7016 arc_available_memory is not 32-bit safe
[unleashed.git] / usr / src / uts / common / fs / zfs / arc.c
blob3c3cbdf4c180b705919d566b5f890a7c654c3b29
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
30 * DVA-based Adjustable Replacement Cache
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
75 * The locking model:
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()). Note however that the data associated
105 * with the buffer may be evicted prior to the callback. The callback
106 * must be made with *no locks held* (to prevent deadlock). Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
116 * - L2ARC buflist creation
117 * - L2ARC buflist eviction
118 * - L2ARC write completion, which walks L2ARC buflists
119 * - ARC header destruction, as it removes from L2ARC buflists
120 * - ARC header release, as it removes from L2ARC buflists
123 #include <sys/spa.h>
124 #include <sys/zio.h>
125 #include <sys/zio_compress.h>
126 #include <sys/zfs_context.h>
127 #include <sys/arc.h>
128 #include <sys/refcount.h>
129 #include <sys/vdev.h>
130 #include <sys/vdev_impl.h>
131 #include <sys/dsl_pool.h>
132 #include <sys/multilist.h>
133 #ifdef _KERNEL
134 #include <sys/vmsystm.h>
135 #include <vm/anon.h>
136 #include <sys/fs/swapnode.h>
137 #include <sys/dnlc.h>
138 #endif
139 #include <sys/callb.h>
140 #include <sys/kstat.h>
141 #include <zfs_fletcher.h>
143 #ifndef _KERNEL
144 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
145 boolean_t arc_watch = B_FALSE;
146 int arc_procfd;
147 #endif
149 static kmutex_t arc_reclaim_lock;
150 static kcondvar_t arc_reclaim_thread_cv;
151 static boolean_t arc_reclaim_thread_exit;
152 static kcondvar_t arc_reclaim_waiters_cv;
154 static kmutex_t arc_user_evicts_lock;
155 static kcondvar_t arc_user_evicts_cv;
156 static boolean_t arc_user_evicts_thread_exit;
158 uint_t arc_reduce_dnlc_percent = 3;
161 * The number of headers to evict in arc_evict_state_impl() before
162 * dropping the sublist lock and evicting from another sublist. A lower
163 * value means we're more likely to evict the "correct" header (i.e. the
164 * oldest header in the arc state), but comes with higher overhead
165 * (i.e. more invocations of arc_evict_state_impl()).
167 int zfs_arc_evict_batch_limit = 10;
170 * The number of sublists used for each of the arc state lists. If this
171 * is not set to a suitable value by the user, it will be configured to
172 * the number of CPUs on the system in arc_init().
174 int zfs_arc_num_sublists_per_state = 0;
176 /* number of seconds before growing cache again */
177 static int arc_grow_retry = 60;
179 /* shift of arc_c for calculating overflow limit in arc_get_data_buf */
180 int zfs_arc_overflow_shift = 8;
182 /* shift of arc_c for calculating both min and max arc_p */
183 static int arc_p_min_shift = 4;
185 /* log2(fraction of arc to reclaim) */
186 static int arc_shrink_shift = 7;
189 * log2(fraction of ARC which must be free to allow growing).
190 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
191 * when reading a new block into the ARC, we will evict an equal-sized block
192 * from the ARC.
194 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
195 * we will still not allow it to grow.
197 int arc_no_grow_shift = 5;
201 * minimum lifespan of a prefetch block in clock ticks
202 * (initialized in arc_init())
204 static int arc_min_prefetch_lifespan;
207 * If this percent of memory is free, don't throttle.
209 int arc_lotsfree_percent = 10;
211 static int arc_dead;
214 * The arc has filled available memory and has now warmed up.
216 static boolean_t arc_warm;
219 * log2 fraction of the zio arena to keep free.
221 int arc_zio_arena_free_shift = 2;
224 * These tunables are for performance analysis.
226 uint64_t zfs_arc_max;
227 uint64_t zfs_arc_min;
228 uint64_t zfs_arc_meta_limit = 0;
229 uint64_t zfs_arc_meta_min = 0;
230 int zfs_arc_grow_retry = 0;
231 int zfs_arc_shrink_shift = 0;
232 int zfs_arc_p_min_shift = 0;
233 int zfs_disable_dup_eviction = 0;
234 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
237 * Note that buffers can be in one of 6 states:
238 * ARC_anon - anonymous (discussed below)
239 * ARC_mru - recently used, currently cached
240 * ARC_mru_ghost - recentely used, no longer in cache
241 * ARC_mfu - frequently used, currently cached
242 * ARC_mfu_ghost - frequently used, no longer in cache
243 * ARC_l2c_only - exists in L2ARC but not other states
244 * When there are no active references to the buffer, they are
245 * are linked onto a list in one of these arc states. These are
246 * the only buffers that can be evicted or deleted. Within each
247 * state there are multiple lists, one for meta-data and one for
248 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
249 * etc.) is tracked separately so that it can be managed more
250 * explicitly: favored over data, limited explicitly.
252 * Anonymous buffers are buffers that are not associated with
253 * a DVA. These are buffers that hold dirty block copies
254 * before they are written to stable storage. By definition,
255 * they are "ref'd" and are considered part of arc_mru
256 * that cannot be freed. Generally, they will aquire a DVA
257 * as they are written and migrate onto the arc_mru list.
259 * The ARC_l2c_only state is for buffers that are in the second
260 * level ARC but no longer in any of the ARC_m* lists. The second
261 * level ARC itself may also contain buffers that are in any of
262 * the ARC_m* states - meaning that a buffer can exist in two
263 * places. The reason for the ARC_l2c_only state is to keep the
264 * buffer header in the hash table, so that reads that hit the
265 * second level ARC benefit from these fast lookups.
268 typedef struct arc_state {
270 * list of evictable buffers
272 multilist_t arcs_list[ARC_BUFC_NUMTYPES];
274 * total amount of evictable data in this state
276 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];
278 * total amount of data in this state; this includes: evictable,
279 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
281 refcount_t arcs_size;
282 } arc_state_t;
284 /* The 6 states: */
285 static arc_state_t ARC_anon;
286 static arc_state_t ARC_mru;
287 static arc_state_t ARC_mru_ghost;
288 static arc_state_t ARC_mfu;
289 static arc_state_t ARC_mfu_ghost;
290 static arc_state_t ARC_l2c_only;
292 typedef struct arc_stats {
293 kstat_named_t arcstat_hits;
294 kstat_named_t arcstat_misses;
295 kstat_named_t arcstat_demand_data_hits;
296 kstat_named_t arcstat_demand_data_misses;
297 kstat_named_t arcstat_demand_metadata_hits;
298 kstat_named_t arcstat_demand_metadata_misses;
299 kstat_named_t arcstat_prefetch_data_hits;
300 kstat_named_t arcstat_prefetch_data_misses;
301 kstat_named_t arcstat_prefetch_metadata_hits;
302 kstat_named_t arcstat_prefetch_metadata_misses;
303 kstat_named_t arcstat_mru_hits;
304 kstat_named_t arcstat_mru_ghost_hits;
305 kstat_named_t arcstat_mfu_hits;
306 kstat_named_t arcstat_mfu_ghost_hits;
307 kstat_named_t arcstat_deleted;
309 * Number of buffers that could not be evicted because the hash lock
310 * was held by another thread. The lock may not necessarily be held
311 * by something using the same buffer, since hash locks are shared
312 * by multiple buffers.
314 kstat_named_t arcstat_mutex_miss;
316 * Number of buffers skipped because they have I/O in progress, are
317 * indrect prefetch buffers that have not lived long enough, or are
318 * not from the spa we're trying to evict from.
320 kstat_named_t arcstat_evict_skip;
322 * Number of times arc_evict_state() was unable to evict enough
323 * buffers to reach it's target amount.
325 kstat_named_t arcstat_evict_not_enough;
326 kstat_named_t arcstat_evict_l2_cached;
327 kstat_named_t arcstat_evict_l2_eligible;
328 kstat_named_t arcstat_evict_l2_ineligible;
329 kstat_named_t arcstat_evict_l2_skip;
330 kstat_named_t arcstat_hash_elements;
331 kstat_named_t arcstat_hash_elements_max;
332 kstat_named_t arcstat_hash_collisions;
333 kstat_named_t arcstat_hash_chains;
334 kstat_named_t arcstat_hash_chain_max;
335 kstat_named_t arcstat_p;
336 kstat_named_t arcstat_c;
337 kstat_named_t arcstat_c_min;
338 kstat_named_t arcstat_c_max;
339 kstat_named_t arcstat_size;
341 * Number of bytes consumed by internal ARC structures necessary
342 * for tracking purposes; these structures are not actually
343 * backed by ARC buffers. This includes arc_buf_hdr_t structures
344 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
345 * caches), and arc_buf_t structures (allocated via arc_buf_t
346 * cache).
348 kstat_named_t arcstat_hdr_size;
350 * Number of bytes consumed by ARC buffers of type equal to
351 * ARC_BUFC_DATA. This is generally consumed by buffers backing
352 * on disk user data (e.g. plain file contents).
354 kstat_named_t arcstat_data_size;
356 * Number of bytes consumed by ARC buffers of type equal to
357 * ARC_BUFC_METADATA. This is generally consumed by buffers
358 * backing on disk data that is used for internal ZFS
359 * structures (e.g. ZAP, dnode, indirect blocks, etc).
361 kstat_named_t arcstat_metadata_size;
363 * Number of bytes consumed by various buffers and structures
364 * not actually backed with ARC buffers. This includes bonus
365 * buffers (allocated directly via zio_buf_* functions),
366 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
367 * cache), and dnode_t structures (allocated via dnode_t cache).
369 kstat_named_t arcstat_other_size;
371 * Total number of bytes consumed by ARC buffers residing in the
372 * arc_anon state. This includes *all* buffers in the arc_anon
373 * state; e.g. data, metadata, evictable, and unevictable buffers
374 * are all included in this value.
376 kstat_named_t arcstat_anon_size;
378 * Number of bytes consumed by ARC buffers that meet the
379 * following criteria: backing buffers of type ARC_BUFC_DATA,
380 * residing in the arc_anon state, and are eligible for eviction
381 * (e.g. have no outstanding holds on the buffer).
383 kstat_named_t arcstat_anon_evictable_data;
385 * Number of bytes consumed by ARC buffers that meet the
386 * following criteria: backing buffers of type ARC_BUFC_METADATA,
387 * residing in the arc_anon state, and are eligible for eviction
388 * (e.g. have no outstanding holds on the buffer).
390 kstat_named_t arcstat_anon_evictable_metadata;
392 * Total number of bytes consumed by ARC buffers residing in the
393 * arc_mru state. This includes *all* buffers in the arc_mru
394 * state; e.g. data, metadata, evictable, and unevictable buffers
395 * are all included in this value.
397 kstat_named_t arcstat_mru_size;
399 * Number of bytes consumed by ARC buffers that meet the
400 * following criteria: backing buffers of type ARC_BUFC_DATA,
401 * residing in the arc_mru state, and are eligible for eviction
402 * (e.g. have no outstanding holds on the buffer).
404 kstat_named_t arcstat_mru_evictable_data;
406 * Number of bytes consumed by ARC buffers that meet the
407 * following criteria: backing buffers of type ARC_BUFC_METADATA,
408 * residing in the arc_mru state, and are eligible for eviction
409 * (e.g. have no outstanding holds on the buffer).
411 kstat_named_t arcstat_mru_evictable_metadata;
413 * Total number of bytes that *would have been* consumed by ARC
414 * buffers in the arc_mru_ghost state. The key thing to note
415 * here, is the fact that this size doesn't actually indicate
416 * RAM consumption. The ghost lists only consist of headers and
417 * don't actually have ARC buffers linked off of these headers.
418 * Thus, *if* the headers had associated ARC buffers, these
419 * buffers *would have* consumed this number of bytes.
421 kstat_named_t arcstat_mru_ghost_size;
423 * Number of bytes that *would have been* consumed by ARC
424 * buffers that are eligible for eviction, of type
425 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
427 kstat_named_t arcstat_mru_ghost_evictable_data;
429 * Number of bytes that *would have been* consumed by ARC
430 * buffers that are eligible for eviction, of type
431 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
433 kstat_named_t arcstat_mru_ghost_evictable_metadata;
435 * Total number of bytes consumed by ARC buffers residing in the
436 * arc_mfu state. This includes *all* buffers in the arc_mfu
437 * state; e.g. data, metadata, evictable, and unevictable buffers
438 * are all included in this value.
440 kstat_named_t arcstat_mfu_size;
442 * Number of bytes consumed by ARC buffers that are eligible for
443 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
444 * state.
446 kstat_named_t arcstat_mfu_evictable_data;
448 * Number of bytes consumed by ARC buffers that are eligible for
449 * eviction, of type ARC_BUFC_METADATA, and reside in the
450 * arc_mfu state.
452 kstat_named_t arcstat_mfu_evictable_metadata;
454 * Total number of bytes that *would have been* consumed by ARC
455 * buffers in the arc_mfu_ghost state. See the comment above
456 * arcstat_mru_ghost_size for more details.
