control legacy uname with an environment variable
[unleashed.git] / kernel / fs / proc / prsubr.c
blobb420bf0f224b19955ff02e7ed959179566f6a8c5
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 * Copyright 2014 Garrett D'Amore <garrett@damore.org>
28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */
31 #include <sys/types.h>
32 #include <sys/t_lock.h>
33 #include <sys/param.h>
34 #include <sys/cmn_err.h>
35 #include <sys/cred.h>
36 #include <sys/priv.h>
37 #include <sys/debug.h>
38 #include <sys/errno.h>
39 #include <sys/inline.h>
40 #include <sys/kmem.h>
41 #include <sys/mman.h>
42 #include <sys/proc.h>
43 #include <sys/brand.h>
44 #include <sys/sobject.h>
45 #include <sys/sysmacros.h>
46 #include <sys/systm.h>
47 #include <sys/uio.h>
48 #include <sys/var.h>
49 #include <sys/vfs.h>
50 #include <sys/vnode.h>
51 #include <sys/session.h>
52 #include <sys/pcb.h>
53 #include <sys/signal.h>
54 #include <sys/user.h>
55 #include <sys/disp.h>
56 #include <sys/class.h>
57 #include <sys/ts.h>
58 #include <sys/bitmap.h>
59 #include <sys/poll.h>
60 #include <sys/shm_impl.h>
61 #include <sys/fault.h>
62 #include <sys/syscall.h>
63 #include <sys/procfs.h>
64 #include <sys/processor.h>
65 #include <sys/cpuvar.h>
66 #include <sys/copyops.h>
67 #include <sys/time.h>
68 #include <sys/msacct.h>
69 #include <vm/as.h>
70 #include <vm/rm.h>
71 #include <vm/seg.h>
72 #include <vm/seg_vn.h>
73 #include <vm/seg_dev.h>
74 #include <vm/seg_spt.h>
75 #include <vm/page.h>
76 #include <sys/vmparam.h>
77 #include <sys/swap.h>
78 #include <sys/proc/prdata.h>
79 #include <sys/task.h>
80 #include <sys/project.h>
81 #include <sys/contract_impl.h>
82 #include <sys/contract/process.h>
83 #include <sys/contract/process_impl.h>
84 #include <sys/schedctl.h>
85 #include <sys/pool.h>
86 #include <sys/zone.h>
87 #include <sys/atomic.h>
88 #include <sys/sdt.h>
90 #define MAX_ITERS_SPIN 5
92 typedef struct prpagev {
93 uint_t *pg_protv; /* vector of page permissions */
94 char *pg_incore; /* vector of incore flags */
95 size_t pg_npages; /* number of pages in protv and incore */
96 ulong_t pg_pnbase; /* pn within segment of first protv element */
97 } prpagev_t;
99 size_t pagev_lim = 256 * 1024; /* limit on number of pages in prpagev_t */
101 extern const struct seg_ops segdev_ops; /* needs a header file */
102 extern const struct seg_ops segspt_shmops; /* needs a header file */
104 static int set_watched_page(proc_t *, caddr_t, caddr_t, ulong_t, ulong_t);
105 static void clear_watched_page(proc_t *, caddr_t, caddr_t, ulong_t);
108 * Choose an lwp from the complete set of lwps for the process.
109 * This is called for any operation applied to the process
110 * file descriptor that requires an lwp to operate upon.
112 * Returns a pointer to the thread for the selected LWP,
113 * and with the dispatcher lock held for the thread.
115 * The algorithm for choosing an lwp is critical for /proc semantics;
116 * don't touch this code unless you know all of the implications.
118 kthread_t *
119 prchoose(proc_t *p)
121 kthread_t *t;
122 kthread_t *t_onproc = NULL; /* running on processor */
123 kthread_t *t_run = NULL; /* runnable, on disp queue */
124 kthread_t *t_sleep = NULL; /* sleeping */
125 kthread_t *t_hold = NULL; /* sleeping, performing hold */
126 kthread_t *t_susp = NULL; /* suspended stop */
127 kthread_t *t_jstop = NULL; /* jobcontrol stop, w/o directed stop */
128 kthread_t *t_jdstop = NULL; /* jobcontrol stop with directed stop */
129 kthread_t *t_req = NULL; /* requested stop */
130 kthread_t *t_istop = NULL; /* event-of-interest stop */
131 kthread_t *t_dtrace = NULL; /* DTrace stop */
133 ASSERT(MUTEX_HELD(&p->p_lock));
136 * If the agent lwp exists, it takes precedence over all others.
138 if ((t = p->p_agenttp) != NULL) {
139 thread_lock(t);
140 return (t);
143 if ((t = p->p_tlist) == NULL) /* start at the head of the list */
144 return (t);
145 do { /* for eacn lwp in the process */
146 if (VSTOPPED(t)) { /* virtually stopped */
147 if (t_req == NULL)
148 t_req = t;
149 continue;
152 thread_lock(t); /* make sure thread is in good state */
153 switch (t->t_state) {
154 default:
155 panic("prchoose: bad thread state %d, thread 0x%p",
156 t->t_state, (void *)t);
157 /*NOTREACHED*/
158 case TS_SLEEP:
159 /* this is filthy */
160 if (t->t_wchan == (caddr_t)&p->p_holdlwps &&
161 t->t_wchan0 == NULL) {
162 if (t_hold == NULL)
163 t_hold = t;
164 } else {
165 if (t_sleep == NULL)
166 t_sleep = t;
168 break;
169 case TS_RUN:
170 case TS_WAIT:
171 if (t_run == NULL)
172 t_run = t;
173 break;
174 case TS_ONPROC:
175 if (t_onproc == NULL)
176 t_onproc = t;
177 break;
178 case TS_ZOMB: /* last possible choice */
179 break;
180 case TS_STOPPED:
181 switch (t->t_whystop) {
182 case PR_SUSPENDED:
183 if (t_susp == NULL)
184 t_susp = t;
185 break;
186 case PR_JOBCONTROL:
187 if (t->t_proc_flag & TP_PRSTOP) {
188 if (t_jdstop == NULL)
189 t_jdstop = t;
190 } else {
191 if (t_jstop == NULL)
192 t_jstop = t;
194 break;
195 case PR_REQUESTED:
196 if (t->t_dtrace_stop && t_dtrace == NULL)
197 t_dtrace = t;
198 else if (t_req == NULL)
199 t_req = t;
200 break;
201 case PR_SYSENTRY:
202 case PR_SYSEXIT:
203 case PR_SIGNALLED:
204 case PR_FAULTED:
206 * Make an lwp calling exit() be the
207 * last lwp seen in the process.
209 if (t_istop == NULL ||
210 (t_istop->t_whystop == PR_SYSENTRY &&
211 t_istop->t_whatstop == SYS_exit))
212 t_istop = t;
213 break;
214 case PR_CHECKPOINT: /* can't happen? */
215 break;
216 default:
217 panic("prchoose: bad t_whystop %d, thread 0x%p",
218 t->t_whystop, (void *)t);
219 /*NOTREACHED*/
221 break;
223 thread_unlock(t);
224 } while ((t = t->t_forw) != p->p_tlist);
226 if (t_onproc)
227 t = t_onproc;
228 else if (t_run)
229 t = t_run;
230 else if (t_sleep)
231 t = t_sleep;
232 else if (t_jstop)
233 t = t_jstop;
234 else if (t_jdstop)
235 t = t_jdstop;
236 else if (t_istop)
237 t = t_istop;
238 else if (t_dtrace)
239 t = t_dtrace;
240 else if (t_req)
241 t = t_req;
242 else if (t_hold)
243 t = t_hold;
244 else if (t_susp)
245 t = t_susp;
246 else /* TS_ZOMB */
247 t = p->p_tlist;
249 if (t != NULL)
250 thread_lock(t);
251 return (t);
255 * Wakeup anyone sleeping on the /proc vnode for the process/lwp to stop.
256 * Also call pollwakeup() if any lwps are waiting in poll() for POLLPRI
257 * on the /proc file descriptor. Called from stop() when a traced
258 * process stops on an event of interest. Also called from exit()
259 * and prinvalidate() to indicate POLLHUP and POLLERR respectively.
261 void
262 prnotify(struct vnode *vp)
264 prcommon_t *pcp = VTOP(vp)->pr_common;
266 mutex_enter(&pcp->prc_mutex);
267 cv_broadcast(&pcp->prc_wait);
268 mutex_exit(&pcp->prc_mutex);
269 if (pcp->prc_flags & PRC_POLL) {
271 * We call pollwakeup() with POLLHUP to ensure that
272 * the pollers are awakened even if they are polling
273 * for nothing (i.e., waiting for the process to exit).
274 * This enables the use of the PRC_POLL flag for optimization
275 * (we can turn off PRC_POLL only if we know no pollers remain).
277 pcp->prc_flags &= ~PRC_POLL;
278 pollwakeup(&pcp->prc_pollhead, POLLHUP);
282 /* called immediately below, in prfree() */
283 static void
284 prfreenotify(vnode_t *vp)
286 prnode_t *pnp;
287 prcommon_t *pcp;
289 while (vp != NULL) {
290 pnp = VTOP(vp);
291 pcp = pnp->pr_common;
292 ASSERT(pcp->prc_thread == NULL);
293 pcp->prc_proc = NULL;
295 * We can't call prnotify() here because we are holding
296 * pidlock. We assert that there is no need to.
298 mutex_enter(&pcp->prc_mutex);
299 cv_broadcast(&pcp->prc_wait);
300 mutex_exit(&pcp->prc_mutex);
301 ASSERT(!(pcp->prc_flags & PRC_POLL));
303 vp = pnp->pr_next;
304 pnp->pr_next = NULL;
309 * Called from a hook in freeproc() when a traced process is removed
310 * from the process table. The proc-table pointers of all associated
311 * /proc vnodes are cleared to indicate that the process has gone away.
313 void
314 prfree(proc_t *p)
316 uint_t slot = p->p_slot;
318 ASSERT(MUTEX_HELD(&pidlock));
321 * Block the process against /proc so it can be freed.
322 * It cannot be freed while locked by some controlling process.
323 * Lock ordering:
324 * pidlock -> pr_pidlock -> p->p_lock -> pcp->prc_mutex
326 mutex_enter(&pr_pidlock); /* protects pcp->prc_proc */
327 mutex_enter(&p->p_lock);
328 while (p->p_proc_flag & P_PR_LOCK) {
329 mutex_exit(&pr_pidlock);
330 cv_wait(&pr_pid_cv[slot], &p->p_lock);
331 mutex_exit(&p->p_lock);
332 mutex_enter(&pr_pidlock);
333 mutex_enter(&p->p_lock);
336 ASSERT(p->p_tlist == NULL);
338 prfreenotify(p->p_plist);
339 p->p_plist = NULL;
341 prfreenotify(p->p_trace);
342 p->p_trace = NULL;
345 * We broadcast to wake up everyone waiting for this process.
346 * No one can reach this process from this point on.
348 cv_broadcast(&pr_pid_cv[slot]);
350 mutex_exit(&p->p_lock);
351 mutex_exit(&pr_pidlock);
355 * Called from a hook in exit() when a traced process is becoming a zombie.
357 void
358 prexit(proc_t *p)
360 ASSERT(MUTEX_HELD(&p->p_lock));
362 if (pr_watch_active(p)) {
363 pr_free_watchpoints(p);
364 watch_disable(curthread);
366 /* pr_free_watched_pages() is called in exit(), after dropping p_lock */
367 if (p->p_trace) {
368 VTOP(p->p_trace)->pr_common->prc_flags |= PRC_DESTROY;
369 prnotify(p->p_trace);
371 cv_broadcast(&pr_pid_cv[p->p_slot]); /* pauselwps() */
375 * Called when a thread calls lwp_exit().
377 void
378 prlwpexit(kthread_t *t)
380 vnode_t *vp;
381 prnode_t *pnp;
382 prcommon_t *pcp;
383 proc_t *p = ttoproc(t);
384 lwpent_t *lep = p->p_lwpdir[t->t_dslot].ld_entry;
386 ASSERT(t == curthread);
387 ASSERT(MUTEX_HELD(&p->p_lock));
390 * The process must be blocked against /proc to do this safely.
391 * The lwp must not disappear while the process is marked P_PR_LOCK.
392 * It is the caller's responsibility to have called prbarrier(p).
394 ASSERT(!(p->p_proc_flag & P_PR_LOCK));
396 for (vp = p->p_plist; vp != NULL; vp = pnp->pr_next) {
397 pnp = VTOP(vp);
398 pcp = pnp->pr_common;
399 if (pcp->prc_thread == t) {
400 pcp->prc_thread = NULL;
401 pcp->prc_flags |= PRC_DESTROY;
405 for (vp = lep->le_trace; vp != NULL; vp = pnp->pr_next) {
406 pnp = VTOP(vp);
407 pcp = pnp->pr_common;
408 pcp->prc_thread = NULL;
409 pcp->prc_flags |= PRC_DESTROY;
410 prnotify(vp);
413 if (p->p_trace)
414 prnotify(p->p_trace);
418 * Called when a zombie thread is joined or when a
419 * detached lwp exits. Called from lwp_hash_out().
421 void
422 prlwpfree(proc_t *p, lwpent_t *lep)
424 vnode_t *vp;
425 prnode_t *pnp;
426 prcommon_t *pcp;
428 ASSERT(MUTEX_HELD(&p->p_lock));
431 * The process must be blocked against /proc to do this safely.
432 * The lwp must not disappear while the process is marked P_PR_LOCK.
433 * It is the caller's responsibility to have called prbarrier(p).
435 ASSERT(!(p->p_proc_flag & P_PR_LOCK));
437 vp = lep->le_trace;
438 lep->le_trace = NULL;
439 while (vp) {
440 prnotify(vp);
441 pnp = VTOP(vp);
442 pcp = pnp->pr_common;
443 ASSERT(pcp->prc_thread == NULL &&
444 (pcp->prc_flags & PRC_DESTROY));
445 pcp->prc_tslot = -1;
446 vp = pnp->pr_next;
447 pnp->pr_next = NULL;
450 if (p->p_trace)
451 prnotify(p->p_trace);
455 * Called from a hook in exec() when a thread starts exec().
457 void
458 prexecstart(void)
460 proc_t *p = ttoproc(curthread);
461 klwp_t *lwp = ttolwp(curthread);
464 * The P_PR_EXEC flag blocks /proc operations for
465 * the duration of the exec().
466 * We can't start exec() while the process is
467 * locked by /proc, so we call prbarrier().
468 * lwp_nostop keeps the process from being stopped
469 * via job control for the duration of the exec().
472 ASSERT(MUTEX_HELD(&p->p_lock));
473 prbarrier(p);
474 lwp->lwp_nostop++;
475 p->p_proc_flag |= P_PR_EXEC;
479 * Called from a hook in exec() when a thread finishes exec().
480 * The thread may or may not have succeeded. Some other thread
481 * may have beat it to the punch.
483 void
484 prexecend(void)
486 proc_t *p = ttoproc(curthread);
487 klwp_t *lwp = ttolwp(curthread);
488 vnode_t *vp;
489 prnode_t *pnp;
490 prcommon_t *pcp;
491 model_t model = p->p_model;
492 id_t tid = curthread->t_tid;
493 int tslot = curthread->t_dslot;
495 ASSERT(MUTEX_HELD(&p->p_lock));
497 lwp->lwp_nostop--;
498 if (p->p_flag & SEXITLWPS) {
500 * We are on our way to exiting because some
501 * other thread beat us in the race to exec().
502 * Don't clear the P_PR_EXEC flag in this case.
504 return;
508 * Wake up anyone waiting in /proc for the process to complete exec().
510 p->p_proc_flag &= ~P_PR_EXEC;
511 if ((vp = p->p_trace) != NULL) {
512 pcp = VTOP(vp)->pr_common;
513 mutex_enter(&pcp->prc_mutex);
514 cv_broadcast(&pcp->prc_wait);
515 mutex_exit(&pcp->prc_mutex);
516 for (; vp != NULL; vp = pnp->pr_next) {
517 pnp = VTOP(vp);
518 pnp->pr_common->prc_datamodel = model;
521 if ((vp = p->p_lwpdir[tslot].ld_entry->le_trace) != NULL) {
523 * We dealt with the process common above.
525 ASSERT(p->p_trace != NULL);
526 pcp = VTOP(vp)->pr_common;
527 mutex_enter(&pcp->prc_mutex);
528 cv_broadcast(&pcp->prc_wait);
529 mutex_exit(&pcp->prc_mutex);
530 for (; vp != NULL; vp = pnp->pr_next) {
531 pnp = VTOP(vp);
532 pcp = pnp->pr_common;
533 pcp->prc_datamodel = model;
534 pcp->prc_tid = tid;
535 pcp->prc_tslot = tslot;
541 * Called from a hook in relvm() just before freeing the address space.
542 * We free all the watched areas now.
544 void
545 prrelvm(void)
547 proc_t *p = ttoproc(curthread);
549 mutex_enter(&p->p_lock);
550 prbarrier(p); /* block all other /proc operations */
551 if (pr_watch_active(p)) {
552 pr_free_watchpoints(p);
553 watch_disable(curthread);
555 mutex_exit(&p->p_lock);
556 pr_free_watched_pages(p);
560 * Called from hooks in exec-related code when a traced process
561 * attempts to exec(2) a setuid/setgid program or an unreadable
562 * file. Rather than fail the exec we invalidate the associated
563 * /proc vnodes so that subsequent attempts to use them will fail.
565 * All /proc vnodes, except directory vnodes, are retained on a linked
566 * list (rooted at p_plist in the process structure) until last close.
568 * A controlling process must re-open the /proc files in order to
569 * regain control.
571 void
572 prinvalidate(struct user *up)
574 kthread_t *t = curthread;
575 proc_t *p = ttoproc(t);
576 vnode_t *vp;
577 prnode_t *pnp;
578 int writers = 0;
580 mutex_enter(&p->p_lock);
581 prbarrier(p); /* block all other /proc operations */
584 * At this moment, there can be only one lwp in the process.
586 ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0);
589 * Invalidate any currently active /proc vnodes.
591 for (vp = p->p_plist; vp != NULL; vp = pnp->pr_next) {
592 pnp = VTOP(vp);
593 switch (pnp->pr_type) {
594 case PR_PSINFO: /* these files can read by anyone */
595 case PR_LPSINFO:
596 case PR_LWPSINFO:
597 case PR_LWPDIR:
598 case PR_LWPIDDIR:
599 case PR_USAGE:
600 case PR_LUSAGE:
601 case PR_LWPUSAGE:
602 break;
603 default:
604 pnp->pr_flags |= PR_INVAL;
605 break;
609 * Wake up anyone waiting for the process or lwp.
610 * p->p_trace is guaranteed to be non-NULL if there
611 * are any open /proc files for this process.
613 if ((vp = p->p_trace) != NULL) {
614 prcommon_t *pcp = VTOP(vp)->pr_pcommon;
616 prnotify(vp);
618 * Are there any writers?
620 if ((writers = pcp->prc_writers) != 0) {
622 * Clear the exclusive open flag (old /proc interface).
623 * Set prc_selfopens equal to prc_writers so that
624 * the next O_EXCL|O_WRITE open will succeed
625 * even with existing (though invalid) writers.
626 * prclose() must decrement prc_selfopens when
627 * the invalid files are closed.
629 pcp->prc_flags &= ~PRC_EXCL;
630 ASSERT(pcp->prc_selfopens <= writers);
631 pcp->prc_selfopens = writers;
634 vp = p->p_lwpdir[t->t_dslot].ld_entry->le_trace;
635 while (vp != NULL) {
637 * We should not invalidate the lwpiddir vnodes,
638 * but the necessities of maintaining the old
639 * ioctl()-based version of /proc require it.
641 pnp = VTOP(vp);
642 pnp->pr_flags |= PR_INVAL;
643 prnotify(vp);
644 vp = pnp->pr_next;
648 * If any tracing flags are in effect and any vnodes are open for
649 * writing then set the requested-stop and run-on-last-close flags.
