */
3171 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3174 /*ARGSUSED*/
3175 void
3176 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3178 void *buf = zio_buf_alloc(zio->io_size);
3180 abd_copy_to_buf(buf, zio->io_abd, zio->io_size);
3182 zcr->zcr_cbinfo = zio->io_size;
3183 zcr->zcr_cbdata = buf;
3184 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3185 zcr->zcr_free = zio_buf_free;
3188 static int
3189 zio_vdev_io_assess(zio_t *zio)
3191 vdev_t *vd = zio->io_vd;
3193 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3194 return (ZIO_PIPELINE_STOP);
3196 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3197 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3199 if (zio->io_vsd != NULL) {
3200 zio->io_vsd_ops->vsd_free(zio);
3201 zio->io_vsd = NULL;
3204 if (zio_injection_enabled && zio->io_error == 0)
3205 zio->io_error = zio_handle_fault_injection(zio, EIO);
3208 * If the I/O failed, determine whether we should attempt to retry it.
3210 * On retry, we cut in line in the issue queue, since we don't want
3211 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3213 if (zio->io_error && vd == NULL &&
3214 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3215 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
3216 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
3217 zio->io_error = 0;
3218 zio->io_flags |= ZIO_FLAG_IO_RETRY |
3219 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3220 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3221 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3222 zio_requeue_io_start_cut_in_line);
3223 return (ZIO_PIPELINE_STOP);
3227 * If we got an error on a leaf device, convert it to ENXIO
3228 * if the device is not accessible at all.
3230 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3231 !vdev_accessible(vd, zio))
3232 zio->io_error = SET_ERROR(ENXIO);
3235 * If we can't write to an interior vdev (mirror or RAID-Z),
3236 * set vdev_cant_write so that we stop trying to allocate from it.
3238 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3239 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3240 vd->vdev_cant_write = B_TRUE;
3244 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3245 * attempts will ever succeed. In this case we set a persistent bit so
3246 * that we don't bother with it in the future.
3248 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3249 zio->io_type == ZIO_TYPE_IOCTL &&
3250 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3251 vd->vdev_nowritecache = B_TRUE;
3253 if (zio->io_error)
3254 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3256 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3257 zio->io_physdone != NULL) {
3258 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3259 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3260 zio->io_physdone(zio->io_logical);
3263 return (ZIO_PIPELINE_CONTINUE);
3266 void
3267 zio_vdev_io_reissue(zio_t *zio)
3269 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3270 ASSERT(zio->io_error == 0);
3272 zio->io_stage >>= 1;
3275 void
3276 zio_vdev_io_redone(zio_t *zio)
3278 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3280 zio->io_stage >>= 1;
3283 void
3284 zio_vdev_io_bypass(zio_t *zio)
3286 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3287 ASSERT(zio->io_error == 0);
3289 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3290 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3294 * ==========================================================================
3295 * Generate and verify checksums
3296 * ==========================================================================
3298 static int
3299 zio_checksum_generate(zio_t *zio)
3301 blkptr_t *bp = zio->io_bp;
3302 enum zio_checksum checksum;
3304 if (bp == NULL) {
3306 * This is zio_write_phys().
3307 * We're either generating a label checksum, or none at all.
3309 checksum = zio->io_prop.zp_checksum;
3311 if (checksum == ZIO_CHECKSUM_OFF)
3312 return (ZIO_PIPELINE_CONTINUE);
3314 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3315 } else {
3316 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3317 ASSERT(!IO_IS_ALLOCATING(zio));
3318 checksum = ZIO_CHECKSUM_GANG_HEADER;
3319 } else {
3320 checksum = BP_GET_CHECKSUM(bp);
3324 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3326 return (ZIO_PIPELINE_CONTINUE);
3329 static int
3330 zio_checksum_verify(zio_t *zio)
3332 zio_bad_cksum_t info;
3333 blkptr_t *bp = zio->io_bp;
3334 int error;
3336 ASSERT(zio->io_vd != NULL);
3338 if (bp == NULL) {
3340 * This is zio_read_phys().
