8585 improve batching done in zil_commit()
[unleashed.git] / usr / src / uts / common / fs / zfs / dmu.c
blobfde295d851296fcdb42adaf7ffad5d0b3644e5b2
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
27 /* Copyright 2016 Nexenta Systems, Inc. All rights reserved. */
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dbuf.h>
33 #include <sys/dnode.h>
34 #include <sys/zfs_context.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dmu_traverse.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dmu_zfetch.h>
43 #include <sys/zfs_ioctl.h>
44 #include <sys/zap.h>
45 #include <sys/zio_checksum.h>
46 #include <sys/zio_compress.h>
47 #include <sys/sa.h>
48 #include <sys/zfeature.h>
49 #include <sys/abd.h>
50 #ifdef _KERNEL
51 #include <sys/vmsystm.h>
52 #include <sys/zfs_znode.h>
53 #endif
56 * Enable/disable nopwrite feature.
58 int zfs_nopwrite_enabled = 1;
61 * Tunable to control percentage of dirtied blocks from frees in one TXG.
62 * After this threshold is crossed, additional dirty blocks from frees
63 * wait until the next TXG.
64 * A value of zero will disable this throttle.
66 uint32_t zfs_per_txg_dirty_frees_percent = 30;
68 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
69 { DMU_BSWAP_UINT8, TRUE, "unallocated" },
70 { DMU_BSWAP_ZAP, TRUE, "object directory" },
71 { DMU_BSWAP_UINT64, TRUE, "object array" },
72 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" },
73 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" },
74 { DMU_BSWAP_UINT64, TRUE, "bpobj" },
75 { DMU_BSWAP_UINT64, TRUE, "bpobj header" },
76 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" },
77 { DMU_BSWAP_UINT64, TRUE, "SPA space map" },
78 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" },
79 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" },
80 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" },
81 { DMU_BSWAP_UINT64, TRUE, "DSL directory" },
82 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"},
83 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" },
84 { DMU_BSWAP_ZAP, TRUE, "DSL props" },
85 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" },
86 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" },
87 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" },
88 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" },
89 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" },
90 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" },
91 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" },
92 { DMU_BSWAP_UINT8, FALSE, "zvol object" },
93 { DMU_BSWAP_ZAP, TRUE, "zvol prop" },
94 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" },
95 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" },
96 { DMU_BSWAP_ZAP, TRUE, "other ZAP" },
97 { DMU_BSWAP_ZAP, TRUE, "persistent error log" },
98 { DMU_BSWAP_UINT8, TRUE, "SPA history" },
99 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" },
100 { DMU_BSWAP_ZAP, TRUE, "Pool properties" },
101 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" },
102 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" },
103 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" },
104 { DMU_BSWAP_UINT8, TRUE, "FUID table" },
105 { DMU_BSWAP_UINT64, TRUE, "FUID table size" },
106 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"},
107 { DMU_BSWAP_ZAP, TRUE, "scan work queue" },
108 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" },
109 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" },
110 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"},
111 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" },
112 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" },
113 { DMU_BSWAP_UINT8, TRUE, "System attributes" },
114 { DMU_BSWAP_ZAP, TRUE, "SA master node" },
115 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" },
116 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" },
117 { DMU_BSWAP_ZAP, TRUE, "scan translations" },
118 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" },
119 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" },
120 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" },
121 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" },
122 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" }
125 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
126 { byteswap_uint8_array, "uint8" },
127 { byteswap_uint16_array, "uint16" },
128 { byteswap_uint32_array, "uint32" },
129 { byteswap_uint64_array, "uint64" },
130 { zap_byteswap, "zap" },
131 { dnode_buf_byteswap, "dnode" },
132 { dmu_objset_byteswap, "objset" },
133 { zfs_znode_byteswap, "znode" },
134 { zfs_oldacl_byteswap, "oldacl" },
135 { zfs_acl_byteswap, "acl" }
139 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
140 void *tag, dmu_buf_t **dbp)
142 uint64_t blkid;
143 dmu_buf_impl_t *db;
145 blkid = dbuf_whichblock(dn, 0, offset);
146 rw_enter(&dn->dn_struct_rwlock, RW_READER);
147 db = dbuf_hold(dn, blkid, tag);
148 rw_exit(&dn->dn_struct_rwlock);
150 if (db == NULL) {
151 *dbp = NULL;
152 return (SET_ERROR(EIO));
155 *dbp = &db->db;
156 return (0);
159 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
160 void *tag, dmu_buf_t **dbp)
162 dnode_t *dn;
163 uint64_t blkid;
164 dmu_buf_impl_t *db;
165 int err;
167 err = dnode_hold(os, object, FTAG, &dn);
168 if (err)
169 return (err);
170 blkid = dbuf_whichblock(dn, 0, offset);
171 rw_enter(&dn->dn_struct_rwlock, RW_READER);
172 db = dbuf_hold(dn, blkid, tag);
173 rw_exit(&dn->dn_struct_rwlock);
174 dnode_rele(dn, FTAG);
176 if (db == NULL) {
177 *dbp = NULL;
178 return (SET_ERROR(EIO));
181 *dbp = &db->db;
182 return (err);
186 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
187 void *tag, dmu_buf_t **dbp, int flags)
189 int err;
190 int db_flags = DB_RF_CANFAIL;
192 if (flags & DMU_READ_NO_PREFETCH)
193 db_flags |= DB_RF_NOPREFETCH;
195 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
196 if (err == 0) {
197 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
198 err = dbuf_read(db, NULL, db_flags);
199 if (err != 0) {
200 dbuf_rele(db, tag);
201 *dbp = NULL;
205 return (err);
209 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
210 void *tag, dmu_buf_t **dbp, int flags)
212 int err;
213 int db_flags = DB_RF_CANFAIL;
215 if (flags & DMU_READ_NO_PREFETCH)
216 db_flags |= DB_RF_NOPREFETCH;
218 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
219 if (err == 0) {
220 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
221 err = dbuf_read(db, NULL, db_flags);
222 if (err != 0) {
223 dbuf_rele(db, tag);
224 *dbp = NULL;
228 return (err);
232 dmu_bonus_max(void)
234 return (DN_MAX_BONUSLEN);
238 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
240 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
241 dnode_t *dn;
242 int error;
244 DB_DNODE_ENTER(db);
245 dn = DB_DNODE(db);
247 if (dn->dn_bonus != db) {
248 error = SET_ERROR(EINVAL);
249 } else if (newsize < 0 || newsize > db_fake->db_size) {
250 error = SET_ERROR(EINVAL);
251 } else {
252 dnode_setbonuslen(dn, newsize, tx);
253 error = 0;
256 DB_DNODE_EXIT(db);
257 return (error);
261 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
263 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
264 dnode_t *dn;
265 int error;
267 DB_DNODE_ENTER(db);
268 dn = DB_DNODE(db);
270 if (!DMU_OT_IS_VALID(type)) {
271 error = SET_ERROR(EINVAL);
272 } else if (dn->dn_bonus != db) {
273 error = SET_ERROR(EINVAL);
274 } else {
275 dnode_setbonus_type(dn, type, tx);
276 error = 0;
279 DB_DNODE_EXIT(db);
280 return (error);
283 dmu_object_type_t
284 dmu_get_bonustype(dmu_buf_t *db_fake)
286 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
287 dnode_t *dn;
288 dmu_object_type_t type;
290 DB_DNODE_ENTER(db);
291 dn = DB_DNODE(db);
292 type = dn->dn_bonustype;
293 DB_DNODE_EXIT(db);
295 return (type);
299 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
301 dnode_t *dn;
302 int error;
304 error = dnode_hold(os, object, FTAG, &dn);
305 dbuf_rm_spill(dn, tx);
306 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
307 dnode_rm_spill(dn, tx);
308 rw_exit(&dn->dn_struct_rwlock);
309 dnode_rele(dn, FTAG);
310 return (error);
314 * returns ENOENT, EIO, or 0.