650 * Otherwise, clear all tracing flags.
652 t->t_proc_flag &= ~TP_PAUSE;
653 if ((p->p_proc_flag & P_PR_TRACE) && writers) {
654 t->t_proc_flag |= TP_PRSTOP;
655 aston(t); /* so ISSIG will see the flag */
656 p->p_proc_flag |= P_PR_RUNLCL;
657 } else {
658 premptyset(&up->u_entrymask); /* syscalls */
659 premptyset(&up->u_exitmask);
660 up->u_systrap = 0;
661 premptyset(&p->p_sigmask); /* signals */
662 premptyset(&p->p_fltmask); /* faults */
663 t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP|TP_STOPPING);
664 p->p_proc_flag &= ~(P_PR_RUNLCL|P_PR_KILLCL|P_PR_TRACE);
665 prnostep(ttolwp(t));
668 mutex_exit(&p->p_lock);
672 * Acquire the controlled process's p_lock and mark it P_PR_LOCK.
673 * Return with pr_pidlock held in all cases.
674 * Return with p_lock held if the the process still exists.
675 * Return value is the process pointer if the process still exists, else NULL.
676 * If we lock the process, give ourself kernel priority to avoid deadlocks;
677 * this is undone in prunlock().
679 proc_t *
680 pr_p_lock(prnode_t *pnp)
682 proc_t *p;
683 prcommon_t *pcp;
685 mutex_enter(&pr_pidlock);
686 if ((pcp = pnp->pr_pcommon) == NULL || (p = pcp->prc_proc) == NULL)
687 return (NULL);
688 mutex_enter(&p->p_lock);
689 while (p->p_proc_flag & P_PR_LOCK) {
691 * This cv/mutex pair is persistent even if
692 * the process disappears while we sleep.
694 kcondvar_t *cv = &pr_pid_cv[p->p_slot];
695 kmutex_t *mp = &p->p_lock;
697 mutex_exit(&pr_pidlock);
698 cv_wait(cv, mp);
699 mutex_exit(mp);
700 mutex_enter(&pr_pidlock);
701 if (pcp->prc_proc == NULL)
702 return (NULL);
703 ASSERT(p == pcp->prc_proc);
704 mutex_enter(&p->p_lock);
706 p->p_proc_flag |= P_PR_LOCK;
707 THREAD_KPRI_REQUEST();
708 return (p);
712 * Lock the target process by setting P_PR_LOCK and grabbing p->p_lock.
713 * This prevents any lwp of the process from disappearing and
714 * blocks most operations that a process can perform on itself.
715 * Returns 0 on success, a non-zero error number on failure.
717 * 'zdisp' is ZYES or ZNO to indicate whether prlock() should succeed when
718 * the subject process is a zombie (ZYES) or fail for zombies (ZNO).
720 * error returns:
721 * ENOENT: process or lwp has disappeared or process is exiting
722 * (or has become a zombie and zdisp == ZNO).
723 * EAGAIN: procfs vnode has become invalid.
724 * EINTR: signal arrived while waiting for exec to complete.
727 prlock(prnode_t *pnp, int zdisp)
729 prcommon_t *pcp;
730 proc_t *p;
732 again:
733 pcp = pnp->pr_common;
734 p = pr_p_lock(pnp);
735 mutex_exit(&pr_pidlock);
738 * Return ENOENT immediately if there is no process.
740 if (p == NULL)
741 return (ENOENT);
743 ASSERT(p == pcp->prc_proc && p->p_stat != 0 && p->p_stat != SIDL);
746 * Return ENOENT if process entered zombie state or is exiting
747 * and the 'zdisp' flag is set to ZNO indicating not to lock zombies.
749 if (zdisp == ZNO &&
750 ((pcp->prc_flags & PRC_DESTROY) || (p->p_flag & SEXITING))) {
751 prunlock(pnp);
752 return (ENOENT);
756 * If lwp-specific, check to see if lwp has disappeared.
758 if (pcp->prc_flags & PRC_LWP) {
759 if ((zdisp == ZNO && (pcp->prc_flags & PRC_DESTROY)) ||
760 pcp->prc_tslot == -1) {
761 prunlock(pnp);
762 return (ENOENT);
767 * Return EAGAIN if we have encountered a security violation.
768 * (The process exec'd a set-id or unreadable executable file.)
770 if (pnp->pr_flags & PR_INVAL) {
771 prunlock(pnp);
772 return (EAGAIN);
776 * If process is undergoing an exec(), wait for
777 * completion and then start all over again.
779 if (p->p_proc_flag & P_PR_EXEC) {
780 pcp = pnp->pr_pcommon; /* Put on the correct sleep queue */
781 mutex_enter(&pcp->prc_mutex);
782 prunlock(pnp);
783 if (!cv_wait_sig(&pcp->prc_wait, &pcp->prc_mutex)) {
784 mutex_exit(&pcp->prc_mutex);
785 return (EINTR);
787 mutex_exit(&pcp->prc_mutex);
788 goto again;
792 * We return holding p->p_lock.
794 return (0);
798 * Undo prlock() and pr_p_lock().
799 * p->p_lock is still held; pr_pidlock is no longer held.
801 * prunmark() drops the P_PR_LOCK flag and wakes up another thread,
802 * if any, waiting for the flag to be dropped; it retains p->p_lock.
804 * prunlock() calls prunmark() and then drops p->p_lock.
806 void
807 prunmark(proc_t *p)
809 ASSERT(p->p_proc_flag & P_PR_LOCK);
810 ASSERT(MUTEX_HELD(&p->p_lock));
812 cv_signal(&pr_pid_cv[p->p_slot]);
813 p->p_proc_flag &= ~P_PR_LOCK;
814 THREAD_KPRI_RELEASE();
817 void
818 prunlock(prnode_t *pnp)
820 prcommon_t *pcp = pnp->pr_common;
821 proc_t *p = pcp->prc_proc;
824 * If we (or someone) gave it a SIGKILL, and it is not
825 * already a zombie, set it running unconditionally.
827 if ((p->p_flag & SKILLED) &&
828 !(p->p_flag & SEXITING) &&
829 !(pcp->prc_flags & PRC_DESTROY) &&
830 !((pcp->prc_flags & PRC_LWP) && pcp->prc_tslot == -1))
831 (void) pr_setrun(pnp, 0);
832 prunmark(p);
833 mutex_exit(&p->p_lock);
837 * Called while holding p->p_lock to delay until the process is unlocked.
838 * We enter holding p->p_lock; p->p_lock is dropped and reacquired.
839 * The process cannot become locked again until p->p_lock is dropped.
841 void
842 prbarrier(proc_t *p)
844 ASSERT(MUTEX_HELD(&p->p_lock));
846 if (p->p_proc_flag & P_PR_LOCK) {
847 /* The process is locked; delay until not locked */
848 uint_t slot = p->p_slot;
850 while (p->p_proc_flag & P_PR_LOCK)
851 cv_wait(&pr_pid_cv[slot], &p->p_lock);
852 cv_signal(&pr_pid_cv[slot]);
857 * Return process/lwp status.
858 * The u-block is mapped in by this routine and unmapped at the end.
860 void
861 prgetstatus(proc_t *p, pstatus_t *sp, zone_t *zp)
863 kthread_t *t;
865 ASSERT(MUTEX_HELD(&p->p_lock));
867 t = prchoose(p); /* returns locked thread */
868 ASSERT(t != NULL);
869 thread_unlock(t);
871 /* just bzero the process part, prgetlwpstatus() does the rest */
872 bzero(sp, sizeof (pstatus_t) - sizeof (lwpstatus_t));
873 sp->pr_nlwp = p->p_lwpcnt;
874 sp->pr_nzomb = p->p_zombcnt;
875 prassignset(&sp->pr_sigpend, &p->p_sig);
876 sp->pr_brkbase = (uintptr_t)p->p_brkbase;
877 sp->pr_brksize = p->p_brksize;
878 sp->pr_stkbase = (uintptr_t)prgetstackbase(p);
879 sp->pr_stksize = p->p_stksize;
880 sp->pr_pid = p->p_pid;
881 if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
882 (p->p_flag & SZONETOP)) {
883 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
885 * Inside local zones, fake zsched's pid as parent pids for
886 * processes which reference processes outside of the zone.
888 sp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
889 } else {
890 sp->pr_ppid = p->p_ppid;
892 sp->pr_pgid = p->p_pgrp;
893 sp->pr_sid = p->p_sessp->s_sid;
894 sp->pr_taskid = p->p_task->tk_tkid;
895 sp->pr_projid = p->p_task->tk_proj->kpj_id;
896 sp->pr_zoneid = p->p_zone->zone_id;
897 hrt2ts(mstate_aggr_state(p, LMS_USER), &sp->pr_utime);
898 hrt2ts(mstate_aggr_state(p, LMS_SYSTEM), &sp->pr_stime);
899 TICK_TO_TIMESTRUC(p->p_cutime, &sp->pr_cutime);
900 TICK_TO_TIMESTRUC(p->p_cstime, &sp->pr_cstime);
901 prassignset(&sp->pr_sigtrace, &p->p_sigmask);
902 prassignset(&sp->pr_flttrace, &p->p_fltmask);
903 prassignset(&sp->pr_sysentry, &PTOU(p)->u_entrymask);
904 prassignset(&sp->pr_sysexit, &PTOU(p)->u_exitmask);
905 switch (p->p_model) {
906 case DATAMODEL_ILP32:
907 sp->pr_dmodel = PR_MODEL_ILP32;
908 break;
909 case DATAMODEL_LP64:
910 sp->pr_dmodel = PR_MODEL_LP64;
911 break;
913 if (p->p_agenttp)
914 sp->pr_agentid = p->p_agenttp->t_tid;
916 /* get the chosen lwp's status */
917 prgetlwpstatus(t, &sp->pr_lwp, zp);
919 /* replicate the flags */
920 sp->pr_flags = sp->pr_lwp.pr_flags;
923 #ifdef _SYSCALL32_IMPL
924 void
925 prgetlwpstatus32(kthread_t *t, lwpstatus32_t *sp, zone_t *zp)
927 proc_t *p = ttoproc(t);
928 klwp_t *lwp = ttolwp(t);
929 struct mstate *ms = &lwp->lwp_mstate;
930 hrtime_t usr, sys;
931 int flags;
932 ulong_t instr;
934 ASSERT(MUTEX_HELD(&p->p_lock));
936 bzero(sp, sizeof (*sp));
937 flags = 0L;
938 if (t->t_state == TS_STOPPED) {
939 flags |= PR_STOPPED;
940 if ((t->t_schedflag & TS_PSTART) == 0)
941 flags |= PR_ISTOP;
942 } else if (VSTOPPED(t)) {
943 flags |= PR_STOPPED|PR_ISTOP;
945 if (!(flags & PR_ISTOP) && (t->t_proc_flag & TP_PRSTOP))
946 flags |= PR_DSTOP;
947 if (lwp->lwp_asleep)
948 flags |= PR_ASLEEP;
949 if (t == p->p_agenttp)
950 flags |= PR_AGENT;
951 if (!(t->t_proc_flag & TP_TWAIT))
952 flags |= PR_DETACH;
953 if (t->t_proc_flag & TP_DAEMON)
954 flags |= PR_DAEMON;
955 if (p->p_proc_flag & P_PR_FORK)
956 flags |= PR_FORK;
957 if (p->p_proc_flag & P_PR_RUNLCL)
958 flags |= PR_RLC;
959 if (p->p_proc_flag & P_PR_KILLCL)
960 flags |= PR_KLC;
961 if (p->p_proc_flag & P_PR_ASYNC)
962 flags |= PR_ASYNC;
963 if (p->p_proc_flag & P_PR_BPTADJ)
964 flags |= PR_BPTADJ;
965 if (p->p_proc_flag & P_PR_PTRACE)
966 flags |= PR_PTRACE;
967 if (p->p_flag & SMSACCT)
968 flags |= PR_MSACCT;
969 if (p->p_flag & SMSFORK)
970 flags |= PR_MSFORK;
971 if (p->p_flag & SVFWAIT)
972 flags |= PR_VFORKP;
973 sp->pr_flags = flags;
974 if (VSTOPPED(t)) {
975 sp->pr_why = PR_REQUESTED;
976 sp->pr_what = 0;
977 } else {
978 sp->pr_why = t->t_whystop;
979 sp->pr_what = t->t_whatstop;
981 sp->pr_lwpid = t->t_tid;
982 sp->pr_cursig = lwp->lwp_cursig;
983 prassignset(&sp->pr_lwppend, &t->t_sig);
984 schedctl_finish_sigblock(t);
985 prassignset(&sp->pr_lwphold, &t->t_hold);
986 if (t->t_whystop == PR_FAULTED) {
987 siginfo_kto32(&lwp->lwp_siginfo, &sp->pr_info);
988 if (t->t_whatstop == FLTPAGE)
989 sp->pr_info.si_addr =
990 (caddr32_t)(uintptr_t)lwp->lwp_siginfo.si_addr;
991 } else if (lwp->lwp_curinfo)
992 siginfo_kto32(&lwp->lwp_curinfo->sq_info, &sp->pr_info);
993 if (SI_FROMUSER(&lwp->lwp_siginfo) && zp->zone_id != GLOBAL_ZONEID &&
994 sp->pr_info.si_zoneid != zp->zone_id) {
995 sp->pr_info.si_pid = zp->zone_zsched->p_pid;
996 sp->pr_info.si_uid = 0;
997 sp->pr_info.si_ctid = -1;
998 sp->pr_info.si_zoneid = zp->zone_id;
1000 sp->pr_altstack.ss_sp =
1001 (caddr32_t)(uintptr_t)lwp->lwp_sigaltstack.ss_sp;
1002 sp->pr_altstack.ss_size = (size32_t)lwp->lwp_sigaltstack.ss_size;
1003 sp->pr_altstack.ss_flags = (int32_t)lwp->lwp_sigaltstack.ss_flags;
1004 prgetaction32(p, PTOU(p), lwp->lwp_cursig, &sp->pr_action);
1005 sp->pr_oldcontext = (caddr32_t)lwp->lwp_oldcontext;
1006 sp->pr_ustack = (caddr32_t)lwp->lwp_ustack;
1007 (void) strncpy(sp->pr_clname, sclass[t->t_cid].cl_name,
1008 sizeof (sp->pr_clname) - 1);
1009 if (flags & PR_STOPPED)
1010 hrt2ts32(t->t_stoptime, &sp->pr_tstamp);
1011 usr = ms->ms_acct[LMS_USER];
1012 sys = ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
1013 scalehrtime(&usr);
1014 scalehrtime(&sys);
1015 hrt2ts32(usr, &sp->pr_utime);
1016 hrt2ts32(sys, &sp->pr_stime);
1019 * Fetch the current instruction, if not a system process.
1020 * We don't attempt this unless the lwp is stopped.
1022 if ((p->p_flag & SSYS) || p->p_as == &kas)
1023 sp->pr_flags |= (PR_ISSYS|PR_PCINVAL);
1024 else if (!(flags & PR_STOPPED))
1025 sp->pr_flags |= PR_PCINVAL;
1026 else if (!prfetchinstr(lwp, &instr))
1027 sp->pr_flags |= PR_PCINVAL;
1028 else
1029 sp->pr_instr = (uint32_t)instr;
1032 * Drop p_lock while touching the lwp's stack.
1034 mutex_exit(&p->p_lock);
1035 if (prisstep(lwp))
1036 sp->pr_flags |= PR_STEP;
1037 if ((flags & (PR_STOPPED|PR_ASLEEP)) && t->t_sysnum) {
1038 int i;
1040 sp->pr_syscall = get_syscall32_args(lwp,
1041 (int *)sp->pr_sysarg, &i);
1042 sp->pr_nsysarg = (ushort_t)i;
1044 if ((flags & PR_STOPPED) || t == curthread)
1045 prgetprregs32(lwp, sp->pr_reg);
1046 if ((t->t_state == TS_STOPPED && t->t_whystop == PR_SYSEXIT) ||
1047 (flags & PR_VFORKP)) {
1048 long r1, r2;
1049 user_t *up;
1050 auxv_t *auxp;
1051 int i;
1053 sp->pr_errno = prgetrvals(lwp, &r1, &r2);
1054 if (sp->pr_errno == 0) {
1055 sp->pr_rval1 = (int32_t)r1;
1056 sp->pr_rval2 = (int32_t)r2;
1057 sp->pr_errpriv = PRIV_NONE;
1058 } else
1059 sp->pr_errpriv = lwp->lwp_badpriv;
1061 if (t->t_sysnum == SYS_execve) {
1062 up = PTOU(p);
1063 sp->pr_sysarg[0] = 0;
1064 sp->pr_sysarg[1] = (caddr32_t)up->u_argv;
1065 sp->pr_sysarg[2] = (caddr32_t)up->u_envp;
1066 for (i = 0, auxp = up->u_auxv;
1067 i < sizeof (up->u_auxv) / sizeof (up->u_auxv[0]);
1068 i++, auxp++) {
1069 if (auxp->a_type == AT_SUN_EXECNAME) {
1070 sp->pr_sysarg[0] =
1071 (caddr32_t)
1072 (uintptr_t)auxp->a_un.a_ptr;
1073 break;
1078 if (prhasfp())
1079 prgetprfpregs32(lwp, &sp->pr_fpreg);
1080 mutex_enter(&p->p_lock);
1083 void
1084 prgetstatus32(proc_t *p, pstatus32_t *sp, zone_t *zp)
1086 kthread_t *t;
1088 ASSERT(MUTEX_HELD(&p->p_lock));
1090 t = prchoose(p); /* returns locked thread */
1091 ASSERT(t != NULL);
1092 thread_unlock(t);
1094 /* just bzero the process part, prgetlwpstatus32() does the rest */
1095 bzero(sp, sizeof (pstatus32_t) - sizeof (lwpstatus32_t));
1096 sp->pr_nlwp = p->p_lwpcnt;
1097 sp->pr_nzomb = p->p_zombcnt;
1098 prassignset(&sp->pr_sigpend, &p->p_sig);
1099 sp->pr_brkbase = (uint32_t)(uintptr_t)p->p_brkbase;
1100 sp->pr_brksize = (uint32_t)p->p_brksize;
1101 sp->pr_stkbase = (uint32_t)(uintptr_t)prgetstackbase(p);
1102 sp->pr_stksize = (uint32_t)p->p_stksize;
1103 sp->pr_pid = p->p_pid;
1104 if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
1105 (p->p_flag & SZONETOP)) {
1106 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
1108 * Inside local zones, fake zsched's pid as parent pids for
1109 * processes which reference processes outside of the zone.
1111 sp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
1112 } else {
1113 sp->pr_ppid = p->p_ppid;
1115 sp->pr_pgid = p->p_pgrp;
1116 sp->pr_sid = p->p_sessp->s_sid;
1117 sp->pr_taskid = p->p_task->tk_tkid;
1118 sp->pr_projid = p->p_task->tk_proj->kpj_id;
1119 sp->pr_zoneid = p->p_zone->zone_id;
1120 hrt2ts32(mstate_aggr_state(p, LMS_USER), &sp->pr_utime);
1121 hrt2ts32(mstate_aggr_state(p, LMS_SYSTEM), &sp->pr_stime);
1122 TICK_TO_TIMESTRUC32(p->p_cutime, &sp->pr_cutime);
1123 TICK_TO_TIMESTRUC32(p->p_cstime, &sp->pr_cstime);
1124 prassignset(&sp->pr_sigtrace, &p->p_sigmask);
1125 prassignset(&sp->pr_flttrace, &p->p_fltmask);
1126 prassignset(&sp->pr_sysentry, &PTOU(p)->u_entrymask);
1127 prassignset(&sp->pr_sysexit, &PTOU(p)->u_exitmask);
1128 switch (p->p_model) {
1129 case DATAMODEL_ILP32:
1130 sp->pr_dmodel = PR_MODEL_ILP32;
1131 break;
1132 case DATAMODEL_LP64:
1133 sp->pr_dmodel = PR_MODEL_LP64;
1134 break;
1136 if (p->p_agenttp)
1137 sp->pr_agentid = p->p_agenttp->t_tid;
1139 /* get the chosen lwp's status */
1140 prgetlwpstatus32(t, &sp->pr_lwp, zp);
1142 /* replicate the flags */
1143 sp->pr_flags = sp->pr_lwp.pr_flags;
1145 #endif /* _SYSCALL32_IMPL */
1148 * Return lwp status.