3341 * We're either verifying a label checksum, or nothing at all.
3343 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3344 return (ZIO_PIPELINE_CONTINUE);
3346 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3349 if ((error = zio_checksum_error(zio, &info)) != 0) {
3350 zio->io_error = error;
3351 if (error == ECKSUM &&
3352 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3353 zfs_ereport_start_checksum(zio->io_spa,
3354 zio->io_vd, zio, zio->io_offset,
3355 zio->io_size, NULL, &info);
3359 return (ZIO_PIPELINE_CONTINUE);
3363 * Called by RAID-Z to ensure we don't compute the checksum twice.
3365 void
3366 zio_checksum_verified(zio_t *zio)
3368 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3372 * ==========================================================================
3373 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3374 * An error of 0 indicates success. ENXIO indicates whole-device failure,
3375 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
3376 * indicate errors that are specific to one I/O, and most likely permanent.
3377 * Any other error is presumed to be worse because we weren't expecting it.
3378 * ==========================================================================
3381 zio_worst_error(int e1, int e2)
3383 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3384 int r1, r2;
3386 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3387 if (e1 == zio_error_rank[r1])
3388 break;
3390 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3391 if (e2 == zio_error_rank[r2])
3392 break;
3394 return (r1 > r2 ? e1 : e2);
3398 * ==========================================================================
3399 * I/O completion
3400 * ==========================================================================
3402 static int
3403 zio_ready(zio_t *zio)
3405 blkptr_t *bp = zio->io_bp;
3406 zio_t *pio, *pio_next;
3407 zio_link_t *zl = NULL;
3409 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3410 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3411 return (ZIO_PIPELINE_STOP);
3413 if (zio->io_ready) {
3414 ASSERT(IO_IS_ALLOCATING(zio));
3415 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3416 (zio->io_flags & ZIO_FLAG_NOPWRITE));
3417 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3419 zio->io_ready(zio);
3422 if (bp != NULL && bp != &zio->io_bp_copy)
3423 zio->io_bp_copy = *bp;
3425 if (zio->io_error != 0) {
3426 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3428 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3429 ASSERT(IO_IS_ALLOCATING(zio));
3430 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3432 * We were unable to allocate anything, unreserve and
3433 * issue the next I/O to allocate.
3435 metaslab_class_throttle_unreserve(
3436 spa_normal_class(zio->io_spa),
3437 zio->io_prop.zp_copies, zio);
3438 zio_allocate_dispatch(zio->io_spa);
3442 mutex_enter(&zio->io_lock);
3443 zio->io_state[ZIO_WAIT_READY] = 1;
3444 pio = zio_walk_parents(zio, &zl);
3445 mutex_exit(&zio->io_lock);
3448 * As we notify zio's parents, new parents could be added.
3449 * New parents go to the head of zio's io_parent_list, however,
3450 * so we will (correctly) not notify them. The remainder of zio's
3451 * io_parent_list, from 'pio_next' onward, cannot change because
3452 * all parents must wait for us to be done before they can be done.
3454 for (; pio != NULL; pio = pio_next) {
3455 pio_next = zio_walk_parents(zio, &zl);
3456 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3459 if (zio->io_flags & ZIO_FLAG_NODATA) {
3460 if (BP_IS_GANG(bp)) {
3461 zio->io_flags &= ~ZIO_FLAG_NODATA;
3462 } else {
3463 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
3464 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3468 if (zio_injection_enabled &&
3469 zio->io_spa->spa_syncing_txg == zio->io_txg)
3470 zio_handle_ignored_writes(zio);
3472 return (ZIO_PIPELINE_CONTINUE);
3476 * Update the allocation throttle accounting.