458 kstat_named_t arcstat_mfu_ghost_size;
460 * Number of bytes that *would have been* consumed by ARC
461 * buffers that are eligible for eviction, of type
462 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
464 kstat_named_t arcstat_mfu_ghost_evictable_data;
466 * Number of bytes that *would have been* consumed by ARC
467 * buffers that are eligible for eviction, of type
468 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
470 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
471 kstat_named_t arcstat_l2_hits;
472 kstat_named_t arcstat_l2_misses;
473 kstat_named_t arcstat_l2_feeds;
474 kstat_named_t arcstat_l2_rw_clash;
475 kstat_named_t arcstat_l2_read_bytes;
476 kstat_named_t arcstat_l2_write_bytes;
477 kstat_named_t arcstat_l2_writes_sent;
478 kstat_named_t arcstat_l2_writes_done;
479 kstat_named_t arcstat_l2_writes_error;
480 kstat_named_t arcstat_l2_writes_lock_retry;
481 kstat_named_t arcstat_l2_evict_lock_retry;
482 kstat_named_t arcstat_l2_evict_reading;
483 kstat_named_t arcstat_l2_evict_l1cached;
484 kstat_named_t arcstat_l2_free_on_write;
485 kstat_named_t arcstat_l2_cdata_free_on_write;
486 kstat_named_t arcstat_l2_abort_lowmem;
487 kstat_named_t arcstat_l2_cksum_bad;
488 kstat_named_t arcstat_l2_io_error;
489 kstat_named_t arcstat_l2_size;
490 kstat_named_t arcstat_l2_asize;
491 kstat_named_t arcstat_l2_hdr_size;
492 kstat_named_t arcstat_l2_compress_successes;
493 kstat_named_t arcstat_l2_compress_zeros;
494 kstat_named_t arcstat_l2_compress_failures;
495 kstat_named_t arcstat_memory_throttle_count;
496 kstat_named_t arcstat_duplicate_buffers;
497 kstat_named_t arcstat_duplicate_buffers_size;
498 kstat_named_t arcstat_duplicate_reads;
499 kstat_named_t arcstat_meta_used;
500 kstat_named_t arcstat_meta_limit;
501 kstat_named_t arcstat_meta_max;
502 kstat_named_t arcstat_meta_min;
503 kstat_named_t arcstat_sync_wait_for_async;
504 kstat_named_t arcstat_demand_hit_predictive_prefetch;
505 } arc_stats_t;
507 static arc_stats_t arc_stats = {
508 { "hits", KSTAT_DATA_UINT64 },
509 { "misses", KSTAT_DATA_UINT64 },
510 { "demand_data_hits", KSTAT_DATA_UINT64 },
511 { "demand_data_misses", KSTAT_DATA_UINT64 },
512 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
513 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
514 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
515 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
516 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
517 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
518 { "mru_hits", KSTAT_DATA_UINT64 },
519 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
520 { "mfu_hits", KSTAT_DATA_UINT64 },
521 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
522 { "deleted", KSTAT_DATA_UINT64 },
523 { "mutex_miss", KSTAT_DATA_UINT64 },
524 { "evict_skip", KSTAT_DATA_UINT64 },
525 { "evict_not_enough", KSTAT_DATA_UINT64 },
526 { "evict_l2_cached", KSTAT_DATA_UINT64 },
527 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
528 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
529 { "evict_l2_skip", KSTAT_DATA_UINT64 },
530 { "hash_elements", KSTAT_DATA_UINT64 },
531 { "hash_elements_max", KSTAT_DATA_UINT64 },
532 { "hash_collisions", KSTAT_DATA_UINT64 },
533 { "hash_chains", KSTAT_DATA_UINT64 },
534 { "hash_chain_max", KSTAT_DATA_UINT64 },
535 { "p", KSTAT_DATA_UINT64 },
536 { "c", KSTAT_DATA_UINT64 },
537 { "c_min", KSTAT_DATA_UINT64 },
538 { "c_max", KSTAT_DATA_UINT64 },
539 { "size", KSTAT_DATA_UINT64 },
540 { "hdr_size", KSTAT_DATA_UINT64 },
541 { "data_size", KSTAT_DATA_UINT64 },
542 { "metadata_size", KSTAT_DATA_UINT64 },
543 { "other_size", KSTAT_DATA_UINT64 },
544 { "anon_size", KSTAT_DATA_UINT64 },
545 { "anon_evictable_data", KSTAT_DATA_UINT64 },
546 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
547 { "mru_size", KSTAT_DATA_UINT64 },
548 { "mru_evictable_data", KSTAT_DATA_UINT64 },
549 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
550 { "mru_ghost_size", KSTAT_DATA_UINT64 },
551 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
552 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
553 { "mfu_size", KSTAT_DATA_UINT64 },
554 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
555 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
556 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
557 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
558 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
559 { "l2_hits", KSTAT_DATA_UINT64 },
560 { "l2_misses", KSTAT_DATA_UINT64 },
561 { "l2_feeds", KSTAT_DATA_UINT64 },
562 { "l2_rw_clash", KSTAT_DATA_UINT64 },
563 { "l2_read_bytes", KSTAT_DATA_UINT64 },
564 { "l2_write_bytes", KSTAT_DATA_UINT64 },
565 { "l2_writes_sent", KSTAT_DATA_UINT64 },
566 { "l2_writes_done", KSTAT_DATA_UINT64 },
567 { "l2_writes_error", KSTAT_DATA_UINT64 },
568 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
569 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
570 { "l2_evict_reading", KSTAT_DATA_UINT64 },
571 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
572 { "l2_free_on_write", KSTAT_DATA_UINT64 },
573 { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 },
574 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
575 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
576 { "l2_io_error", KSTAT_DATA_UINT64 },
577 { "l2_size", KSTAT_DATA_UINT64 },
578 { "l2_asize", KSTAT_DATA_UINT64 },
579 { "l2_hdr_size", KSTAT_DATA_UINT64 },
580 { "l2_compress_successes", KSTAT_DATA_UINT64 },
581 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
582 { "l2_compress_failures", KSTAT_DATA_UINT64 },
583 { "memory_throttle_count", KSTAT_DATA_UINT64 },
584 { "duplicate_buffers", KSTAT_DATA_UINT64 },
585 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
586 { "duplicate_reads", KSTAT_DATA_UINT64 },
587 { "arc_meta_used", KSTAT_DATA_UINT64 },
588 { "arc_meta_limit", KSTAT_DATA_UINT64 },
589 { "arc_meta_max", KSTAT_DATA_UINT64 },
590 { "arc_meta_min", KSTAT_DATA_UINT64 },
591 { "sync_wait_for_async", KSTAT_DATA_UINT64 },
592 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
595 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
597 #define ARCSTAT_INCR(stat, val) \
598 atomic_add_64(&arc_stats.stat.value.ui64, (val))
600 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
601 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
603 #define ARCSTAT_MAX(stat, val) { \
604 uint64_t m; \
605 while ((val) > (m = arc_stats.stat.value.ui64) && \
606 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
607 continue; \
610 #define ARCSTAT_MAXSTAT(stat) \
611 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
614 * We define a macro to allow ARC hits/misses to be easily broken down by
615 * two separate conditions, giving a total of four different subtypes for
616 * each of hits and misses (so eight statistics total).
618 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
619 if (cond1) { \
620 if (cond2) { \
621 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
622 } else { \
623 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
625 } else { \
626 if (cond2) { \
627 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
628 } else { \
629 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
633 kstat_t *arc_ksp;
634 static arc_state_t *arc_anon;
635 static arc_state_t *arc_mru;
636 static arc_state_t *arc_mru_ghost;
637 static arc_state_t *arc_mfu;
638 static arc_state_t *arc_mfu_ghost;
639 static arc_state_t *arc_l2c_only;
642 * There are several ARC variables that are critical to export as kstats --
643 * but we don't want to have to grovel around in the kstat whenever we wish to
644 * manipulate them. For these variables, we therefore define them to be in
645 * terms of the statistic variable. This assures that we are not introducing
646 * the possibility of inconsistency by having shadow copies of the variables,
647 * while still allowing the code to be readable.
649 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
650 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
651 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
652 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
653 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
654 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
655 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
656 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
657 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
659 #define L2ARC_IS_VALID_COMPRESS(_c_) \
660 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
662 static int arc_no_grow; /* Don't try to grow cache size */
663 static uint64_t arc_tempreserve;
664 static uint64_t arc_loaned_bytes;
666 typedef struct arc_callback arc_callback_t;
668 struct arc_callback {
669 void *acb_private;
670 arc_done_func_t *acb_done;
671 arc_buf_t *acb_buf;
672 zio_t *acb_zio_dummy;
673 arc_callback_t *acb_next;
676 typedef struct arc_write_callback arc_write_callback_t;
678 struct arc_write_callback {
679 void *awcb_private;
680 arc_done_func_t *awcb_ready;
681 arc_done_func_t *awcb_children_ready;
682 arc_done_func_t *awcb_physdone;
683 arc_done_func_t *awcb_done;
684 arc_buf_t *awcb_buf;
688 * ARC buffers are separated into multiple structs as a memory saving measure:
689 * - Common fields struct, always defined, and embedded within it:
690 * - L2-only fields, always allocated but undefined when not in L2ARC
691 * - L1-only fields, only allocated when in L1ARC
693 * Buffer in L1 Buffer only in L2
694 * +------------------------+ +------------------------+
695 * | arc_buf_hdr_t | | arc_buf_hdr_t |
696 * | | | |
697 * | | | |
698 * | | | |
699 * +------------------------+ +------------------------+
700 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t |
701 * | (undefined if L1-only) | | |
702 * +------------------------+ +------------------------+
703 * | l1arc_buf_hdr_t |
704 * | |
705 * | |
706 * | |
707 * | |
708 * +------------------------+
710 * Because it's possible for the L2ARC to become extremely large, we can wind
711 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
712 * is minimized by only allocating the fields necessary for an L1-cached buffer
713 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
714 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
715 * words in pointers. arc_hdr_realloc() is used to switch a header between
716 * these two allocation states.
718 typedef struct l1arc_buf_hdr {
719 kmutex_t b_freeze_lock;
720 #ifdef ZFS_DEBUG
722 * used for debugging wtih kmem_flags - by allocating and freeing
723 * b_thawed when the buffer is thawed, we get a record of the stack
724 * trace that thawed it.
726 void *b_thawed;
727 #endif
729 arc_buf_t *b_buf;
730 uint32_t b_datacnt;
731 /* for waiting on writes to complete */
732 kcondvar_t b_cv;
734 /* protected by arc state mutex */
735 arc_state_t *b_state;
736 multilist_node_t b_arc_node;
738 /* updated atomically */
739 clock_t b_arc_access;
741 /* self protecting */
742 refcount_t b_refcnt;
744 arc_callback_t *b_acb;
745 /* temporary buffer holder for in-flight compressed data */
746 void *b_tmp_cdata;
747 } l1arc_buf_hdr_t;
749 typedef struct l2arc_dev l2arc_dev_t;
751 typedef struct l2arc_buf_hdr {
752 /* protected by arc_buf_hdr mutex */
753 l2arc_dev_t *b_dev; /* L2ARC device */
754 uint64_t b_daddr; /* disk address, offset byte */
755 /* real alloc'd buffer size depending on b_compress applied */
756 int32_t b_asize;
757 uint8_t b_compress;
759 list_node_t b_l2node;
760 } l2arc_buf_hdr_t;
762 struct arc_buf_hdr {
763 /* protected by hash lock */
764 dva_t b_dva;
765 uint64_t b_birth;
767 * Even though this checksum is only set/verified when a buffer is in
768 * the L1 cache, it needs to be in the set of common fields because it
769 * must be preserved from the time before a buffer is written out to
770 * L2ARC until after it is read back in.
772 zio_cksum_t *b_freeze_cksum;
774 arc_buf_hdr_t *b_hash_next;
775 arc_flags_t b_flags;
777 /* immutable */
778 int32_t b_size;
779 uint64_t b_spa;
781 /* L2ARC fields. Undefined when not in L2ARC. */
782 l2arc_buf_hdr_t b_l2hdr;
783 /* L1ARC fields. Undefined when in l2arc_only state */
784 l1arc_buf_hdr_t b_l1hdr;
787 static arc_buf_t *arc_eviction_list;
788 static arc_buf_hdr_t arc_eviction_hdr;
790 #define GHOST_STATE(state) \
791 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
792 (state) == arc_l2c_only)
794 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
795 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
796 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
797 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
798 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
799 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
801 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
802 #define HDR_L2COMPRESS(hdr) ((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
803 #define HDR_L2_READING(hdr) \
804 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
805 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
806 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
807 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
808 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
810 #define HDR_ISTYPE_METADATA(hdr) \
811 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
812 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
814 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
815 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
818 * Other sizes
821 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
822 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
825 * Hash table routines
828 #define HT_LOCK_PAD 64
830 struct ht_lock {
831 kmutex_t ht_lock;
832 #ifdef _KERNEL
833 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
834 #endif
837 #define BUF_LOCKS 256
838 typedef struct buf_hash_table {
839 uint64_t ht_mask;
840 arc_buf_hdr_t **ht_table;
841 struct ht_lock ht_locks[BUF_LOCKS];
842 } buf_hash_table_t;
844 static buf_hash_table_t buf_hash_table;
846 #define BUF_HASH_INDEX(spa, dva, birth) \
847 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
848 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
849 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
850 #define HDR_LOCK(hdr) \
851 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
853 uint64_t zfs_crc64_table[256];
856 * Level 2 ARC
859 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
860 #define L2ARC_HEADROOM 2 /* num of writes */
862 * If we discover during ARC scan any buffers to be compressed, we boost
863 * our headroom for the next scanning cycle by this percentage multiple.
865 #define L2ARC_HEADROOM_BOOST 200
866 #define L2ARC_FEED_SECS 1 /* caching interval secs */
867 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
870 * Used to distinguish headers that are being process by
871 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
872 * address. This can happen when the header is added to the l2arc's list
873 * of buffers to write in the first stage of l2arc_write_buffers(), but
874 * has not yet been written out which happens in the second stage of
875 * l2arc_write_buffers().
877 #define L2ARC_ADDR_UNSET ((uint64_t)(-1))
879 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
880 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
882 /* L2ARC Performance Tunables */
883 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
884 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */
885 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
886 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
887 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
888 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
889 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
890 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */
891 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */
894 * L2ARC Internals
896 struct l2arc_dev {
897 vdev_t *l2ad_vdev; /* vdev */
898 spa_t *l2ad_spa; /* spa */
899 uint64_t l2ad_hand; /* next write location */
900 uint64_t l2ad_start; /* first addr on device */
901 uint64_t l2ad_end; /* last addr on device */
902 boolean_t l2ad_first; /* first sweep through */
903 boolean_t l2ad_writing; /* currently writing */
904 kmutex_t l2ad_mtx; /* lock for buffer list */
905 list_t l2ad_buflist; /* buffer list */
906 list_node_t l2ad_node; /* device list node */
907 refcount_t l2ad_alloc; /* allocated bytes */
910 static list_t L2ARC_dev_list; /* device list */
911 static list_t *l2arc_dev_list; /* device list pointer */
912 static kmutex_t l2arc_dev_mtx; /* device list mutex */
913 static l2arc_dev_t *l2arc_dev_last; /* last device used */
914 static list_t L2ARC_free_on_write; /* free after write buf list */
915 static list_t *l2arc_free_on_write; /* free after write list ptr */
916 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
917 static uint64_t l2arc_ndev; /* number of devices */
919 typedef struct l2arc_read_callback {
920 arc_buf_t *l2rcb_buf; /* read buffer */
921 spa_t *l2rcb_spa; /* spa */
922 blkptr_t l2rcb_bp; /* original blkptr */
923 zbookmark_phys_t l2rcb_zb; /* original bookmark */
924 int l2rcb_flags; /* original flags */
925 enum zio_compress l2rcb_compress; /* applied compress */
926 } l2arc_read_callback_t;
928 typedef struct l2arc_write_callback {
929 l2arc_dev_t *l2wcb_dev; /* device info */
930 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
931 } l2arc_write_callback_t;
933 typedef struct l2arc_data_free {
934 /* protected by l2arc_free_on_write_mtx */
935 void *l2df_data;
936 size_t l2df_size;
937 void (*l2df_func)(void *, size_t);
938 list_node_t l2df_list_node;
939 } l2arc_data_free_t;
941 static kmutex_t l2arc_feed_thr_lock;
942 static kcondvar_t l2arc_feed_thr_cv;
943 static uint8_t l2arc_thread_exit;
945 static void arc_get_data_buf(arc_buf_t *);
946 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
947 static boolean_t arc_is_overflowing();
948 static void arc_buf_watch(arc_buf_t *);
950 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
951 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
953 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
954 static void l2arc_read_done(zio_t *);
956 static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
957 static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
958 static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
960 static uint64_t
961 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
963 uint8_t *vdva = (uint8_t *)dva;
964 uint64_t crc = -1ULL;
965 int i;
967 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
969 for (i = 0; i < sizeof (dva_t); i++)
970 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
972 crc ^= (spa>>8) ^ birth;
974 return (crc);
977 #define BUF_EMPTY(buf) \
978 ((buf)->b_dva.dva_word[0] == 0 && \
979 (buf)->b_dva.dva_word[1] == 0)
981 #define BUF_EQUAL(spa, dva, birth, buf) \
982 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
983 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
984 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
986 static void
987 buf_discard_identity(arc_buf_hdr_t *hdr)
989 hdr->b_dva.dva_word[0] = 0;
990 hdr->b_dva.dva_word[1] = 0;
991 hdr->b_birth = 0;
994 static arc_buf_hdr_t *
995 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
997 const dva_t *dva = BP_IDENTITY(bp);
998 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
999 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1000 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1001 arc_buf_hdr_t *hdr;
1003 mutex_enter(hash_lock);
1004 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1005 hdr = hdr->b_hash_next) {
1006 if (BUF_EQUAL(spa, dva, birth, hdr)) {
1007 *lockp = hash_lock;
1008 return (hdr);
1011 mutex_exit(hash_lock);
1012 *lockp = NULL;
1013 return (NULL);
1017 * Insert an entry into the hash table. If there is already an element
1018 * equal to elem in the hash table, then the already existing element
1019 * will be returned and the new element will not be inserted.
1020 * Otherwise returns NULL.
1021 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1023 static arc_buf_hdr_t *
1024 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1026 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1027 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1028 arc_buf_hdr_t *fhdr;
1029 uint32_t i;
1031 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1032 ASSERT(hdr->b_birth != 0);
1033 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1035 if (lockp != NULL) {
1036 *lockp = hash_lock;
1037 mutex_enter(hash_lock);
1038 } else {
1039 ASSERT(MUTEX_HELD(hash_lock));
1042 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1043 fhdr = fhdr->b_hash_next, i++) {
1044 if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1045 return (fhdr);
1048 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1049 buf_hash_table.ht_table[idx] = hdr;
1050 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1052 /* collect some hash table performance data */
1053 if (i > 0) {
1054 ARCSTAT_BUMP(arcstat_hash_collisions);
1055 if (i == 1)
1056 ARCSTAT_BUMP(arcstat_hash_chains);
1058 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1061 ARCSTAT_BUMP(arcstat_hash_elements);
1062 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1064 return (NULL);
1067 static void
1068 buf_hash_remove(arc_buf_hdr_t *hdr)
1070 arc_buf_hdr_t *fhdr, **hdrp;
1071 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1073 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1074 ASSERT(HDR_IN_HASH_TABLE(hdr));
1076 hdrp = &buf_hash_table.ht_table[idx];
1077 while ((fhdr = *hdrp) != hdr) {
1078 ASSERT(fhdr != NULL);
1079 hdrp = &fhdr->b_hash_next;
1081 *hdrp = hdr->b_hash_next;
1082 hdr->b_hash_next = NULL;
1083 hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1085 /* collect some hash table performance data */
1086 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1088 if (buf_hash_table.ht_table[idx] &&
1089 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1090 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1094 * Global data structures and functions for the buf kmem cache.