1150 void
1151 prgetlwpstatus(kthread_t *t, lwpstatus_t *sp, zone_t *zp)
1153 proc_t *p = ttoproc(t);
1154 klwp_t *lwp = ttolwp(t);
1155 struct mstate *ms = &lwp->lwp_mstate;
1156 hrtime_t usr, sys;
1157 int flags;
1158 ulong_t instr;
1160 ASSERT(MUTEX_HELD(&p->p_lock));
1162 bzero(sp, sizeof (*sp));
1163 flags = 0L;
1164 if (t->t_state == TS_STOPPED) {
1165 flags |= PR_STOPPED;
1166 if ((t->t_schedflag & TS_PSTART) == 0)
1167 flags |= PR_ISTOP;
1168 } else if (VSTOPPED(t)) {
1169 flags |= PR_STOPPED|PR_ISTOP;
1171 if (!(flags & PR_ISTOP) && (t->t_proc_flag & TP_PRSTOP))
1172 flags |= PR_DSTOP;
1173 if (lwp->lwp_asleep)
1174 flags |= PR_ASLEEP;
1175 if (t == p->p_agenttp)
1176 flags |= PR_AGENT;
1177 if (!(t->t_proc_flag & TP_TWAIT))
1178 flags |= PR_DETACH;
1179 if (t->t_proc_flag & TP_DAEMON)
1180 flags |= PR_DAEMON;
1181 if (p->p_proc_flag & P_PR_FORK)
1182 flags |= PR_FORK;
1183 if (p->p_proc_flag & P_PR_RUNLCL)
1184 flags |= PR_RLC;
1185 if (p->p_proc_flag & P_PR_KILLCL)
1186 flags |= PR_KLC;
1187 if (p->p_proc_flag & P_PR_ASYNC)
1188 flags |= PR_ASYNC;
1189 if (p->p_proc_flag & P_PR_BPTADJ)
1190 flags |= PR_BPTADJ;
1191 if (p->p_proc_flag & P_PR_PTRACE)
1192 flags |= PR_PTRACE;
1193 if (p->p_flag & SMSACCT)
1194 flags |= PR_MSACCT;
1195 if (p->p_flag & SMSFORK)
1196 flags |= PR_MSFORK;
1197 if (p->p_flag & SVFWAIT)
1198 flags |= PR_VFORKP;
1199 if (p->p_pgidp->pid_pgorphaned)
1200 flags |= PR_ORPHAN;
1201 if (p->p_pidflag & CLDNOSIGCHLD)
1202 flags |= PR_NOSIGCHLD;
1203 if (p->p_pidflag & CLDWAITPID)
1204 flags |= PR_WAITPID;
1205 sp->pr_flags = flags;
1206 if (VSTOPPED(t)) {
1207 sp->pr_why = PR_REQUESTED;
1208 sp->pr_what = 0;
1209 } else {
1210 sp->pr_why = t->t_whystop;
1211 sp->pr_what = t->t_whatstop;
1213 sp->pr_lwpid = t->t_tid;
1214 sp->pr_cursig = lwp->lwp_cursig;
1215 prassignset(&sp->pr_lwppend, &t->t_sig);
1216 schedctl_finish_sigblock(t);
1217 prassignset(&sp->pr_lwphold, &t->t_hold);
1218 if (t->t_whystop == PR_FAULTED)
1219 bcopy(&lwp->lwp_siginfo,
1220 &sp->pr_info, sizeof (k_siginfo_t));
1221 else if (lwp->lwp_curinfo)
1222 bcopy(&lwp->lwp_curinfo->sq_info,
1223 &sp->pr_info, sizeof (k_siginfo_t));
1224 if (SI_FROMUSER(&lwp->lwp_siginfo) && zp->zone_id != GLOBAL_ZONEID &&
1225 sp->pr_info.si_zoneid != zp->zone_id) {
1226 sp->pr_info.si_pid = zp->zone_zsched->p_pid;
1227 sp->pr_info.si_uid = 0;
1228 sp->pr_info.si_ctid = -1;
1229 sp->pr_info.si_zoneid = zp->zone_id;
1231 sp->pr_altstack = lwp->lwp_sigaltstack;
1232 prgetaction(p, PTOU(p), lwp->lwp_cursig, &sp->pr_action);
1233 sp->pr_oldcontext = (uintptr_t)lwp->lwp_oldcontext;
1234 sp->pr_ustack = lwp->lwp_ustack;
1235 (void) strncpy(sp->pr_clname, sclass[t->t_cid].cl_name,
1236 sizeof (sp->pr_clname) - 1);
1237 if (flags & PR_STOPPED)
1238 hrt2ts(t->t_stoptime, &sp->pr_tstamp);
1239 usr = ms->ms_acct[LMS_USER];
1240 sys = ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
1241 scalehrtime(&usr);
1242 scalehrtime(&sys);
1243 hrt2ts(usr, &sp->pr_utime);
1244 hrt2ts(sys, &sp->pr_stime);
1247 * Fetch the current instruction, if not a system process.
1248 * We don't attempt this unless the lwp is stopped.
1250 if ((p->p_flag & SSYS) || p->p_as == &kas)
1251 sp->pr_flags |= (PR_ISSYS|PR_PCINVAL);
1252 else if (!(flags & PR_STOPPED))
1253 sp->pr_flags |= PR_PCINVAL;
1254 else if (!prfetchinstr(lwp, &instr))
1255 sp->pr_flags |= PR_PCINVAL;
1256 else
1257 sp->pr_instr = instr;
1260 * Drop p_lock while touching the lwp's stack.
1262 mutex_exit(&p->p_lock);
1263 if (prisstep(lwp))
1264 sp->pr_flags |= PR_STEP;
1265 if ((flags & (PR_STOPPED|PR_ASLEEP)) && t->t_sysnum) {
1266 int i;
1268 sp->pr_syscall = get_syscall_args(lwp,
1269 (long *)sp->pr_sysarg, &i);
1270 sp->pr_nsysarg = (ushort_t)i;
1272 if ((flags & PR_STOPPED) || t == curthread)
1273 prgetprregs(lwp, sp->pr_reg);
1274 if ((t->t_state == TS_STOPPED && t->t_whystop == PR_SYSEXIT) ||
1275 (flags & PR_VFORKP)) {
1276 user_t *up;
1277 auxv_t *auxp;
1278 int i;
1280 sp->pr_errno = prgetrvals(lwp, &sp->pr_rval1, &sp->pr_rval2);
1281 if (sp->pr_errno == 0)
1282 sp->pr_errpriv = PRIV_NONE;
1283 else
1284 sp->pr_errpriv = lwp->lwp_badpriv;
1286 if (t->t_sysnum == SYS_execve) {
1287 up = PTOU(p);
1288 sp->pr_sysarg[0] = 0;
1289 sp->pr_sysarg[1] = (uintptr_t)up->u_argv;
1290 sp->pr_sysarg[2] = (uintptr_t)up->u_envp;
1291 for (i = 0, auxp = up->u_auxv;
1292 i < sizeof (up->u_auxv) / sizeof (up->u_auxv[0]);
1293 i++, auxp++) {
1294 if (auxp->a_type == AT_SUN_EXECNAME) {
1295 sp->pr_sysarg[0] =
1296 (uintptr_t)auxp->a_un.a_ptr;
1297 break;
1302 if (prhasfp())
1303 prgetprfpregs(lwp, &sp->pr_fpreg);
1304 mutex_enter(&p->p_lock);
1308 * Get the sigaction structure for the specified signal. The u-block
1309 * must already have been mapped in by the caller.
1311 void
1312 prgetaction(proc_t *p, user_t *up, uint_t sig, struct sigaction *sp)
1314 int nsig = PROC_IS_BRANDED(curproc)? BROP(curproc)->b_nsig : NSIG;
1316 bzero(sp, sizeof (*sp));
1318 if (sig != 0 && (unsigned)sig < nsig) {
1319 sp->sa_handler = up->u_signal[sig-1];
1320 prassignset(&sp->sa_mask, &up->u_sigmask[sig-1]);
1321 if (sigismember(&up->u_sigonstack, sig))
1322 sp->sa_flags |= SA_ONSTACK;
1323 if (sigismember(&up->u_sigresethand, sig))
1324 sp->sa_flags |= SA_RESETHAND;
1325 if (sigismember(&up->u_sigrestart, sig))
1326 sp->sa_flags |= SA_RESTART;
1327 if (sigismember(&p->p_siginfo, sig))
1328 sp->sa_flags |= SA_SIGINFO;
1329 if (sigismember(&up->u_signodefer, sig))
1330 sp->sa_flags |= SA_NODEFER;
1331 if (sig == SIGCLD) {
1332 if (p->p_flag & SNOWAIT)
1333 sp->sa_flags |= SA_NOCLDWAIT;
1334 if ((p->p_flag & SJCTL) == 0)
1335 sp->sa_flags |= SA_NOCLDSTOP;
1340 #ifdef _SYSCALL32_IMPL
1341 void
1342 prgetaction32(proc_t *p, user_t *up, uint_t sig, struct sigaction32 *sp)
1344 int nsig = PROC_IS_BRANDED(curproc)? BROP(curproc)->b_nsig : NSIG;
1346 bzero(sp, sizeof (*sp));
1348 if (sig != 0 && (unsigned)sig < nsig) {
1349 sp->sa_handler = (caddr32_t)(uintptr_t)up->u_signal[sig-1];
1350 prassignset(&sp->sa_mask, &up->u_sigmask[sig-1]);
1351 if (sigismember(&up->u_sigonstack, sig))
1352 sp->sa_flags |= SA_ONSTACK;
1353 if (sigismember(&up->u_sigresethand, sig))
1354 sp->sa_flags |= SA_RESETHAND;
1355 if (sigismember(&up->u_sigrestart, sig))
1356 sp->sa_flags |= SA_RESTART;
1357 if (sigismember(&p->p_siginfo, sig))
1358 sp->sa_flags |= SA_SIGINFO;
1359 if (sigismember(&up->u_signodefer, sig))
1360 sp->sa_flags |= SA_NODEFER;
1361 if (sig == SIGCLD) {
1362 if (p->p_flag & SNOWAIT)
1363 sp->sa_flags |= SA_NOCLDWAIT;
1364 if ((p->p_flag & SJCTL) == 0)
1365 sp->sa_flags |= SA_NOCLDSTOP;
1369 #endif /* _SYSCALL32_IMPL */
1372 * Count the number of segments in this process's address space.
1375 prnsegs(struct as *as, int reserved)
1377 int n = 0;
1378 struct seg *seg;
1380 ASSERT(as != &kas && AS_WRITE_HELD(as));
1382 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1383 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved);
1384 caddr_t saddr, naddr;
1385 void *tmp = NULL;
1387 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1388 (void) pr_getprot(seg, reserved, &tmp,
1389 &saddr, &naddr, eaddr);
1390 if (saddr != naddr)
1391 n++;
1394 ASSERT(tmp == NULL);
1397 return (n);
1401 * Convert uint32_t to decimal string w/o leading zeros.
1402 * Add trailing null characters if 'len' is greater than string length.
1403 * Return the string length.
1406 pr_u32tos(uint32_t n, char *s, int len)
1408 char cbuf[11]; /* 32-bit unsigned integer fits in 10 digits */
1409 char *cp = cbuf;
1410 char *end = s + len;
1412 do {
1413 *cp++ = (char)(n % 10 + '0');
1414 n /= 10;
1415 } while (n);
1417 len = (int)(cp - cbuf);
1419 do {
1420 *s++ = *--cp;
1421 } while (cp > cbuf);
1423 while (s < end) /* optional pad */
1424 *s++ = '\0';
1426 return (len);
1430 * Convert uint64_t to decimal string w/o leading zeros.
1431 * Return the string length.
1433 static int
1434 pr_u64tos(uint64_t n, char *s)
1436 char cbuf[21]; /* 64-bit unsigned integer fits in 20 digits */
1437 char *cp = cbuf;
1438 int len;
1440 do {
1441 *cp++ = (char)(n % 10 + '0');
1442 n /= 10;
1443 } while (n);
1445 len = (int)(cp - cbuf);
1447 do {
1448 *s++ = *--cp;
1449 } while (cp > cbuf);
1451 return (len);
1454 void
1455 pr_object_name(char *name, vnode_t *vp, struct vattr *vattr)
1457 char *s = name;
1458 struct vfs *vfsp;
1459 struct vfssw *vfsswp;
1461 if ((vfsp = vp->v_vfsp) != NULL &&
1462 ((vfsswp = vfssw + vfsp->vfs_fstype), vfsswp->vsw_name) &&
1463 *vfsswp->vsw_name) {
1464 (void) strcpy(s, vfsswp->vsw_name);
1465 s += strlen(s);
1466 *s++ = '.';
1468 s += pr_u32tos(getmajor(vattr->va_fsid), s, 0);
1469 *s++ = '.';
1470 s += pr_u32tos(getminor(vattr->va_fsid), s, 0);
1471 *s++ = '.';
1472 s += pr_u64tos(vattr->va_nodeid, s);
1473 *s++ = '\0';
1476 struct seg *
1477 break_seg(proc_t *p)
1479 caddr_t addr = p->p_brkbase;
1480 struct seg *seg;
1481 struct vnode *vp;
1483 if (p->p_brksize != 0)
1484 addr += p->p_brksize - 1;
1485 seg = as_segat(p->p_as, addr);
1486 if (seg != NULL && seg->s_ops == &segvn_ops &&
1487 (segop_getvp(seg, seg->s_base, &vp) != 0 || vp == NULL))
1488 return (seg);
1489 return (NULL);
1493 * Implementation of service functions to handle procfs generic chained
1494 * copyout buffers.
1496 typedef struct pr_iobuf_list {
1497 list_node_t piol_link; /* buffer linkage */
1498 size_t piol_size; /* total size (header + data) */
1499 size_t piol_usedsize; /* amount to copy out from this buf */
1500 } piol_t;
1502 #define MAPSIZE (64 * 1024)
1503 #define PIOL_DATABUF(iol) ((void *)(&(iol)[1]))
1505 void
1506 pr_iol_initlist(list_t *iolhead, size_t itemsize, int n)
1508 piol_t *iol;
1509 size_t initial_size = MIN(1, n) * itemsize;
1511 list_create(iolhead, sizeof (piol_t), offsetof(piol_t, piol_link));
1513 ASSERT(list_head(iolhead) == NULL);
1514 ASSERT(itemsize < MAPSIZE - sizeof (*iol));
1515 ASSERT(initial_size > 0);
1518 * Someone creating chained copyout buffers may ask for less than
1519 * MAPSIZE if the amount of data to be buffered is known to be
1520 * smaller than that.
1521 * But in order to prevent involuntary self-denial of service,
1522 * the requested input size is clamped at MAPSIZE.
1524 initial_size = MIN(MAPSIZE, initial_size + sizeof (*iol));
1525 iol = kmem_alloc(initial_size, KM_SLEEP);
1526 list_insert_head(iolhead, iol);
1527 iol->piol_usedsize = 0;
1528 iol->piol_size = initial_size;
1531 void *
1532 pr_iol_newbuf(list_t *iolhead, size_t itemsize)
1534 piol_t *iol;
1535 char *new;
1537 ASSERT(itemsize < MAPSIZE - sizeof (*iol));
1538 ASSERT(list_head(iolhead) != NULL);
1540 iol = (piol_t *)list_tail(iolhead);
1542 if (iol->piol_size <
1543 iol->piol_usedsize + sizeof (*iol) + itemsize) {
1545 * Out of space in the current buffer. Allocate more.
1547 piol_t *newiol;
1549 newiol = kmem_alloc(MAPSIZE, KM_SLEEP);
1550 newiol->piol_size = MAPSIZE;
1551 newiol->piol_usedsize = 0;
1553 list_insert_after(iolhead, iol, newiol);
1554 iol = list_next(iolhead, iol);
1555 ASSERT(iol == newiol);
1557 new = (char *)PIOL_DATABUF(iol) + iol->piol_usedsize;
1558 iol->piol_usedsize += itemsize;
1559 bzero(new, itemsize);
1560 return (new);
1564 pr_iol_copyout_and_free(list_t *iolhead, caddr_t *tgt, int errin)
1566 int error = errin;
1567 piol_t *iol;
1569 while ((iol = list_head(iolhead)) != NULL) {
1570 list_remove(iolhead, iol);
1571 if (!error) {
1572 if (copyout(PIOL_DATABUF(iol), *tgt,
1573 iol->piol_usedsize))
1574 error = EFAULT;
1575 *tgt += iol->piol_usedsize;
1577 kmem_free(iol, iol->piol_size);
1579 list_destroy(iolhead);
1581 return (error);
1585 pr_iol_uiomove_and_free(list_t *iolhead, uio_t *uiop, int errin)
1587 offset_t off = uiop->uio_offset;
1588 char *base;
1589 size_t size;
1590 piol_t *iol;
1591 int error = errin;
1593 while ((iol = list_head(iolhead)) != NULL) {
1594 list_remove(iolhead, iol);
1595 base = PIOL_DATABUF(iol);
1596 size = iol->piol_usedsize;
1597 if (off <= size && error == 0 && uiop->uio_resid > 0)
1598 error = uiomove(base + off, size - off,
1599 UIO_READ, uiop);
1600 off = MAX(0, off - (offset_t)size);
1601 kmem_free(iol, iol->piol_size);
1603 list_destroy(iolhead);
1605 return (error);
1609 * Return an array of structures with memory map information.
1610 * We allocate here; the caller must deallocate.
1613 prgetmap(proc_t *p, int reserved, list_t *iolhead)
1615 struct as *as = p->p_as;
1616 prmap_t *mp;
1617 struct seg *seg;
1618 struct seg *brkseg, *stkseg;
1619 struct vnode *vp;
1620 struct vattr vattr;
1621 uint_t prot;
1623 ASSERT(as != &kas && AS_WRITE_HELD(as));
1626 * Request an initial buffer size that doesn't waste memory
1627 * if the address space has only a small number of segments.
1629 pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree));
1631 if ((seg = AS_SEGFIRST(as)) == NULL)
1632 return (0);
1634 brkseg = break_seg(p);
1635 stkseg = as_segat(as, prgetstackbase(p));
1637 do {
1638 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved);
1639 caddr_t saddr, naddr;
1640 void *tmp = NULL;
1642 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1643 prot = pr_getprot(seg, reserved, &tmp,
1644 &saddr, &naddr, eaddr);
1645 if (saddr == naddr)
1646 continue;
1648 mp = pr_iol_newbuf(iolhead, sizeof (*mp));
1650 mp->pr_vaddr = (uintptr_t)saddr;
1651 mp->pr_size = naddr - saddr;
1652 mp->pr_offset = segop_getoffset(seg, saddr);
1653 mp->pr_mflags = 0;
1654 if (prot & PROT_READ)
1655 mp->pr_mflags |= MA_READ;
1656 if (prot & PROT_WRITE)
1657 mp->pr_mflags |= MA_WRITE;
1658 if (prot & PROT_EXEC)
1659 mp->pr_mflags |= MA_EXEC;
1660 if (segop_gettype(seg, saddr) & MAP_SHARED)
1661 mp->pr_mflags |= MA_SHARED;
1662 if (segop_gettype(seg, saddr) & MAP_NORESERVE)
1663 mp->pr_mflags |= MA_NORESERVE;
1664 if (seg->s_ops == &segspt_shmops ||
1665 (seg->s_ops == &segvn_ops &&
1666 (segop_getvp(seg, saddr, &vp) != 0 || vp == NULL)))
1667 mp->pr_mflags |= MA_ANON;
1668 if (seg == brkseg)
1669 mp->pr_mflags |= MA_BREAK;
1670 else if (seg == stkseg) {
1671 mp->pr_mflags |= MA_STACK;
1672 if (reserved) {
1673 size_t maxstack =
1674 ((size_t)p->p_stk_ctl +
1675 PAGEOFFSET) & PAGEMASK;
1676 mp->pr_vaddr =
1677 (uintptr_t)prgetstackbase(p) +
1678 p->p_stksize - maxstack;
1679 mp->pr_size = (uintptr_t)naddr -
1680 mp->pr_vaddr;
1683 if (seg->s_ops == &segspt_shmops)
1684 mp->pr_mflags |= MA_ISM | MA_SHM;
1685 mp->pr_pagesize = PAGESIZE;
1688 * Manufacture a filename for the "object" directory.