317 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
319 dnode_t *dn;
320 dmu_buf_impl_t *db;
321 int error;
323 error = dnode_hold(os, object, FTAG, &dn);
324 if (error)
325 return (error);
327 rw_enter(&dn->dn_struct_rwlock, RW_READER);
328 if (dn->dn_bonus == NULL) {
329 rw_exit(&dn->dn_struct_rwlock);
330 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
331 if (dn->dn_bonus == NULL)
332 dbuf_create_bonus(dn);
334 db = dn->dn_bonus;
336 /* as long as the bonus buf is held, the dnode will be held */
337 if (refcount_add(&db->db_holds, tag) == 1) {
338 VERIFY(dnode_add_ref(dn, db));
339 atomic_inc_32(&dn->dn_dbufs_count);
343 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
344 * hold and incrementing the dbuf count to ensure that dnode_move() sees
345 * a dnode hold for every dbuf.
347 rw_exit(&dn->dn_struct_rwlock);
349 dnode_rele(dn, FTAG);
351 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
353 *dbp = &db->db;
354 return (0);
358 * returns ENOENT, EIO, or 0.
360 * This interface will allocate a blank spill dbuf when a spill blk
361 * doesn't already exist on the dnode.
363 * if you only want to find an already existing spill db, then
364 * dmu_spill_hold_existing() should be used.
367 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
369 dmu_buf_impl_t *db = NULL;
370 int err;
372 if ((flags & DB_RF_HAVESTRUCT) == 0)
373 rw_enter(&dn->dn_struct_rwlock, RW_READER);
375 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
377 if ((flags & DB_RF_HAVESTRUCT) == 0)
378 rw_exit(&dn->dn_struct_rwlock);
380 ASSERT(db != NULL);
381 err = dbuf_read(db, NULL, flags);
382 if (err == 0)
383 *dbp = &db->db;
384 else
385 dbuf_rele(db, tag);
386 return (err);
390 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
392 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
393 dnode_t *dn;
394 int err;
396 DB_DNODE_ENTER(db);
397 dn = DB_DNODE(db);
399 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
400 err = SET_ERROR(EINVAL);
401 } else {
402 rw_enter(&dn->dn_struct_rwlock, RW_READER);
404 if (!dn->dn_have_spill) {
405 err = SET_ERROR(ENOENT);
406 } else {
407 err = dmu_spill_hold_by_dnode(dn,
408 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
411 rw_exit(&dn->dn_struct_rwlock);
414 DB_DNODE_EXIT(db);
415 return (err);
419 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
421 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
422 dnode_t *dn;
423 int err;
425 DB_DNODE_ENTER(db);
426 dn = DB_DNODE(db);
427 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
428 DB_DNODE_EXIT(db);
430 return (err);
434 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
435 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
436 * and can induce severe lock contention when writing to several files
437 * whose dnodes are in the same block.
439 static int
440 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
441 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
443 dmu_buf_t **dbp;
444 uint64_t blkid, nblks, i;
445 uint32_t dbuf_flags;
446 int err;
447 zio_t *zio;
449 ASSERT(length <= DMU_MAX_ACCESS);
452 * Note: We directly notify the prefetch code of this read, so that
453 * we can tell it about the multi-block read. dbuf_read() only knows
454 * about the one block it is accessing.
456 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
457 DB_RF_NOPREFETCH;
459 rw_enter(&dn->dn_struct_rwlock, RW_READER);
460 if (dn->dn_datablkshift) {
461 int blkshift = dn->dn_datablkshift;
462 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
463 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
464 } else {
465 if (offset + length > dn->dn_datablksz) {
466 zfs_panic_recover("zfs: accessing past end of object "
467 "%llx/%llx (size=%u access=%llu+%llu)",
468 (longlong_t)dn->dn_objset->
469 os_dsl_dataset->ds_object,
470 (longlong_t)dn->dn_object, dn->dn_datablksz,
471 (longlong_t)offset, (longlong_t)length);
472 rw_exit(&dn->dn_struct_rwlock);
473 return (SET_ERROR(EIO));
475 nblks = 1;
477 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
479 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
480 blkid = dbuf_whichblock(dn, 0, offset);
481 for (i = 0; i < nblks; i++) {
482 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
483 if (db == NULL) {
484 rw_exit(&dn->dn_struct_rwlock);
485 dmu_buf_rele_array(dbp, nblks, tag);
486 zio_nowait(zio);
487 return (SET_ERROR(EIO));
490 /* initiate async i/o */
491 if (read)
492 (void) dbuf_read(db, zio, dbuf_flags);
493 dbp[i] = &db->db;
496 if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
497 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
498 dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
499 read && DNODE_IS_CACHEABLE(dn));
501 rw_exit(&dn->dn_struct_rwlock);
503 /* wait for async i/o */
504 err = zio_wait(zio);
505 if (err) {
506 dmu_buf_rele_array(dbp, nblks, tag);
507 return (err);
510 /* wait for other io to complete */
511 if (read) {
512 for (i = 0; i < nblks; i++) {
513 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
514 mutex_enter(&db->db_mtx);
515 while (db->db_state == DB_READ ||
516 db->db_state == DB_FILL)
517 cv_wait(&db->db_changed, &db->db_mtx);
518 if (db->db_state == DB_UNCACHED)
519 err = SET_ERROR(EIO);
520 mutex_exit(&db->db_mtx);
521 if (err) {
522 dmu_buf_rele_array(dbp, nblks, tag);
523 return (err);
528 *numbufsp = nblks;
529 *dbpp = dbp;
530 return (0);
533 static int
534 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
535 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
537 dnode_t *dn;
538 int err;
540 err = dnode_hold(os, object, FTAG, &dn);
541 if (err)
542 return (err);
544 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
545 numbufsp, dbpp, DMU_READ_PREFETCH);
547 dnode_rele(dn, FTAG);
549 return (err);
553 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
554 uint64_t length, boolean_t read, void *tag, int *numbufsp,
555 dmu_buf_t ***dbpp)
557 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
558 dnode_t *dn;
559 int err;
561 DB_DNODE_ENTER(db);
562 dn = DB_DNODE(db);
563 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
564 numbufsp, dbpp, DMU_READ_PREFETCH);
565 DB_DNODE_EXIT(db);
567 return (err);
570 void
571 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
573 int i;
574 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
576 if (numbufs == 0)
577 return;
579 for (i = 0; i < numbufs; i++) {
580 if (dbp[i])
581 dbuf_rele(dbp[i], tag);
584 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
588 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
589 * indirect blocks prefeteched will be those that point to the blocks containing
590 * the data starting at offset, and continuing to offset + len.