3478 static void
3479 zio_dva_throttle_done(zio_t *zio)
3481 zio_t *lio = zio->io_logical;
3482 zio_t *pio = zio_unique_parent(zio);
3483 vdev_t *vd = zio->io_vd;
3484 int flags = METASLAB_ASYNC_ALLOC;
3486 ASSERT3P(zio->io_bp, !=, NULL);
3487 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3488 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3489 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3490 ASSERT(vd != NULL);
3491 ASSERT3P(vd, ==, vd->vdev_top);
3492 ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3493 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3494 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3495 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3498 * Parents of gang children can have two flavors -- ones that
3499 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3500 * and ones that allocated the constituent blocks. The allocation
3501 * throttle needs to know the allocating parent zio so we must find
3502 * it here.
3504 if (pio->io_child_type == ZIO_CHILD_GANG) {
3506 * If our parent is a rewrite gang child then our grandparent
3507 * would have been the one that performed the allocation.
3509 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3510 pio = zio_unique_parent(pio);
3511 flags |= METASLAB_GANG_CHILD;
3514 ASSERT(IO_IS_ALLOCATING(pio));
3515 ASSERT3P(zio, !=, zio->io_logical);
3516 ASSERT(zio->io_logical != NULL);
3517 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3518 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3520 mutex_enter(&pio->io_lock);
3521 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags);
3522 mutex_exit(&pio->io_lock);
3524 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
3525 1, pio);
3528 * Call into the pipeline to see if there is more work that
3529 * needs to be done. If there is work to be done it will be
3530 * dispatched to another taskq thread.
3532 zio_allocate_dispatch(zio->io_spa);
3535 static int
3536 zio_done(zio_t *zio)
3538 spa_t *spa = zio->io_spa;
3539 zio_t *lio = zio->io_logical;
3540 blkptr_t *bp = zio->io_bp;
3541 vdev_t *vd = zio->io_vd;
3542 uint64_t psize = zio->io_size;
3543 zio_t *pio, *pio_next;
3544 metaslab_class_t *mc = spa_normal_class(spa);
3545 zio_link_t *zl = NULL;
3548 * If our children haven't all completed,
3549 * wait for them and then repeat this pipeline stage.
3551 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3552 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3553 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3554 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3555 return (ZIO_PIPELINE_STOP);
3558 * If the allocation throttle is enabled, then update the accounting.
3559 * We only track child I/Os that are part of an allocating async
3560 * write. We must do this since the allocation is performed
3561 * by the logical I/O but the actual write is done by child I/Os.
3563 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3564 zio->io_child_type == ZIO_CHILD_VDEV) {
3565 ASSERT(mc->mc_alloc_throttle_enabled);
3566 zio_dva_throttle_done(zio);
3570 * If the allocation throttle is enabled, verify that
3571 * we have decremented the refcounts for every I/O that was throttled.
3573 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3574 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3575 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3576 ASSERT(bp != NULL);
3577 metaslab_group_alloc_verify(spa, zio->io_bp, zio);
3578 VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio));
3581 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3582 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3583 ASSERT(zio->io_children[c][w] == 0);
3585 if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3586 ASSERT(bp->blk_pad[0] == 0);
3587 ASSERT(bp->blk_pad[1] == 0);
3588 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3589 (bp == zio_unique_parent(zio)->io_bp));
3590 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3591 zio->io_bp_override == NULL &&
3592 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3593 ASSERT(!BP_SHOULD_BYTESWAP(bp));
3594 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3595 ASSERT(BP_COUNT_GANG(bp) == 0 ||
3596 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3598 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3599 VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3603 * If there were child vdev/gang/ddt errors, they apply to us now.
3605 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3606 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3607 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3610 * If the I/O on the transformed data was successful, generate any
3611 * checksum reports now while we still have the transformed data.