1690 vattr.va_mask = AT_FSID|AT_NODEID;
1691 if (seg->s_ops == &segvn_ops &&
1692 segop_getvp(seg, saddr, &vp) == 0 &&
1693 vp != NULL && vp->v_type == VREG &&
1694 fop_getattr(vp, &vattr, 0, CRED(), NULL) == 0) {
1695 if (vp == p->p_exec)
1696 (void) strcpy(mp->pr_mapname, "a.out");
1697 else
1698 pr_object_name(mp->pr_mapname,
1699 vp, &vattr);
1703 * Get the SysV shared memory id, if any.
1705 if ((mp->pr_mflags & MA_SHARED) && p->p_segacct &&
1706 (mp->pr_shmid = shmgetid(p, seg->s_base)) !=
1707 SHMID_NONE) {
1708 if (mp->pr_shmid == SHMID_FREE)
1709 mp->pr_shmid = -1;
1711 mp->pr_mflags |= MA_SHM;
1712 } else {
1713 mp->pr_shmid = -1;
1716 ASSERT(tmp == NULL);
1717 } while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1719 return (0);
1722 #ifdef _SYSCALL32_IMPL
1724 prgetmap32(proc_t *p, int reserved, list_t *iolhead)
1726 struct as *as = p->p_as;
1727 prmap32_t *mp;
1728 struct seg *seg;
1729 struct seg *brkseg, *stkseg;
1730 struct vnode *vp;
1731 struct vattr vattr;
1732 uint_t prot;
1734 ASSERT(as != &kas && AS_WRITE_HELD(as));
1737 * Request an initial buffer size that doesn't waste memory
1738 * if the address space has only a small number of segments.
1740 pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree));
1742 if ((seg = AS_SEGFIRST(as)) == NULL)
1743 return (0);
1745 brkseg = break_seg(p);
1746 stkseg = as_segat(as, prgetstackbase(p));
1748 do {
1749 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved);
1750 caddr_t saddr, naddr;
1751 void *tmp = NULL;
1753 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1754 prot = pr_getprot(seg, reserved, &tmp,
1755 &saddr, &naddr, eaddr);
1756 if (saddr == naddr)
1757 continue;
1759 mp = pr_iol_newbuf(iolhead, sizeof (*mp));
1761 mp->pr_vaddr = (caddr32_t)(uintptr_t)saddr;
1762 mp->pr_size = (size32_t)(naddr - saddr);
1763 mp->pr_offset = segop_getoffset(seg, saddr);
1764 mp->pr_mflags = 0;
1765 if (prot & PROT_READ)
1766 mp->pr_mflags |= MA_READ;
1767 if (prot & PROT_WRITE)
1768 mp->pr_mflags |= MA_WRITE;
1769 if (prot & PROT_EXEC)
1770 mp->pr_mflags |= MA_EXEC;
1771 if (segop_gettype(seg, saddr) & MAP_SHARED)
1772 mp->pr_mflags |= MA_SHARED;
1773 if (segop_gettype(seg, saddr) & MAP_NORESERVE)
1774 mp->pr_mflags |= MA_NORESERVE;
1775 if (seg->s_ops == &segspt_shmops ||
1776 (seg->s_ops == &segvn_ops &&
1777 (segop_getvp(seg, saddr, &vp) != 0 || vp == NULL)))
1778 mp->pr_mflags |= MA_ANON;
1779 if (seg == brkseg)
1780 mp->pr_mflags |= MA_BREAK;
1781 else if (seg == stkseg) {
1782 mp->pr_mflags |= MA_STACK;
1783 if (reserved) {
1784 size_t maxstack =
1785 ((size_t)p->p_stk_ctl +
1786 PAGEOFFSET) & PAGEMASK;
1787 uintptr_t vaddr =
1788 (uintptr_t)prgetstackbase(p) +
1789 p->p_stksize - maxstack;
1790 mp->pr_vaddr = (caddr32_t)vaddr;
1791 mp->pr_size = (size32_t)
1792 ((uintptr_t)naddr - vaddr);
1795 if (seg->s_ops == &segspt_shmops)
1796 mp->pr_mflags |= MA_ISM | MA_SHM;
1797 mp->pr_pagesize = PAGESIZE;
1800 * Manufacture a filename for the "object" directory.
1802 vattr.va_mask = AT_FSID|AT_NODEID;
1803 if (seg->s_ops == &segvn_ops &&
1804 segop_getvp(seg, saddr, &vp) == 0 &&
1805 vp != NULL && vp->v_type == VREG &&
1806 fop_getattr(vp, &vattr, 0, CRED(), NULL) == 0) {
1807 if (vp == p->p_exec)
1808 (void) strcpy(mp->pr_mapname, "a.out");
1809 else
1810 pr_object_name(mp->pr_mapname,
1811 vp, &vattr);
1815 * Get the SysV shared memory id, if any.
1817 if ((mp->pr_mflags & MA_SHARED) && p->p_segacct &&
1818 (mp->pr_shmid = shmgetid(p, seg->s_base)) !=
1819 SHMID_NONE) {
1820 if (mp->pr_shmid == SHMID_FREE)
1821 mp->pr_shmid = -1;
1823 mp->pr_mflags |= MA_SHM;
1824 } else {
1825 mp->pr_shmid = -1;
1828 ASSERT(tmp == NULL);
1829 } while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1831 return (0);
1833 #endif /* _SYSCALL32_IMPL */
1836 * Return the size of the /proc page data file.
1838 size_t
1839 prpdsize(struct as *as)
1841 struct seg *seg;
1842 size_t size;
1844 ASSERT(as != &kas && AS_WRITE_HELD(as));
1846 if ((seg = AS_SEGFIRST(as)) == NULL)
1847 return (0);
1849 size = sizeof (prpageheader_t);
1850 do {
1851 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1852 caddr_t saddr, naddr;
1853 void *tmp = NULL;
1854 size_t npage;
1856 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1857 (void) pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1858 if ((npage = (naddr - saddr) / PAGESIZE) != 0)
1859 size += sizeof (prasmap_t) + round8(npage);
1861 ASSERT(tmp == NULL);
1862 } while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1864 return (size);
1867 #ifdef _SYSCALL32_IMPL
1868 size_t
1869 prpdsize32(struct as *as)
1871 struct seg *seg;
1872 size_t size;
1874 ASSERT(as != &kas && AS_WRITE_HELD(as));
1876 if ((seg = AS_SEGFIRST(as)) == NULL)
1877 return (0);
1879 size = sizeof (prpageheader32_t);
1880 do {
1881 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1882 caddr_t saddr, naddr;
1883 void *tmp = NULL;
1884 size_t npage;
1886 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1887 (void) pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1888 if ((npage = (naddr - saddr) / PAGESIZE) != 0)
1889 size += sizeof (prasmap32_t) + round8(npage);
1891 ASSERT(tmp == NULL);
1892 } while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1894 return (size);
1896 #endif /* _SYSCALL32_IMPL */
1899 * Read page data information.
1902 prpdread(proc_t *p, uint_t hatid, struct uio *uiop)
1904 struct as *as = p->p_as;
1905 caddr_t buf;
1906 size_t size;
1907 prpageheader_t *php;
1908 prasmap_t *pmp;
1909 struct seg *seg;
1910 int error;
1912 again:
1913 AS_LOCK_ENTER(as, RW_WRITER);
1915 if ((seg = AS_SEGFIRST(as)) == NULL) {
1916 AS_LOCK_EXIT(as);
1917 return (0);
1919 size = prpdsize(as);
1920 if (uiop->uio_resid < size) {
1921 AS_LOCK_EXIT(as);
1922 return (E2BIG);
1925 buf = kmem_zalloc(size, KM_SLEEP);
1926 php = (prpageheader_t *)buf;
1927 pmp = (prasmap_t *)(buf + sizeof (prpageheader_t));
1929 hrt2ts(gethrtime(), &php->pr_tstamp);
1930 php->pr_nmap = 0;
1931 php->pr_npage = 0;
1932 do {
1933 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1934 caddr_t saddr, naddr;
1935 void *tmp = NULL;
1937 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1938 struct vnode *vp;
1939 struct vattr vattr;
1940 size_t len;
1941 size_t npage;
1942 uint_t prot;
1943 uintptr_t next;
1945 prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1946 if ((len = (size_t)(naddr - saddr)) == 0)
1947 continue;
1948 npage = len / PAGESIZE;
1949 next = (uintptr_t)(pmp + 1) + round8(npage);
1951 * It's possible that the address space can change
1952 * subtlely even though we're holding as->a_lock
1953 * due to the nondeterminism of page_exists() in
1954 * the presence of asychronously flushed pages or
1955 * mapped files whose sizes are changing.
1956 * page_exists() may be called indirectly from
1957 * pr_getprot() by a segop_incore() routine.
1958 * If this happens we need to make sure we don't
1959 * overrun the buffer whose size we computed based
1960 * on the initial iteration through the segments.
1961 * Once we've detected an overflow, we need to clean
1962 * up the temporary memory allocated in pr_getprot()
1963 * and retry. If there's a pending signal, we return
1964 * EINTR so that this thread can be dislodged if
1965 * a latent bug causes us to spin indefinitely.
1967 if (next > (uintptr_t)buf + size) {
1968 pr_getprot_done(&tmp);
1969 AS_LOCK_EXIT(as);
1971 kmem_free(buf, size);
1973 if (ISSIG(curthread, JUSTLOOKING))
1974 return (EINTR);
1976 goto again;
1979 php->pr_nmap++;
1980 php->pr_npage += npage;
1981 pmp->pr_vaddr = (uintptr_t)saddr;
1982 pmp->pr_npage = npage;
1983 pmp->pr_offset = segop_getoffset(seg, saddr);
1984 pmp->pr_mflags = 0;
1985 if (prot & PROT_READ)
1986 pmp->pr_mflags |= MA_READ;
1987 if (prot & PROT_WRITE)
1988 pmp->pr_mflags |= MA_WRITE;
1989 if (prot & PROT_EXEC)
1990 pmp->pr_mflags |= MA_EXEC;
1991 if (segop_gettype(seg, saddr) & MAP_SHARED)
1992 pmp->pr_mflags |= MA_SHARED;
1993 if (segop_gettype(seg, saddr) & MAP_NORESERVE)
1994 pmp->pr_mflags |= MA_NORESERVE;
1995 if (seg->s_ops == &segspt_shmops ||
1996 (seg->s_ops == &segvn_ops &&
1997 (segop_getvp(seg, saddr, &vp) != 0 || vp == NULL)))
1998 pmp->pr_mflags |= MA_ANON;
1999 if (seg->s_ops == &segspt_shmops)
2000 pmp->pr_mflags |= MA_ISM | MA_SHM;
2001 pmp->pr_pagesize = PAGESIZE;
2003 * Manufacture a filename for the "object" directory.
2005 vattr.va_mask = AT_FSID|AT_NODEID;
2006 if (seg->s_ops == &segvn_ops &&
2007 segop_getvp(seg, saddr, &vp) == 0 &&
2008 vp != NULL && vp->v_type == VREG &&
2009 fop_getattr(vp, &vattr, 0, CRED(), NULL) == 0) {
2010 if (vp == p->p_exec)
2011 (void) strcpy(pmp->pr_mapname, "a.out");
2012 else
2013 pr_object_name(pmp->pr_mapname,
2014 vp, &vattr);
2018 * Get the SysV shared memory id, if any.
2020 if ((pmp->pr_mflags & MA_SHARED) && p->p_segacct &&
2021 (pmp->pr_shmid = shmgetid(p, seg->s_base)) !=
2022 SHMID_NONE) {
2023 if (pmp->pr_shmid == SHMID_FREE)
2024 pmp->pr_shmid = -1;
2026 pmp->pr_mflags |= MA_SHM;
2027 } else {
2028 pmp->pr_shmid = -1;
2031 hat_getstat(as, saddr, len, hatid,
2032 (char *)(pmp + 1), HAT_SYNC_ZERORM);
2033 pmp = (prasmap_t *)next;
2035 ASSERT(tmp == NULL);
2036 } while ((seg = AS_SEGNEXT(as, seg)) != NULL);
2038 AS_LOCK_EXIT(as);
2040 ASSERT((uintptr_t)pmp <= (uintptr_t)buf + size);
2041 error = uiomove(buf, (caddr_t)pmp - buf, UIO_READ, uiop);
2042 kmem_free(buf, size);
2044 return (error);
2047 #ifdef _SYSCALL32_IMPL
2049 prpdread32(proc_t *p, uint_t hatid, struct uio *uiop)
2051 struct as *as = p->p_as;
2052 caddr_t buf;
2053 size_t size;
2054 prpageheader32_t *php;
2055 prasmap32_t *pmp;
2056 struct seg *seg;
2057 int error;
2059 again:
2060 AS_LOCK_ENTER(as, RW_WRITER);
2062 if ((seg = AS_SEGFIRST(as)) == NULL) {
2063 AS_LOCK_EXIT(as);
2064 return (0);
2066 size = prpdsize32(as);
2067 if (uiop->uio_resid < size) {
2068 AS_LOCK_EXIT(as);
2069 return (E2BIG);
2072 buf = kmem_zalloc(size, KM_SLEEP);
2073 php = (prpageheader32_t *)buf;
2074 pmp = (prasmap32_t *)(buf + sizeof (prpageheader32_t));
2076 hrt2ts32(gethrtime(), &php->pr_tstamp);
2077 php->pr_nmap = 0;
2078 php->pr_npage = 0;
2079 do {
2080 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
2081 caddr_t saddr, naddr;
2082 void *tmp = NULL;
2084 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
2085 struct vnode *vp;
2086 struct vattr vattr;
2087 size_t len;
2088 size_t npage;
2089 uint_t prot;
2090 uintptr_t next;
2092 prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
2093 if ((len = (size_t)(naddr - saddr)) == 0)
2094 continue;
2095 npage = len / PAGESIZE;
2096 next = (uintptr_t)(pmp + 1) + round8(npage);
2098 * It's possible that the address space can change
2099 * subtlely even though we're holding as->a_lock
2100 * due to the nondeterminism of page_exists() in
2101 * the presence of asychronously flushed pages or
2102 * mapped files whose sizes are changing.
2103 * page_exists() may be called indirectly from
2104 * pr_getprot() by a segop_incore() routine.
2105 * If this happens we need to make sure we don't
2106 * overrun the buffer whose size we computed based
2107 * on the initial iteration through the segments.
2108 * Once we've detected an overflow, we need to clean
2109 * up the temporary memory allocated in pr_getprot()
2110 * and retry. If there's a pending signal, we return
2111 * EINTR so that this thread can be dislodged if
2112 * a latent bug causes us to spin indefinitely.
2114 if (next > (uintptr_t)buf + size) {
2115 pr_getprot_done(&tmp);
2116 AS_LOCK_EXIT(as);
2118 kmem_free(buf, size);
2120 if (ISSIG(curthread, JUSTLOOKING))
2121 return (EINTR);
2123 goto again;
2126 php->pr_nmap++;
2127 php->pr_npage += npage;
2128 pmp->pr_vaddr = (caddr32_t)(uintptr_t)saddr;
2129 pmp->pr_npage = (size32_t)npage;
2130 pmp->pr_offset = segop_getoffset(seg, saddr);
2131 pmp->pr_mflags = 0;
2132 if (prot & PROT_READ)
2133 pmp->pr_mflags |= MA_READ;
2134 if (prot & PROT_WRITE)
2135 pmp->pr_mflags |= MA_WRITE;
2136 if (prot & PROT_EXEC)
2137 pmp->pr_mflags |= MA_EXEC;
2138 if (segop_gettype(seg, saddr) & MAP_SHARED)
2139 pmp->pr_mflags |= MA_SHARED;
2140 if (segop_gettype(seg, saddr) & MAP_NORESERVE)
2141 pmp->pr_mflags |= MA_NORESERVE;
2142 if (seg->s_ops == &segspt_shmops ||
2143 (seg->s_ops == &segvn_ops &&
2144 (segop_getvp(seg, saddr, &vp) != 0 || vp == NULL)))
2145 pmp->pr_mflags |= MA_ANON;
2146 if (seg->s_ops == &segspt_shmops)
2147 pmp->pr_mflags |= MA_ISM | MA_SHM;
2148 pmp->pr_pagesize = PAGESIZE;
2150 * Manufacture a filename for the "object" directory.
2152 vattr.va_mask = AT_FSID|AT_NODEID;
2153 if (seg->s_ops == &segvn_ops &&
2154 segop_getvp(seg, saddr, &vp) == 0 &&
2155 vp != NULL && vp->v_type == VREG &&
2156 fop_getattr(vp, &vattr, 0, CRED(), NULL) == 0) {
2157 if (vp == p->p_exec)
2158 (void) strcpy(pmp->pr_mapname, "a.out");
2159 else
2160 pr_object_name(pmp->pr_mapname,
2161 vp, &vattr);
2165 * Get the SysV shared memory id, if any.
2167 if ((pmp->pr_mflags & MA_SHARED) && p->p_segacct &&
2168 (pmp->pr_shmid = shmgetid(p, seg->s_base)) !=
2169 SHMID_NONE) {
2170 if (pmp->pr_shmid == SHMID_FREE)
2171 pmp->pr_shmid = -1;
2173 pmp->pr_mflags |= MA_SHM;
2174 } else {
2175 pmp->pr_shmid = -1;
2178 hat_getstat(as, saddr, len, hatid,
2179 (char *)(pmp + 1), HAT_SYNC_ZERORM);
2180 pmp = (prasmap32_t *)next;
2182 ASSERT(tmp == NULL);
2183 } while ((seg = AS_SEGNEXT(as, seg)) != NULL);
2185 AS_LOCK_EXIT(as);
2187 ASSERT((uintptr_t)pmp <= (uintptr_t)buf + size);
2188 error = uiomove(buf, (caddr_t)pmp - buf, UIO_READ, uiop);
2189 kmem_free(buf, size);
2191 return (error);
2193 #endif /* _SYSCALL32_IMPL */
2195 ushort_t
2196 prgetpctcpu(uint64_t pct)
2199 * The value returned will be relevant in the zone of the examiner,
2200 * which may not be the same as the zone which performed the procfs
2201 * mount.
2203 int nonline = zone_ncpus_online_get(curproc->p_zone);
2206 * Prorate over online cpus so we don't exceed 100%
2208 if (nonline > 1)
2209 pct /= nonline;
2210 pct >>= 16; /* convert to 16-bit scaled integer */
2211 if (pct > 0x8000) /* might happen, due to rounding */
2212 pct = 0x8000;
2213 return ((ushort_t)pct);
2217 * Return information used by ps(1).
2219 void
2220 prgetpsinfo(proc_t *p, psinfo_t *psp)
2222 kthread_t *t;
2223 struct cred *cred;
2224 hrtime_t hrutime, hrstime;
2226 ASSERT(MUTEX_HELD(&p->p_lock));
2228 if ((t = prchoose(p)) == NULL) /* returns locked thread */
2229 bzero(psp, sizeof (*psp));
2230 else {
2231 thread_unlock(t);
2232 bzero(psp, sizeof (*psp) - sizeof (psp->pr_lwp));
2236 * only export SSYS and SMSACCT; everything else is off-limits to
2237 * userland apps.