1096 static kmem_cache_t *hdr_full_cache;
1097 static kmem_cache_t *hdr_l2only_cache;
1098 static kmem_cache_t *buf_cache;
1100 static void
1101 buf_fini(void)
1103 int i;
1105 kmem_free(buf_hash_table.ht_table,
1106 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1107 for (i = 0; i < BUF_LOCKS; i++)
1108 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1109 kmem_cache_destroy(hdr_full_cache);
1110 kmem_cache_destroy(hdr_l2only_cache);
1111 kmem_cache_destroy(buf_cache);
1115 * Constructor callback - called when the cache is empty
1116 * and a new buf is requested.
1118 /* ARGSUSED */
1119 static int
1120 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1122 arc_buf_hdr_t *hdr = vbuf;
1124 bzero(hdr, HDR_FULL_SIZE);
1125 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1126 refcount_create(&hdr->b_l1hdr.b_refcnt);
1127 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1128 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1129 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1131 return (0);
1134 /* ARGSUSED */
1135 static int
1136 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1138 arc_buf_hdr_t *hdr = vbuf;
1140 bzero(hdr, HDR_L2ONLY_SIZE);
1141 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1143 return (0);
1146 /* ARGSUSED */
1147 static int
1148 buf_cons(void *vbuf, void *unused, int kmflag)
1150 arc_buf_t *buf = vbuf;
1152 bzero(buf, sizeof (arc_buf_t));
1153 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1154 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1156 return (0);
1160 * Destructor callback - called when a cached buf is
1161 * no longer required.
1163 /* ARGSUSED */
1164 static void
1165 hdr_full_dest(void *vbuf, void *unused)
1167 arc_buf_hdr_t *hdr = vbuf;
1169 ASSERT(BUF_EMPTY(hdr));
1170 cv_destroy(&hdr->b_l1hdr.b_cv);
1171 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1172 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1173 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1174 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1177 /* ARGSUSED */
1178 static void
1179 hdr_l2only_dest(void *vbuf, void *unused)
1181 arc_buf_hdr_t *hdr = vbuf;
1183 ASSERT(BUF_EMPTY(hdr));
1184 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1187 /* ARGSUSED */
1188 static void
1189 buf_dest(void *vbuf, void *unused)
1191 arc_buf_t *buf = vbuf;
1193 mutex_destroy(&buf->b_evict_lock);
1194 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1198 * Reclaim callback -- invoked when memory is low.
1200 /* ARGSUSED */
1201 static void
1202 hdr_recl(void *unused)
1204 dprintf("hdr_recl called\n");
1206 * umem calls the reclaim func when we destroy the buf cache,
1207 * which is after we do arc_fini().
1209 if (!arc_dead)
1210 cv_signal(&arc_reclaim_thread_cv);
1213 static void
1214 buf_init(void)
1216 uint64_t *ct;
1217 uint64_t hsize = 1ULL << 12;
1218 int i, j;
1221 * The hash table is big enough to fill all of physical memory
1222 * with an average block size of zfs_arc_average_blocksize (default 8K).
1223 * By default, the table will take up
1224 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1226 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1227 hsize <<= 1;
1228 retry:
1229 buf_hash_table.ht_mask = hsize - 1;
1230 buf_hash_table.ht_table =
1231 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1232 if (buf_hash_table.ht_table == NULL) {
1233 ASSERT(hsize > (1ULL << 8));
1234 hsize >>= 1;
1235 goto retry;
1238 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1239 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1240 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1241 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1242 NULL, NULL, 0);
1243 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1244 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1246 for (i = 0; i < 256; i++)
1247 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1248 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1250 for (i = 0; i < BUF_LOCKS; i++) {
1251 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1252 NULL, MUTEX_DEFAULT, NULL);
1257 * Transition between the two allocation states for the arc_buf_hdr struct.
1258 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1259 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1260 * version is used when a cache buffer is only in the L2ARC in order to reduce
1261 * memory usage.
1263 static arc_buf_hdr_t *
1264 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1266 ASSERT(HDR_HAS_L2HDR(hdr));
1268 arc_buf_hdr_t *nhdr;
1269 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1271 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1272 (old == hdr_l2only_cache && new == hdr_full_cache));
1274 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1276 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1277 buf_hash_remove(hdr);
1279 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1281 if (new == hdr_full_cache) {
1282 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1284 * arc_access and arc_change_state need to be aware that a
1285 * header has just come out of L2ARC, so we set its state to
1286 * l2c_only even though it's about to change.
1288 nhdr->b_l1hdr.b_state = arc_l2c_only;
1290 /* Verify previous threads set to NULL before freeing */
1291 ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1292 } else {
1293 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1294 ASSERT0(hdr->b_l1hdr.b_datacnt);
1297 * If we've reached here, We must have been called from
1298 * arc_evict_hdr(), as such we should have already been
1299 * removed from any ghost list we were previously on
1300 * (which protects us from racing with arc_evict_state),
1301 * thus no locking is needed during this check.
1303 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1306 * A buffer must not be moved into the arc_l2c_only
1307 * state if it's not finished being written out to the
1308 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1309 * might try to be accessed, even though it was removed.
1311 VERIFY(!HDR_L2_WRITING(hdr));
1312 VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1314 #ifdef ZFS_DEBUG
1315 if (hdr->b_l1hdr.b_thawed != NULL) {
1316 kmem_free(hdr->b_l1hdr.b_thawed, 1);
1317 hdr->b_l1hdr.b_thawed = NULL;
1319 #endif
1321 nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1324 * The header has been reallocated so we need to re-insert it into any
1325 * lists it was on.
1327 (void) buf_hash_insert(nhdr, NULL);
1329 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1331 mutex_enter(&dev->l2ad_mtx);
1334 * We must place the realloc'ed header back into the list at
1335 * the same spot. Otherwise, if it's placed earlier in the list,
1336 * l2arc_write_buffers() could find it during the function's
1337 * write phase, and try to write it out to the l2arc.
1339 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1340 list_remove(&dev->l2ad_buflist, hdr);
1342 mutex_exit(&dev->l2ad_mtx);
1345 * Since we're using the pointer address as the tag when
1346 * incrementing and decrementing the l2ad_alloc refcount, we
1347 * must remove the old pointer (that we're about to destroy) and
1348 * add the new pointer to the refcount. Otherwise we'd remove
1349 * the wrong pointer address when calling arc_hdr_destroy() later.
1352 (void) refcount_remove_many(&dev->l2ad_alloc,
1353 hdr->b_l2hdr.b_asize, hdr);
1355 (void) refcount_add_many(&dev->l2ad_alloc,
1356 nhdr->b_l2hdr.b_asize, nhdr);
1358 buf_discard_identity(hdr);
1359 hdr->b_freeze_cksum = NULL;
1360 kmem_cache_free(old, hdr);
1362 return (nhdr);
1366 #define ARC_MINTIME (hz>>4) /* 62 ms */
1368 static void
1369 arc_cksum_verify(arc_buf_t *buf)
1371 zio_cksum_t zc;
1373 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1374 return;
1376 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1377 if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1378 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1379 return;
1381 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, NULL, &zc);
1382 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1383 panic("buffer modified while frozen!");
1384 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1387 static int
1388 arc_cksum_equal(arc_buf_t *buf)
1390 zio_cksum_t zc;
1391 int equal;
1393 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1394 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, NULL, &zc);
1395 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1396 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1398 return (equal);
1401 static void
1402 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1404 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1405 return;
1407 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1408 if (buf->b_hdr->b_freeze_cksum != NULL) {
1409 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1410 return;
1412 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1413 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1414 NULL, buf->b_hdr->b_freeze_cksum);
1415 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1416 arc_buf_watch(buf);
1419 #ifndef _KERNEL
1420 typedef struct procctl {
1421 long cmd;
1422 prwatch_t prwatch;
1423 } procctl_t;
1424 #endif
1426 /* ARGSUSED */
1427 static void
1428 arc_buf_unwatch(arc_buf_t *buf)
1430 #ifndef _KERNEL
1431 if (arc_watch) {
1432 int result;
1433 procctl_t ctl;
1434 ctl.cmd = PCWATCH;
1435 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1436 ctl.prwatch.pr_size = 0;
1437 ctl.prwatch.pr_wflags = 0;
1438 result = write(arc_procfd, &ctl, sizeof (ctl));
1439 ASSERT3U(result, ==, sizeof (ctl));
1441 #endif
1444 /* ARGSUSED */
1445 static void
1446 arc_buf_watch(arc_buf_t *buf)
1448 #ifndef _KERNEL
1449 if (arc_watch) {
1450 int result;
1451 procctl_t ctl;
1452 ctl.cmd = PCWATCH;
1453 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1454 ctl.prwatch.pr_size = buf->b_hdr->b_size;
1455 ctl.prwatch.pr_wflags = WA_WRITE;
1456 result = write(arc_procfd, &ctl, sizeof (ctl));
1457 ASSERT3U(result, ==, sizeof (ctl));
1459 #endif
1462 static arc_buf_contents_t
1463 arc_buf_type(arc_buf_hdr_t *hdr)
1465 if (HDR_ISTYPE_METADATA(hdr)) {
1466 return (ARC_BUFC_METADATA);
1467 } else {
1468 return (ARC_BUFC_DATA);
1472 static uint32_t
1473 arc_bufc_to_flags(arc_buf_contents_t type)
1475 switch (type) {
1476 case ARC_BUFC_DATA:
1477 /* metadata field is 0 if buffer contains normal data */
1478 return (0);
1479 case ARC_BUFC_METADATA:
1480 return (ARC_FLAG_BUFC_METADATA);
1481 default:
1482 break;
1484 panic("undefined ARC buffer type!");
1485 return ((uint32_t)-1);
1488 void
1489 arc_buf_thaw(arc_buf_t *buf)
1491 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1492 if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1493 panic("modifying non-anon buffer!");
1494 if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1495 panic("modifying buffer while i/o in progress!");
1496 arc_cksum_verify(buf);
1499 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1500 if (buf->b_hdr->b_freeze_cksum != NULL) {
1501 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1502 buf->b_hdr->b_freeze_cksum = NULL;
1505 #ifdef ZFS_DEBUG
1506 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1507 if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1508 kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1509 buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1511 #endif
1513 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1515 arc_buf_unwatch(buf);
1518 void
1519 arc_buf_freeze(arc_buf_t *buf)
1521 kmutex_t *hash_lock;
1523 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1524 return;
1526 hash_lock = HDR_LOCK(buf->b_hdr);
1527 mutex_enter(hash_lock);
1529 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1530 buf->b_hdr->b_l1hdr.b_state == arc_anon);
1531 arc_cksum_compute(buf, B_FALSE);
1532 mutex_exit(hash_lock);
1536 static void
1537 add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1539 ASSERT(HDR_HAS_L1HDR(hdr));
1540 ASSERT(MUTEX_HELD(hash_lock));
1541 arc_state_t *state = hdr->b_l1hdr.b_state;
1543 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1544 (state != arc_anon)) {
1545 /* We don't use the L2-only state list. */
1546 if (state != arc_l2c_only) {
1547 arc_buf_contents_t type = arc_buf_type(hdr);
1548 uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1549 multilist_t *list = &state->arcs_list[type];
1550 uint64_t *size = &state->arcs_lsize[type];
1552 multilist_remove(list, hdr);
1554 if (GHOST_STATE(state)) {
1555 ASSERT0(hdr->b_l1hdr.b_datacnt);
1556 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1557 delta = hdr->b_size;
1559 ASSERT(delta > 0);
1560 ASSERT3U(*size, >=, delta);
1561 atomic_add_64(size, -delta);
1563 /* remove the prefetch flag if we get a reference */
1564 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1568 static int
1569 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1571 int cnt;
1572 arc_state_t *state = hdr->b_l1hdr.b_state;
1574 ASSERT(HDR_HAS_L1HDR(hdr));
1575 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1576 ASSERT(!GHOST_STATE(state));
1579 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1580 * check to prevent usage of the arc_l2c_only list.
1582 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1583 (state != arc_anon)) {
1584 arc_buf_contents_t type = arc_buf_type(hdr);
1585 multilist_t *list = &state->arcs_list[type];
1586 uint64_t *size = &state->arcs_lsize[type];
1588 multilist_insert(list, hdr);
1590 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1591 atomic_add_64(size, hdr->b_size *
1592 hdr->b_l1hdr.b_datacnt);
1594 return (cnt);
1598 * Move the supplied buffer to the indicated state. The hash lock
1599 * for the buffer must be held by the caller.
1601 static void
1602 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1603 kmutex_t *hash_lock)
1605 arc_state_t *old_state;
1606 int64_t refcnt;
1607 uint32_t datacnt;
1608 uint64_t from_delta, to_delta;
1609 arc_buf_contents_t buftype = arc_buf_type(hdr);
1612 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1613 * in arc_read() when bringing a buffer out of the L2ARC. However, the
1614 * L1 hdr doesn't always exist when we change state to arc_anon before
1615 * destroying a header, in which case reallocating to add the L1 hdr is
1616 * pointless.
1618 if (HDR_HAS_L1HDR(hdr)) {
1619 old_state = hdr->b_l1hdr.b_state;
1620 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1621 datacnt = hdr->b_l1hdr.b_datacnt;
1622 } else {
1623 old_state = arc_l2c_only;
1624 refcnt = 0;
1625 datacnt = 0;
1628 ASSERT(MUTEX_HELD(hash_lock));
1629 ASSERT3P(new_state, !=, old_state);
1630 ASSERT(refcnt == 0 || datacnt > 0);
1631 ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1632 ASSERT(old_state != arc_anon || datacnt <= 1);
1634 from_delta = to_delta = datacnt * hdr->b_size;
1637 * If this buffer is evictable, transfer it from the
1638 * old state list to the new state list.
1640 if (refcnt == 0) {
1641 if (old_state != arc_anon && old_state != arc_l2c_only) {
1642 uint64_t *size = &old_state->arcs_lsize[buftype];
1644 ASSERT(HDR_HAS_L1HDR(hdr));
1645 multilist_remove(&old_state->arcs_list[buftype], hdr);
1648 * If prefetching out of the ghost cache,
1649 * we will have a non-zero datacnt.
1651 if (GHOST_STATE(old_state) && datacnt == 0) {
1652 /* ghost elements have a ghost size */
1653 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1654 from_delta = hdr->b_size;
1656 ASSERT3U(*size, >=, from_delta);
1657 atomic_add_64(size, -from_delta);
1659 if (new_state != arc_anon && new_state != arc_l2c_only) {
1660 uint64_t *size = &new_state->arcs_lsize[buftype];
1663 * An L1 header always exists here, since if we're
1664 * moving to some L1-cached state (i.e. not l2c_only or
1665 * anonymous), we realloc the header to add an L1hdr
1666 * beforehand.
1668 ASSERT(HDR_HAS_L1HDR(hdr));
1669 multilist_insert(&new_state->arcs_list[buftype], hdr);
1671 /* ghost elements have a ghost size */
1672 if (GHOST_STATE(new_state)) {
1673 ASSERT0(datacnt);
1674 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1675 to_delta = hdr->b_size;
1677 atomic_add_64(size, to_delta);
1681 ASSERT(!BUF_EMPTY(hdr));
1682 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1683 buf_hash_remove(hdr);
1685 /* adjust state sizes (ignore arc_l2c_only) */
1687 if (to_delta && new_state != arc_l2c_only) {
1688 ASSERT(HDR_HAS_L1HDR(hdr));
1689 if (GHOST_STATE(new_state)) {
1690 ASSERT0(datacnt);
1693 * We moving a header to a ghost state, we first
1694 * remove all arc buffers. Thus, we'll have a
1695 * datacnt of zero, and no arc buffer to use for
1696 * the reference. As a result, we use the arc
1697 * header pointer for the reference.
1699 (void) refcount_add_many(&new_state->arcs_size,
1700 hdr->b_size, hdr);
1701 } else {
1702 ASSERT3U(datacnt, !=, 0);
1705 * Each individual buffer holds a unique reference,
1706 * thus we must remove each of these references one
1707 * at a time.