3613 if (zio->io_error == 0) {
3614 while (zio->io_cksum_report != NULL) {
3615 zio_cksum_report_t *zcr = zio->io_cksum_report;
3616 uint64_t align = zcr->zcr_align;
3617 uint64_t asize = P2ROUNDUP(psize, align);
3618 char *abuf = NULL;
3619 abd_t *adata = zio->io_abd;
3621 if (asize != psize) {
3622 adata = abd_alloc_linear(asize, B_TRUE);
3623 abd_copy(adata, zio->io_abd, psize);
3624 abd_zero_off(adata, psize, asize - psize);
3627 if (adata != NULL)
3628 abuf = abd_borrow_buf_copy(adata, asize);
3630 zio->io_cksum_report = zcr->zcr_next;
3631 zcr->zcr_next = NULL;
3632 zcr->zcr_finish(zcr, abuf);
3633 zfs_ereport_free_checksum(zcr);
3635 if (adata != NULL)
3636 abd_return_buf(adata, abuf, asize);
3638 if (asize != psize)
3639 abd_free(adata);
3643 zio_pop_transforms(zio); /* note: may set zio->io_error */
3645 vdev_stat_update(zio, psize);
3647 if (zio->io_error) {
3649 * If this I/O is attached to a particular vdev,
3650 * generate an error message describing the I/O failure
3651 * at the block level. We ignore these errors if the
3652 * device is currently unavailable.
3654 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3655 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3657 if ((zio->io_error == EIO || !(zio->io_flags &
3658 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3659 zio == lio) {
3661 * For logical I/O requests, tell the SPA to log the
3662 * error and generate a logical data ereport.
3664 spa_log_error(spa, zio);
3665 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3666 0, 0);
3670 if (zio->io_error && zio == lio) {
3672 * Determine whether zio should be reexecuted. This will
3673 * propagate all the way to the root via zio_notify_parent().
3675 ASSERT(vd == NULL && bp != NULL);
3676 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3678 if (IO_IS_ALLOCATING(zio) &&
3679 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3680 if (zio->io_error != ENOSPC)
3681 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3682 else
3683 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3686 if ((zio->io_type == ZIO_TYPE_READ ||
3687 zio->io_type == ZIO_TYPE_FREE) &&
3688 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3689 zio->io_error == ENXIO &&
3690 spa_load_state(spa) == SPA_LOAD_NONE &&
3691 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3692 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3694 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3695 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3698 * Here is a possibly good place to attempt to do
3699 * either combinatorial reconstruction or error correction
3700 * based on checksums. It also might be a good place
3701 * to send out preliminary ereports before we suspend
3702 * processing.
3707 * If there were logical child errors, they apply to us now.
3708 * We defer this until now to avoid conflating logical child
3709 * errors with errors that happened to the zio itself when
3710 * updating vdev stats and reporting FMA events above.
3712 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3714 if ((zio->io_error || zio->io_reexecute) &&
3715 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3716 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3717 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3719 zio_gang_tree_free(&zio->io_gang_tree);
3722 * Godfather I/Os should never suspend.
3724 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3725 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3726 zio->io_reexecute = 0;
3728 if (zio->io_reexecute) {
3730 * This is a logical I/O that wants to reexecute.
3732 * Reexecute is top-down. When an i/o fails, if it's not
3733 * the root, it simply notifies its parent and sticks around.
3734 * The parent, seeing that it still has children in zio_done(),
3735 * does the same. This percolates all the way up to the root.
3736 * The root i/o will reexecute or suspend the entire tree.
3738 * This approach ensures that zio_reexecute() honors
3739 * all the original i/o dependency relationships, e.g.
3740 * parents not executing until children are ready.
3742 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3744 zio->io_gang_leader = NULL;
3746 mutex_enter(&zio->io_lock);
3747 zio->io_state[ZIO_WAIT_DONE] = 1;
3748 mutex_exit(&zio->io_lock);
3751 * "The Godfather" I/O monitors its children but is
3752 * not a true parent to them. It will track them through
3753 * the pipeline but severs its ties whenever they get into
3754 * trouble (e.g. suspended). This allows "The Godfather"
3755 * I/O to return status without blocking.