2239 psp->pr_flag = p->p_flag & (SSYS | SMSACCT);
2240 psp->pr_nlwp = p->p_lwpcnt;
2241 psp->pr_nzomb = p->p_zombcnt;
2242 mutex_enter(&p->p_crlock);
2243 cred = p->p_cred;
2244 psp->pr_uid = crgetruid(cred);
2245 psp->pr_euid = crgetuid(cred);
2246 psp->pr_gid = crgetrgid(cred);
2247 psp->pr_egid = crgetgid(cred);
2248 mutex_exit(&p->p_crlock);
2249 psp->pr_pid = p->p_pid;
2250 if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
2251 (p->p_flag & SZONETOP)) {
2252 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
2254 * Inside local zones, fake zsched's pid as parent pids for
2255 * processes which reference processes outside of the zone.
2257 psp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
2258 } else {
2259 psp->pr_ppid = p->p_ppid;
2261 psp->pr_pgid = p->p_pgrp;
2262 psp->pr_sid = p->p_sessp->s_sid;
2263 psp->pr_taskid = p->p_task->tk_tkid;
2264 psp->pr_projid = p->p_task->tk_proj->kpj_id;
2265 psp->pr_poolid = p->p_pool->pool_id;
2266 psp->pr_zoneid = p->p_zone->zone_id;
2267 if ((psp->pr_contract = PRCTID(p)) == 0)
2268 psp->pr_contract = -1;
2269 psp->pr_addr = (uintptr_t)prgetpsaddr(p);
2270 switch (p->p_model) {
2271 case DATAMODEL_ILP32:
2272 psp->pr_dmodel = PR_MODEL_ILP32;
2273 break;
2274 case DATAMODEL_LP64:
2275 psp->pr_dmodel = PR_MODEL_LP64;
2276 break;
2278 hrutime = mstate_aggr_state(p, LMS_USER);
2279 hrstime = mstate_aggr_state(p, LMS_SYSTEM);
2280 hrt2ts((hrutime + hrstime), &psp->pr_time);
2281 TICK_TO_TIMESTRUC(p->p_cutime + p->p_cstime, &psp->pr_ctime);
2283 if (t == NULL) {
2284 int wcode = p->p_wcode; /* must be atomic read */
2286 if (wcode)
2287 psp->pr_wstat = wstat(wcode, p->p_wdata);
2288 psp->pr_ttydev = PRNODEV;
2289 psp->pr_lwp.pr_state = SZOMB;
2290 psp->pr_lwp.pr_sname = 'Z';
2291 psp->pr_lwp.pr_bindpro = PBIND_NONE;
2292 psp->pr_lwp.pr_bindpset = PS_NONE;
2293 } else {
2294 user_t *up = PTOU(p);
2295 struct as *as;
2296 dev_t d;
2297 extern dev_t rwsconsdev, rconsdev, uconsdev;
2299 d = cttydev(p);
2301 * If the controlling terminal is the real
2302 * or workstation console device, map to what the
2303 * user thinks is the console device. Handle case when
2304 * rwsconsdev or rconsdev is set to NODEV for Starfire.
2306 if ((d == rwsconsdev || d == rconsdev) && d != NODEV)
2307 d = uconsdev;
2308 psp->pr_ttydev = (d == NODEV) ? PRNODEV : d;
2309 psp->pr_start = up->u_start;
2310 bcopy(up->u_comm, psp->pr_fname,
2311 MIN(sizeof (up->u_comm), sizeof (psp->pr_fname)-1));
2312 bcopy(up->u_psargs, psp->pr_psargs,
2313 MIN(PRARGSZ-1, PSARGSZ));
2314 psp->pr_argc = up->u_argc;
2315 psp->pr_argv = up->u_argv;
2316 psp->pr_envp = up->u_envp;
2318 /* get the chosen lwp's lwpsinfo */
2319 prgetlwpsinfo(t, &psp->pr_lwp);
2321 /* compute %cpu for the process */
2322 if (p->p_lwpcnt == 1)
2323 psp->pr_pctcpu = psp->pr_lwp.pr_pctcpu;
2324 else {
2325 uint64_t pct = 0;
2326 hrtime_t cur_time = gethrtime_unscaled();
2328 t = p->p_tlist;
2329 do {
2330 pct += cpu_update_pct(t, cur_time);
2331 } while ((t = t->t_forw) != p->p_tlist);
2333 psp->pr_pctcpu = prgetpctcpu(pct);
2335 if ((p->p_flag & SSYS) || (as = p->p_as) == &kas) {
2336 psp->pr_size = 0;
2337 psp->pr_rssize = 0;
2338 } else {
2339 mutex_exit(&p->p_lock);
2340 AS_LOCK_ENTER(as, RW_READER);
2341 psp->pr_size = btopr(as->a_resvsize) *
2342 (PAGESIZE / 1024);
2343 psp->pr_rssize = rm_asrss(as) * (PAGESIZE / 1024);
2344 psp->pr_pctmem = rm_pctmemory(as);
2345 AS_LOCK_EXIT(as);
2346 mutex_enter(&p->p_lock);
2351 #ifdef _SYSCALL32_IMPL
2352 void
2353 prgetpsinfo32(proc_t *p, psinfo32_t *psp)
2355 kthread_t *t;
2356 struct cred *cred;
2357 hrtime_t hrutime, hrstime;
2359 ASSERT(MUTEX_HELD(&p->p_lock));
2361 if ((t = prchoose(p)) == NULL) /* returns locked thread */
2362 bzero(psp, sizeof (*psp));
2363 else {
2364 thread_unlock(t);
2365 bzero(psp, sizeof (*psp) - sizeof (psp->pr_lwp));
2369 * only export SSYS and SMSACCT; everything else is off-limits to
2370 * userland apps.
2372 psp->pr_flag = p->p_flag & (SSYS | SMSACCT);
2373 psp->pr_nlwp = p->p_lwpcnt;
2374 psp->pr_nzomb = p->p_zombcnt;
2375 mutex_enter(&p->p_crlock);
2376 cred = p->p_cred;
2377 psp->pr_uid = crgetruid(cred);
2378 psp->pr_euid = crgetuid(cred);
2379 psp->pr_gid = crgetrgid(cred);
2380 psp->pr_egid = crgetgid(cred);
2381 mutex_exit(&p->p_crlock);
2382 psp->pr_pid = p->p_pid;
2383 if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
2384 (p->p_flag & SZONETOP)) {
2385 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
2387 * Inside local zones, fake zsched's pid as parent pids for
2388 * processes which reference processes outside of the zone.
2390 psp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
2391 } else {
2392 psp->pr_ppid = p->p_ppid;
2394 psp->pr_pgid = p->p_pgrp;
2395 psp->pr_sid = p->p_sessp->s_sid;
2396 psp->pr_taskid = p->p_task->tk_tkid;
2397 psp->pr_projid = p->p_task->tk_proj->kpj_id;
2398 psp->pr_poolid = p->p_pool->pool_id;
2399 psp->pr_zoneid = p->p_zone->zone_id;
2400 if ((psp->pr_contract = PRCTID(p)) == 0)
2401 psp->pr_contract = -1;
2402 psp->pr_addr = 0; /* cannot represent 64-bit addr in 32 bits */
2403 switch (p->p_model) {
2404 case DATAMODEL_ILP32:
2405 psp->pr_dmodel = PR_MODEL_ILP32;
2406 break;
2407 case DATAMODEL_LP64:
2408 psp->pr_dmodel = PR_MODEL_LP64;
2409 break;
2411 hrutime = mstate_aggr_state(p, LMS_USER);
2412 hrstime = mstate_aggr_state(p, LMS_SYSTEM);
2413 hrt2ts32(hrutime + hrstime, &psp->pr_time);
2414 TICK_TO_TIMESTRUC32(p->p_cutime + p->p_cstime, &psp->pr_ctime);
2416 if (t == NULL) {
2417 extern int wstat(int, int); /* needs a header file */
2418 int wcode = p->p_wcode; /* must be atomic read */
2420 if (wcode)
2421 psp->pr_wstat = wstat(wcode, p->p_wdata);
2422 psp->pr_ttydev = PRNODEV32;
2423 psp->pr_lwp.pr_state = SZOMB;
2424 psp->pr_lwp.pr_sname = 'Z';
2425 } else {
2426 user_t *up = PTOU(p);
2427 struct as *as;
2428 dev_t d;
2429 extern dev_t rwsconsdev, rconsdev, uconsdev;
2431 d = cttydev(p);
2433 * If the controlling terminal is the real
2434 * or workstation console device, map to what the
2435 * user thinks is the console device. Handle case when
2436 * rwsconsdev or rconsdev is set to NODEV for Starfire.
2438 if ((d == rwsconsdev || d == rconsdev) && d != NODEV)
2439 d = uconsdev;
2440 (void) cmpldev(&psp->pr_ttydev, d);
2441 TIMESPEC_TO_TIMESPEC32(&psp->pr_start, &up->u_start);
2442 bcopy(up->u_comm, psp->pr_fname,
2443 MIN(sizeof (up->u_comm), sizeof (psp->pr_fname)-1));
2444 bcopy(up->u_psargs, psp->pr_psargs,
2445 MIN(PRARGSZ-1, PSARGSZ));
2446 psp->pr_argc = up->u_argc;
2447 psp->pr_argv = (caddr32_t)up->u_argv;
2448 psp->pr_envp = (caddr32_t)up->u_envp;
2450 /* get the chosen lwp's lwpsinfo */
2451 prgetlwpsinfo32(t, &psp->pr_lwp);
2453 /* compute %cpu for the process */
2454 if (p->p_lwpcnt == 1)
2455 psp->pr_pctcpu = psp->pr_lwp.pr_pctcpu;
2456 else {
2457 uint64_t pct = 0;
2458 hrtime_t cur_time;
2460 t = p->p_tlist;
2461 cur_time = gethrtime_unscaled();
2462 do {
2463 pct += cpu_update_pct(t, cur_time);
2464 } while ((t = t->t_forw) != p->p_tlist);
2466 psp->pr_pctcpu = prgetpctcpu(pct);
2468 if ((p->p_flag & SSYS) || (as = p->p_as) == &kas) {
2469 psp->pr_size = 0;
2470 psp->pr_rssize = 0;
2471 } else {
2472 mutex_exit(&p->p_lock);
2473 AS_LOCK_ENTER(as, RW_READER);
2474 psp->pr_size = (size32_t)
2475 (btopr(as->a_resvsize) * (PAGESIZE / 1024));
2476 psp->pr_rssize = (size32_t)
2477 (rm_asrss(as) * (PAGESIZE / 1024));
2478 psp->pr_pctmem = rm_pctmemory(as);
2479 AS_LOCK_EXIT(as);
2480 mutex_enter(&p->p_lock);
2485 * If we are looking at an LP64 process, zero out
2486 * the fields that cannot be represented in ILP32.
2488 if (p->p_model != DATAMODEL_ILP32) {
2489 psp->pr_size = 0;
2490 psp->pr_rssize = 0;
2491 psp->pr_argv = 0;
2492 psp->pr_envp = 0;
2496 #endif /* _SYSCALL32_IMPL */
2498 void
2499 prgetlwpsinfo(kthread_t *t, lwpsinfo_t *psp)
2501 klwp_t *lwp = ttolwp(t);
2502 sobj_ops_t *sobj;
2503 char c, state;
2504 uint64_t pct;
2505 int retval, niceval;
2506 hrtime_t hrutime, hrstime;
2508 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2510 bzero(psp, sizeof (*psp));
2512 psp->pr_flag = 0; /* lwpsinfo_t.pr_flag is deprecated */
2513 psp->pr_lwpid = t->t_tid;
2514 psp->pr_addr = (uintptr_t)t;
2515 psp->pr_wchan = (uintptr_t)t->t_wchan;
2517 /* map the thread state enum into a process state enum */
2518 state = VSTOPPED(t) ? TS_STOPPED : t->t_state;
2519 switch (state) {
2520 case TS_SLEEP: state = SSLEEP; c = 'S'; break;
2521 case TS_RUN: state = SRUN; c = 'R'; break;
2522 case TS_ONPROC: state = SONPROC; c = 'O'; break;
2523 case TS_ZOMB: state = SZOMB; c = 'Z'; break;
2524 case TS_STOPPED: state = SSTOP; c = 'T'; break;
2525 case TS_WAIT: state = SWAIT; c = 'W'; break;
2526 default: state = 0; c = '?'; break;
2528 psp->pr_state = state;
2529 psp->pr_sname = c;
2530 if ((sobj = t->t_sobj_ops) != NULL)
2531 psp->pr_stype = SOBJ_TYPE(sobj);
2532 retval = CL_DONICE(t, NULL, 0, &niceval);
2533 if (retval == 0) {
2534 psp->pr_oldpri = v.v_maxsyspri - t->t_pri;
2535 psp->pr_nice = niceval + NZERO;
2537 psp->pr_syscall = t->t_sysnum;
2538 psp->pr_pri = t->t_pri;
2539 psp->pr_start.tv_sec = t->t_start;
2540 psp->pr_start.tv_nsec = 0L;
2541 hrutime = lwp->lwp_mstate.ms_acct[LMS_USER];
2542 scalehrtime(&hrutime);
2543 hrstime = lwp->lwp_mstate.ms_acct[LMS_SYSTEM] +
2544 lwp->lwp_mstate.ms_acct[LMS_TRAP];
2545 scalehrtime(&hrstime);
2546 hrt2ts(hrutime + hrstime, &psp->pr_time);
2547 /* compute %cpu for the lwp */
2548 pct = cpu_update_pct(t, gethrtime_unscaled());
2549 psp->pr_pctcpu = prgetpctcpu(pct);
2550 psp->pr_cpu = (psp->pr_pctcpu*100 + 0x6000) >> 15; /* [0..99] */
2551 if (psp->pr_cpu > 99)
2552 psp->pr_cpu = 99;
2554 (void) strncpy(psp->pr_clname, sclass[t->t_cid].cl_name,
2555 sizeof (psp->pr_clname) - 1);
2556 bzero(psp->pr_name, sizeof (psp->pr_name)); /* XXX ??? */
2557 psp->pr_onpro = t->t_cpu->cpu_id;
2558 psp->pr_bindpro = t->t_bind_cpu;
2559 psp->pr_bindpset = t->t_bind_pset;
2560 psp->pr_lgrp = t->t_lpl->lpl_lgrpid;
2563 #ifdef _SYSCALL32_IMPL
2564 void
2565 prgetlwpsinfo32(kthread_t *t, lwpsinfo32_t *psp)
2567 proc_t *p = ttoproc(t);
2568 klwp_t *lwp = ttolwp(t);
2569 sobj_ops_t *sobj;
2570 char c, state;
2571 uint64_t pct;
2572 int retval, niceval;
2573 hrtime_t hrutime, hrstime;
2575 ASSERT(MUTEX_HELD(&p->p_lock));
2577 bzero(psp, sizeof (*psp));
2579 psp->pr_flag = 0; /* lwpsinfo_t.pr_flag is deprecated */
2580 psp->pr_lwpid = t->t_tid;
2581 psp->pr_addr = 0; /* cannot represent 64-bit addr in 32 bits */
2582 psp->pr_wchan = 0; /* cannot represent 64-bit addr in 32 bits */
2584 /* map the thread state enum into a process state enum */
2585 state = VSTOPPED(t) ? TS_STOPPED : t->t_state;
2586 switch (state) {
2587 case TS_SLEEP: state = SSLEEP; c = 'S'; break;
2588 case TS_RUN: state = SRUN; c = 'R'; break;
2589 case TS_ONPROC: state = SONPROC; c = 'O'; break;
2590 case TS_ZOMB: state = SZOMB; c = 'Z'; break;
2591 case TS_STOPPED: state = SSTOP; c = 'T'; break;
2592 case TS_WAIT: state = SWAIT; c = 'W'; break;
2593 default: state = 0; c = '?'; break;
2595 psp->pr_state = state;
2596 psp->pr_sname = c;
2597 if ((sobj = t->t_sobj_ops) != NULL)
2598 psp->pr_stype = SOBJ_TYPE(sobj);
2599 retval = CL_DONICE(t, NULL, 0, &niceval);
2600 if (retval == 0) {
2601 psp->pr_oldpri = v.v_maxsyspri - t->t_pri;
2602 psp->pr_nice = niceval + NZERO;
2603 } else {
2604 psp->pr_oldpri = 0;
2605 psp->pr_nice = 0;
2607 psp->pr_syscall = t->t_sysnum;
2608 psp->pr_pri = t->t_pri;
2609 psp->pr_start.tv_sec = (time32_t)t->t_start;
2610 psp->pr_start.tv_nsec = 0L;
2611 hrutime = lwp->lwp_mstate.ms_acct[LMS_USER];
2612 scalehrtime(&hrutime);
2613 hrstime = lwp->lwp_mstate.ms_acct[LMS_SYSTEM] +
2614 lwp->lwp_mstate.ms_acct[LMS_TRAP];
2615 scalehrtime(&hrstime);
2616 hrt2ts32(hrutime + hrstime, &psp->pr_time);
2617 /* compute %cpu for the lwp */
2618 pct = cpu_update_pct(t, gethrtime_unscaled());
2619 psp->pr_pctcpu = prgetpctcpu(pct);
2620 psp->pr_cpu = (psp->pr_pctcpu*100 + 0x6000) >> 15; /* [0..99] */
2621 if (psp->pr_cpu > 99)
2622 psp->pr_cpu = 99;
2624 (void) strncpy(psp->pr_clname, sclass[t->t_cid].cl_name,
2625 sizeof (psp->pr_clname) - 1);
2626 bzero(psp->pr_name, sizeof (psp->pr_name)); /* XXX ??? */
2627 psp->pr_onpro = t->t_cpu->cpu_id;
2628 psp->pr_bindpro = t->t_bind_cpu;
2629 psp->pr_bindpset = t->t_bind_pset;
2630 psp->pr_lgrp = t->t_lpl->lpl_lgrpid;
2632 #endif /* _SYSCALL32_IMPL */
2634 #ifdef _SYSCALL32_IMPL
2636 #define PR_COPY_FIELD(s, d, field) d->field = s->field
2638 #define PR_COPY_FIELD_ILP32(s, d, field) \
2639 if (s->pr_dmodel == PR_MODEL_ILP32) { \
2640 d->field = s->field; \
2643 #define PR_COPY_TIMESPEC(s, d, field) \
2644 TIMESPEC_TO_TIMESPEC32(&d->field, &s->field);
2646 #define PR_COPY_BUF(s, d, field) \
2647 bcopy(s->field, d->field, sizeof (d->field));
2649 #define PR_IGNORE_FIELD(s, d, field)
2651 void
2652 lwpsinfo_kto32(const struct lwpsinfo *src, struct lwpsinfo32 *dest)
2654 bzero(dest, sizeof (*dest));
2656 PR_COPY_FIELD(src, dest, pr_flag);
2657 PR_COPY_FIELD(src, dest, pr_lwpid);
2658 PR_IGNORE_FIELD(src, dest, pr_addr);
2659 PR_IGNORE_FIELD(src, dest, pr_wchan);
2660 PR_COPY_FIELD(src, dest, pr_stype);
2661 PR_COPY_FIELD(src, dest, pr_state);
2662 PR_COPY_FIELD(src, dest, pr_sname);
2663 PR_COPY_FIELD(src, dest, pr_nice);
2664 PR_COPY_FIELD(src, dest, pr_syscall);
2665 PR_COPY_FIELD(src, dest, pr_oldpri);
2666 PR_COPY_FIELD(src, dest, pr_cpu);
2667 PR_COPY_FIELD(src, dest, pr_pri);
2668 PR_COPY_FIELD(src, dest, pr_pctcpu);
2669 PR_COPY_TIMESPEC(src, dest, pr_start);
2670 PR_COPY_BUF(src, dest, pr_clname);
2671 PR_COPY_BUF(src, dest, pr_name);
2672 PR_COPY_FIELD(src, dest, pr_onpro);
2673 PR_COPY_FIELD(src, dest, pr_bindpro);
2674 PR_COPY_FIELD(src, dest, pr_bindpset);
2675 PR_COPY_FIELD(src, dest, pr_lgrp);
2678 void
2679 psinfo_kto32(const struct psinfo *src, struct psinfo32 *dest)
2681 bzero(dest, sizeof (*dest));
2683 PR_COPY_FIELD(src, dest, pr_flag);
2684 PR_COPY_FIELD(src, dest, pr_nlwp);
2685 PR_COPY_FIELD(src, dest, pr_pid);
2686 PR_COPY_FIELD(src, dest, pr_ppid);
2687 PR_COPY_FIELD(src, dest, pr_pgid);
2688 PR_COPY_FIELD(src, dest, pr_sid);
2689 PR_COPY_FIELD(src, dest, pr_uid);
2690 PR_COPY_FIELD(src, dest, pr_euid);
2691 PR_COPY_FIELD(src, dest, pr_gid);
2692 PR_COPY_FIELD(src, dest, pr_egid);
2693 PR_IGNORE_FIELD(src, dest, pr_addr);
2694 PR_COPY_FIELD_ILP32(src, dest, pr_size);
2695 PR_COPY_FIELD_ILP32(src, dest, pr_rssize);
2696 PR_COPY_FIELD(src, dest, pr_ttydev);
2697 PR_COPY_FIELD(src, dest, pr_pctcpu);
2698 PR_COPY_FIELD(src, dest, pr_pctmem);
2699 PR_COPY_TIMESPEC(src, dest, pr_start);
2700 PR_COPY_TIMESPEC(src, dest, pr_time);
2701 PR_COPY_TIMESPEC(src, dest, pr_ctime);
2702 PR_COPY_BUF(src, dest, pr_fname);
2703 PR_COPY_BUF(src, dest, pr_psargs);
2704 PR_COPY_FIELD(src, dest, pr_wstat);
2705 PR_COPY_FIELD(src, dest, pr_argc);
2706 PR_COPY_FIELD_ILP32(src, dest, pr_argv);
2707 PR_COPY_FIELD_ILP32(src, dest, pr_envp);
2708 PR_COPY_FIELD(src, dest, pr_dmodel);
2709 PR_COPY_FIELD(src, dest, pr_taskid);
2710 PR_COPY_FIELD(src, dest, pr_projid);
2711 PR_COPY_FIELD(src, dest, pr_nzomb);
2712 PR_COPY_FIELD(src, dest, pr_poolid);
2713 PR_COPY_FIELD(src, dest, pr_contract);
2714 PR_COPY_FIELD(src, dest, pr_poolid);
2715 PR_COPY_FIELD(src, dest, pr_poolid);
2717 lwpsinfo_kto32(&src->pr_lwp, &dest->pr_lwp);
2720 #undef PR_COPY_FIELD
2721 #undef PR_COPY_FIELD_ILP32
2722 #undef PR_COPY_TIMESPEC
2723 #undef PR_COPY_BUF
2724 #undef PR_IGNORE_FIELD
2726 #endif /* _SYSCALL32_IMPL */
2729 * This used to get called when microstate accounting was disabled but
2730 * microstate information was requested. Since Microstate accounting is on
2731 * regardless of the proc flags, this simply makes it appear to procfs that
2732 * microstate accounting is on. This is relatively meaningless since you
2733 * can't turn it off, but this is here for the sake of appearances.