1709 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1710 buf = buf->b_next) {
1711 (void) refcount_add_many(&new_state->arcs_size,
1712 hdr->b_size, buf);
1717 if (from_delta && old_state != arc_l2c_only) {
1718 ASSERT(HDR_HAS_L1HDR(hdr));
1719 if (GHOST_STATE(old_state)) {
1721 * When moving a header off of a ghost state,
1722 * there's the possibility for datacnt to be
1723 * non-zero. This is because we first add the
1724 * arc buffer to the header prior to changing
1725 * the header's state. Since we used the header
1726 * for the reference when putting the header on
1727 * the ghost state, we must balance that and use
1728 * the header when removing off the ghost state
1729 * (even though datacnt is non zero).
1732 IMPLY(datacnt == 0, new_state == arc_anon ||
1733 new_state == arc_l2c_only);
1735 (void) refcount_remove_many(&old_state->arcs_size,
1736 hdr->b_size, hdr);
1737 } else {
1738 ASSERT3P(datacnt, !=, 0);
1741 * Each individual buffer holds a unique reference,
1742 * thus we must remove each of these references one
1743 * at a time.
1745 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1746 buf = buf->b_next) {
1747 (void) refcount_remove_many(
1748 &old_state->arcs_size, hdr->b_size, buf);
1753 if (HDR_HAS_L1HDR(hdr))
1754 hdr->b_l1hdr.b_state = new_state;
1757 * L2 headers should never be on the L2 state list since they don't
1758 * have L1 headers allocated.
1760 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1761 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
1764 void
1765 arc_space_consume(uint64_t space, arc_space_type_t type)
1767 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1769 switch (type) {
1770 case ARC_SPACE_DATA:
1771 ARCSTAT_INCR(arcstat_data_size, space);
1772 break;
1773 case ARC_SPACE_META:
1774 ARCSTAT_INCR(arcstat_metadata_size, space);
1775 break;
1776 case ARC_SPACE_OTHER:
1777 ARCSTAT_INCR(arcstat_other_size, space);
1778 break;
1779 case ARC_SPACE_HDRS:
1780 ARCSTAT_INCR(arcstat_hdr_size, space);
1781 break;
1782 case ARC_SPACE_L2HDRS:
1783 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1784 break;
1787 if (type != ARC_SPACE_DATA)
1788 ARCSTAT_INCR(arcstat_meta_used, space);
1790 atomic_add_64(&arc_size, space);
1793 void
1794 arc_space_return(uint64_t space, arc_space_type_t type)
1796 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1798 switch (type) {
1799 case ARC_SPACE_DATA:
1800 ARCSTAT_INCR(arcstat_data_size, -space);
1801 break;
1802 case ARC_SPACE_META:
1803 ARCSTAT_INCR(arcstat_metadata_size, -space);
1804 break;
1805 case ARC_SPACE_OTHER:
1806 ARCSTAT_INCR(arcstat_other_size, -space);
1807 break;
1808 case ARC_SPACE_HDRS:
1809 ARCSTAT_INCR(arcstat_hdr_size, -space);
1810 break;
1811 case ARC_SPACE_L2HDRS:
1812 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1813 break;
1816 if (type != ARC_SPACE_DATA) {
1817 ASSERT(arc_meta_used >= space);
1818 if (arc_meta_max < arc_meta_used)
1819 arc_meta_max = arc_meta_used;
1820 ARCSTAT_INCR(arcstat_meta_used, -space);
1823 ASSERT(arc_size >= space);
1824 atomic_add_64(&arc_size, -space);
1827 arc_buf_t *
1828 arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
1830 arc_buf_hdr_t *hdr;
1831 arc_buf_t *buf;
1833 ASSERT3U(size, >, 0);
1834 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
1835 ASSERT(BUF_EMPTY(hdr));
1836 ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
1837 hdr->b_size = size;
1838 hdr->b_spa = spa_load_guid(spa);
1840 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1841 buf->b_hdr = hdr;
1842 buf->b_data = NULL;
1843 buf->b_efunc = NULL;
1844 buf->b_private = NULL;
1845 buf->b_next = NULL;
1847 hdr->b_flags = arc_bufc_to_flags(type);
1848 hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1850 hdr->b_l1hdr.b_buf = buf;
1851 hdr->b_l1hdr.b_state = arc_anon;
1852 hdr->b_l1hdr.b_arc_access = 0;
1853 hdr->b_l1hdr.b_datacnt = 1;
1854 hdr->b_l1hdr.b_tmp_cdata = NULL;
1856 arc_get_data_buf(buf);
1857 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1858 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1860 return (buf);
1863 static char *arc_onloan_tag = "onloan";
1866 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1867 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1868 * buffers must be returned to the arc before they can be used by the DMU or
1869 * freed.
1871 arc_buf_t *
1872 arc_loan_buf(spa_t *spa, int size)
1874 arc_buf_t *buf;
1876 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1878 atomic_add_64(&arc_loaned_bytes, size);
1879 return (buf);
1883 * Return a loaned arc buffer to the arc.
1885 void
1886 arc_return_buf(arc_buf_t *buf, void *tag)
1888 arc_buf_hdr_t *hdr = buf->b_hdr;
1890 ASSERT(buf->b_data != NULL);
1891 ASSERT(HDR_HAS_L1HDR(hdr));
1892 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1893 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1895 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1898 /* Detach an arc_buf from a dbuf (tag) */
1899 void
1900 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1902 arc_buf_hdr_t *hdr = buf->b_hdr;
1904 ASSERT(buf->b_data != NULL);
1905 ASSERT(HDR_HAS_L1HDR(hdr));
1906 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1907 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
1908 buf->b_efunc = NULL;
1909 buf->b_private = NULL;
1911 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1914 static arc_buf_t *
1915 arc_buf_clone(arc_buf_t *from)
1917 arc_buf_t *buf;
1918 arc_buf_hdr_t *hdr = from->b_hdr;
1919 uint64_t size = hdr->b_size;
1921 ASSERT(HDR_HAS_L1HDR(hdr));
1922 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
1924 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1925 buf->b_hdr = hdr;
1926 buf->b_data = NULL;
1927 buf->b_efunc = NULL;
1928 buf->b_private = NULL;
1929 buf->b_next = hdr->b_l1hdr.b_buf;
1930 hdr->b_l1hdr.b_buf = buf;
1931 arc_get_data_buf(buf);
1932 bcopy(from->b_data, buf->b_data, size);
1935 * This buffer already exists in the arc so create a duplicate
1936 * copy for the caller. If the buffer is associated with user data
1937 * then track the size and number of duplicates. These stats will be
1938 * updated as duplicate buffers are created and destroyed.
1940 if (HDR_ISTYPE_DATA(hdr)) {
1941 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1942 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1944 hdr->b_l1hdr.b_datacnt += 1;
1945 return (buf);
1948 void
1949 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1951 arc_buf_hdr_t *hdr;
1952 kmutex_t *hash_lock;
1955 * Check to see if this buffer is evicted. Callers
1956 * must verify b_data != NULL to know if the add_ref
1957 * was successful.
1959 mutex_enter(&buf->b_evict_lock);
1960 if (buf->b_data == NULL) {
1961 mutex_exit(&buf->b_evict_lock);
1962 return;
1964 hash_lock = HDR_LOCK(buf->b_hdr);
1965 mutex_enter(hash_lock);
1966 hdr = buf->b_hdr;
1967 ASSERT(HDR_HAS_L1HDR(hdr));
1968 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1969 mutex_exit(&buf->b_evict_lock);
1971 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
1972 hdr->b_l1hdr.b_state == arc_mfu);
1974 add_reference(hdr, hash_lock, tag);
1975 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1976 arc_access(hdr, hash_lock);
1977 mutex_exit(hash_lock);
1978 ARCSTAT_BUMP(arcstat_hits);
1979 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
1980 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
1981 data, metadata, hits);
1984 static void
1985 arc_buf_free_on_write(void *data, size_t size,
1986 void (*free_func)(void *, size_t))
1988 l2arc_data_free_t *df;
1990 df = kmem_alloc(sizeof (*df), KM_SLEEP);
1991 df->l2df_data = data;
1992 df->l2df_size = size;
1993 df->l2df_func = free_func;
1994 mutex_enter(&l2arc_free_on_write_mtx);
1995 list_insert_head(l2arc_free_on_write, df);
1996 mutex_exit(&l2arc_free_on_write_mtx);
2000 * Free the arc data buffer. If it is an l2arc write in progress,
2001 * the buffer is placed on l2arc_free_on_write to be freed later.
2003 static void
2004 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
2006 arc_buf_hdr_t *hdr = buf->b_hdr;
2008 if (HDR_L2_WRITING(hdr)) {
2009 arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
2010 ARCSTAT_BUMP(arcstat_l2_free_on_write);
2011 } else {
2012 free_func(buf->b_data, hdr->b_size);
2016 static void
2017 arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2019 ASSERT(HDR_HAS_L2HDR(hdr));
2020 ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2023 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2024 * that doesn't exist, the header is in the arc_l2c_only state,
2025 * and there isn't anything to free (it's already been freed).
2027 if (!HDR_HAS_L1HDR(hdr))
2028 return;
2031 * The header isn't being written to the l2arc device, thus it
2032 * shouldn't have a b_tmp_cdata to free.
2034 if (!HDR_L2_WRITING(hdr)) {
2035 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2036 return;
2040 * The header does not have compression enabled. This can be due
2041 * to the buffer not being compressible, or because we're
2042 * freeing the buffer before the second phase of
2043 * l2arc_write_buffer() has started (which does the compression
2044 * step). In either case, b_tmp_cdata does not point to a
2045 * separately compressed buffer, so there's nothing to free (it
2046 * points to the same buffer as the arc_buf_t's b_data field).
2048 if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_OFF) {
2049 hdr->b_l1hdr.b_tmp_cdata = NULL;
2050 return;
2054 * There's nothing to free since the buffer was all zero's and
2055 * compressed to a zero length buffer.
2057 if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) {
2058 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2059 return;
2062 ASSERT(L2ARC_IS_VALID_COMPRESS(hdr->b_l2hdr.b_compress));
2064 arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
2065 hdr->b_size, zio_data_buf_free);
2067 ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2068 hdr->b_l1hdr.b_tmp_cdata = NULL;
2072 * Free up buf->b_data and if 'remove' is set, then pull the
2073 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2075 static void
2076 arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
2078 arc_buf_t **bufp;
2080 /* free up data associated with the buf */
2081 if (buf->b_data != NULL) {
2082 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2083 uint64_t size = buf->b_hdr->b_size;
2084 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2086 arc_cksum_verify(buf);
2087 arc_buf_unwatch(buf);
2089 if (type == ARC_BUFC_METADATA) {
2090 arc_buf_data_free(buf, zio_buf_free);
2091 arc_space_return(size, ARC_SPACE_META);
2092 } else {
2093 ASSERT(type == ARC_BUFC_DATA);
2094 arc_buf_data_free(buf, zio_data_buf_free);
2095 arc_space_return(size, ARC_SPACE_DATA);
2098 /* protected by hash lock, if in the hash table */
2099 if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2100 uint64_t *cnt = &state->arcs_lsize[type];
2102 ASSERT(refcount_is_zero(
2103 &buf->b_hdr->b_l1hdr.b_refcnt));
2104 ASSERT(state != arc_anon && state != arc_l2c_only);
2106 ASSERT3U(*cnt, >=, size);
2107 atomic_add_64(cnt, -size);
2110 (void) refcount_remove_many(&state->arcs_size, size, buf);
2111 buf->b_data = NULL;
2114 * If we're destroying a duplicate buffer make sure
2115 * that the appropriate statistics are updated.
2117 if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2118 HDR_ISTYPE_DATA(buf->b_hdr)) {
2119 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2120 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2122 ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2123 buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2126 /* only remove the buf if requested */
2127 if (!remove)
2128 return;
2130 /* remove the buf from the hdr list */
2131 for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2132 bufp = &(*bufp)->b_next)
2133 continue;
2134 *bufp = buf->b_next;
2135 buf->b_next = NULL;
2137 ASSERT(buf->b_efunc == NULL);
2139 /* clean up the buf */
2140 buf->b_hdr = NULL;
2141 kmem_cache_free(buf_cache, buf);
2144 static void
2145 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2147 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2148 l2arc_dev_t *dev = l2hdr->b_dev;
2150 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2151 ASSERT(HDR_HAS_L2HDR(hdr));
2153 list_remove(&dev->l2ad_buflist, hdr);
2156 * We don't want to leak the b_tmp_cdata buffer that was
2157 * allocated in l2arc_write_buffers()
2159 arc_buf_l2_cdata_free(hdr);
2162 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2163 * this header is being processed by l2arc_write_buffers() (i.e.
2164 * it's in the first stage of l2arc_write_buffers()).
2165 * Re-affirming that truth here, just to serve as a reminder. If
2166 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2167 * may not have its HDR_L2_WRITING flag set. (the write may have
2168 * completed, in which case HDR_L2_WRITING will be false and the
2169 * b_daddr field will point to the address of the buffer on disk).
2171 IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2174 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2175 * l2arc_write_buffers(). Since we've just removed this header
2176 * from the l2arc buffer list, this header will never reach the
2177 * second stage of l2arc_write_buffers(), which increments the
2178 * accounting stats for this header. Thus, we must be careful
2179 * not to decrement them for this header either.
2181 if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2182 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2183 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2185 vdev_space_update(dev->l2ad_vdev,
2186 -l2hdr->b_asize, 0, 0);
2188 (void) refcount_remove_many(&dev->l2ad_alloc,
2189 l2hdr->b_asize, hdr);
2192 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2195 static void
2196 arc_hdr_destroy(arc_buf_hdr_t *hdr)
2198 if (HDR_HAS_L1HDR(hdr)) {
2199 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2200 hdr->b_l1hdr.b_datacnt > 0);
2201 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2202 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2204 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2205 ASSERT(!HDR_IN_HASH_TABLE(hdr));
2207 if (HDR_HAS_L2HDR(hdr)) {
2208 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2209 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2211 if (!buflist_held)
2212 mutex_enter(&dev->l2ad_mtx);
2215 * Even though we checked this conditional above, we
2216 * need to check this again now that we have the
2217 * l2ad_mtx. This is because we could be racing with
2218 * another thread calling l2arc_evict() which might have
2219 * destroyed this header's L2 portion as we were waiting
2220 * to acquire the l2ad_mtx. If that happens, we don't
2221 * want to re-destroy the header's L2 portion.
2223 if (HDR_HAS_L2HDR(hdr))
2224 arc_hdr_l2hdr_destroy(hdr);
2226 if (!buflist_held)
2227 mutex_exit(&dev->l2ad_mtx);
2230 if (!BUF_EMPTY(hdr))
2231 buf_discard_identity(hdr);
2233 if (hdr->b_freeze_cksum != NULL) {
2234 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2235 hdr->b_freeze_cksum = NULL;
2238 if (HDR_HAS_L1HDR(hdr)) {
2239 while (hdr->b_l1hdr.b_buf) {
2240 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2242 if (buf->b_efunc != NULL) {
2243 mutex_enter(&arc_user_evicts_lock);
2244 mutex_enter(&buf->b_evict_lock);
2245 ASSERT(buf->b_hdr != NULL);
2246 arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2247 hdr->b_l1hdr.b_buf = buf->b_next;
2248 buf->b_hdr = &arc_eviction_hdr;
2249 buf->b_next = arc_eviction_list;
2250 arc_eviction_list = buf;
2251 mutex_exit(&buf->b_evict_lock);
2252 cv_signal(&arc_user_evicts_cv);
2253 mutex_exit(&arc_user_evicts_lock);
2254 } else {
2255 arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2258 #ifdef ZFS_DEBUG
2259 if (hdr->b_l1hdr.b_thawed != NULL) {
2260 kmem_free(hdr->b_l1hdr.b_thawed, 1);
2261 hdr->b_l1hdr.b_thawed = NULL;
2263 #endif
2266 ASSERT3P(hdr->b_hash_next, ==, NULL);
2267 if (HDR_HAS_L1HDR(hdr)) {
2268 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2269 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2270 kmem_cache_free(hdr_full_cache, hdr);
2271 } else {
2272 kmem_cache_free(hdr_l2only_cache, hdr);
2276 void
2277 arc_buf_free(arc_buf_t *buf, void *tag)
2279 arc_buf_hdr_t *hdr = buf->b_hdr;
2280 int hashed = hdr->b_l1hdr.b_state != arc_anon;
2282 ASSERT(buf->b_efunc == NULL);
2283 ASSERT(buf->b_data != NULL);
2285 if (hashed) {
2286 kmutex_t *hash_lock = HDR_LOCK(hdr);
2288 mutex_enter(hash_lock);
2289 hdr = buf->b_hdr;
2290 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2292 (void) remove_reference(hdr, hash_lock, tag);
2293 if (hdr->b_l1hdr.b_datacnt > 1) {
2294 arc_buf_destroy(buf, TRUE);
2295 } else {
2296 ASSERT(buf == hdr->b_l1hdr.b_buf);
2297 ASSERT(buf->b_efunc == NULL);
2298 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2300 mutex_exit(hash_lock);
2301 } else if (HDR_IO_IN_PROGRESS(hdr)) {
2302 int destroy_hdr;
2304 * We are in the middle of an async write. Don't destroy
2305 * this buffer unless the write completes before we finish
2306 * decrementing the reference count.