3757 zl = NULL;
3758 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
3759 pio = pio_next) {
3760 zio_link_t *remove_zl = zl;
3761 pio_next = zio_walk_parents(zio, &zl);
3763 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3764 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3765 zio_remove_child(pio, zio, remove_zl);
3766 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3770 if ((pio = zio_unique_parent(zio)) != NULL) {
3772 * We're not a root i/o, so there's nothing to do
3773 * but notify our parent. Don't propagate errors
3774 * upward since we haven't permanently failed yet.
3776 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3777 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3778 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3779 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3781 * We'd fail again if we reexecuted now, so suspend
3782 * until conditions improve (e.g. device comes online).
3784 zio_suspend(spa, zio);
3785 } else {
3787 * Reexecution is potentially a huge amount of work.
3788 * Hand it off to the otherwise-unused claim taskq.
3790 ASSERT(zio->io_tqent.tqent_next == NULL);
3791 spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3792 ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3793 0, &zio->io_tqent);
3795 return (ZIO_PIPELINE_STOP);
3798 ASSERT(zio->io_child_count == 0);
3799 ASSERT(zio->io_reexecute == 0);
3800 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3803 * Report any checksum errors, since the I/O is complete.
3805 while (zio->io_cksum_report != NULL) {
3806 zio_cksum_report_t *zcr = zio->io_cksum_report;
3807 zio->io_cksum_report = zcr->zcr_next;
3808 zcr->zcr_next = NULL;
3809 zcr->zcr_finish(zcr, NULL);
3810 zfs_ereport_free_checksum(zcr);
3814 * It is the responsibility of the done callback to ensure that this
3815 * particular zio is no longer discoverable for adoption, and as
3816 * such, cannot acquire any new parents.
3818 if (zio->io_done)
3819 zio->io_done(zio);
3821 mutex_enter(&zio->io_lock);
3822 zio->io_state[ZIO_WAIT_DONE] = 1;
3823 mutex_exit(&zio->io_lock);
3825 zl = NULL;
3826 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
3827 zio_link_t *remove_zl = zl;
3828 pio_next = zio_walk_parents(zio, &zl);
3829 zio_remove_child(pio, zio, remove_zl);
3830 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3833 if (zio->io_waiter != NULL) {
3834 mutex_enter(&zio->io_lock);
3835 zio->io_executor = NULL;
3836 cv_broadcast(&zio->io_cv);
3837 mutex_exit(&zio->io_lock);
3838 } else {
3839 zio_destroy(zio);
3842 return (ZIO_PIPELINE_STOP);
3846 * ==========================================================================
3847 * I/O pipeline definition
3848 * ==========================================================================
3850 static zio_pipe_stage_t *zio_pipeline[] = {
3851 NULL,
3852 zio_read_bp_init,
3853 zio_write_bp_init,
3854 zio_free_bp_init,
3855 zio_issue_async,
3856 zio_write_compress,
3857 zio_checksum_generate,
3858 zio_nop_write,
3859 zio_ddt_read_start,
3860 zio_ddt_read_done,
3861 zio_ddt_write,
3862 zio_ddt_free,
3863 zio_gang_assemble,
3864 zio_gang_issue,
3865 zio_dva_throttle,
3866 zio_dva_allocate,
3867 zio_dva_free,
3868 zio_dva_claim,
3869 zio_ready,
3870 zio_vdev_io_start,
3871 zio_vdev_io_done,
3872 zio_vdev_io_assess,
3873 zio_checksum_verify,
3874 zio_done
3881 * Compare two zbookmark_phys_t's to see which we would reach first in a
3882 * pre-order traversal of the object tree.
3884 * This is simple in every case aside from the meta-dnode object. For all other
3885 * objects, we traverse them in order (object 1 before object 2, and so on).