592 * Note that if the indirect blocks above the blocks being prefetched are not in
593 * cache, they will be asychronously read in.
595 void
596 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
597 uint64_t len, zio_priority_t pri)
599 dnode_t *dn;
600 uint64_t blkid;
601 int nblks, err;
603 if (len == 0) { /* they're interested in the bonus buffer */
604 dn = DMU_META_DNODE(os);
606 if (object == 0 || object >= DN_MAX_OBJECT)
607 return;
609 rw_enter(&dn->dn_struct_rwlock, RW_READER);
610 blkid = dbuf_whichblock(dn, level,
611 object * sizeof (dnode_phys_t));
612 dbuf_prefetch(dn, level, blkid, pri, 0);
613 rw_exit(&dn->dn_struct_rwlock);
614 return;
618 * XXX - Note, if the dnode for the requested object is not
619 * already cached, we will do a *synchronous* read in the
620 * dnode_hold() call. The same is true for any indirects.
622 err = dnode_hold(os, object, FTAG, &dn);
623 if (err != 0)
624 return;
626 rw_enter(&dn->dn_struct_rwlock, RW_READER);
628 * offset + len - 1 is the last byte we want to prefetch for, and offset
629 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
630 * last block we want to prefetch, and dbuf_whichblock(dn, level,
631 * offset) is the first. Then the number we need to prefetch is the
632 * last - first + 1.
634 if (level > 0 || dn->dn_datablkshift != 0) {
635 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
636 dbuf_whichblock(dn, level, offset) + 1;
637 } else {
638 nblks = (offset < dn->dn_datablksz);
641 if (nblks != 0) {
642 blkid = dbuf_whichblock(dn, level, offset);
643 for (int i = 0; i < nblks; i++)
644 dbuf_prefetch(dn, level, blkid + i, pri, 0);
647 rw_exit(&dn->dn_struct_rwlock);
649 dnode_rele(dn, FTAG);
653 * Get the next "chunk" of file data to free. We traverse the file from
654 * the end so that the file gets shorter over time (if we crashes in the
655 * middle, this will leave us in a better state). We find allocated file
656 * data by simply searching the allocated level 1 indirects.
658 * On input, *start should be the first offset that does not need to be
659 * freed (e.g. "offset + length"). On return, *start will be the first
660 * offset that should be freed.
662 static int
663 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
665 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
666 /* bytes of data covered by a level-1 indirect block */
667 uint64_t iblkrange =
668 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
670 ASSERT3U(minimum, <=, *start);
672 if (*start - minimum <= iblkrange * maxblks) {
673 *start = minimum;
674 return (0);
676 ASSERT(ISP2(iblkrange));
678 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
679 int err;
682 * dnode_next_offset(BACKWARDS) will find an allocated L1
683 * indirect block at or before the input offset. We must
684 * decrement *start so that it is at the end of the region
685 * to search.
687 (*start)--;
688 err = dnode_next_offset(dn,
689 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
691 /* if there are no indirect blocks before start, we are done */
692 if (err == ESRCH) {
693 *start = minimum;
694 break;
695 } else if (err != 0) {
696 return (err);
699 /* set start to the beginning of this L1 indirect */
700 *start = P2ALIGN(*start, iblkrange);
702 if (*start < minimum)
703 *start = minimum;
704 return (0);
708 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
709 * otherwise return false.
710 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
712 /*ARGSUSED*/
713 static boolean_t
714 dmu_objset_zfs_unmounting(objset_t *os)
716 #ifdef _KERNEL
717 if (dmu_objset_type(os) == DMU_OST_ZFS)
718 return (zfs_get_vfs_flag_unmounted(os));
719 #endif
720 return (B_FALSE);
723 static int
724 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
725 uint64_t length)
727 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
728 int err;
729 uint64_t dirty_frees_threshold;
730 dsl_pool_t *dp = dmu_objset_pool(os);
732 if (offset >= object_size)
733 return (0);
735 if (zfs_per_txg_dirty_frees_percent <= 100)
736 dirty_frees_threshold =
737 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
738 else
739 dirty_frees_threshold = zfs_dirty_data_max / 4;
741 if (length == DMU_OBJECT_END || offset + length > object_size)
742 length = object_size - offset;
744 while (length != 0) {
745 uint64_t chunk_end, chunk_begin, chunk_len;
746 uint64_t long_free_dirty_all_txgs = 0;
747 dmu_tx_t *tx;
749 if (dmu_objset_zfs_unmounting(dn->dn_objset))
750 return (SET_ERROR(EINTR));
752 chunk_end = chunk_begin = offset + length;
754 /* move chunk_begin backwards to the beginning of this chunk */
755 err = get_next_chunk(dn, &chunk_begin, offset);
756 if (err)
757 return (err);
758 ASSERT3U(chunk_begin, >=, offset);
759 ASSERT3U(chunk_begin, <=, chunk_end);
761 chunk_len = chunk_end - chunk_begin;
763 mutex_enter(&dp->dp_lock);
764 for (int t = 0; t < TXG_SIZE; t++) {
765 long_free_dirty_all_txgs +=
766 dp->dp_long_free_dirty_pertxg[t];
768 mutex_exit(&dp->dp_lock);
771 * To avoid filling up a TXG with just frees wait for
772 * the next TXG to open before freeing more chunks if
773 * we have reached the threshold of frees
775 if (dirty_frees_threshold != 0 &&
776 long_free_dirty_all_txgs >= dirty_frees_threshold) {
777 txg_wait_open(dp, 0);
778 continue;
781 tx = dmu_tx_create(os);
782 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
785 * Mark this transaction as typically resulting in a net
786 * reduction in space used.
788 dmu_tx_mark_netfree(tx);
789 err = dmu_tx_assign(tx, TXG_WAIT);
790 if (err) {
791 dmu_tx_abort(tx);
792 return (err);
795 mutex_enter(&dp->dp_lock);
796 dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] +=
797 chunk_len;
798 mutex_exit(&dp->dp_lock);
799 DTRACE_PROBE3(free__long__range,
800 uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len,
801 uint64_t, dmu_tx_get_txg(tx));
802 dnode_free_range(dn, chunk_begin, chunk_len, tx);
803 dmu_tx_commit(tx);
805 length -= chunk_len;
807 return (0);
811 dmu_free_long_range(objset_t *os, uint64_t object,
812 uint64_t offset, uint64_t length)
814 dnode_t *dn;
815 int err;
817 err = dnode_hold(os, object, FTAG, &dn);
818 if (err != 0)
819 return (err);
820 err = dmu_free_long_range_impl(os, dn, offset, length);
823 * It is important to zero out the maxblkid when freeing the entire
824 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
825 * will take the fast path, and (b) dnode_reallocate() can verify
826 * that the entire file has been freed.