2308 mutex_enter(&arc_user_evicts_lock);
2309 (void) remove_reference(hdr, NULL, tag);
2310 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2311 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2312 mutex_exit(&arc_user_evicts_lock);
2313 if (destroy_hdr)
2314 arc_hdr_destroy(hdr);
2315 } else {
2316 if (remove_reference(hdr, NULL, tag) > 0)
2317 arc_buf_destroy(buf, TRUE);
2318 else
2319 arc_hdr_destroy(hdr);
2323 boolean_t
2324 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2326 arc_buf_hdr_t *hdr = buf->b_hdr;
2327 kmutex_t *hash_lock = HDR_LOCK(hdr);
2328 boolean_t no_callback = (buf->b_efunc == NULL);
2330 if (hdr->b_l1hdr.b_state == arc_anon) {
2331 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2332 arc_buf_free(buf, tag);
2333 return (no_callback);
2336 mutex_enter(hash_lock);
2337 hdr = buf->b_hdr;
2338 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2339 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2340 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2341 ASSERT(buf->b_data != NULL);
2343 (void) remove_reference(hdr, hash_lock, tag);
2344 if (hdr->b_l1hdr.b_datacnt > 1) {
2345 if (no_callback)
2346 arc_buf_destroy(buf, TRUE);
2347 } else if (no_callback) {
2348 ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2349 ASSERT(buf->b_efunc == NULL);
2350 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2352 ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2353 refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2354 mutex_exit(hash_lock);
2355 return (no_callback);
2358 int32_t
2359 arc_buf_size(arc_buf_t *buf)
2361 return (buf->b_hdr->b_size);
2365 * Called from the DMU to determine if the current buffer should be
2366 * evicted. In order to ensure proper locking, the eviction must be initiated
2367 * from the DMU. Return true if the buffer is associated with user data and
2368 * duplicate buffers still exist.
2370 boolean_t
2371 arc_buf_eviction_needed(arc_buf_t *buf)
2373 arc_buf_hdr_t *hdr;
2374 boolean_t evict_needed = B_FALSE;
2376 if (zfs_disable_dup_eviction)
2377 return (B_FALSE);
2379 mutex_enter(&buf->b_evict_lock);
2380 hdr = buf->b_hdr;
2381 if (hdr == NULL) {
2383 * We are in arc_do_user_evicts(); let that function
2384 * perform the eviction.
2386 ASSERT(buf->b_data == NULL);
2387 mutex_exit(&buf->b_evict_lock);
2388 return (B_FALSE);
2389 } else if (buf->b_data == NULL) {
2391 * We have already been added to the arc eviction list;
2392 * recommend eviction.
2394 ASSERT3P(hdr, ==, &arc_eviction_hdr);
2395 mutex_exit(&buf->b_evict_lock);
2396 return (B_TRUE);
2399 if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2400 evict_needed = B_TRUE;
2402 mutex_exit(&buf->b_evict_lock);
2403 return (evict_needed);
2407 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2408 * state of the header is dependent on it's state prior to entering this
2409 * function. The following transitions are possible:
2411 * - arc_mru -> arc_mru_ghost
2412 * - arc_mfu -> arc_mfu_ghost
2413 * - arc_mru_ghost -> arc_l2c_only
2414 * - arc_mru_ghost -> deleted
2415 * - arc_mfu_ghost -> arc_l2c_only
2416 * - arc_mfu_ghost -> deleted
2418 static int64_t
2419 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2421 arc_state_t *evicted_state, *state;
2422 int64_t bytes_evicted = 0;
2424 ASSERT(MUTEX_HELD(hash_lock));
2425 ASSERT(HDR_HAS_L1HDR(hdr));
2427 state = hdr->b_l1hdr.b_state;
2428 if (GHOST_STATE(state)) {
2429 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2430 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2433 * l2arc_write_buffers() relies on a header's L1 portion
2434 * (i.e. it's b_tmp_cdata field) during it's write phase.
2435 * Thus, we cannot push a header onto the arc_l2c_only
2436 * state (removing it's L1 piece) until the header is
2437 * done being written to the l2arc.
2439 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2440 ARCSTAT_BUMP(arcstat_evict_l2_skip);
2441 return (bytes_evicted);
2444 ARCSTAT_BUMP(arcstat_deleted);
2445 bytes_evicted += hdr->b_size;
2447 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2449 if (HDR_HAS_L2HDR(hdr)) {
2451 * This buffer is cached on the 2nd Level ARC;
2452 * don't destroy the header.
2454 arc_change_state(arc_l2c_only, hdr, hash_lock);
2456 * dropping from L1+L2 cached to L2-only,
2457 * realloc to remove the L1 header.
2459 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2460 hdr_l2only_cache);
2461 } else {
2462 arc_change_state(arc_anon, hdr, hash_lock);
2463 arc_hdr_destroy(hdr);
2465 return (bytes_evicted);
2468 ASSERT(state == arc_mru || state == arc_mfu);
2469 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2471 /* prefetch buffers have a minimum lifespan */
2472 if (HDR_IO_IN_PROGRESS(hdr) ||
2473 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2474 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2475 arc_min_prefetch_lifespan)) {
2476 ARCSTAT_BUMP(arcstat_evict_skip);
2477 return (bytes_evicted);
2480 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2481 ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2482 while (hdr->b_l1hdr.b_buf) {
2483 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2484 if (!mutex_tryenter(&buf->b_evict_lock)) {
2485 ARCSTAT_BUMP(arcstat_mutex_miss);
2486 break;
2488 if (buf->b_data != NULL)
2489 bytes_evicted += hdr->b_size;
2490 if (buf->b_efunc != NULL) {
2491 mutex_enter(&arc_user_evicts_lock);
2492 arc_buf_destroy(buf, FALSE);
2493 hdr->b_l1hdr.b_buf = buf->b_next;
2494 buf->b_hdr = &arc_eviction_hdr;
2495 buf->b_next = arc_eviction_list;
2496 arc_eviction_list = buf;
2497 cv_signal(&arc_user_evicts_cv);
2498 mutex_exit(&arc_user_evicts_lock);
2499 mutex_exit(&buf->b_evict_lock);
2500 } else {
2501 mutex_exit(&buf->b_evict_lock);
2502 arc_buf_destroy(buf, TRUE);
2506 if (HDR_HAS_L2HDR(hdr)) {
2507 ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2508 } else {
2509 if (l2arc_write_eligible(hdr->b_spa, hdr))
2510 ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2511 else
2512 ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2515 if (hdr->b_l1hdr.b_datacnt == 0) {
2516 arc_change_state(evicted_state, hdr, hash_lock);
2517 ASSERT(HDR_IN_HASH_TABLE(hdr));
2518 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2519 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2520 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2523 return (bytes_evicted);
2526 static uint64_t
2527 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2528 uint64_t spa, int64_t bytes)
2530 multilist_sublist_t *mls;
2531 uint64_t bytes_evicted = 0;
2532 arc_buf_hdr_t *hdr;
2533 kmutex_t *hash_lock;
2534 int evict_count = 0;
2536 ASSERT3P(marker, !=, NULL);
2537 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2539 mls = multilist_sublist_lock(ml, idx);
2541 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2542 hdr = multilist_sublist_prev(mls, marker)) {
2543 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2544 (evict_count >= zfs_arc_evict_batch_limit))
2545 break;
2548 * To keep our iteration location, move the marker
2549 * forward. Since we're not holding hdr's hash lock, we
2550 * must be very careful and not remove 'hdr' from the
2551 * sublist. Otherwise, other consumers might mistake the
2552 * 'hdr' as not being on a sublist when they call the
2553 * multilist_link_active() function (they all rely on
2554 * the hash lock protecting concurrent insertions and
2555 * removals). multilist_sublist_move_forward() was
2556 * specifically implemented to ensure this is the case
2557 * (only 'marker' will be removed and re-inserted).
2559 multilist_sublist_move_forward(mls, marker);
2562 * The only case where the b_spa field should ever be
2563 * zero, is the marker headers inserted by
2564 * arc_evict_state(). It's possible for multiple threads
2565 * to be calling arc_evict_state() concurrently (e.g.
2566 * dsl_pool_close() and zio_inject_fault()), so we must
2567 * skip any markers we see from these other threads.
2569 if (hdr->b_spa == 0)
2570 continue;
2572 /* we're only interested in evicting buffers of a certain spa */
2573 if (spa != 0 && hdr->b_spa != spa) {
2574 ARCSTAT_BUMP(arcstat_evict_skip);
2575 continue;
2578 hash_lock = HDR_LOCK(hdr);
2581 * We aren't calling this function from any code path
2582 * that would already be holding a hash lock, so we're
2583 * asserting on this assumption to be defensive in case
2584 * this ever changes. Without this check, it would be
2585 * possible to incorrectly increment arcstat_mutex_miss
2586 * below (e.g. if the code changed such that we called
2587 * this function with a hash lock held).
2589 ASSERT(!MUTEX_HELD(hash_lock));
2591 if (mutex_tryenter(hash_lock)) {
2592 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2593 mutex_exit(hash_lock);
2595 bytes_evicted += evicted;
2598 * If evicted is zero, arc_evict_hdr() must have
2599 * decided to skip this header, don't increment
2600 * evict_count in this case.
2602 if (evicted != 0)
2603 evict_count++;
2606 * If arc_size isn't overflowing, signal any
2607 * threads that might happen to be waiting.
2609 * For each header evicted, we wake up a single
2610 * thread. If we used cv_broadcast, we could
2611 * wake up "too many" threads causing arc_size
2612 * to significantly overflow arc_c; since
2613 * arc_get_data_buf() doesn't check for overflow
2614 * when it's woken up (it doesn't because it's
2615 * possible for the ARC to be overflowing while
2616 * full of un-evictable buffers, and the
2617 * function should proceed in this case).
2619 * If threads are left sleeping, due to not
2620 * using cv_broadcast, they will be woken up
2621 * just before arc_reclaim_thread() sleeps.
2623 mutex_enter(&arc_reclaim_lock);
2624 if (!arc_is_overflowing())
2625 cv_signal(&arc_reclaim_waiters_cv);
2626 mutex_exit(&arc_reclaim_lock);
2627 } else {
2628 ARCSTAT_BUMP(arcstat_mutex_miss);
2632 multilist_sublist_unlock(mls);
2634 return (bytes_evicted);
2638 * Evict buffers from the given arc state, until we've removed the
2639 * specified number of bytes. Move the removed buffers to the
2640 * appropriate evict state.
2642 * This function makes a "best effort". It skips over any buffers
2643 * it can't get a hash_lock on, and so, may not catch all candidates.
2644 * It may also return without evicting as much space as requested.
2646 * If bytes is specified using the special value ARC_EVICT_ALL, this
2647 * will evict all available (i.e. unlocked and evictable) buffers from
2648 * the given arc state; which is used by arc_flush().
2650 static uint64_t
2651 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2652 arc_buf_contents_t type)
2654 uint64_t total_evicted = 0;
2655 multilist_t *ml = &state->arcs_list[type];
2656 int num_sublists;
2657 arc_buf_hdr_t **markers;
2659 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2661 num_sublists = multilist_get_num_sublists(ml);
2664 * If we've tried to evict from each sublist, made some
2665 * progress, but still have not hit the target number of bytes
2666 * to evict, we want to keep trying. The markers allow us to
2667 * pick up where we left off for each individual sublist, rather
2668 * than starting from the tail each time.
2670 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2671 for (int i = 0; i < num_sublists; i++) {
2672 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2675 * A b_spa of 0 is used to indicate that this header is
2676 * a marker. This fact is used in arc_adjust_type() and
2677 * arc_evict_state_impl().
2679 markers[i]->b_spa = 0;
2681 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2682 multilist_sublist_insert_tail(mls, markers[i]);
2683 multilist_sublist_unlock(mls);
2687 * While we haven't hit our target number of bytes to evict, or
2688 * we're evicting all available buffers.
2690 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2692 * Start eviction using a randomly selected sublist,
2693 * this is to try and evenly balance eviction across all
2694 * sublists. Always starting at the same sublist
2695 * (e.g. index 0) would cause evictions to favor certain
2696 * sublists over others.
2698 int sublist_idx = multilist_get_random_index(ml);
2699 uint64_t scan_evicted = 0;
2701 for (int i = 0; i < num_sublists; i++) {
2702 uint64_t bytes_remaining;
2703 uint64_t bytes_evicted;
2705 if (bytes == ARC_EVICT_ALL)
2706 bytes_remaining = ARC_EVICT_ALL;
2707 else if (total_evicted < bytes)
2708 bytes_remaining = bytes - total_evicted;
2709 else
2710 break;
2712 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2713 markers[sublist_idx], spa, bytes_remaining);
2715 scan_evicted += bytes_evicted;
2716 total_evicted += bytes_evicted;
2718 /* we've reached the end, wrap to the beginning */
2719 if (++sublist_idx >= num_sublists)
2720 sublist_idx = 0;
2724 * If we didn't evict anything during this scan, we have
2725 * no reason to believe we'll evict more during another
2726 * scan, so break the loop.
2728 if (scan_evicted == 0) {
2729 /* This isn't possible, let's make that obvious */
2730 ASSERT3S(bytes, !=, 0);
2733 * When bytes is ARC_EVICT_ALL, the only way to
2734 * break the loop is when scan_evicted is zero.
2735 * In that case, we actually have evicted enough,
2736 * so we don't want to increment the kstat.
2738 if (bytes != ARC_EVICT_ALL) {
2739 ASSERT3S(total_evicted, <, bytes);
2740 ARCSTAT_BUMP(arcstat_evict_not_enough);
2743 break;
2747 for (int i = 0; i < num_sublists; i++) {
2748 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2749 multilist_sublist_remove(mls, markers[i]);
2750 multilist_sublist_unlock(mls);
2752 kmem_cache_free(hdr_full_cache, markers[i]);
2754 kmem_free(markers, sizeof (*markers) * num_sublists);
2756 return (total_evicted);
2760 * Flush all "evictable" data of the given type from the arc state
2761 * specified. This will not evict any "active" buffers (i.e. referenced).
2763 * When 'retry' is set to FALSE, the function will make a single pass
2764 * over the state and evict any buffers that it can. Since it doesn't
2765 * continually retry the eviction, it might end up leaving some buffers
2766 * in the ARC due to lock misses.
2768 * When 'retry' is set to TRUE, the function will continually retry the
2769 * eviction until *all* evictable buffers have been removed from the
2770 * state. As a result, if concurrent insertions into the state are
2771 * allowed (e.g. if the ARC isn't shutting down), this function might
2772 * wind up in an infinite loop, continually trying to evict buffers.
2774 static uint64_t
2775 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2776 boolean_t retry)
2778 uint64_t evicted = 0;
2780 while (state->arcs_lsize[type] != 0) {
2781 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2783 if (!retry)
2784 break;
2787 return (evicted);
2791 * Evict the specified number of bytes from the state specified,
2792 * restricting eviction to the spa and type given. This function
2793 * prevents us from trying to evict more from a state's list than
2794 * is "evictable", and to skip evicting altogether when passed a
2795 * negative value for "bytes". In contrast, arc_evict_state() will
2796 * evict everything it can, when passed a negative value for "bytes".