2736 /*ARGSUSED*/
2737 void
2738 estimate_msacct(kthread_t *t, hrtime_t curtime)
2740 proc_t *p;
2742 if (t == NULL)
2743 return;
2745 p = ttoproc(t);
2746 ASSERT(MUTEX_HELD(&p->p_lock));
2749 * A system process (p0) could be referenced if the thread is
2750 * in the process of exiting. Don't turn on microstate accounting
2751 * in that case.
2753 if (p->p_flag & SSYS)
2754 return;
2757 * Loop through all the LWPs (kernel threads) in the process.
2759 t = p->p_tlist;
2760 do {
2761 t->t_proc_flag |= TP_MSACCT;
2762 } while ((t = t->t_forw) != p->p_tlist);
2764 p->p_flag |= SMSACCT; /* set process-wide MSACCT */
2768 * It's not really possible to disable microstate accounting anymore.
2769 * However, this routine simply turns off the ms accounting flags in a process
2770 * This way procfs can still pretend to turn microstate accounting on and
2771 * off for a process, but it actually doesn't do anything. This is
2772 * a neutered form of preemptive idiot-proofing.
2774 void
2775 disable_msacct(proc_t *p)
2777 kthread_t *t;
2779 ASSERT(MUTEX_HELD(&p->p_lock));
2781 p->p_flag &= ~SMSACCT; /* clear process-wide MSACCT */
2783 * Loop through all the LWPs (kernel threads) in the process.
2785 if ((t = p->p_tlist) != NULL) {
2786 do {
2787 /* clear per-thread flag */
2788 t->t_proc_flag &= ~TP_MSACCT;
2789 } while ((t = t->t_forw) != p->p_tlist);
2794 * Return resource usage information.
2796 void
2797 prgetusage(kthread_t *t, prhusage_t *pup)
2799 klwp_t *lwp = ttolwp(t);
2800 hrtime_t *mstimep;
2801 struct mstate *ms = &lwp->lwp_mstate;
2802 int state;
2803 int i;
2804 hrtime_t curtime;
2805 hrtime_t waitrq;
2806 hrtime_t tmp1;
2808 curtime = gethrtime_unscaled();
2810 pup->pr_lwpid = t->t_tid;
2811 pup->pr_count = 1;
2812 pup->pr_create = ms->ms_start;
2813 pup->pr_term = ms->ms_term;
2814 scalehrtime(&pup->pr_create);
2815 scalehrtime(&pup->pr_term);
2816 if (ms->ms_term == 0) {
2817 pup->pr_rtime = curtime - ms->ms_start;
2818 scalehrtime(&pup->pr_rtime);
2819 } else {
2820 pup->pr_rtime = ms->ms_term - ms->ms_start;
2821 scalehrtime(&pup->pr_rtime);
2825 pup->pr_utime = ms->ms_acct[LMS_USER];
2826 pup->pr_stime = ms->ms_acct[LMS_SYSTEM];
2827 pup->pr_ttime = ms->ms_acct[LMS_TRAP];
2828 pup->pr_tftime = ms->ms_acct[LMS_TFAULT];
2829 pup->pr_dftime = ms->ms_acct[LMS_DFAULT];
2830 pup->pr_kftime = ms->ms_acct[LMS_KFAULT];
2831 pup->pr_ltime = ms->ms_acct[LMS_USER_LOCK];
2832 pup->pr_slptime = ms->ms_acct[LMS_SLEEP];
2833 pup->pr_wtime = ms->ms_acct[LMS_WAIT_CPU];
2834 pup->pr_stoptime = ms->ms_acct[LMS_STOPPED];
2836 prscaleusage(pup);
2839 * Adjust for time waiting in the dispatcher queue.
2841 waitrq = t->t_waitrq; /* hopefully atomic */
2842 if (waitrq != 0) {
2843 if (waitrq > curtime) {
2844 curtime = gethrtime_unscaled();
2846 tmp1 = curtime - waitrq;
2847 scalehrtime(&tmp1);
2848 pup->pr_wtime += tmp1;
2849 curtime = waitrq;
2853 * Adjust for time spent in current microstate.
2855 if (ms->ms_state_start > curtime) {
2856 curtime = gethrtime_unscaled();
2859 i = 0;
2860 do {
2861 switch (state = t->t_mstate) {
2862 case LMS_SLEEP:
2864 * Update the timer for the current sleep state.
2866 switch (state = ms->ms_prev) {
2867 case LMS_TFAULT:
2868 case LMS_DFAULT:
2869 case LMS_KFAULT:
2870 case LMS_USER_LOCK:
2871 break;
2872 default:
2873 state = LMS_SLEEP;
2874 break;
2876 break;
2877 case LMS_TFAULT:
2878 case LMS_DFAULT:
2879 case LMS_KFAULT:
2880 case LMS_USER_LOCK:
2881 state = LMS_SYSTEM;
2882 break;
2884 switch (state) {
2885 case LMS_USER: mstimep = &pup->pr_utime; break;
2886 case LMS_SYSTEM: mstimep = &pup->pr_stime; break;
2887 case LMS_TRAP: mstimep = &pup->pr_ttime; break;
2888 case LMS_TFAULT: mstimep = &pup->pr_tftime; break;
2889 case LMS_DFAULT: mstimep = &pup->pr_dftime; break;
2890 case LMS_KFAULT: mstimep = &pup->pr_kftime; break;
2891 case LMS_USER_LOCK: mstimep = &pup->pr_ltime; break;
2892 case LMS_SLEEP: mstimep = &pup->pr_slptime; break;
2893 case LMS_WAIT_CPU: mstimep = &pup->pr_wtime; break;
2894 case LMS_STOPPED: mstimep = &pup->pr_stoptime; break;
2895 default: panic("prgetusage: unknown microstate");
2897 tmp1 = curtime - ms->ms_state_start;
2898 if (tmp1 < 0) {
2899 curtime = gethrtime_unscaled();
2900 i++;
2901 continue;
2903 scalehrtime(&tmp1);
2904 } while (tmp1 < 0 && i < MAX_ITERS_SPIN);
2906 *mstimep += tmp1;
2908 /* update pup timestamp */
2909 pup->pr_tstamp = curtime;
2910 scalehrtime(&pup->pr_tstamp);
2913 * Resource usage counters.
2915 pup->pr_minf = lwp->lwp_ru.minflt;
2916 pup->pr_majf = lwp->lwp_ru.majflt;
2917 pup->pr_nswap = lwp->lwp_ru.nswap;
2918 pup->pr_inblk = lwp->lwp_ru.inblock;
2919 pup->pr_oublk = lwp->lwp_ru.oublock;
2920 pup->pr_msnd = lwp->lwp_ru.msgsnd;
2921 pup->pr_mrcv = lwp->lwp_ru.msgrcv;
2922 pup->pr_sigs = lwp->lwp_ru.nsignals;
2923 pup->pr_vctx = lwp->lwp_ru.nvcsw;
2924 pup->pr_ictx = lwp->lwp_ru.nivcsw;
2925 pup->pr_sysc = lwp->lwp_ru.sysc;
2926 pup->pr_ioch = lwp->lwp_ru.ioch;
2930 * Convert ms_acct stats from unscaled high-res time to nanoseconds
2932 void
2933 prscaleusage(prhusage_t *usg)
2935 scalehrtime(&usg->pr_utime);
2936 scalehrtime(&usg->pr_stime);
2937 scalehrtime(&usg->pr_ttime);
2938 scalehrtime(&usg->pr_tftime);
2939 scalehrtime(&usg->pr_dftime);
2940 scalehrtime(&usg->pr_kftime);
2941 scalehrtime(&usg->pr_ltime);
2942 scalehrtime(&usg->pr_slptime);
2943 scalehrtime(&usg->pr_wtime);
2944 scalehrtime(&usg->pr_stoptime);
2949 * Sum resource usage information.
2951 void
2952 praddusage(kthread_t *t, prhusage_t *pup)
2954 klwp_t *lwp = ttolwp(t);
2955 hrtime_t *mstimep;
2956 struct mstate *ms = &lwp->lwp_mstate;
2957 int state;
2958 int i;
2959 hrtime_t curtime;
2960 hrtime_t waitrq;
2961 hrtime_t tmp;
2962 prhusage_t conv;
2964 curtime = gethrtime_unscaled();
2966 if (ms->ms_term == 0) {
2967 tmp = curtime - ms->ms_start;
2968 scalehrtime(&tmp);
2969 pup->pr_rtime += tmp;
2970 } else {
2971 tmp = ms->ms_term - ms->ms_start;
2972 scalehrtime(&tmp);
2973 pup->pr_rtime += tmp;
2976 conv.pr_utime = ms->ms_acct[LMS_USER];
2977 conv.pr_stime = ms->ms_acct[LMS_SYSTEM];
2978 conv.pr_ttime = ms->ms_acct[LMS_TRAP];
2979 conv.pr_tftime = ms->ms_acct[LMS_TFAULT];
2980 conv.pr_dftime = ms->ms_acct[LMS_DFAULT];
2981 conv.pr_kftime = ms->ms_acct[LMS_KFAULT];
2982 conv.pr_ltime = ms->ms_acct[LMS_USER_LOCK];
2983 conv.pr_slptime = ms->ms_acct[LMS_SLEEP];
2984 conv.pr_wtime = ms->ms_acct[LMS_WAIT_CPU];
2985 conv.pr_stoptime = ms->ms_acct[LMS_STOPPED];
2987 prscaleusage(&conv);
2989 pup->pr_utime += conv.pr_utime;
2990 pup->pr_stime += conv.pr_stime;
2991 pup->pr_ttime += conv.pr_ttime;
2992 pup->pr_tftime += conv.pr_tftime;
2993 pup->pr_dftime += conv.pr_dftime;
2994 pup->pr_kftime += conv.pr_kftime;
2995 pup->pr_ltime += conv.pr_ltime;
2996 pup->pr_slptime += conv.pr_slptime;
2997 pup->pr_wtime += conv.pr_wtime;
2998 pup->pr_stoptime += conv.pr_stoptime;
3001 * Adjust for time waiting in the dispatcher queue.
3003 waitrq = t->t_waitrq; /* hopefully atomic */
3004 if (waitrq != 0) {
3005 if (waitrq > curtime) {
3006 curtime = gethrtime_unscaled();
3008 tmp = curtime - waitrq;
3009 scalehrtime(&tmp);
3010 pup->pr_wtime += tmp;
3011 curtime = waitrq;
3015 * Adjust for time spent in current microstate.
3017 if (ms->ms_state_start > curtime) {
3018 curtime = gethrtime_unscaled();
3021 i = 0;
3022 do {
3023 switch (state = t->t_mstate) {
3024 case LMS_SLEEP:
3026 * Update the timer for the current sleep state.
3028 switch (state = ms->ms_prev) {
3029 case LMS_TFAULT:
3030 case LMS_DFAULT:
3031 case LMS_KFAULT:
3032 case LMS_USER_LOCK:
3033 break;
3034 default:
3035 state = LMS_SLEEP;
3036 break;
3038 break;
3039 case LMS_TFAULT:
3040 case LMS_DFAULT:
3041 case LMS_KFAULT:
3042 case LMS_USER_LOCK:
3043 state = LMS_SYSTEM;
3044 break;
3046 switch (state) {
3047 case LMS_USER: mstimep = &pup->pr_utime; break;
3048 case LMS_SYSTEM: mstimep = &pup->pr_stime; break;
3049 case LMS_TRAP: mstimep = &pup->pr_ttime; break;
3050 case LMS_TFAULT: mstimep = &pup->pr_tftime; break;
3051 case LMS_DFAULT: mstimep = &pup->pr_dftime; break;
3052 case LMS_KFAULT: mstimep = &pup->pr_kftime; break;
3053 case LMS_USER_LOCK: mstimep = &pup->pr_ltime; break;
3054 case LMS_SLEEP: mstimep = &pup->pr_slptime; break;
3055 case LMS_WAIT_CPU: mstimep = &pup->pr_wtime; break;
3056 case LMS_STOPPED: mstimep = &pup->pr_stoptime; break;
3057 default: panic("praddusage: unknown microstate");
3059 tmp = curtime - ms->ms_state_start;
3060 if (tmp < 0) {
3061 curtime = gethrtime_unscaled();
3062 i++;
3063 continue;
3065 scalehrtime(&tmp);
3066 } while (tmp < 0 && i < MAX_ITERS_SPIN);
3068 *mstimep += tmp;
3070 /* update pup timestamp */
3071 pup->pr_tstamp = curtime;
3072 scalehrtime(&pup->pr_tstamp);
3075 * Resource usage counters.
3077 pup->pr_minf += lwp->lwp_ru.minflt;
3078 pup->pr_majf += lwp->lwp_ru.majflt;
3079 pup->pr_nswap += lwp->lwp_ru.nswap;
3080 pup->pr_inblk += lwp->lwp_ru.inblock;
3081 pup->pr_oublk += lwp->lwp_ru.oublock;
3082 pup->pr_msnd += lwp->lwp_ru.msgsnd;
3083 pup->pr_mrcv += lwp->lwp_ru.msgrcv;
3084 pup->pr_sigs += lwp->lwp_ru.nsignals;
3085 pup->pr_vctx += lwp->lwp_ru.nvcsw;
3086 pup->pr_ictx += lwp->lwp_ru.nivcsw;
3087 pup->pr_sysc += lwp->lwp_ru.sysc;
3088 pup->pr_ioch += lwp->lwp_ru.ioch;
3092 * Convert a prhusage_t to a prusage_t.
3093 * This means convert each hrtime_t to a timestruc_t
3094 * and copy the count fields uint64_t => ulong_t.
3096 void
3097 prcvtusage(prhusage_t *pup, prusage_t *upup)
3099 uint64_t *ullp;
3100 ulong_t *ulp;
3101 int i;
3103 upup->pr_lwpid = pup->pr_lwpid;
3104 upup->pr_count = pup->pr_count;
3106 hrt2ts(pup->pr_tstamp, &upup->pr_tstamp);
3107 hrt2ts(pup->pr_create, &upup->pr_create);
3108 hrt2ts(pup->pr_term, &upup->pr_term);
3109 hrt2ts(pup->pr_rtime, &upup->pr_rtime);
3110 hrt2ts(pup->pr_utime, &upup->pr_utime);
3111 hrt2ts(pup->pr_stime, &upup->pr_stime);
3112 hrt2ts(pup->pr_ttime, &upup->pr_ttime);
3113 hrt2ts(pup->pr_tftime, &upup->pr_tftime);
3114 hrt2ts(pup->pr_dftime, &upup->pr_dftime);
3115 hrt2ts(pup->pr_kftime, &upup->pr_kftime);
3116 hrt2ts(pup->pr_ltime, &upup->pr_ltime);
3117 hrt2ts(pup->pr_slptime, &upup->pr_slptime);
3118 hrt2ts(pup->pr_wtime, &upup->pr_wtime);
3119 hrt2ts(pup->pr_stoptime, &upup->pr_stoptime);
3120 bzero(upup->filltime, sizeof (upup->filltime));
3122 ullp = &pup->pr_minf;
3123 ulp = &upup->pr_minf;
3124 for (i = 0; i < 22; i++)
3125 *ulp++ = (ulong_t)*ullp++;
3128 #ifdef _SYSCALL32_IMPL
3129 void
3130 prcvtusage32(prhusage_t *pup, prusage32_t *upup)
3132 uint64_t *ullp;
3133 uint32_t *ulp;
3134 int i;
3136 upup->pr_lwpid = pup->pr_lwpid;
3137 upup->pr_count = pup->pr_count;
3139 hrt2ts32(pup->pr_tstamp, &upup->pr_tstamp);
3140 hrt2ts32(pup->pr_create, &upup->pr_create);
3141 hrt2ts32(pup->pr_term, &upup->pr_term);
3142 hrt2ts32(pup->pr_rtime, &upup->pr_rtime);
3143 hrt2ts32(pup->pr_utime, &upup->pr_utime);
3144 hrt2ts32(pup->pr_stime, &upup->pr_stime);
3145 hrt2ts32(pup->pr_ttime, &upup->pr_ttime);
3146 hrt2ts32(pup->pr_tftime, &upup->pr_tftime);
3147 hrt2ts32(pup->pr_dftime, &upup->pr_dftime);
3148 hrt2ts32(pup->pr_kftime, &upup->pr_kftime);
3149 hrt2ts32(pup->pr_ltime, &upup->pr_ltime);
3150 hrt2ts32(pup->pr_slptime, &upup->pr_slptime);
3151 hrt2ts32(pup->pr_wtime, &upup->pr_wtime);
3152 hrt2ts32(pup->pr_stoptime, &upup->pr_stoptime);
3153 bzero(upup->filltime, sizeof (upup->filltime));
3155 ullp = &pup->pr_minf;
3156 ulp = &upup->pr_minf;
3157 for (i = 0; i < 22; i++)
3158 *ulp++ = (uint32_t)*ullp++;
3160 #endif /* _SYSCALL32_IMPL */
3163 * Determine whether a set is empty.