828 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
829 dn->dn_maxblkid = 0;
831 dnode_rele(dn, FTAG);
832 return (err);
836 dmu_free_long_object(objset_t *os, uint64_t object)
838 dmu_tx_t *tx;
839 int err;
841 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
842 if (err != 0)
843 return (err);
845 tx = dmu_tx_create(os);
846 dmu_tx_hold_bonus(tx, object);
847 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
848 dmu_tx_mark_netfree(tx);
849 err = dmu_tx_assign(tx, TXG_WAIT);
850 if (err == 0) {
851 err = dmu_object_free(os, object, tx);
852 dmu_tx_commit(tx);
853 } else {
854 dmu_tx_abort(tx);
857 return (err);
861 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
862 uint64_t size, dmu_tx_t *tx)
864 dnode_t *dn;
865 int err = dnode_hold(os, object, FTAG, &dn);
866 if (err)
867 return (err);
868 ASSERT(offset < UINT64_MAX);
869 ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
870 dnode_free_range(dn, offset, size, tx);
871 dnode_rele(dn, FTAG);
872 return (0);
875 static int
876 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
877 void *buf, uint32_t flags)
879 dmu_buf_t **dbp;
880 int numbufs, err = 0;
883 * Deal with odd block sizes, where there can't be data past the first
884 * block. If we ever do the tail block optimization, we will need to
885 * handle that here as well.
887 if (dn->dn_maxblkid == 0) {
888 int newsz = offset > dn->dn_datablksz ? 0 :
889 MIN(size, dn->dn_datablksz - offset);
890 bzero((char *)buf + newsz, size - newsz);
891 size = newsz;
894 while (size > 0) {
895 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
896 int i;
899 * NB: we could do this block-at-a-time, but it's nice
900 * to be reading in parallel.
902 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
903 TRUE, FTAG, &numbufs, &dbp, flags);
904 if (err)
905 break;
907 for (i = 0; i < numbufs; i++) {
908 int tocpy;
909 int bufoff;
910 dmu_buf_t *db = dbp[i];
912 ASSERT(size > 0);
914 bufoff = offset - db->db_offset;
915 tocpy = (int)MIN(db->db_size - bufoff, size);
917 bcopy((char *)db->db_data + bufoff, buf, tocpy);
919 offset += tocpy;
920 size -= tocpy;
921 buf = (char *)buf + tocpy;
923 dmu_buf_rele_array(dbp, numbufs, FTAG);
925 return (err);
929 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
930 void *buf, uint32_t flags)
932 dnode_t *dn;
933 int err;
935 err = dnode_hold(os, object, FTAG, &dn);
936 if (err != 0)
937 return (err);
939 err = dmu_read_impl(dn, offset, size, buf, flags);
940 dnode_rele(dn, FTAG);
941 return (err);
945 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
946 uint32_t flags)
948 return (dmu_read_impl(dn, offset, size, buf, flags));
951 static void
952 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
953 const void *buf, dmu_tx_t *tx)
955 int i;
957 for (i = 0; i < numbufs; i++) {
958 int tocpy;
959 int bufoff;
960 dmu_buf_t *db = dbp[i];
962 ASSERT(size > 0);
964 bufoff = offset - db->db_offset;
965 tocpy = (int)MIN(db->db_size - bufoff, size);
967 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
969 if (tocpy == db->db_size)
970 dmu_buf_will_fill(db, tx);
971 else
972 dmu_buf_will_dirty(db, tx);
974 bcopy(buf, (char *)db->db_data + bufoff, tocpy);
976 if (tocpy == db->db_size)
977 dmu_buf_fill_done(db, tx);
979 offset += tocpy;
980 size -= tocpy;
981 buf = (char *)buf + tocpy;
985 void
986 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
987 const void *buf, dmu_tx_t *tx)
989 dmu_buf_t **dbp;
990 int numbufs;
992 if (size == 0)
993 return;
995 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
996 FALSE, FTAG, &numbufs, &dbp));
997 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
998 dmu_buf_rele_array(dbp, numbufs, FTAG);
1001 void
1002 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1003 const void *buf, dmu_tx_t *tx)
1005 dmu_buf_t **dbp;
1006 int numbufs;
1008 if (size == 0)
1009 return;
1011 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1012 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1013 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1014 dmu_buf_rele_array(dbp, numbufs, FTAG);
1017 void
1018 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1019 dmu_tx_t *tx)
1021 dmu_buf_t **dbp;
1022 int numbufs, i;
1024 if (size == 0)
1025 return;
1027 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1028 FALSE, FTAG, &numbufs, &dbp));
1030 for (i = 0; i < numbufs; i++) {
1031 dmu_buf_t *db = dbp[i];
1033 dmu_buf_will_not_fill(db, tx);
1035 dmu_buf_rele_array(dbp, numbufs, FTAG);
1038 void
1039 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1040 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1041 int compressed_size, int byteorder, dmu_tx_t *tx)
1043 dmu_buf_t *db;
1045 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1046 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1047 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1048 FTAG, &db));
1050 dmu_buf_write_embedded(db,
1051 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1052 uncompressed_size, compressed_size, byteorder, tx);
1054 dmu_buf_rele(db, FTAG);
1058 * DMU support for xuio
1060 kstat_t *xuio_ksp = NULL;
1063 dmu_xuio_init(xuio_t *xuio, int nblk)
1065 dmu_xuio_t *priv;
1066 uio_t *uio = &xuio->xu_uio;
1068 uio->uio_iovcnt = nblk;
1069 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
1071 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
1072 priv->cnt = nblk;
1073 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
1074 priv->iovp = uio->uio_iov;
1075 XUIO_XUZC_PRIV(xuio) = priv;
1077 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1078 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
1079 else
1080 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
1082 return (0);
1085 void
1086 dmu_xuio_fini(xuio_t *xuio)
1088 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1089 int nblk = priv->cnt;
1091 kmem_free(priv->iovp, nblk * sizeof (iovec_t));
1092 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
1093 kmem_free(priv, sizeof (dmu_xuio_t));
1095 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1096 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
1097 else
1098 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
1102 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1103 * and increase priv->next by 1.
1106 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
1108 struct iovec *iov;
1109 uio_t *uio = &xuio->xu_uio;
1110 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1111 int i = priv->next++;
1113 ASSERT(i < priv->cnt);
1114 ASSERT(off + n <= arc_buf_lsize(abuf));
1115 iov = uio->uio_iov + i;
1116 iov->iov_base = (char *)abuf->b_data + off;
1117 iov->iov_len = n;
1118 priv->bufs[i] = abuf;
1119 return (0);
1123 dmu_xuio_cnt(xuio_t *xuio)
1125 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1126 return (priv->cnt);
1129 arc_buf_t *
1130 dmu_xuio_arcbuf(xuio_t *xuio, int i)
1132 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1134 ASSERT(i < priv->cnt);
1135 return (priv->bufs[i]);
1138 void
1139 dmu_xuio_clear(xuio_t *xuio, int i)
1141 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1143 ASSERT(i < priv->cnt);
1144 priv->bufs[i] = NULL;
1147 static void
1148 xuio_stat_init(void)
1150 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1151 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1152 KSTAT_FLAG_VIRTUAL);
1153 if (xuio_ksp != NULL) {
1154 xuio_ksp->ks_data = &xuio_stats;
1155 kstat_install(xuio_ksp);
1159 static void
1160 xuio_stat_fini(void)
1162 if (xuio_ksp != NULL) {
1163 kstat_delete(xuio_ksp);
1164 xuio_ksp = NULL;
1168 void
1169 xuio_stat_wbuf_copied(void)
1171 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1174 void
1175 xuio_stat_wbuf_nocopy(void)
1177 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1180 #ifdef _KERNEL
1181 static int
1182 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1184 dmu_buf_t **dbp;
1185 int numbufs, i, err;
1186 xuio_t *xuio = NULL;
1189 * NB: we could do this block-at-a-time, but it's nice
1190 * to be reading in parallel.