3886 * However, all of these objects are traversed while traversing object 0, since
3887 * the data it points to is the list of objects. Thus, we need to convert to a
3888 * canonical representation so we can compare meta-dnode bookmarks to
3889 * non-meta-dnode bookmarks.
3891 * We do this by calculating "equivalents" for each field of the zbookmark.
3892 * zbookmarks outside of the meta-dnode use their own object and level, and
3893 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3894 * blocks this bookmark refers to) by multiplying their blkid by their span
3895 * (the number of L0 blocks contained within one block at their level).
3896 * zbookmarks inside the meta-dnode calculate their object equivalent
3897 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3898 * level + 1<<31 (any value larger than a level could ever be) for their level.
3899 * This causes them to always compare before a bookmark in their object
3900 * equivalent, compare appropriately to bookmarks in other objects, and to
3901 * compare appropriately to other bookmarks in the meta-dnode.
3904 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3905 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3908 * These variables represent the "equivalent" values for the zbookmark,
3909 * after converting zbookmarks inside the meta dnode to their
3910 * normal-object equivalents.
3912 uint64_t zb1obj, zb2obj;
3913 uint64_t zb1L0, zb2L0;
3914 uint64_t zb1level, zb2level;
3916 if (zb1->zb_object == zb2->zb_object &&
3917 zb1->zb_level == zb2->zb_level &&
3918 zb1->zb_blkid == zb2->zb_blkid)
3919 return (0);
3922 * BP_SPANB calculates the span in blocks.
3924 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
3925 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
3927 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3928 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3929 zb1L0 = 0;
3930 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
3931 } else {
3932 zb1obj = zb1->zb_object;
3933 zb1level = zb1->zb_level;
3936 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
3937 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3938 zb2L0 = 0;
3939 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
3940 } else {
3941 zb2obj = zb2->zb_object;
3942 zb2level = zb2->zb_level;
3945 /* Now that we have a canonical representation, do the comparison. */
3946 if (zb1obj != zb2obj)
3947 return (zb1obj < zb2obj ? -1 : 1);
3948 else if (zb1L0 != zb2L0)
3949 return (zb1L0 < zb2L0 ? -1 : 1);
3950 else if (zb1level != zb2level)
3951 return (zb1level > zb2level ? -1 : 1);
3953 * This can (theoretically) happen if the bookmarks have the same object
3954 * and level, but different blkids, if the block sizes are not the same.
3955 * There is presently no way to change the indirect block sizes
3957 return (0);
3961 * This function checks the following: given that last_block is the place that
3962 * our traversal stopped last time, does that guarantee that we've visited
3963 * every node under subtree_root? Therefore, we can't just use the raw output
3964 * of zbookmark_compare. We have to pass in a modified version of
3965 * subtree_root; by incrementing the block id, and then checking whether
3966 * last_block is before or equal to that, we can tell whether or not having
3967 * visited last_block implies that all of subtree_root's children have been
3968 * visited.
3970 boolean_t
3971 zbookmark_subtree_completed(const dnode_phys_t *dnp,
3972 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
3974 zbookmark_phys_t mod_zb = *subtree_root;
3975 mod_zb.zb_blkid++;
3976 ASSERT(last_block->zb_level == 0);
3978 /* The objset_phys_t isn't before anything. */
3979 if (dnp == NULL)
3980 return (B_FALSE);
3983 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
3984 * data block size in sectors, because that variable is only used if
3985 * the bookmark refers to a block in the meta-dnode. Since we don't
3986 * know without examining it what object it refers to, and there's no
3987 * harm in passing in this value in other cases, we always pass it in.
3989 * We pass in 0 for the indirect block size shift because zb2 must be
3990 * level 0. The indirect block size is only used to calculate the span
3991 * of the bookmark, but since the bookmark must be level 0, the span is
3992 * always 1, so the math works out.
3994 * If you make changes to how the zbookmark_compare code works, be sure
3995 * to make sure that this code still works afterwards.
3997 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
3998 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
3999 last_block) <= 0);