3166 setisempty(uint32_t *sp, uint_t n)
3168 while (n--)
3169 if (*sp++)
3170 return (0);
3171 return (1);
3175 * Utility routine for establishing a watched area in the process.
3176 * Keep the list of watched areas sorted by virtual address.
3179 set_watched_area(proc_t *p, struct watched_area *pwa)
3181 caddr_t vaddr = pwa->wa_vaddr;
3182 caddr_t eaddr = pwa->wa_eaddr;
3183 ulong_t flags = pwa->wa_flags;
3184 struct watched_area *target;
3185 avl_index_t where;
3186 int error = 0;
3188 /* we must not be holding p->p_lock, but the process must be locked */
3189 ASSERT(MUTEX_NOT_HELD(&p->p_lock));
3190 ASSERT(p->p_proc_flag & P_PR_LOCK);
3193 * If this is our first watchpoint, enable watchpoints for the process.
3195 if (!pr_watch_active(p)) {
3196 kthread_t *t;
3198 mutex_enter(&p->p_lock);
3199 if ((t = p->p_tlist) != NULL) {
3200 do {
3201 watch_enable(t);
3202 } while ((t = t->t_forw) != p->p_tlist);
3204 mutex_exit(&p->p_lock);
3207 target = pr_find_watched_area(p, pwa, &where);
3208 if (target != NULL) {
3210 * We discovered an existing, overlapping watched area.
3211 * Allow it only if it is an exact match.
3213 if (target->wa_vaddr != vaddr ||
3214 target->wa_eaddr != eaddr)
3215 error = EINVAL;
3216 else if (target->wa_flags != flags) {
3217 error = set_watched_page(p, vaddr, eaddr,
3218 flags, target->wa_flags);
3219 target->wa_flags = flags;
3221 kmem_free(pwa, sizeof (struct watched_area));
3222 } else {
3223 avl_insert(&p->p_warea, pwa, where);
3224 error = set_watched_page(p, vaddr, eaddr, flags, 0);
3227 return (error);
3231 * Utility routine for clearing a watched area in the process.
3232 * Must be an exact match of the virtual address.
3233 * size and flags don't matter.
3236 clear_watched_area(proc_t *p, struct watched_area *pwa)
3238 struct watched_area *found;
3240 /* we must not be holding p->p_lock, but the process must be locked */
3241 ASSERT(MUTEX_NOT_HELD(&p->p_lock));
3242 ASSERT(p->p_proc_flag & P_PR_LOCK);
3245 if (!pr_watch_active(p)) {
3246 kmem_free(pwa, sizeof (struct watched_area));
3247 return (0);
3251 * Look for a matching address in the watched areas. If a match is
3252 * found, clear the old watched area and adjust the watched page(s). It
3253 * is not an error if there is no match.
3255 if ((found = pr_find_watched_area(p, pwa, NULL)) != NULL &&
3256 found->wa_vaddr == pwa->wa_vaddr) {
3257 clear_watched_page(p, found->wa_vaddr, found->wa_eaddr,
3258 found->wa_flags);
3259 avl_remove(&p->p_warea, found);
3260 kmem_free(found, sizeof (struct watched_area));
3263 kmem_free(pwa, sizeof (struct watched_area));
3266 * If we removed the last watched area from the process, disable
3267 * watchpoints.
3269 if (!pr_watch_active(p)) {
3270 kthread_t *t;
3272 mutex_enter(&p->p_lock);
3273 if ((t = p->p_tlist) != NULL) {
3274 do {
3275 watch_disable(t);
3276 } while ((t = t->t_forw) != p->p_tlist);
3278 mutex_exit(&p->p_lock);
3281 return (0);
3285 * Frees all the watched_area structures
3287 void
3288 pr_free_watchpoints(proc_t *p)
3290 struct watched_area *delp;
3291 void *cookie;
3293 cookie = NULL;
3294 while ((delp = avl_destroy_nodes(&p->p_warea, &cookie)) != NULL)
3295 kmem_free(delp, sizeof (struct watched_area));
3297 avl_destroy(&p->p_warea);
3301 * This one is called by the traced process to unwatch all the
3302 * pages while deallocating the list of watched_page structs.
3304 void
3305 pr_free_watched_pages(proc_t *p)
3307 struct as *as = p->p_as;
3308 struct watched_page *pwp;
3309 uint_t prot;
3310 int retrycnt, err;
3311 void *cookie;
3313 if (as == NULL || avl_numnodes(&as->a_wpage) == 0)
3314 return;
3316 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
3317 AS_LOCK_ENTER(as, RW_WRITER);
3319 pwp = avl_first(&as->a_wpage);
3321 cookie = NULL;
3322 while ((pwp = avl_destroy_nodes(&as->a_wpage, &cookie)) != NULL) {
3323 retrycnt = 0;
3324 if ((prot = pwp->wp_oprot) != 0) {
3325 caddr_t addr = pwp->wp_vaddr;
3326 struct seg *seg;
3327 retry:
3329 if ((pwp->wp_prot != prot ||
3330 (pwp->wp_flags & WP_NOWATCH)) &&
3331 (seg = as_segat(as, addr)) != NULL) {
3332 err = segop_setprot(seg, addr, PAGESIZE, prot);
3333 if (err == IE_RETRY) {
3334 ASSERT(retrycnt == 0);
3335 retrycnt++;
3336 goto retry;
3340 kmem_free(pwp, sizeof (struct watched_page));
3343 avl_destroy(&as->a_wpage);
3344 p->p_wprot = NULL;
3346 AS_LOCK_EXIT(as);
3350 * Insert a watched area into the list of watched pages.
3351 * If oflags is zero then we are adding a new watched area.
3352 * Otherwise we are changing the flags of an existing watched area.
3354 static int
3355 set_watched_page(proc_t *p, caddr_t vaddr, caddr_t eaddr,
3356 ulong_t flags, ulong_t oflags)
3358 struct as *as = p->p_as;
3359 avl_tree_t *pwp_tree;
3360 struct watched_page *pwp, *newpwp;
3361 struct watched_page tpw;
3362 avl_index_t where;
3363 struct seg *seg;
3364 uint_t prot;
3365 caddr_t addr;
3368 * We need to pre-allocate a list of structures before we grab the
3369 * address space lock to avoid calling kmem_alloc(KM_SLEEP) with locks
3370 * held.
3372 newpwp = NULL;
3373 for (addr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
3374 addr < eaddr; addr += PAGESIZE) {
3375 pwp = kmem_zalloc(sizeof (struct watched_page), KM_SLEEP);
3376 pwp->wp_list = newpwp;
3377 newpwp = pwp;
3380 AS_LOCK_ENTER(as, RW_WRITER);
3383 * Search for an existing watched page to contain the watched area.
3384 * If none is found, grab a new one from the available list
3385 * and insert it in the active list, keeping the list sorted
3386 * by user-level virtual address.
3388 if (p->p_flag & SVFWAIT)
3389 pwp_tree = &p->p_wpage;
3390 else
3391 pwp_tree = &as->a_wpage;
3393 again:
3394 if (avl_numnodes(pwp_tree) > prnwatch) {
3395 AS_LOCK_EXIT(as);
3396 while (newpwp != NULL) {
3397 pwp = newpwp->wp_list;
3398 kmem_free(newpwp, sizeof (struct watched_page));
3399 newpwp = pwp;
3401 return (E2BIG);
3404 tpw.wp_vaddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
3405 if ((pwp = avl_find(pwp_tree, &tpw, &where)) == NULL) {
3406 pwp = newpwp;
3407 newpwp = newpwp->wp_list;
3408 pwp->wp_list = NULL;
3409 pwp->wp_vaddr = (caddr_t)((uintptr_t)vaddr &
3410 (uintptr_t)PAGEMASK);
3411 avl_insert(pwp_tree, pwp, where);
3414 ASSERT(vaddr >= pwp->wp_vaddr && vaddr < pwp->wp_vaddr + PAGESIZE);
3416 if (oflags & WA_READ)
3417 pwp->wp_read--;
3418 if (oflags & WA_WRITE)
3419 pwp->wp_write--;
3420 if (oflags & WA_EXEC)
3421 pwp->wp_exec--;
3423 ASSERT(pwp->wp_read >= 0);
3424 ASSERT(pwp->wp_write >= 0);
3425 ASSERT(pwp->wp_exec >= 0);
3427 if (flags & WA_READ)
3428 pwp->wp_read++;
3429 if (flags & WA_WRITE)
3430 pwp->wp_write++;
3431 if (flags & WA_EXEC)
3432 pwp->wp_exec++;
3434 if (!(p->p_flag & SVFWAIT)) {
3435 vaddr = pwp->wp_vaddr;
3436 if (pwp->wp_oprot == 0 &&
3437 (seg = as_segat(as, vaddr)) != NULL) {
3438 (void) segop_getprot(seg, vaddr, 0, &prot);
3439 pwp->wp_oprot = (uchar_t)prot;
3440 pwp->wp_prot = (uchar_t)prot;
3442 if (pwp->wp_oprot != 0) {
3443 prot = pwp->wp_oprot;
3444 if (pwp->wp_read)
3445 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3446 if (pwp->wp_write)
3447 prot &= ~PROT_WRITE;
3448 if (pwp->wp_exec)
3449 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3450 if (!(pwp->wp_flags & WP_NOWATCH) &&
3451 pwp->wp_prot != prot &&
3452 (pwp->wp_flags & WP_SETPROT) == 0) {
3453 pwp->wp_flags |= WP_SETPROT;
3454 pwp->wp_list = p->p_wprot;
3455 p->p_wprot = pwp;
3457 pwp->wp_prot = (uchar_t)prot;
3462 * If the watched area extends into the next page then do
3463 * it over again with the virtual address of the next page.
3465 if ((vaddr = pwp->wp_vaddr + PAGESIZE) < eaddr)
3466 goto again;
3468 AS_LOCK_EXIT(as);
3471 * Free any pages we may have over-allocated
3473 while (newpwp != NULL) {
3474 pwp = newpwp->wp_list;
3475 kmem_free(newpwp, sizeof (struct watched_page));
3476 newpwp = pwp;
3479 return (0);
3483 * Remove a watched area from the list of watched pages.
3484 * A watched area may extend over more than one page.
3486 static void
3487 clear_watched_page(proc_t *p, caddr_t vaddr, caddr_t eaddr, ulong_t flags)
3489 struct as *as = p->p_as;
3490 struct watched_page *pwp;
3491 struct watched_page tpw;
3492 avl_tree_t *tree;
3493 avl_index_t where;
3495 AS_LOCK_ENTER(as, RW_WRITER);
3497 if (p->p_flag & SVFWAIT)
3498 tree = &p->p_wpage;
3499 else
3500 tree = &as->a_wpage;
3502 tpw.wp_vaddr = vaddr =
3503 (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
3504 pwp = avl_find(tree, &tpw, &where);
3505 if (pwp == NULL)
3506 pwp = avl_nearest(tree, where, AVL_AFTER);
3508 while (pwp != NULL && pwp->wp_vaddr < eaddr) {
3509 ASSERT(vaddr <= pwp->wp_vaddr);
3511 if (flags & WA_READ)
3512 pwp->wp_read--;
3513 if (flags & WA_WRITE)
3514 pwp->wp_write--;
3515 if (flags & WA_EXEC)
3516 pwp->wp_exec--;
3518 if (pwp->wp_read + pwp->wp_write + pwp->wp_exec != 0) {
3520 * Reset the hat layer's protections on this page.
3522 if (pwp->wp_oprot != 0) {
3523 uint_t prot = pwp->wp_oprot;
3525 if (pwp->wp_read)
3526 prot &=
3527 ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3528 if (pwp->wp_write)
3529 prot &= ~PROT_WRITE;
3530 if (pwp->wp_exec)
3531 prot &=
3532 ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3533 if (!(pwp->wp_flags & WP_NOWATCH) &&
3534 pwp->wp_prot != prot &&
3535 (pwp->wp_flags & WP_SETPROT) == 0) {
3536 pwp->wp_flags |= WP_SETPROT;
3537 pwp->wp_list = p->p_wprot;
3538 p->p_wprot = pwp;
3540 pwp->wp_prot = (uchar_t)prot;
3542 } else {
3544 * No watched areas remain in this page.
3545 * Reset everything to normal.
3547 if (pwp->wp_oprot != 0) {
3548 pwp->wp_prot = pwp->wp_oprot;
3549 if ((pwp->wp_flags & WP_SETPROT) == 0) {
3550 pwp->wp_flags |= WP_SETPROT;
3551 pwp->wp_list = p->p_wprot;
3552 p->p_wprot = pwp;
3557 pwp = AVL_NEXT(tree, pwp);
3560 AS_LOCK_EXIT(as);
3564 * Return the original protections for the specified page.
3566 static void
3567 getwatchprot(struct as *as, caddr_t addr, uint_t *prot)
3569 struct watched_page *pwp;
3570 struct watched_page tpw;
3572 ASSERT(AS_LOCK_HELD(as));
3574 tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3575 if ((pwp = avl_find(&as->a_wpage, &tpw, NULL)) != NULL)
3576 *prot = pwp->wp_oprot;
3579 static prpagev_t *
3580 pr_pagev_create(struct seg *seg, int check_noreserve)
3582 prpagev_t *pagev = kmem_alloc(sizeof (prpagev_t), KM_SLEEP);
3583 size_t total_pages = seg_pages(seg);
3586 * Limit the size of our vectors to pagev_lim pages at a time. We need
3587 * 4 or 5 bytes of storage per page, so this means we limit ourself
3588 * to about a megabyte of kernel heap by default.
3590 pagev->pg_npages = MIN(total_pages, pagev_lim);
3591 pagev->pg_pnbase = 0;
3593 pagev->pg_protv =
3594 kmem_alloc(pagev->pg_npages * sizeof (uint_t), KM_SLEEP);
3596 if (check_noreserve)
3597 pagev->pg_incore =
3598 kmem_alloc(pagev->pg_npages * sizeof (char), KM_SLEEP);
3599 else
3600 pagev->pg_incore = NULL;
3602 return (pagev);
3605 static void
3606 pr_pagev_destroy(prpagev_t *pagev)
3608 if (pagev->pg_incore != NULL)
3609 kmem_free(pagev->pg_incore, pagev->pg_npages * sizeof (char));
3611 kmem_free(pagev->pg_protv, pagev->pg_npages * sizeof (uint_t));
3612 kmem_free(pagev, sizeof (prpagev_t));
3615 static caddr_t
3616 pr_pagev_fill(prpagev_t *pagev, struct seg *seg, caddr_t addr, caddr_t eaddr)
3618 ulong_t lastpg = seg_page(seg, eaddr - 1);
3619 ulong_t pn, pnlim;
3620 caddr_t saddr;
3621 size_t len;
3623 ASSERT(addr >= seg->s_base && addr <= eaddr);
3625 if (addr == eaddr)
3626 return (eaddr);
3628 refill:
3629 ASSERT(addr < eaddr);
3630 pagev->pg_pnbase = seg_page(seg, addr);
3631 pnlim = pagev->pg_pnbase + pagev->pg_npages;
3632 saddr = addr;
3634 if (lastpg < pnlim)
3635 len = (size_t)(eaddr - addr);
3636 else
3637 len = pagev->pg_npages * PAGESIZE;
3639 if (pagev->pg_incore != NULL) {
3641 * INCORE cleverly has different semantics than GETPROT:
3642 * it returns info on pages up to but NOT including addr + len.
3644 (void) segop_incore(seg, addr, len, pagev->pg_incore);
3645 pn = pagev->pg_pnbase;
3647 do {
3649 * Guilty knowledge here: We know that segvn_incore
3650 * returns more than just the low-order bit that
3651 * indicates the page is actually in memory. If any
3652 * bits are set, then the page has backing store.
3654 if (pagev->pg_incore[pn++ - pagev->pg_pnbase])
3655 goto out;
3657 } while ((addr += PAGESIZE) < eaddr && pn < pnlim);
3660 * If we examined all the pages in the vector but we're not
3661 * at the end of the segment, take another lap.
3663 if (addr < eaddr)
3664 goto refill;
3668 * Need to take len - 1 because addr + len is the address of the
3669 * first byte of the page just past the end of what we want.
3671 out:
3672 (void) segop_getprot(seg, saddr, len - 1, pagev->pg_protv);
3673 return (addr);
3676 static caddr_t
3677 pr_pagev_nextprot(prpagev_t *pagev, struct seg *seg,
3678 caddr_t *saddrp, caddr_t eaddr, uint_t *protp)
3681 * Our starting address is either the specified address, or the base
3682 * address from the start of the pagev. If the latter is greater,
3683 * this means a previous call to pr_pagev_fill has already scanned
3684 * further than the end of the previous mapping.
3686 caddr_t base = seg->s_base + pagev->pg_pnbase * PAGESIZE;
3687 caddr_t addr = MAX(*saddrp, base);
3688 ulong_t pn = seg_page(seg, addr);
3689 uint_t prot, nprot;
3692 * If we're dealing with noreserve pages, then advance addr to
3693 * the address of the next page which has backing store.
3695 if (pagev->pg_incore != NULL) {
3696 while (pagev->pg_incore[pn - pagev->pg_pnbase] == 0) {
3697 if ((addr += PAGESIZE) == eaddr) {
3698 *saddrp = addr;
3699 prot = 0;
3700 goto out;
3702 if (++pn == pagev->pg_pnbase + pagev->pg_npages) {
3703 addr = pr_pagev_fill(pagev, seg, addr, eaddr);
3704 if (addr == eaddr) {
3705 *saddrp = addr;
3706 prot = 0;
3707 goto out;
3709 pn = seg_page(seg, addr);
3715 * Get the protections on the page corresponding to addr.
3717 pn = seg_page(seg, addr);
3718 ASSERT(pn >= pagev->pg_pnbase);
3719 ASSERT(pn < (pagev->pg_pnbase + pagev->pg_npages));
3721 prot = pagev->pg_protv[pn - pagev->pg_pnbase];
3722 getwatchprot(seg->s_as, addr, &prot);
3723 *saddrp = addr;
3726 * Now loop until we find a backed page with different protections
3727 * or we reach the end of this segment.
3729 while ((addr += PAGESIZE) < eaddr) {
3731 * If pn has advanced to the page number following what we
3732 * have information on, refill the page vector and reset
3733 * addr and pn. If pr_pagev_fill does not return the
3734 * address of the next page, we have a discontiguity and
3735 * thus have reached the end of the current mapping.
3737 if (++pn == pagev->pg_pnbase + pagev->pg_npages) {
3738 caddr_t naddr = pr_pagev_fill(pagev, seg, addr, eaddr);
3739 if (naddr != addr)
3740 goto out;
3741 pn = seg_page(seg, addr);
3745 * The previous page's protections are in prot, and it has
3746 * backing. If this page is MAP_NORESERVE and has no backing,
3747 * then end this mapping and return the previous protections.
3749 if (pagev->pg_incore != NULL &&
3750 pagev->pg_incore[pn - pagev->pg_pnbase] == 0)
3751 break;
3754 * Otherwise end the mapping if this page's protections (nprot)
3755 * are different than those in the previous page (prot).
3757 nprot = pagev->pg_protv[pn - pagev->pg_pnbase];
3758 getwatchprot(seg->s_as, addr, &nprot);
3760 if (nprot != prot)
3761 break;
3764 out:
3765 *protp = prot;
3766 return (addr);
3769 size_t
3770 pr_getsegsize(struct seg *seg, int reserved)
3772 size_t size = seg->s_size;
3775 * If we're interested in the reserved space, return the size of the
3776 * segment itself. Everything else in this function is a special case
3777 * to determine the actual underlying size of various segment types.