1192 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1193 TRUE, FTAG, &numbufs, &dbp, 0);
1194 if (err)
1195 return (err);
1197 if (uio->uio_extflg == UIO_XUIO)
1198 xuio = (xuio_t *)uio;
1200 for (i = 0; i < numbufs; i++) {
1201 int tocpy;
1202 int bufoff;
1203 dmu_buf_t *db = dbp[i];
1205 ASSERT(size > 0);
1207 bufoff = uio->uio_loffset - db->db_offset;
1208 tocpy = (int)MIN(db->db_size - bufoff, size);
1210 if (xuio) {
1211 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1212 arc_buf_t *dbuf_abuf = dbi->db_buf;
1213 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1214 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1215 if (!err) {
1216 uio->uio_resid -= tocpy;
1217 uio->uio_loffset += tocpy;
1220 if (abuf == dbuf_abuf)
1221 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1222 else
1223 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1224 } else {
1225 err = uiomove((char *)db->db_data + bufoff, tocpy,
1226 UIO_READ, uio);
1228 if (err)
1229 break;
1231 size -= tocpy;
1233 dmu_buf_rele_array(dbp, numbufs, FTAG);
1235 return (err);
1239 * Read 'size' bytes into the uio buffer.
1240 * From object zdb->db_object.
1241 * Starting at offset uio->uio_loffset.
1243 * If the caller already has a dbuf in the target object
1244 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1245 * because we don't have to find the dnode_t for the object.
1248 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1250 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1251 dnode_t *dn;
1252 int err;
1254 if (size == 0)
1255 return (0);
1257 DB_DNODE_ENTER(db);
1258 dn = DB_DNODE(db);
1259 err = dmu_read_uio_dnode(dn, uio, size);
1260 DB_DNODE_EXIT(db);
1262 return (err);
1266 * Read 'size' bytes into the uio buffer.
1267 * From the specified object
1268 * Starting at offset uio->uio_loffset.
1271 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1273 dnode_t *dn;
1274 int err;
1276 if (size == 0)
1277 return (0);
1279 err = dnode_hold(os, object, FTAG, &dn);
1280 if (err)
1281 return (err);
1283 err = dmu_read_uio_dnode(dn, uio, size);
1285 dnode_rele(dn, FTAG);
1287 return (err);
1290 static int
1291 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1293 dmu_buf_t **dbp;
1294 int numbufs;
1295 int err = 0;
1296 int i;
1298 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1299 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1300 if (err)
1301 return (err);
1303 for (i = 0; i < numbufs; i++) {
1304 int tocpy;
1305 int bufoff;
1306 dmu_buf_t *db = dbp[i];
1308 ASSERT(size > 0);
1310 bufoff = uio->uio_loffset - db->db_offset;
1311 tocpy = (int)MIN(db->db_size - bufoff, size);
1313 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1315 if (tocpy == db->db_size)
1316 dmu_buf_will_fill(db, tx);
1317 else
1318 dmu_buf_will_dirty(db, tx);
1321 * XXX uiomove could block forever (eg. nfs-backed
1322 * pages). There needs to be a uiolockdown() function
1323 * to lock the pages in memory, so that uiomove won't
1324 * block.
1326 err = uiomove((char *)db->db_data + bufoff, tocpy,
1327 UIO_WRITE, uio);
1329 if (tocpy == db->db_size)
1330 dmu_buf_fill_done(db, tx);
1332 if (err)
1333 break;
1335 size -= tocpy;
1338 dmu_buf_rele_array(dbp, numbufs, FTAG);
1339 return (err);
1343 * Write 'size' bytes from the uio buffer.
1344 * To object zdb->db_object.
1345 * Starting at offset uio->uio_loffset.
1347 * If the caller already has a dbuf in the target object
1348 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1349 * because we don't have to find the dnode_t for the object.
1352 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1353 dmu_tx_t *tx)
1355 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1356 dnode_t *dn;
1357 int err;
1359 if (size == 0)
1360 return (0);
1362 DB_DNODE_ENTER(db);
1363 dn = DB_DNODE(db);
1364 err = dmu_write_uio_dnode(dn, uio, size, tx);
1365 DB_DNODE_EXIT(db);
1367 return (err);
1371 * Write 'size' bytes from the uio buffer.
1372 * To the specified object.
1373 * Starting at offset uio->uio_loffset.
1376 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1377 dmu_tx_t *tx)
1379 dnode_t *dn;
1380 int err;
1382 if (size == 0)
1383 return (0);
1385 err = dnode_hold(os, object, FTAG, &dn);
1386 if (err)
1387 return (err);
1389 err = dmu_write_uio_dnode(dn, uio, size, tx);
1391 dnode_rele(dn, FTAG);
1393 return (err);
1397 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1398 page_t *pp, dmu_tx_t *tx)
1400 dmu_buf_t **dbp;
1401 int numbufs, i;
1402 int err;
1404 if (size == 0)
1405 return (0);
1407 err = dmu_buf_hold_array(os, object, offset, size,
1408 FALSE, FTAG, &numbufs, &dbp);
1409 if (err)
1410 return (err);
1412 for (i = 0; i < numbufs; i++) {
1413 int tocpy, copied, thiscpy;
1414 int bufoff;
1415 dmu_buf_t *db = dbp[i];
1416 caddr_t va;
1418 ASSERT(size > 0);
1419 ASSERT3U(db->db_size, >=, PAGESIZE);
1421 bufoff = offset - db->db_offset;
1422 tocpy = (int)MIN(db->db_size - bufoff, size);
1424 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1426 if (tocpy == db->db_size)
1427 dmu_buf_will_fill(db, tx);
1428 else
1429 dmu_buf_will_dirty(db, tx);
1431 for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1432 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1433 thiscpy = MIN(PAGESIZE, tocpy - copied);
1434 va = zfs_map_page(pp, S_READ);
1435 bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1436 zfs_unmap_page(pp, va);
1437 pp = pp->p_next;
1438 bufoff += PAGESIZE;
1441 if (tocpy == db->db_size)
1442 dmu_buf_fill_done(db, tx);
1444 offset += tocpy;
1445 size -= tocpy;
1447 dmu_buf_rele_array(dbp, numbufs, FTAG);
1448 return (err);
1450 #endif
1453 * Allocate a loaned anonymous arc buffer.
1455 arc_buf_t *
1456 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1458 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1460 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1464 * Free a loaned arc buffer.
1466 void
1467 dmu_return_arcbuf(arc_buf_t *buf)
1469 arc_return_buf(buf, FTAG);
1470 arc_buf_destroy(buf, FTAG);
1474 * When possible directly assign passed loaned arc buffer to a dbuf.