2798 static uint64_t
2799 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
2800 arc_buf_contents_t type)
2802 int64_t delta;
2804 if (bytes > 0 && state->arcs_lsize[type] > 0) {
2805 delta = MIN(state->arcs_lsize[type], bytes);
2806 return (arc_evict_state(state, spa, delta, type));
2809 return (0);
2813 * Evict metadata buffers from the cache, such that arc_meta_used is
2814 * capped by the arc_meta_limit tunable.
2816 static uint64_t
2817 arc_adjust_meta(void)
2819 uint64_t total_evicted = 0;
2820 int64_t target;
2823 * If we're over the meta limit, we want to evict enough
2824 * metadata to get back under the meta limit. We don't want to
2825 * evict so much that we drop the MRU below arc_p, though. If
2826 * we're over the meta limit more than we're over arc_p, we
2827 * evict some from the MRU here, and some from the MFU below.
2829 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2830 (int64_t)(refcount_count(&arc_anon->arcs_size) +
2831 refcount_count(&arc_mru->arcs_size) - arc_p));
2833 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2836 * Similar to the above, we want to evict enough bytes to get us
2837 * below the meta limit, but not so much as to drop us below the
2838 * space alloted to the MFU (which is defined as arc_c - arc_p).
2840 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2841 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
2843 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2845 return (total_evicted);
2849 * Return the type of the oldest buffer in the given arc state
2851 * This function will select a random sublist of type ARC_BUFC_DATA and
2852 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
2853 * is compared, and the type which contains the "older" buffer will be
2854 * returned.
2856 static arc_buf_contents_t
2857 arc_adjust_type(arc_state_t *state)
2859 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
2860 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
2861 int data_idx = multilist_get_random_index(data_ml);
2862 int meta_idx = multilist_get_random_index(meta_ml);
2863 multilist_sublist_t *data_mls;
2864 multilist_sublist_t *meta_mls;
2865 arc_buf_contents_t type;
2866 arc_buf_hdr_t *data_hdr;
2867 arc_buf_hdr_t *meta_hdr;
2870 * We keep the sublist lock until we're finished, to prevent
2871 * the headers from being destroyed via arc_evict_state().
2873 data_mls = multilist_sublist_lock(data_ml, data_idx);
2874 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
2877 * These two loops are to ensure we skip any markers that
2878 * might be at the tail of the lists due to arc_evict_state().
2881 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
2882 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
2883 if (data_hdr->b_spa != 0)
2884 break;
2887 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
2888 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
2889 if (meta_hdr->b_spa != 0)
2890 break;
2893 if (data_hdr == NULL && meta_hdr == NULL) {
2894 type = ARC_BUFC_DATA;
2895 } else if (data_hdr == NULL) {
2896 ASSERT3P(meta_hdr, !=, NULL);
2897 type = ARC_BUFC_METADATA;
2898 } else if (meta_hdr == NULL) {
2899 ASSERT3P(data_hdr, !=, NULL);
2900 type = ARC_BUFC_DATA;
2901 } else {
2902 ASSERT3P(data_hdr, !=, NULL);
2903 ASSERT3P(meta_hdr, !=, NULL);
2905 /* The headers can't be on the sublist without an L1 header */
2906 ASSERT(HDR_HAS_L1HDR(data_hdr));
2907 ASSERT(HDR_HAS_L1HDR(meta_hdr));
2909 if (data_hdr->b_l1hdr.b_arc_access <
2910 meta_hdr->b_l1hdr.b_arc_access) {
2911 type = ARC_BUFC_DATA;
2912 } else {
2913 type = ARC_BUFC_METADATA;
2917 multilist_sublist_unlock(meta_mls);
2918 multilist_sublist_unlock(data_mls);
2920 return (type);
2924 * Evict buffers from the cache, such that arc_size is capped by arc_c.
2926 static uint64_t
2927 arc_adjust(void)
2929 uint64_t total_evicted = 0;
2930 uint64_t bytes;
2931 int64_t target;
2934 * If we're over arc_meta_limit, we want to correct that before
2935 * potentially evicting data buffers below.
2937 total_evicted += arc_adjust_meta();
2940 * Adjust MRU size
2942 * If we're over the target cache size, we want to evict enough
2943 * from the list to get back to our target size. We don't want
2944 * to evict too much from the MRU, such that it drops below
2945 * arc_p. So, if we're over our target cache size more than
2946 * the MRU is over arc_p, we'll evict enough to get back to
2947 * arc_p here, and then evict more from the MFU below.
2949 target = MIN((int64_t)(arc_size - arc_c),
2950 (int64_t)(refcount_count(&arc_anon->arcs_size) +
2951 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
2954 * If we're below arc_meta_min, always prefer to evict data.
2955 * Otherwise, try to satisfy the requested number of bytes to
2956 * evict from the type which contains older buffers; in an
2957 * effort to keep newer buffers in the cache regardless of their
2958 * type. If we cannot satisfy the number of bytes from this
2959 * type, spill over into the next type.
2961 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
2962 arc_meta_used > arc_meta_min) {
2963 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2964 total_evicted += bytes;
2967 * If we couldn't evict our target number of bytes from
2968 * metadata, we try to get the rest from data.
2970 target -= bytes;
2972 total_evicted +=
2973 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
2974 } else {
2975 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
2976 total_evicted += bytes;
2979 * If we couldn't evict our target number of bytes from
2980 * data, we try to get the rest from metadata.
2982 target -= bytes;
2984 total_evicted +=
2985 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2989 * Adjust MFU size
2991 * Now that we've tried to evict enough from the MRU to get its
2992 * size back to arc_p, if we're still above the target cache
2993 * size, we evict the rest from the MFU.
2995 target = arc_size - arc_c;
2997 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
2998 arc_meta_used > arc_meta_min) {
2999 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3000 total_evicted += bytes;
3003 * If we couldn't evict our target number of bytes from
3004 * metadata, we try to get the rest from data.
3006 target -= bytes;
3008 total_evicted +=
3009 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3010 } else {
3011 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3012 total_evicted += bytes;
3015 * If we couldn't evict our target number of bytes from
3016 * data, we try to get the rest from data.
3018 target -= bytes;
3020 total_evicted +=
3021 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3025 * Adjust ghost lists
3027 * In addition to the above, the ARC also defines target values
3028 * for the ghost lists. The sum of the mru list and mru ghost
3029 * list should never exceed the target size of the cache, and
3030 * the sum of the mru list, mfu list, mru ghost list, and mfu
3031 * ghost list should never exceed twice the target size of the
3032 * cache. The following logic enforces these limits on the ghost
3033 * caches, and evicts from them as needed.
3035 target = refcount_count(&arc_mru->arcs_size) +
3036 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3038 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3039 total_evicted += bytes;
3041 target -= bytes;
3043 total_evicted +=
3044 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3047 * We assume the sum of the mru list and mfu list is less than
3048 * or equal to arc_c (we enforced this above), which means we
3049 * can use the simpler of the two equations below:
3051 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3052 * mru ghost + mfu ghost <= arc_c
3054 target = refcount_count(&arc_mru_ghost->arcs_size) +
3055 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3057 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3058 total_evicted += bytes;
3060 target -= bytes;
3062 total_evicted +=
3063 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3065 return (total_evicted);
3068 static void
3069 arc_do_user_evicts(void)
3071 mutex_enter(&arc_user_evicts_lock);
3072 while (arc_eviction_list != NULL) {
3073 arc_buf_t *buf = arc_eviction_list;
3074 arc_eviction_list = buf->b_next;
3075 mutex_enter(&buf->b_evict_lock);
3076 buf->b_hdr = NULL;
3077 mutex_exit(&buf->b_evict_lock);
3078 mutex_exit(&arc_user_evicts_lock);
3080 if (buf->b_efunc != NULL)
3081 VERIFY0(buf->b_efunc(buf->b_private));
3083 buf->b_efunc = NULL;
3084 buf->b_private = NULL;
3085 kmem_cache_free(buf_cache, buf);
3086 mutex_enter(&arc_user_evicts_lock);
3088 mutex_exit(&arc_user_evicts_lock);
3091 void
3092 arc_flush(spa_t *spa, boolean_t retry)
3094 uint64_t guid = 0;
3097 * If retry is TRUE, a spa must not be specified since we have
3098 * no good way to determine if all of a spa's buffers have been
3099 * evicted from an arc state.
3101 ASSERT(!retry || spa == 0);
3103 if (spa != NULL)
3104 guid = spa_load_guid(spa);
3106 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3107 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3109 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3110 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3112 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3113 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3115 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3116 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3118 arc_do_user_evicts();
3119 ASSERT(spa || arc_eviction_list == NULL);
3122 void
3123 arc_shrink(int64_t to_free)
3125 if (arc_c > arc_c_min) {
3127 if (arc_c > arc_c_min + to_free)
3128 atomic_add_64(&arc_c, -to_free);
3129 else
3130 arc_c = arc_c_min;
3132 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3133 if (arc_c > arc_size)
3134 arc_c = MAX(arc_size, arc_c_min);
3135 if (arc_p > arc_c)
3136 arc_p = (arc_c >> 1);
3137 ASSERT(arc_c >= arc_c_min);
3138 ASSERT((int64_t)arc_p >= 0);
3141 if (arc_size > arc_c)
3142 (void) arc_adjust();
3145 typedef enum free_memory_reason_t {
3146 FMR_UNKNOWN,
3147 FMR_NEEDFREE,
3148 FMR_LOTSFREE,
3149 FMR_SWAPFS_MINFREE,
3150 FMR_PAGES_PP_MAXIMUM,
3151 FMR_HEAP_ARENA,
3152 FMR_ZIO_ARENA,
3153 } free_memory_reason_t;
3155 int64_t last_free_memory;
3156 free_memory_reason_t last_free_reason;
3159 * Additional reserve of pages for pp_reserve.
3161 int64_t arc_pages_pp_reserve = 64;
3164 * Additional reserve of pages for swapfs.
3166 int64_t arc_swapfs_reserve = 64;
3169 * Return the amount of memory that can be consumed before reclaim will be
3170 * needed. Positive if there is sufficient free memory, negative indicates
3171 * the amount of memory that needs to be freed up.
3173 static int64_t
3174 arc_available_memory(void)
3176 int64_t lowest = INT64_MAX;
3177 int64_t n;
3178 free_memory_reason_t r = FMR_UNKNOWN;
3180 #ifdef _KERNEL
3181 if (needfree > 0) {
3182 n = PAGESIZE * (-needfree);
3183 if (n < lowest) {
3184 lowest = n;
3185 r = FMR_NEEDFREE;
3190 * check that we're out of range of the pageout scanner. It starts to
3191 * schedule paging if freemem is less than lotsfree and needfree.
3192 * lotsfree is the high-water mark for pageout, and needfree is the
3193 * number of needed free pages. We add extra pages here to make sure
3194 * the scanner doesn't start up while we're freeing memory.
3196 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3197 if (n < lowest) {
3198 lowest = n;
3199 r = FMR_LOTSFREE;
3203 * check to make sure that swapfs has enough space so that anon
3204 * reservations can still succeed. anon_resvmem() checks that the
3205 * availrmem is greater than swapfs_minfree, and the number of reserved
3206 * swap pages. We also add a bit of extra here just to prevent
3207 * circumstances from getting really dire.
3209 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3210 desfree - arc_swapfs_reserve);
3211 if (n < lowest) {
3212 lowest = n;
3213 r = FMR_SWAPFS_MINFREE;
3218 * Check that we have enough availrmem that memory locking (e.g., via
3219 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
3220 * stores the number of pages that cannot be locked; when availrmem
3221 * drops below pages_pp_maximum, page locking mechanisms such as
3222 * page_pp_lock() will fail.)
3224 n = PAGESIZE * (availrmem - pages_pp_maximum -
3225 arc_pages_pp_reserve);
3226 if (n < lowest) {
3227 lowest = n;
3228 r = FMR_PAGES_PP_MAXIMUM;
3231 #if defined(__i386)
3233 * If we're on an i386 platform, it's possible that we'll exhaust the
3234 * kernel heap space before we ever run out of available physical
3235 * memory. Most checks of the size of the heap_area compare against
3236 * tune.t_minarmem, which is the minimum available real memory that we
3237 * can have in the system. However, this is generally fixed at 25 pages
3238 * which is so low that it's useless. In this comparison, we seek to
3239 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3240 * heap is allocated. (Or, in the calculation, if less than 1/4th is
3241 * free)
3243 n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
3244 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3245 if (n < lowest) {
3246 lowest = n;
3247 r = FMR_HEAP_ARENA;
3249 #endif
3252 * If zio data pages are being allocated out of a separate heap segment,
3253 * then enforce that the size of available vmem for this arena remains
3254 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
3256 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
3257 * memory (in the zio_arena) free, which can avoid memory
3258 * fragmentation issues.
3260 if (zio_arena != NULL) {
3261 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
3262 (vmem_size(zio_arena, VMEM_ALLOC) >>
3263 arc_zio_arena_free_shift);
3264 if (n < lowest) {
3265 lowest = n;
3266 r = FMR_ZIO_ARENA;
3269 #else
3270 /* Every 100 calls, free a small amount */
3271 if (spa_get_random(100) == 0)
3272 lowest = -1024;
3273 #endif
3275 last_free_memory = lowest;
3276 last_free_reason = r;
3278 return (lowest);
3283 * Determine if the system is under memory pressure and is asking
3284 * to reclaim memory. A return value of TRUE indicates that the system
3285 * is under memory pressure and that the arc should adjust accordingly.
3287 static boolean_t
3288 arc_reclaim_needed(void)
3290 return (arc_available_memory() < 0);
3293 static void
3294 arc_kmem_reap_now(void)
3296 size_t i;
3297 kmem_cache_t *prev_cache = NULL;
3298 kmem_cache_t *prev_data_cache = NULL;
3299 extern kmem_cache_t *zio_buf_cache[];
3300 extern kmem_cache_t *zio_data_buf_cache[];
3301 extern kmem_cache_t *range_seg_cache;
3303 #ifdef _KERNEL
3304 if (arc_meta_used >= arc_meta_limit) {
3306 * We are exceeding our meta-data cache limit.
3307 * Purge some DNLC entries to release holds on meta-data.
3309 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3311 #if defined(__i386)
3313 * Reclaim unused memory from all kmem caches.
3315 kmem_reap();
3316 #endif
3317 #endif
3319 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3320 if (zio_buf_cache[i] != prev_cache) {
3321 prev_cache = zio_buf_cache[i];
3322 kmem_cache_reap_now(zio_buf_cache[i]);
3324 if (zio_data_buf_cache[i] != prev_data_cache) {
3325 prev_data_cache = zio_data_buf_cache[i];
3326 kmem_cache_reap_now(zio_data_buf_cache[i]);
3329 kmem_cache_reap_now(buf_cache);
3330 kmem_cache_reap_now(hdr_full_cache);
3331 kmem_cache_reap_now(hdr_l2only_cache);
3332 kmem_cache_reap_now(range_seg_cache);
3334 if (zio_arena != NULL) {
3336 * Ask the vmem arena to reclaim unused memory from its
3337 * quantum caches.
3339 vmem_qcache_reap(zio_arena);
3344 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3345 * enough data and signal them to proceed. When this happens, the threads in
3346 * arc_get_data_buf() are sleeping while holding the hash lock for their
3347 * particular arc header. Thus, we must be careful to never sleep on a
3348 * hash lock in this thread. This is to prevent the following deadlock:
3350 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3351 * waiting for the reclaim thread to signal it.
3353 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3354 * fails, and goes to sleep forever.
3356 * This possible deadlock is avoided by always acquiring a hash lock
3357 * using mutex_tryenter() from arc_reclaim_thread().
3359 static void
3360 arc_reclaim_thread(void)
3362 hrtime_t growtime = 0;
3363 callb_cpr_t cpr;
3365 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3367 mutex_enter(&arc_reclaim_lock);
3368 while (!arc_reclaim_thread_exit) {
3369 int64_t free_memory = arc_available_memory();
3370 uint64_t evicted = 0;
3372 mutex_exit(&arc_reclaim_lock);
3374 if (free_memory < 0) {
3376 arc_no_grow = B_TRUE;
3377 arc_warm = B_TRUE;
3380 * Wait at least zfs_grow_retry (default 60) seconds
3381 * before considering growing.
3383 growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
3385 arc_kmem_reap_now();
3388 * If we are still low on memory, shrink the ARC
3389 * so that we have arc_shrink_min free space.