3779 if (reserved)
3780 return (size);
3783 * If this is a segvn mapping of a regular file, return the smaller
3784 * of the segment size and the remaining size of the file beyond
3785 * the file offset corresponding to seg->s_base.
3787 if (seg->s_ops == &segvn_ops) {
3788 vattr_t vattr;
3789 vnode_t *vp;
3791 vattr.va_mask = AT_SIZE;
3793 if (segop_getvp(seg, seg->s_base, &vp) == 0 &&
3794 vp != NULL && vp->v_type == VREG &&
3795 fop_getattr(vp, &vattr, 0, CRED(), NULL) == 0) {
3797 uoff_t fsize = vattr.va_size;
3798 uoff_t offset = segop_getoffset(seg, seg->s_base);
3800 if (fsize < offset)
3801 fsize = 0;
3802 else
3803 fsize -= offset;
3805 fsize = roundup(fsize, (uoff_t)PAGESIZE);
3807 if (fsize < (uoff_t)size)
3808 size = (size_t)fsize;
3811 return (size);
3815 * If this is an ISM shared segment, don't include pages that are
3816 * beyond the real size of the spt segment that backs it.
3818 if (seg->s_ops == &segspt_shmops)
3819 return (MIN(spt_realsize(seg), size));
3822 * If this is segment is a mapping from /dev/null, then this is a
3823 * reservation of virtual address space and has no actual size.
3824 * Such segments are backed by segdev and have type set to neither
3825 * MAP_SHARED nor MAP_PRIVATE.
3827 if (seg->s_ops == &segdev_ops &&
3828 ((segop_gettype(seg, seg->s_base) &
3829 (MAP_SHARED | MAP_PRIVATE)) == 0))
3830 return (0);
3833 * If this segment doesn't match one of the special types we handle,
3834 * just return the size of the segment itself.
3836 return (size);
3839 uint_t
3840 pr_getprot(struct seg *seg, int reserved, void **tmp,
3841 caddr_t *saddrp, caddr_t *naddrp, caddr_t eaddr)
3843 struct as *as = seg->s_as;
3845 caddr_t saddr = *saddrp;
3846 caddr_t naddr;
3848 int check_noreserve;
3849 uint_t prot;
3851 union {
3852 struct segvn_data *svd;
3853 struct segdev_data *sdp;
3854 void *data;
3855 } s;
3857 s.data = seg->s_data;
3859 ASSERT(AS_WRITE_HELD(as));
3860 ASSERT(saddr >= seg->s_base && saddr < eaddr);
3861 ASSERT(eaddr <= seg->s_base + seg->s_size);
3864 * Don't include MAP_NORESERVE pages in the address range
3865 * unless their mappings have actually materialized.
3866 * We cheat by knowing that segvn is the only segment
3867 * driver that supports MAP_NORESERVE.
3869 check_noreserve =
3870 (!reserved && seg->s_ops == &segvn_ops && s.svd != NULL &&
3871 (s.svd->vp == NULL || s.svd->vp->v_type != VREG) &&
3872 (s.svd->flags & MAP_NORESERVE));
3875 * Examine every page only as a last resort. We use guilty knowledge
3876 * of segvn and segdev to avoid this: if there are no per-page
3877 * protections present in the segment and we don't care about
3878 * MAP_NORESERVE, then s_data->prot is the prot for the whole segment.
3880 if (!check_noreserve && saddr == seg->s_base &&
3881 seg->s_ops == &segvn_ops && s.svd != NULL && s.svd->pageprot == 0) {
3882 prot = s.svd->prot;
3883 getwatchprot(as, saddr, &prot);
3884 naddr = eaddr;
3886 } else if (saddr == seg->s_base && seg->s_ops == &segdev_ops &&
3887 s.sdp != NULL && s.sdp->pageprot == 0) {
3888 prot = s.sdp->prot;
3889 getwatchprot(as, saddr, &prot);
3890 naddr = eaddr;
3892 } else {
3893 prpagev_t *pagev;
3896 * If addr is sitting at the start of the segment, then
3897 * create a page vector to store protection and incore
3898 * information for pages in the segment, and fill it.
3899 * Otherwise, we expect *tmp to address the prpagev_t
3900 * allocated by a previous call to this function.
3902 if (saddr == seg->s_base) {
3903 pagev = pr_pagev_create(seg, check_noreserve);
3904 saddr = pr_pagev_fill(pagev, seg, saddr, eaddr);
3906 ASSERT(*tmp == NULL);
3907 *tmp = pagev;
3909 ASSERT(saddr <= eaddr);
3910 *saddrp = saddr;
3912 if (saddr == eaddr) {
3913 naddr = saddr;
3914 prot = 0;
3915 goto out;
3918 } else {
3919 ASSERT(*tmp != NULL);
3920 pagev = (prpagev_t *)*tmp;
3923 naddr = pr_pagev_nextprot(pagev, seg, saddrp, eaddr, &prot);
3924 ASSERT(naddr <= eaddr);
3927 out:
3928 if (naddr == eaddr)
3929 pr_getprot_done(tmp);
3930 *naddrp = naddr;
3931 return (prot);
3934 void
3935 pr_getprot_done(void **tmp)
3937 if (*tmp != NULL) {
3938 pr_pagev_destroy((prpagev_t *)*tmp);
3939 *tmp = NULL;
3944 * Return true iff the vnode is a /proc file from the object directory.
3947 pr_isobject(vnode_t *vp)
3949 return (vn_matchops(vp, &prvnodeops) && VTOP(vp)->pr_type == PR_OBJECT);
3953 * Return true iff the vnode is a /proc file opened by the process itself.
3956 pr_isself(vnode_t *vp)
3959 * XXX: To retain binary compatibility with the old
3960 * ioctl()-based version of /proc, we exempt self-opens
3961 * of /proc/<pid> from being marked close-on-exec.
3963 return (vn_matchops(vp, &prvnodeops) &&
3964 (VTOP(vp)->pr_flags & PR_ISSELF) &&
3965 VTOP(vp)->pr_type != PR_PIDDIR);
3968 static ssize_t
3969 pr_getpagesize(struct seg *seg, caddr_t saddr, caddr_t *naddrp, caddr_t eaddr)
3971 ssize_t pagesize, hatsize;
3973 ASSERT(AS_WRITE_HELD(seg->s_as));
3974 ASSERT(IS_P2ALIGNED(saddr, PAGESIZE));
3975 ASSERT(IS_P2ALIGNED(eaddr, PAGESIZE));
3976 ASSERT(saddr < eaddr);
3978 pagesize = hatsize = hat_getpagesize(seg->s_as->a_hat, saddr);
3979 ASSERT(pagesize == -1 || IS_P2ALIGNED(pagesize, pagesize));
3980 ASSERT(pagesize != 0);
3982 if (pagesize == -1)
3983 pagesize = PAGESIZE;
3985 saddr += P2NPHASE((uintptr_t)saddr, pagesize);
3987 while (saddr < eaddr) {
3988 if (hatsize != hat_getpagesize(seg->s_as->a_hat, saddr))
3989 break;
3990 ASSERT(IS_P2ALIGNED(saddr, pagesize));
3991 saddr += pagesize;
3994 *naddrp = ((saddr < eaddr) ? saddr : eaddr);
3995 return (hatsize);
3999 * Return an array of structures with extended memory map information.
4000 * We allocate here; the caller must deallocate.
4003 prgetxmap(proc_t *p, list_t *iolhead)
4005 struct as *as = p->p_as;
4006 prxmap_t *mp;
4007 struct seg *seg;
4008 struct seg *brkseg, *stkseg;
4009 struct vnode *vp;
4010 struct vattr vattr;
4011 uint_t prot;
4013 ASSERT(as != &kas && AS_WRITE_HELD(as));
4016 * Request an initial buffer size that doesn't waste memory
4017 * if the address space has only a small number of segments.
4019 pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree));
4021 if ((seg = AS_SEGFIRST(as)) == NULL)
4022 return (0);
4024 brkseg = break_seg(p);
4025 stkseg = as_segat(as, prgetstackbase(p));
4027 do {
4028 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
4029 caddr_t saddr, naddr, baddr;
4030 void *tmp = NULL;
4031 ssize_t psz;
4032 char *parr;
4033 uint64_t npages;
4034 uint64_t pagenum;
4037 * Segment loop part one: iterate from the base of the segment
4038 * to its end, pausing at each address boundary (baddr) between
4039 * ranges that have different virtual memory protections.
4041 for (saddr = seg->s_base; saddr < eaddr; saddr = baddr) {
4042 prot = pr_getprot(seg, 0, &tmp, &saddr, &baddr, eaddr);
4043 ASSERT(baddr >= saddr && baddr <= eaddr);
4046 * Segment loop part two: iterate from the current
4047 * position to the end of the protection boundary,
4048 * pausing at each address boundary (naddr) between
4049 * ranges that have different underlying page sizes.
4051 for (; saddr < baddr; saddr = naddr) {
4052 psz = pr_getpagesize(seg, saddr, &naddr, baddr);
4053 ASSERT(naddr >= saddr && naddr <= baddr);
4055 mp = pr_iol_newbuf(iolhead, sizeof (*mp));
4057 mp->pr_vaddr = (uintptr_t)saddr;
4058 mp->pr_size = naddr - saddr;
4059 mp->pr_offset = segop_getoffset(seg, saddr);
4060 mp->pr_mflags = 0;
4061 if (prot & PROT_READ)
4062 mp->pr_mflags |= MA_READ;
4063 if (prot & PROT_WRITE)
4064 mp->pr_mflags |= MA_WRITE;
4065 if (prot & PROT_EXEC)
4066 mp->pr_mflags |= MA_EXEC;
4067 if (segop_gettype(seg, saddr) & MAP_SHARED)
4068 mp->pr_mflags |= MA_SHARED;
4069 if (segop_gettype(seg, saddr) & MAP_NORESERVE)
4070 mp->pr_mflags |= MA_NORESERVE;
4071 if (seg->s_ops == &segspt_shmops ||
4072 (seg->s_ops == &segvn_ops &&
4073 (segop_getvp(seg, saddr, &vp) != 0 ||
4074 vp == NULL)))
4075 mp->pr_mflags |= MA_ANON;
4076 if (seg == brkseg)
4077 mp->pr_mflags |= MA_BREAK;
4078 else if (seg == stkseg)
4079 mp->pr_mflags |= MA_STACK;
4080 if (seg->s_ops == &segspt_shmops)
4081 mp->pr_mflags |= MA_ISM | MA_SHM;
4083 mp->pr_pagesize = PAGESIZE;
4084 if (psz == -1) {
4085 mp->pr_hatpagesize = 0;
4086 } else {
4087 mp->pr_hatpagesize = psz;
4091 * Manufacture a filename for the "object" dir.
4093 mp->pr_dev = PRNODEV;
4094 vattr.va_mask = AT_FSID|AT_NODEID;
4095 if (seg->s_ops == &segvn_ops &&
4096 segop_getvp(seg, saddr, &vp) == 0 &&
4097 vp != NULL && vp->v_type == VREG &&
4098 fop_getattr(vp, &vattr, 0, CRED(),
4099 NULL) == 0) {
4100 mp->pr_dev = vattr.va_fsid;
4101 mp->pr_ino = vattr.va_nodeid;
4102 if (vp == p->p_exec)
4103 (void) strcpy(mp->pr_mapname,
4104 "a.out");
4105 else
4106 pr_object_name(mp->pr_mapname,
4107 vp, &vattr);
4111 * Get the SysV shared memory id, if any.
4113 if ((mp->pr_mflags & MA_SHARED) &&
4114 p->p_segacct && (mp->pr_shmid = shmgetid(p,
4115 seg->s_base)) != SHMID_NONE) {
4116 if (mp->pr_shmid == SHMID_FREE)
4117 mp->pr_shmid = -1;
4119 mp->pr_mflags |= MA_SHM;
4120 } else {
4121 mp->pr_shmid = -1;
4124 npages = ((uintptr_t)(naddr - saddr)) >>
4125 PAGESHIFT;
4126 parr = kmem_zalloc(npages, KM_SLEEP);
4128 (void) segop_incore(seg, saddr, naddr - saddr,
4129 parr);
4131 for (pagenum = 0; pagenum < npages; pagenum++) {
4132 if (parr[pagenum] & SEG_PAGE_INCORE)
4133 mp->pr_rss++;
4134 if (parr[pagenum] & SEG_PAGE_ANON)
4135 mp->pr_anon++;
4136 if (parr[pagenum] & SEG_PAGE_LOCKED)
4137 mp->pr_locked++;
4139 kmem_free(parr, npages);
4142 ASSERT(tmp == NULL);
4143 } while ((seg = AS_SEGNEXT(as, seg)) != NULL);
4145 return (0);
4149 * Return the process's credentials. We don't need a 32-bit equivalent of
4150 * this function because prcred_t and prcred32_t are actually the same.
4152 void
4153 prgetcred(proc_t *p, prcred_t *pcrp)
4155 mutex_enter(&p->p_crlock);
4156 cred2prcred(p->p_cred, pcrp);
4157 mutex_exit(&p->p_crlock);
4160 void
4161 prgetsecflags(proc_t *p, prsecflags_t *psfp)
4163 ASSERT(psfp != NULL);
4165 psfp->pr_version = PRSECFLAGS_VERSION_CURRENT;
4166 psfp->pr_lower = p->p_secflags.psf_lower;
4167 psfp->pr_upper = p->p_secflags.psf_upper;
4168 psfp->pr_effective = p->p_secflags.psf_effective;
4169 psfp->pr_inherit = p->p_secflags.psf_inherit;
4173 * Compute actual size of the prpriv_t structure.
4176 size_t
4177 prgetprivsize(void)
4179 return (priv_prgetprivsize(NULL));
4183 * Return the process's privileges. We don't need a 32-bit equivalent of
4184 * this function because prpriv_t and prpriv32_t are actually the same.
4186 void
4187 prgetpriv(proc_t *p, prpriv_t *pprp)
4189 mutex_enter(&p->p_crlock);
4190 cred2prpriv(p->p_cred, pprp);
4191 mutex_exit(&p->p_crlock);
4194 #ifdef _SYSCALL32_IMPL
4196 * Return an array of structures with HAT memory map information.
4197 * We allocate here; the caller must deallocate.
4200 prgetxmap32(proc_t *p, list_t *iolhead)
4202 struct as *as = p->p_as;
4203 prxmap32_t *mp;
4204 struct seg *seg;
4205 struct seg *brkseg, *stkseg;
4206 struct vnode *vp;
4207 struct vattr vattr;
4208 uint_t prot;
4210 ASSERT(as != &kas && AS_WRITE_HELD(as));
4213 * Request an initial buffer size that doesn't waste memory
4214 * if the address space has only a small number of segments.
4216 pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree));
4218 if ((seg = AS_SEGFIRST(as)) == NULL)
4219 return (0);
4221 brkseg = break_seg(p);
4222 stkseg = as_segat(as, prgetstackbase(p));
4224 do {
4225 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
4226 caddr_t saddr, naddr, baddr;
4227 void *tmp = NULL;
4228 ssize_t psz;
4229 char *parr;
4230 uint64_t npages;
4231 uint64_t pagenum;
4234 * Segment loop part one: iterate from the base of the segment
4235 * to its end, pausing at each address boundary (baddr) between
4236 * ranges that have different virtual memory protections.
4238 for (saddr = seg->s_base; saddr < eaddr; saddr = baddr) {
4239 prot = pr_getprot(seg, 0, &tmp, &saddr, &baddr, eaddr);
4240 ASSERT(baddr >= saddr && baddr <= eaddr);
4243 * Segment loop part two: iterate from the current
4244 * position to the end of the protection boundary,
4245 * pausing at each address boundary (naddr) between
4246 * ranges that have different underlying page sizes.
4248 for (; saddr < baddr; saddr = naddr) {
4249 psz = pr_getpagesize(seg, saddr, &naddr, baddr);
4250 ASSERT(naddr >= saddr && naddr <= baddr);
4252 mp = pr_iol_newbuf(iolhead, sizeof (*mp));
4254 mp->pr_vaddr = (caddr32_t)(uintptr_t)saddr;
4255 mp->pr_size = (size32_t)(naddr - saddr);
4256 mp->pr_offset = segop_getoffset(seg, saddr);
4257 mp->pr_mflags = 0;
4258 if (prot & PROT_READ)
4259 mp->pr_mflags |= MA_READ;
4260 if (prot & PROT_WRITE)
4261 mp->pr_mflags |= MA_WRITE;
4262 if (prot & PROT_EXEC)
4263 mp->pr_mflags |= MA_EXEC;
4264 if (segop_gettype(seg, saddr) & MAP_SHARED)
4265 mp->pr_mflags |= MA_SHARED;
4266 if (segop_gettype(seg, saddr) & MAP_NORESERVE)
4267 mp->pr_mflags |= MA_NORESERVE;
4268 if (seg->s_ops == &segspt_shmops ||
4269 (seg->s_ops == &segvn_ops &&
4270 (segop_getvp(seg, saddr, &vp) != 0 ||
4271 vp == NULL)))
4272 mp->pr_mflags |= MA_ANON;
4273 if (seg == brkseg)
4274 mp->pr_mflags |= MA_BREAK;
4275 else if (seg == stkseg)
4276 mp->pr_mflags |= MA_STACK;
4277 if (seg->s_ops == &segspt_shmops)
4278 mp->pr_mflags |= MA_ISM | MA_SHM;
4280 mp->pr_pagesize = PAGESIZE;
4281 if (psz == -1) {
4282 mp->pr_hatpagesize = 0;
4283 } else {
4284 mp->pr_hatpagesize = psz;
4288 * Manufacture a filename for the "object" dir.
4290 mp->pr_dev = PRNODEV32;
4291 vattr.va_mask = AT_FSID|AT_NODEID;
4292 if (seg->s_ops == &segvn_ops &&
4293 segop_getvp(seg, saddr, &vp) == 0 &&
4294 vp != NULL && vp->v_type == VREG &&
4295 fop_getattr(vp, &vattr, 0, CRED(),
4296 NULL) == 0) {
4297 (void) cmpldev(&mp->pr_dev,
4298 vattr.va_fsid);
4299 mp->pr_ino = vattr.va_nodeid;
4300 if (vp == p->p_exec)
4301 (void) strcpy(mp->pr_mapname,
4302 "a.out");
4303 else
4304 pr_object_name(mp->pr_mapname,
4305 vp, &vattr);
4309 * Get the SysV shared memory id, if any.
4311 if ((mp->pr_mflags & MA_SHARED) &&
4312 p->p_segacct && (mp->pr_shmid = shmgetid(p,
4313 seg->s_base)) != SHMID_NONE) {
4314 if (mp->pr_shmid == SHMID_FREE)
4315 mp->pr_shmid = -1;
4317 mp->pr_mflags |= MA_SHM;
4318 } else {
4319 mp->pr_shmid = -1;
4322 npages = ((uintptr_t)(naddr - saddr)) >>
4323 PAGESHIFT;
4324 parr = kmem_zalloc(npages, KM_SLEEP);
4326 (void) segop_incore(seg, saddr, naddr - saddr,
4327 parr);
4329 for (pagenum = 0; pagenum < npages; pagenum++) {
4330 if (parr[pagenum] & SEG_PAGE_INCORE)
4331 mp->pr_rss++;
4332 if (parr[pagenum] & SEG_PAGE_ANON)
4333 mp->pr_anon++;
4334 if (parr[pagenum] & SEG_PAGE_LOCKED)
4335 mp->pr_locked++;
4337 kmem_free(parr, npages);
4340 ASSERT(tmp == NULL);
4341 } while ((seg = AS_SEGNEXT(as, seg)) != NULL);
4343 return (0);
4345 #endif /* _SYSCALL32_IMPL */