1475 * If this is not possible copy the contents of passed arc buf via
1476 * dmu_write().
1478 void
1479 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1480 dmu_tx_t *tx)
1482 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1483 dnode_t *dn;
1484 dmu_buf_impl_t *db;
1485 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1486 uint64_t blkid;
1488 DB_DNODE_ENTER(dbuf);
1489 dn = DB_DNODE(dbuf);
1490 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1491 blkid = dbuf_whichblock(dn, 0, offset);
1492 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1493 rw_exit(&dn->dn_struct_rwlock);
1494 DB_DNODE_EXIT(dbuf);
1497 * We can only assign if the offset is aligned, the arc buf is the
1498 * same size as the dbuf, and the dbuf is not metadata.
1500 if (offset == db->db.db_offset && blksz == db->db.db_size) {
1501 dbuf_assign_arcbuf(db, buf, tx);
1502 dbuf_rele(db, FTAG);
1503 } else {
1504 objset_t *os;
1505 uint64_t object;
1507 /* compressed bufs must always be assignable to their dbuf */
1508 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1509 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1511 DB_DNODE_ENTER(dbuf);
1512 dn = DB_DNODE(dbuf);
1513 os = dn->dn_objset;
1514 object = dn->dn_object;
1515 DB_DNODE_EXIT(dbuf);
1517 dbuf_rele(db, FTAG);
1518 dmu_write(os, object, offset, blksz, buf->b_data, tx);
1519 dmu_return_arcbuf(buf);
1520 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1524 typedef struct {
1525 dbuf_dirty_record_t *dsa_dr;
1526 dmu_sync_cb_t *dsa_done;
1527 zgd_t *dsa_zgd;
1528 dmu_tx_t *dsa_tx;
1529 } dmu_sync_arg_t;
1531 /* ARGSUSED */
1532 static void
1533 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1535 dmu_sync_arg_t *dsa = varg;
1536 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1537 blkptr_t *bp = zio->io_bp;
1539 if (zio->io_error == 0) {
1540 if (BP_IS_HOLE(bp)) {
1542 * A block of zeros may compress to a hole, but the
1543 * block size still needs to be known for replay.
1545 BP_SET_LSIZE(bp, db->db_size);
1546 } else if (!BP_IS_EMBEDDED(bp)) {
1547 ASSERT(BP_GET_LEVEL(bp) == 0);
1548 bp->blk_fill = 1;
1553 static void
1554 dmu_sync_late_arrival_ready(zio_t *zio)
1556 dmu_sync_ready(zio, NULL, zio->io_private);
1559 /* ARGSUSED */
1560 static void
1561 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1563 dmu_sync_arg_t *dsa = varg;
1564 dbuf_dirty_record_t *dr = dsa->dsa_dr;
1565 dmu_buf_impl_t *db = dr->dr_dbuf;
1567 mutex_enter(&db->db_mtx);
1568 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1569 if (zio->io_error == 0) {
1570 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1571 if (dr->dt.dl.dr_nopwrite) {
1572 blkptr_t *bp = zio->io_bp;
1573 blkptr_t *bp_orig = &zio->io_bp_orig;
1574 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1576 ASSERT(BP_EQUAL(bp, bp_orig));
1577 VERIFY(BP_EQUAL(bp, db->db_blkptr));
1578 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1579 ASSERT(zio_checksum_table[chksum].ci_flags &
1580 ZCHECKSUM_FLAG_NOPWRITE);
1582 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1583 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1584 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1587 * Old style holes are filled with all zeros, whereas
1588 * new-style holes maintain their lsize, type, level,
1589 * and birth time (see zio_write_compress). While we
1590 * need to reset the BP_SET_LSIZE() call that happened
1591 * in dmu_sync_ready for old style holes, we do *not*
1592 * want to wipe out the information contained in new
1593 * style holes. Thus, only zero out the block pointer if
1594 * it's an old style hole.
1596 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1597 dr->dt.dl.dr_overridden_by.blk_birth == 0)
1598 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1599 } else {
1600 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1602 cv_broadcast(&db->db_changed);
1603 mutex_exit(&db->db_mtx);
1605 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1607 kmem_free(dsa, sizeof (*dsa));
1610 static void
1611 dmu_sync_late_arrival_done(zio_t *zio)
1613 blkptr_t *bp = zio->io_bp;
1614 dmu_sync_arg_t *dsa = zio->io_private;
1615 blkptr_t *bp_orig = &zio->io_bp_orig;
1617 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1618 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1619 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1620 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1621 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1622 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1625 dmu_tx_commit(dsa->dsa_tx);
1627 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1629 abd_put(zio->io_abd);
1630 kmem_free(dsa, sizeof (*dsa));
1633 static int
1634 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1635 zio_prop_t *zp, zbookmark_phys_t *zb)
1637 dmu_sync_arg_t *dsa;
1638 dmu_tx_t *tx;
1640 tx = dmu_tx_create(os);
1641 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1642 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1643 dmu_tx_abort(tx);
1644 /* Make zl_get_data do txg_waited_synced() */
1645 return (SET_ERROR(EIO));
1649 * In order to prevent the zgd's lwb from being free'd prior to
1650 * dmu_sync_late_arrival_done() being called, we have to ensure
1651 * the lwb's "max txg" takes this tx's txg into account.
1653 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1655 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1656 dsa->dsa_dr = NULL;
1657 dsa->dsa_done = done;
1658 dsa->dsa_zgd = zgd;
1659 dsa->dsa_tx = tx;
1662 * Since we are currently syncing this txg, it's nontrivial to
1663 * determine what BP to nopwrite against, so we disable nopwrite.
1665 * When syncing, the db_blkptr is initially the BP of the previous
1666 * txg. We can not nopwrite against it because it will be changed
1667 * (this is similar to the non-late-arrival case where the dbuf is
1668 * dirty in a future txg).
1670 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1671 * We can not nopwrite against it because although the BP will not
1672 * (typically) be changed, the data has not yet been persisted to this
1673 * location.
1675 * Finally, when dbuf_write_done() is called, it is theoretically
1676 * possible to always nopwrite, because the data that was written in
1677 * this txg is the same data that we are trying to write. However we
1678 * would need to check that this dbuf is not dirty in any future
1679 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1680 * don't nopwrite in this case.
1682 zp->zp_nopwrite = B_FALSE;
1684 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1685 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1686 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1687 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1688 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1690 return (0);
1694 * Intent log support: sync the block associated with db to disk.
1695 * N.B. and XXX: the caller is responsible for making sure that the
1696 * data isn't changing while dmu_sync() is writing it.
1698 * Return values:
1700 * EEXIST: this txg has already been synced, so there's nothing to do.
1701 * The caller should not log the write.
1703 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1704 * The caller should not log the write.
1706 * EALREADY: this block is already in the process of being synced.
1707 * The caller should track its progress (somehow).
1709 * EIO: could not do the I/O.
1710 * The caller should do a txg_wait_synced().
1712 * 0: the I/O has been initiated.
1713 * The caller should log this blkptr in the done callback.
1714 * It is possible that the I/O will fail, in which case
1715 * the error will be reported to the done callback and
1716 * propagated to pio from zio_done().