3391 free_memory = arc_available_memory();
3393 int64_t to_free =
3394 (arc_c >> arc_shrink_shift) - free_memory;
3395 if (to_free > 0) {
3396 #ifdef _KERNEL
3397 to_free = MAX(to_free, ptob(needfree));
3398 #endif
3399 arc_shrink(to_free);
3401 } else if (free_memory < arc_c >> arc_no_grow_shift) {
3402 arc_no_grow = B_TRUE;
3403 } else if (gethrtime() >= growtime) {
3404 arc_no_grow = B_FALSE;
3407 evicted = arc_adjust();
3409 mutex_enter(&arc_reclaim_lock);
3412 * If evicted is zero, we couldn't evict anything via
3413 * arc_adjust(). This could be due to hash lock
3414 * collisions, but more likely due to the majority of
3415 * arc buffers being unevictable. Therefore, even if
3416 * arc_size is above arc_c, another pass is unlikely to
3417 * be helpful and could potentially cause us to enter an
3418 * infinite loop.
3420 if (arc_size <= arc_c || evicted == 0) {
3422 * We're either no longer overflowing, or we
3423 * can't evict anything more, so we should wake
3424 * up any threads before we go to sleep.
3426 cv_broadcast(&arc_reclaim_waiters_cv);
3429 * Block until signaled, or after one second (we
3430 * might need to perform arc_kmem_reap_now()
3431 * even if we aren't being signalled)
3433 CALLB_CPR_SAFE_BEGIN(&cpr);
3434 (void) cv_timedwait_hires(&arc_reclaim_thread_cv,
3435 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
3436 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3440 arc_reclaim_thread_exit = FALSE;
3441 cv_broadcast(&arc_reclaim_thread_cv);
3442 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
3443 thread_exit();
3446 static void
3447 arc_user_evicts_thread(void)
3449 callb_cpr_t cpr;
3451 CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3453 mutex_enter(&arc_user_evicts_lock);
3454 while (!arc_user_evicts_thread_exit) {
3455 mutex_exit(&arc_user_evicts_lock);
3457 arc_do_user_evicts();
3460 * This is necessary in order for the mdb ::arc dcmd to
3461 * show up to date information. Since the ::arc command
3462 * does not call the kstat's update function, without
3463 * this call, the command may show stale stats for the
3464 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3465 * with this change, the data might be up to 1 second
3466 * out of date; but that should suffice. The arc_state_t
3467 * structures can be queried directly if more accurate
3468 * information is needed.
3470 if (arc_ksp != NULL)
3471 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3473 mutex_enter(&arc_user_evicts_lock);
3476 * Block until signaled, or after one second (we need to
3477 * call the arc's kstat update function regularly).
3479 CALLB_CPR_SAFE_BEGIN(&cpr);
3480 (void) cv_timedwait(&arc_user_evicts_cv,
3481 &arc_user_evicts_lock, ddi_get_lbolt() + hz);
3482 CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3485 arc_user_evicts_thread_exit = FALSE;
3486 cv_broadcast(&arc_user_evicts_cv);
3487 CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */
3488 thread_exit();
3492 * Adapt arc info given the number of bytes we are trying to add and
3493 * the state that we are comming from. This function is only called
3494 * when we are adding new content to the cache.
3496 static void
3497 arc_adapt(int bytes, arc_state_t *state)
3499 int mult;
3500 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3501 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3502 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
3504 if (state == arc_l2c_only)
3505 return;
3507 ASSERT(bytes > 0);
3509 * Adapt the target size of the MRU list:
3510 * - if we just hit in the MRU ghost list, then increase
3511 * the target size of the MRU list.
3512 * - if we just hit in the MFU ghost list, then increase
3513 * the target size of the MFU list by decreasing the
3514 * target size of the MRU list.
3516 if (state == arc_mru_ghost) {
3517 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
3518 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3520 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3521 } else if (state == arc_mfu_ghost) {
3522 uint64_t delta;
3524 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
3525 mult = MIN(mult, 10);
3527 delta = MIN(bytes * mult, arc_p);
3528 arc_p = MAX(arc_p_min, arc_p - delta);
3530 ASSERT((int64_t)arc_p >= 0);
3532 if (arc_reclaim_needed()) {
3533 cv_signal(&arc_reclaim_thread_cv);
3534 return;
3537 if (arc_no_grow)
3538 return;
3540 if (arc_c >= arc_c_max)
3541 return;
3544 * If we're within (2 * maxblocksize) bytes of the target
3545 * cache size, increment the target cache size
3547 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3548 atomic_add_64(&arc_c, (int64_t)bytes);
3549 if (arc_c > arc_c_max)
3550 arc_c = arc_c_max;
3551 else if (state == arc_anon)
3552 atomic_add_64(&arc_p, (int64_t)bytes);
3553 if (arc_p > arc_c)
3554 arc_p = arc_c;
3556 ASSERT((int64_t)arc_p >= 0);
3560 * Check if arc_size has grown past our upper threshold, determined by
3561 * zfs_arc_overflow_shift.
3563 static boolean_t
3564 arc_is_overflowing(void)
3566 /* Always allow at least one block of overflow */
3567 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3568 arc_c >> zfs_arc_overflow_shift);
3570 return (arc_size >= arc_c + overflow);
3574 * The buffer, supplied as the first argument, needs a data block. If we
3575 * are hitting the hard limit for the cache size, we must sleep, waiting
3576 * for the eviction thread to catch up. If we're past the target size
3577 * but below the hard limit, we'll only signal the reclaim thread and
3578 * continue on.
3580 static void
3581 arc_get_data_buf(arc_buf_t *buf)
3583 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
3584 uint64_t size = buf->b_hdr->b_size;
3585 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
3587 arc_adapt(size, state);
3590 * If arc_size is currently overflowing, and has grown past our
3591 * upper limit, we must be adding data faster than the evict
3592 * thread can evict. Thus, to ensure we don't compound the
3593 * problem by adding more data and forcing arc_size to grow even
3594 * further past it's target size, we halt and wait for the
3595 * eviction thread to catch up.
3597 * It's also possible that the reclaim thread is unable to evict
3598 * enough buffers to get arc_size below the overflow limit (e.g.
3599 * due to buffers being un-evictable, or hash lock collisions).
3600 * In this case, we want to proceed regardless if we're
3601 * overflowing; thus we don't use a while loop here.
3603 if (arc_is_overflowing()) {
3604 mutex_enter(&arc_reclaim_lock);
3607 * Now that we've acquired the lock, we may no longer be
3608 * over the overflow limit, lets check.
3610 * We're ignoring the case of spurious wake ups. If that
3611 * were to happen, it'd let this thread consume an ARC
3612 * buffer before it should have (i.e. before we're under
3613 * the overflow limit and were signalled by the reclaim
3614 * thread). As long as that is a rare occurrence, it
3615 * shouldn't cause any harm.
3617 if (arc_is_overflowing()) {
3618 cv_signal(&arc_reclaim_thread_cv);
3619 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
3622 mutex_exit(&arc_reclaim_lock);
3625 if (type == ARC_BUFC_METADATA) {
3626 buf->b_data = zio_buf_alloc(size);
3627 arc_space_consume(size, ARC_SPACE_META);
3628 } else {
3629 ASSERT(type == ARC_BUFC_DATA);
3630 buf->b_data = zio_data_buf_alloc(size);
3631 arc_space_consume(size, ARC_SPACE_DATA);
3635 * Update the state size. Note that ghost states have a
3636 * "ghost size" and so don't need to be updated.
3638 if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3639 arc_buf_hdr_t *hdr = buf->b_hdr;
3640 arc_state_t *state = hdr->b_l1hdr.b_state;
3642 (void) refcount_add_many(&state->arcs_size, size, buf);
3645 * If this is reached via arc_read, the link is
3646 * protected by the hash lock. If reached via
3647 * arc_buf_alloc, the header should not be accessed by
3648 * any other thread. And, if reached via arc_read_done,
3649 * the hash lock will protect it if it's found in the
3650 * hash table; otherwise no other thread should be
3651 * trying to [add|remove]_reference it.
3653 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3654 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3655 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3656 size);
3659 * If we are growing the cache, and we are adding anonymous
3660 * data, and we have outgrown arc_p, update arc_p
3662 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
3663 (refcount_count(&arc_anon->arcs_size) +
3664 refcount_count(&arc_mru->arcs_size) > arc_p))
3665 arc_p = MIN(arc_c, arc_p + size);
3670 * This routine is called whenever a buffer is accessed.
3671 * NOTE: the hash lock is dropped in this function.
3673 static void
3674 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3676 clock_t now;
3678 ASSERT(MUTEX_HELD(hash_lock));
3679 ASSERT(HDR_HAS_L1HDR(hdr));
3681 if (hdr->b_l1hdr.b_state == arc_anon) {
3683 * This buffer is not in the cache, and does not
3684 * appear in our "ghost" list. Add the new buffer
3685 * to the MRU state.
3688 ASSERT0(hdr->b_l1hdr.b_arc_access);
3689 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3690 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3691 arc_change_state(arc_mru, hdr, hash_lock);
3693 } else if (hdr->b_l1hdr.b_state == arc_mru) {
3694 now = ddi_get_lbolt();
3697 * If this buffer is here because of a prefetch, then either:
3698 * - clear the flag if this is a "referencing" read
3699 * (any subsequent access will bump this into the MFU state).
3700 * or
3701 * - move the buffer to the head of the list if this is
3702 * another prefetch (to make it less likely to be evicted).
3704 if (HDR_PREFETCH(hdr)) {
3705 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3706 /* link protected by hash lock */
3707 ASSERT(multilist_link_active(
3708 &hdr->b_l1hdr.b_arc_node));
3709 } else {
3710 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3711 ARCSTAT_BUMP(arcstat_mru_hits);
3713 hdr->b_l1hdr.b_arc_access = now;
3714 return;
3718 * This buffer has been "accessed" only once so far,
3719 * but it is still in the cache. Move it to the MFU
3720 * state.
3722 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
3724 * More than 125ms have passed since we
3725 * instantiated this buffer. Move it to the
3726 * most frequently used state.
3728 hdr->b_l1hdr.b_arc_access = now;
3729 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3730 arc_change_state(arc_mfu, hdr, hash_lock);
3732 ARCSTAT_BUMP(arcstat_mru_hits);
3733 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
3734 arc_state_t *new_state;
3736 * This buffer has been "accessed" recently, but
3737 * was evicted from the cache. Move it to the
3738 * MFU state.
3741 if (HDR_PREFETCH(hdr)) {
3742 new_state = arc_mru;
3743 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
3744 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3745 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3746 } else {
3747 new_state = arc_mfu;
3748 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3751 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3752 arc_change_state(new_state, hdr, hash_lock);
3754 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
3755 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
3757 * This buffer has been accessed more than once and is
3758 * still in the cache. Keep it in the MFU state.
3760 * NOTE: an add_reference() that occurred when we did
3761 * the arc_read() will have kicked this off the list.
3762 * If it was a prefetch, we will explicitly move it to
3763 * the head of the list now.
3765 if ((HDR_PREFETCH(hdr)) != 0) {
3766 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3767 /* link protected by hash_lock */
3768 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3770 ARCSTAT_BUMP(arcstat_mfu_hits);
3771 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3772 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
3773 arc_state_t *new_state = arc_mfu;
3775 * This buffer has been accessed more than once but has
3776 * been evicted from the cache. Move it back to the
3777 * MFU state.
3780 if (HDR_PREFETCH(hdr)) {
3782 * This is a prefetch access...
3783 * move this block back to the MRU state.
3785 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3786 new_state = arc_mru;
3789 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3790 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3791 arc_change_state(new_state, hdr, hash_lock);
3793 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
3794 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
3796 * This buffer is on the 2nd Level ARC.
3799 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3800 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3801 arc_change_state(arc_mfu, hdr, hash_lock);
3802 } else {
3803 ASSERT(!"invalid arc state");
3807 /* a generic arc_done_func_t which you can use */
3808 /* ARGSUSED */
3809 void
3810 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
3812 if (zio == NULL || zio->io_error == 0)
3813 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
3814 VERIFY(arc_buf_remove_ref(buf, arg));
3817 /* a generic arc_done_func_t */
3818 void
3819 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
3821 arc_buf_t **bufp = arg;
3822 if (zio && zio->io_error) {
3823 VERIFY(arc_buf_remove_ref(buf, arg));
3824 *bufp = NULL;
3825 } else {
3826 *bufp = buf;
3827 ASSERT(buf->b_data);
3831 static void
3832 arc_read_done(zio_t *zio)
3834 arc_buf_hdr_t *hdr;
3835 arc_buf_t *buf;
3836 arc_buf_t *abuf; /* buffer we're assigning to callback */
3837 kmutex_t *hash_lock = NULL;
3838 arc_callback_t *callback_list, *acb;
3839 int freeable = FALSE;
3841 buf = zio->io_private;
3842 hdr = buf->b_hdr;
3845 * The hdr was inserted into hash-table and removed from lists
3846 * prior to starting I/O. We should find this header, since
3847 * it's in the hash table, and it should be legit since it's
3848 * not possible to evict it during the I/O. The only possible
3849 * reason for it not to be found is if we were freed during the
3850 * read.
3852 if (HDR_IN_HASH_TABLE(hdr)) {
3853 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
3854 ASSERT3U(hdr->b_dva.dva_word[0], ==,
3855 BP_IDENTITY(zio->io_bp)->dva_word[0]);
3856 ASSERT3U(hdr->b_dva.dva_word[1], ==,
3857 BP_IDENTITY(zio->io_bp)->dva_word[1]);
3859 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
3860 &hash_lock);
3862 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
3863 hash_lock == NULL) ||
3864 (found == hdr &&
3865 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
3866 (found == hdr && HDR_L2_READING(hdr)));
3869 hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
3870 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
3871 hdr->b_flags &= ~ARC_FLAG_L2CACHE;
3873 /* byteswap if necessary */
3874 callback_list = hdr->b_l1hdr.b_acb;
3875 ASSERT(callback_list != NULL);
3876 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
3877 dmu_object_byteswap_t bswap =
3878 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
3879 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
3880 byteswap_uint64_array :
3881 dmu_ot_byteswap[bswap].ob_func;
3882 func(buf->b_data, hdr->b_size);
3885 arc_cksum_compute(buf, B_FALSE);
3886 arc_buf_watch(buf);
3888 if (hash_lock && zio->io_error == 0 &&
3889 hdr->b_l1hdr.b_state == arc_anon) {
3891 * Only call arc_access on anonymous buffers. This is because
3892 * if we've issued an I/O for an evicted buffer, we've already
3893 * called arc_access (to prevent any simultaneous readers from
3894 * getting confused).
3896 arc_access(hdr, hash_lock);
3899 /* create copies of the data buffer for the callers */
3900 abuf = buf;
3901 for (acb = callback_list; acb; acb = acb->acb_next) {
3902 if (acb->acb_done) {
3903 if (abuf == NULL) {
3904 ARCSTAT_BUMP(arcstat_duplicate_reads);
3905 abuf = arc_buf_clone(buf);
3907 acb->acb_buf = abuf;
3908 abuf = NULL;
3911 hdr->b_l1hdr.b_acb = NULL;
3912 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
3913 ASSERT(!HDR_BUF_AVAILABLE(hdr));
3914 if (abuf == buf) {
3915 ASSERT(buf->b_efunc == NULL);
3916 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
3917 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
3920 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
3921 callback_list != NULL);
3923 if (zio->io_error != 0) {
3924 hdr->b_flags |= ARC_FLAG_IO_ERROR;
3925 if (hdr->b_l1hdr.b_state != arc_anon)
3926 arc_change_state(arc_anon, hdr, hash_lock);
3927 if (HDR_IN_HASH_TABLE(hdr))
3928 buf_hash_remove(hdr);
3929 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
3933 * Broadcast before we drop the hash_lock to avoid the possibility
3934 * that the hdr (and hence the cv) might be freed before we get to
3935 * the cv_broadcast().
3937 cv_broadcast(&hdr->b_l1hdr.b_cv);
3939 if (hash_lock != NULL) {
3940 mutex_exit(hash_lock);
3941 } else {
3943 * This block was freed while we waited for the read to
3944 * complete. It has been removed from the hash table and
3945 * moved to the anonymous state (so that it won't show up
3946 * in the cache).