1719 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1721 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1722 objset_t *os = db->db_objset;
1723 dsl_dataset_t *ds = os->os_dsl_dataset;
1724 dbuf_dirty_record_t *dr;
1725 dmu_sync_arg_t *dsa;
1726 zbookmark_phys_t zb;
1727 zio_prop_t zp;
1728 dnode_t *dn;
1730 ASSERT(pio != NULL);
1731 ASSERT(txg != 0);
1733 SET_BOOKMARK(&zb, ds->ds_object,
1734 db->db.db_object, db->db_level, db->db_blkid);
1736 DB_DNODE_ENTER(db);
1737 dn = DB_DNODE(db);
1738 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1739 DB_DNODE_EXIT(db);
1742 * If we're frozen (running ziltest), we always need to generate a bp.
1744 if (txg > spa_freeze_txg(os->os_spa))
1745 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1748 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1749 * and us. If we determine that this txg is not yet syncing,
1750 * but it begins to sync a moment later, that's OK because the
1751 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1753 mutex_enter(&db->db_mtx);
1755 if (txg <= spa_last_synced_txg(os->os_spa)) {
1757 * This txg has already synced. There's nothing to do.
1759 mutex_exit(&db->db_mtx);
1760 return (SET_ERROR(EEXIST));
1763 if (txg <= spa_syncing_txg(os->os_spa)) {
1765 * This txg is currently syncing, so we can't mess with
1766 * the dirty record anymore; just write a new log block.
1768 mutex_exit(&db->db_mtx);
1769 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1772 dr = db->db_last_dirty;
1773 while (dr && dr->dr_txg != txg)
1774 dr = dr->dr_next;
1776 if (dr == NULL) {
1778 * There's no dr for this dbuf, so it must have been freed.
1779 * There's no need to log writes to freed blocks, so we're done.
1781 mutex_exit(&db->db_mtx);
1782 return (SET_ERROR(ENOENT));
1785 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1787 if (db->db_blkptr != NULL) {
1789 * We need to fill in zgd_bp with the current blkptr so that
1790 * the nopwrite code can check if we're writing the same
1791 * data that's already on disk. We can only nopwrite if we
1792 * are sure that after making the copy, db_blkptr will not
1793 * change until our i/o completes. We ensure this by
1794 * holding the db_mtx, and only allowing nopwrite if the
1795 * block is not already dirty (see below). This is verified
1796 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1797 * not changed.
1799 *zgd->zgd_bp = *db->db_blkptr;
1803 * Assume the on-disk data is X, the current syncing data (in
1804 * txg - 1) is Y, and the current in-memory data is Z (currently
1805 * in dmu_sync).
1807 * We usually want to perform a nopwrite if X and Z are the
1808 * same. However, if Y is different (i.e. the BP is going to
1809 * change before this write takes effect), then a nopwrite will
1810 * be incorrect - we would override with X, which could have
1811 * been freed when Y was written.
1813 * (Note that this is not a concern when we are nop-writing from
1814 * syncing context, because X and Y must be identical, because
1815 * all previous txgs have been synced.)
1817 * Therefore, we disable nopwrite if the current BP could change
1818 * before this TXG. There are two ways it could change: by
1819 * being dirty (dr_next is non-NULL), or by being freed
1820 * (dnode_block_freed()). This behavior is verified by
1821 * zio_done(), which VERIFYs that the override BP is identical
1822 * to the on-disk BP.
1824 DB_DNODE_ENTER(db);
1825 dn = DB_DNODE(db);
1826 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1827 zp.zp_nopwrite = B_FALSE;
1828 DB_DNODE_EXIT(db);
1830 ASSERT(dr->dr_txg == txg);
1831 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1832 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1834 * We have already issued a sync write for this buffer,
1835 * or this buffer has already been synced. It could not
1836 * have been dirtied since, or we would have cleared the state.
1838 mutex_exit(&db->db_mtx);
1839 return (SET_ERROR(EALREADY));
1842 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1843 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1844 mutex_exit(&db->db_mtx);
1846 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1847 dsa->dsa_dr = dr;
1848 dsa->dsa_done = done;
1849 dsa->dsa_zgd = zgd;
1850 dsa->dsa_tx = NULL;
1852 zio_nowait(arc_write(pio, os->os_spa, txg,
1853 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1854 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1855 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1857 return (0);
1861 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1862 dmu_tx_t *tx)
1864 dnode_t *dn;
1865 int err;
1867 err = dnode_hold(os, object, FTAG, &dn);
1868 if (err)
1869 return (err);
1870 err = dnode_set_blksz(dn, size, ibs, tx);
1871 dnode_rele(dn, FTAG);
1872 return (err);
1875 void
1876 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1877 dmu_tx_t *tx)
1879 dnode_t *dn;
1882 * Send streams include each object's checksum function. This
1883 * check ensures that the receiving system can understand the
1884 * checksum function transmitted.
1886 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1888 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1889 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1890 dn->dn_checksum = checksum;
1891 dnode_setdirty(dn, tx);
1892 dnode_rele(dn, FTAG);
1895 void
1896 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1897 dmu_tx_t *tx)
1899 dnode_t *dn;
1902 * Send streams include each object's compression function. This
1903 * check ensures that the receiving system can understand the
1904 * compression function transmitted.
1906 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1908 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1909 dn->dn_compress = compress;
1910 dnode_setdirty(dn, tx);
1911 dnode_rele(dn, FTAG);
1914 int zfs_mdcomp_disable = 0;
1917 * When the "redundant_metadata" property is set to "most", only indirect
1918 * blocks of this level and higher will have an additional ditto block.
1920 int zfs_redundant_metadata_most_ditto_level = 2;
1922 void
1923 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1925 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1926 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1927 (wp & WP_SPILL));
1928 enum zio_checksum checksum = os->os_checksum;
1929 enum zio_compress compress = os->os_compress;
1930 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1931 boolean_t dedup = B_FALSE;
1932 boolean_t nopwrite = B_FALSE;
1933 boolean_t dedup_verify = os->os_dedup_verify;
1934 int copies = os->os_copies;
1937 * We maintain different write policies for each of the following
1938 * types of data:
1939 * 1. metadata
1940 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1941 * 3. all other level 0 blocks
1943 if (ismd) {
1944 if (zfs_mdcomp_disable) {
1945 compress = ZIO_COMPRESS_EMPTY;
1946 } else {
1948 * XXX -- we should design a compression algorithm
1949 * that specializes in arrays of bps.
1951 compress = zio_compress_select(os->os_spa,
1952 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1956 * Metadata always gets checksummed. If the data
1957 * checksum is multi-bit correctable, and it's not a
1958 * ZBT-style checksum, then it's suitable for metadata
1959 * as well. Otherwise, the metadata checksum defaults
1960 * to fletcher4.
1962 if (!(zio_checksum_table[checksum].ci_flags &
1963 ZCHECKSUM_FLAG_METADATA) ||
1964 (zio_checksum_table[checksum].ci_flags &
1965 ZCHECKSUM_FLAG_EMBEDDED))
1966 checksum = ZIO_CHECKSUM_FLETCHER_4;
1968 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1969 (os->os_redundant_metadata ==
1970 ZFS_REDUNDANT_METADATA_MOST &&
1971 (level >= zfs_redundant_metadata_most_ditto_level ||
1972 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1973 copies++;
1974 } else if (wp & WP_NOFILL) {
1975 ASSERT(level == 0);
1978 * If we're writing preallocated blocks, we aren't actually
1979 * writing them so don't set any policy properties. These
1980 * blocks are currently only used by an external subsystem
1981 * outside of zfs (i.e. dump) and not written by the zio
1982 * pipeline.
1984 compress = ZIO_COMPRESS_OFF;
1985 checksum = ZIO_CHECKSUM_NOPARITY;
1986 } else {
1987 compress = zio_compress_select(os->os_spa, dn->dn_compress,
1988 compress);
1990 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1991 zio_checksum_select(dn->dn_checksum, checksum) :
1992 dedup_checksum;
1995 * Determine dedup setting. If we are in dmu_sync(),
1996 * we won't actually dedup now because that's all
1997 * done in syncing context; but we do want to use the
1998 * dedup checkum. If the checksum is not strong
1999 * enough to ensure unique signatures, force
2000 * dedup_verify.
2002 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2003 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2004 if (!(zio_checksum_table[checksum].ci_flags &
2005 ZCHECKSUM_FLAG_DEDUP))
2006 dedup_verify = B_TRUE;
2010 * Enable nopwrite if we have secure enough checksum
2011 * algorithm (see comment in zio_nop_write) and
2012 * compression is enabled. We don't enable nopwrite if
2013 * dedup is enabled as the two features are mutually
2014 * exclusive.
2016 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2017 ZCHECKSUM_FLAG_NOPWRITE) &&
2018 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2021 zp->zp_checksum = checksum;
2022 zp->zp_compress = compress;
2023 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2025 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2026 zp->zp_level = level;
2027 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2028 zp->zp_dedup = dedup;
2029 zp->zp_dedup_verify = dedup && dedup_verify;
2030 zp->zp_nopwrite = nopwrite;
2034 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2036 dnode_t *dn;
2037 int err;
2040 * Sync any current changes before
2041 * we go trundling through the block pointers.
2043 err = dmu_object_wait_synced(os, object);
2044 if (err) {
2045 return (err);
2048 err = dnode_hold(os, object, FTAG, &dn);
2049 if (err) {
2050 return (err);
2053 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2054 dnode_rele(dn, FTAG);
2056 return (err);
2060 * Given the ZFS object, if it contains any dirty nodes
2061 * this function flushes all dirty blocks to disk. This
2062 * ensures the DMU object info is updated. A more efficient
2063 * future version might just find the TXG with the maximum
2064 * ID and wait for that to be synced.
2067 dmu_object_wait_synced(objset_t *os, uint64_t object)
2069 dnode_t *dn;
2070 int error, i;
2072 error = dnode_hold(os, object, FTAG, &dn);
2073 if (error) {
2074 return (error);
2077 for (i = 0; i < TXG_SIZE; i++) {
2078 if (list_link_active(&dn->dn_dirty_link[i])) {
2079 break;
2082 dnode_rele(dn, FTAG);
2083 if (i != TXG_SIZE) {
2084 txg_wait_synced(dmu_objset_pool(os), 0);
2087 return (0);
2090 void
2091 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2093 dnode_phys_t *dnp;
2095 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2096 mutex_enter(&dn->dn_mtx);
2098 dnp = dn->dn_phys;
2100 doi->doi_data_block_size = dn->dn_datablksz;
2101 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2102 1ULL << dn->dn_indblkshift : 0;
2103 doi->doi_type = dn->dn_type;
2104 doi->doi_bonus_type = dn->dn_bonustype;
2105 doi->doi_bonus_size = dn->dn_bonuslen;
2106 doi->doi_indirection = dn->dn_nlevels;
2107 doi->doi_checksum = dn->dn_checksum;
2108 doi->doi_compress = dn->dn_compress;
2109 doi->doi_nblkptr = dn->dn_nblkptr;
2110 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2111 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2112 doi->doi_fill_count = 0;
2113 for (int i = 0; i < dnp->dn_nblkptr; i++)
2114 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2116 mutex_exit(&dn->dn_mtx);
2117 rw_exit(&dn->dn_struct_rwlock);
2121 * Get information on a DMU object.
2122 * If doi is NULL, just indicates whether the object exists.
2125 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2127 dnode_t *dn;
2128 int err = dnode_hold(os, object, FTAG, &dn);
2130 if (err)
2131 return (err);
2133 if (doi != NULL)
2134 dmu_object_info_from_dnode(dn, doi);
2136 dnode_rele(dn, FTAG);
2137 return (0);
2141 * As above, but faster; can be used when you have a held dbuf in hand.
2143 void
2144 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2146 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2148 DB_DNODE_ENTER(db);
2149 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2150 DB_DNODE_EXIT(db);
2154 * Faster still when you only care about the size.
2155 * This is specifically optimized for zfs_getattr().
2157 void
2158 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2159 u_longlong_t *nblk512)
2161 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2162 dnode_t *dn;
2164 DB_DNODE_ENTER(db);
2165 dn = DB_DNODE(db);
2167 *blksize = dn->dn_datablksz;
2168 /* add 1 for dnode space */
2169 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2170 SPA_MINBLOCKSHIFT) + 1;
2171 DB_DNODE_EXIT(db);
2174 void
2175 byteswap_uint64_array(void *vbuf, size_t size)
2177 uint64_t *buf = vbuf;
2178 size_t count = size >> 3;
2179 int i;
2181 ASSERT((size & 7) == 0);
2183 for (i = 0; i < count; i++)
2184 buf[i] = BSWAP_64(buf[i]);
2187 void
2188 byteswap_uint32_array(void *vbuf, size_t size)
2190 uint32_t *buf = vbuf;
2191 size_t count = size >> 2;
2192 int i;
2194 ASSERT((size & 3) == 0);
2196 for (i = 0; i < count; i++)
2197 buf[i] = BSWAP_32(buf[i]);
2200 void
2201 byteswap_uint16_array(void *vbuf, size_t size)
2203 uint16_t *buf = vbuf;
2204 size_t count = size >> 1;
2205 int i;
2207 ASSERT((size & 1) == 0);
2209 for (i = 0; i < count; i++)
2210 buf[i] = BSWAP_16(buf[i]);
2213 /* ARGSUSED */
2214 void
2215 byteswap_uint8_array(void *vbuf, size_t size)
2219 void
2220 dmu_init(void)
2222 abd_init();
2223 zfs_dbgmsg_init();
2224 sa_cache_init();
2225 xuio_stat_init();
2226 dmu_objset_init();
2227 dnode_init();
2228 zfetch_init();
2229 l2arc_init();
2230 arc_init();
2231 dbuf_init();
2234 void
2235 dmu_fini(void)
2237 arc_fini(); /* arc depends on l2arc, so arc must go first */
2238 l2arc_fini();
2239 zfetch_fini();
2240 dbuf_fini();
2241 dnode_fini();
2242 dmu_objset_fini();
2243 xuio_stat_fini();
2244 sa_cache_fini();
2245 zfs_dbgmsg_fini();
2246 abd_fini();