3948 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3949 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
3952 /* execute each callback and free its structure */
3953 while ((acb = callback_list) != NULL) {
3954 if (acb->acb_done)
3955 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3957 if (acb->acb_zio_dummy != NULL) {
3958 acb->acb_zio_dummy->io_error = zio->io_error;
3959 zio_nowait(acb->acb_zio_dummy);
3962 callback_list = acb->acb_next;
3963 kmem_free(acb, sizeof (arc_callback_t));
3966 if (freeable)
3967 arc_hdr_destroy(hdr);
3971 * "Read" the block at the specified DVA (in bp) via the
3972 * cache. If the block is found in the cache, invoke the provided
3973 * callback immediately and return. Note that the `zio' parameter
3974 * in the callback will be NULL in this case, since no IO was
3975 * required. If the block is not in the cache pass the read request
3976 * on to the spa with a substitute callback function, so that the
3977 * requested block will be added to the cache.
3979 * If a read request arrives for a block that has a read in-progress,
3980 * either wait for the in-progress read to complete (and return the
3981 * results); or, if this is a read with a "done" func, add a record
3982 * to the read to invoke the "done" func when the read completes,
3983 * and return; or just return.
3985 * arc_read_done() will invoke all the requested "done" functions
3986 * for readers of this block.
3989 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
3990 void *private, zio_priority_t priority, int zio_flags,
3991 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
3993 arc_buf_hdr_t *hdr = NULL;
3994 arc_buf_t *buf = NULL;
3995 kmutex_t *hash_lock = NULL;
3996 zio_t *rzio;
3997 uint64_t guid = spa_load_guid(spa);
3999 ASSERT(!BP_IS_EMBEDDED(bp) ||
4000 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4002 top:
4003 if (!BP_IS_EMBEDDED(bp)) {
4005 * Embedded BP's have no DVA and require no I/O to "read".
4006 * Create an anonymous arc buf to back it.
4008 hdr = buf_hash_find(guid, bp, &hash_lock);
4011 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
4013 *arc_flags |= ARC_FLAG_CACHED;
4015 if (HDR_IO_IN_PROGRESS(hdr)) {
4017 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4018 priority == ZIO_PRIORITY_SYNC_READ) {
4020 * This sync read must wait for an
4021 * in-progress async read (e.g. a predictive
4022 * prefetch). Async reads are queued
4023 * separately at the vdev_queue layer, so
4024 * this is a form of priority inversion.
4025 * Ideally, we would "inherit" the demand
4026 * i/o's priority by moving the i/o from
4027 * the async queue to the synchronous queue,
4028 * but there is currently no mechanism to do
4029 * so. Track this so that we can evaluate
4030 * the magnitude of this potential performance
4031 * problem.
4033 * Note that if the prefetch i/o is already
4034 * active (has been issued to the device),
4035 * the prefetch improved performance, because
4036 * we issued it sooner than we would have
4037 * without the prefetch.
4039 DTRACE_PROBE1(arc__sync__wait__for__async,
4040 arc_buf_hdr_t *, hdr);
4041 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4043 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4044 hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4047 if (*arc_flags & ARC_FLAG_WAIT) {
4048 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4049 mutex_exit(hash_lock);
4050 goto top;
4052 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4054 if (done) {
4055 arc_callback_t *acb = NULL;
4057 acb = kmem_zalloc(sizeof (arc_callback_t),
4058 KM_SLEEP);
4059 acb->acb_done = done;
4060 acb->acb_private = private;
4061 if (pio != NULL)
4062 acb->acb_zio_dummy = zio_null(pio,
4063 spa, NULL, NULL, NULL, zio_flags);
4065 ASSERT(acb->acb_done != NULL);
4066 acb->acb_next = hdr->b_l1hdr.b_acb;
4067 hdr->b_l1hdr.b_acb = acb;
4068 add_reference(hdr, hash_lock, private);
4069 mutex_exit(hash_lock);
4070 return (0);
4072 mutex_exit(hash_lock);
4073 return (0);
4076 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4077 hdr->b_l1hdr.b_state == arc_mfu);
4079 if (done) {
4080 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4082 * This is a demand read which does not have to
4083 * wait for i/o because we did a predictive
4084 * prefetch i/o for it, which has completed.
4086 DTRACE_PROBE1(
4087 arc__demand__hit__predictive__prefetch,
4088 arc_buf_hdr_t *, hdr);
4089 ARCSTAT_BUMP(
4090 arcstat_demand_hit_predictive_prefetch);
4091 hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4093 add_reference(hdr, hash_lock, private);
4095 * If this block is already in use, create a new
4096 * copy of the data so that we will be guaranteed
4097 * that arc_release() will always succeed.
4099 buf = hdr->b_l1hdr.b_buf;
4100 ASSERT(buf);
4101 ASSERT(buf->b_data);
4102 if (HDR_BUF_AVAILABLE(hdr)) {
4103 ASSERT(buf->b_efunc == NULL);
4104 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4105 } else {
4106 buf = arc_buf_clone(buf);
4109 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
4110 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4111 hdr->b_flags |= ARC_FLAG_PREFETCH;
4113 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4114 arc_access(hdr, hash_lock);
4115 if (*arc_flags & ARC_FLAG_L2CACHE)
4116 hdr->b_flags |= ARC_FLAG_L2CACHE;
4117 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4118 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4119 mutex_exit(hash_lock);
4120 ARCSTAT_BUMP(arcstat_hits);
4121 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4122 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4123 data, metadata, hits);
4125 if (done)
4126 done(NULL, buf, private);
4127 } else {
4128 uint64_t size = BP_GET_LSIZE(bp);
4129 arc_callback_t *acb;
4130 vdev_t *vd = NULL;
4131 uint64_t addr = 0;
4132 boolean_t devw = B_FALSE;
4133 enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4134 int32_t b_asize = 0;
4136 if (hdr == NULL) {
4137 /* this block is not in the cache */
4138 arc_buf_hdr_t *exists = NULL;
4139 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4140 buf = arc_buf_alloc(spa, size, private, type);
4141 hdr = buf->b_hdr;
4142 if (!BP_IS_EMBEDDED(bp)) {
4143 hdr->b_dva = *BP_IDENTITY(bp);
4144 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4145 exists = buf_hash_insert(hdr, &hash_lock);
4147 if (exists != NULL) {
4148 /* somebody beat us to the hash insert */
4149 mutex_exit(hash_lock);
4150 buf_discard_identity(hdr);
4151 (void) arc_buf_remove_ref(buf, private);
4152 goto top; /* restart the IO request */
4156 * If there is a callback, we pass our reference to
4157 * it; otherwise we remove our reference.
4159 if (done == NULL) {
4160 (void) remove_reference(hdr, hash_lock,
4161 private);
4163 if (*arc_flags & ARC_FLAG_PREFETCH)
4164 hdr->b_flags |= ARC_FLAG_PREFETCH;
4165 if (*arc_flags & ARC_FLAG_L2CACHE)
4166 hdr->b_flags |= ARC_FLAG_L2CACHE;
4167 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4168 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4169 if (BP_GET_LEVEL(bp) > 0)
4170 hdr->b_flags |= ARC_FLAG_INDIRECT;
4171 } else {
4173 * This block is in the ghost cache. If it was L2-only
4174 * (and thus didn't have an L1 hdr), we realloc the
4175 * header to add an L1 hdr.
4177 if (!HDR_HAS_L1HDR(hdr)) {
4178 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4179 hdr_full_cache);
4182 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4183 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4184 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4185 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4188 * If there is a callback, we pass a reference to it.
4190 if (done != NULL)
4191 add_reference(hdr, hash_lock, private);
4192 if (*arc_flags & ARC_FLAG_PREFETCH)
4193 hdr->b_flags |= ARC_FLAG_PREFETCH;
4194 if (*arc_flags & ARC_FLAG_L2CACHE)
4195 hdr->b_flags |= ARC_FLAG_L2CACHE;
4196 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4197 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4198 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4199 buf->b_hdr = hdr;
4200 buf->b_data = NULL;
4201 buf->b_efunc = NULL;
4202 buf->b_private = NULL;
4203 buf->b_next = NULL;
4204 hdr->b_l1hdr.b_buf = buf;
4205 ASSERT0(hdr->b_l1hdr.b_datacnt);
4206 hdr->b_l1hdr.b_datacnt = 1;
4207 arc_get_data_buf(buf);
4208 arc_access(hdr, hash_lock);
4211 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4212 hdr->b_flags |= ARC_FLAG_PREDICTIVE_PREFETCH;
4213 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4215 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4216 acb->acb_done = done;
4217 acb->acb_private = private;
4219 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4220 hdr->b_l1hdr.b_acb = acb;
4221 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4223 if (HDR_HAS_L2HDR(hdr) &&
4224 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4225 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4226 addr = hdr->b_l2hdr.b_daddr;
4227 b_compress = hdr->b_l2hdr.b_compress;
4228 b_asize = hdr->b_l2hdr.b_asize;
4230 * Lock out device removal.
4232 if (vdev_is_dead(vd) ||
4233 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4234 vd = NULL;
4237 if (hash_lock != NULL)
4238 mutex_exit(hash_lock);
4241 * At this point, we have a level 1 cache miss. Try again in
4242 * L2ARC if possible.
4244 ASSERT3U(hdr->b_size, ==, size);
4245 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4246 uint64_t, size, zbookmark_phys_t *, zb);
4247 ARCSTAT_BUMP(arcstat_misses);
4248 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4249 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4250 data, metadata, misses);
4252 if (priority == ZIO_PRIORITY_ASYNC_READ)
4253 hdr->b_flags |= ARC_FLAG_PRIO_ASYNC_READ;
4254 else
4255 hdr->b_flags &= ~ARC_FLAG_PRIO_ASYNC_READ;
4257 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4259 * Read from the L2ARC if the following are true:
4260 * 1. The L2ARC vdev was previously cached.
4261 * 2. This buffer still has L2ARC metadata.
4262 * 3. This buffer isn't currently writing to the L2ARC.
4263 * 4. The L2ARC entry wasn't evicted, which may
4264 * also have invalidated the vdev.
4265 * 5. This isn't prefetch and l2arc_noprefetch is set.
4267 if (HDR_HAS_L2HDR(hdr) &&
4268 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4269 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4270 l2arc_read_callback_t *cb;
4272 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4273 ARCSTAT_BUMP(arcstat_l2_hits);
4275 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4276 KM_SLEEP);
4277 cb->l2rcb_buf = buf;
4278 cb->l2rcb_spa = spa;
4279 cb->l2rcb_bp = *bp;
4280 cb->l2rcb_zb = *zb;
4281 cb->l2rcb_flags = zio_flags;
4282 cb->l2rcb_compress = b_compress;
4284 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4285 addr + size < vd->vdev_psize -
4286 VDEV_LABEL_END_SIZE);
4289 * l2arc read. The SCL_L2ARC lock will be
4290 * released by l2arc_read_done().
4291 * Issue a null zio if the underlying buffer
4292 * was squashed to zero size by compression.
4294 if (b_compress == ZIO_COMPRESS_EMPTY) {
4295 rzio = zio_null(pio, spa, vd,
4296 l2arc_read_done, cb,
4297 zio_flags | ZIO_FLAG_DONT_CACHE |
4298 ZIO_FLAG_CANFAIL |
4299 ZIO_FLAG_DONT_PROPAGATE |
4300 ZIO_FLAG_DONT_RETRY);
4301 } else {
4302 rzio = zio_read_phys(pio, vd, addr,
4303 b_asize, buf->b_data,
4304 ZIO_CHECKSUM_OFF,
4305 l2arc_read_done, cb, priority,
4306 zio_flags | ZIO_FLAG_DONT_CACHE |
4307 ZIO_FLAG_CANFAIL |
4308 ZIO_FLAG_DONT_PROPAGATE |
4309 ZIO_FLAG_DONT_RETRY, B_FALSE);
4311 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4312 zio_t *, rzio);
4313 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4315 if (*arc_flags & ARC_FLAG_NOWAIT) {
4316 zio_nowait(rzio);
4317 return (0);
4320 ASSERT(*arc_flags & ARC_FLAG_WAIT);
4321 if (zio_wait(rzio) == 0)
4322 return (0);
4324 /* l2arc read error; goto zio_read() */
4325 } else {
4326 DTRACE_PROBE1(l2arc__miss,
4327 arc_buf_hdr_t *, hdr);
4328 ARCSTAT_BUMP(arcstat_l2_misses);
4329 if (HDR_L2_WRITING(hdr))
4330 ARCSTAT_BUMP(arcstat_l2_rw_clash);
4331 spa_config_exit(spa, SCL_L2ARC, vd);
4333 } else {
4334 if (vd != NULL)
4335 spa_config_exit(spa, SCL_L2ARC, vd);
4336 if (l2arc_ndev != 0) {
4337 DTRACE_PROBE1(l2arc__miss,
4338 arc_buf_hdr_t *, hdr);
4339 ARCSTAT_BUMP(arcstat_l2_misses);
4343 rzio = zio_read(pio, spa, bp, buf->b_data, size,
4344 arc_read_done, buf, priority, zio_flags, zb);
4346 if (*arc_flags & ARC_FLAG_WAIT)
4347 return (zio_wait(rzio));
4349 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4350 zio_nowait(rzio);
4352 return (0);
4355 void
4356 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4358 ASSERT(buf->b_hdr != NULL);
4359 ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4360 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4361 func == NULL);
4362 ASSERT(buf->b_efunc == NULL);
4363 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4365 buf->b_efunc = func;
4366 buf->b_private = private;
4370 * Notify the arc that a block was freed, and thus will never be used again.
4372 void
4373 arc_freed(spa_t *spa, const blkptr_t *bp)
4375 arc_buf_hdr_t *hdr;
4376 kmutex_t *hash_lock;
4377 uint64_t guid = spa_load_guid(spa);
4379 ASSERT(!BP_IS_EMBEDDED(bp));
4381 hdr = buf_hash_find(guid, bp, &hash_lock);
4382 if (hdr == NULL)
4383 return;
4384 if (HDR_BUF_AVAILABLE(hdr)) {
4385 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4386 add_reference(hdr, hash_lock, FTAG);
4387 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4388 mutex_exit(hash_lock);
4390 arc_release(buf, FTAG);
4391 (void) arc_buf_remove_ref(buf, FTAG);
4392 } else {
4393 mutex_exit(hash_lock);
4399 * Clear the user eviction callback set by arc_set_callback(), first calling
4400 * it if it exists. Because the presence of a callback keeps an arc_buf cached
4401 * clearing the callback may result in the arc_buf being destroyed. However,
4402 * it will not result in the *last* arc_buf being destroyed, hence the data
4403 * will remain cached in the ARC. We make a copy of the arc buffer here so
4404 * that we can process the callback without holding any locks.
4406 * It's possible that the callback is already in the process of being cleared
4407 * by another thread. In this case we can not clear the callback.
4409 * Returns B_TRUE if the callback was successfully called and cleared.
4411 boolean_t
4412 arc_clear_callback(arc_buf_t *buf)
4414 arc_buf_hdr_t *hdr;
4415 kmutex_t *hash_lock;
4416 arc_evict_func_t *efunc = buf->b_efunc;
4417 void *private = buf->b_private;
4419 mutex_enter(&buf->b_evict_lock);
4420 hdr = buf->b_hdr;
4421 if (hdr == NULL) {
4423 * We are in arc_do_user_evicts().
4425 ASSERT(buf->b_data == NULL);
4426 mutex_exit(&buf->b_evict_lock);
4427 return (B_FALSE);
4428 } else if (buf->b_data == NULL) {
4430 * We are on the eviction list; process this buffer now
4431 * but let arc_do_user_evicts() do the reaping.
4433 buf->b_efunc = NULL;
4434 mutex_exit(&buf->b_evict_lock);
4435 VERIFY0(efunc(private));
4436 return (B_TRUE);
4438 hash_lock = HDR_LOCK(hdr);
4439 mutex_enter(hash_lock);
4440 hdr = buf->b_hdr;
4441 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4443 ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4444 hdr->b_l1hdr.b_datacnt);
4445 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4446 hdr->b_l1hdr.b_state == arc_mfu);
4448 buf->b_efunc = NULL;
4449 buf->b_private = NULL;
4451 if (hdr->b_l1hdr.b_datacnt > 1) {
4452 mutex_exit(&buf->b_evict_lock);
4453 arc_buf_destroy(buf, TRUE);
4454 } else {
4455 ASSERT(buf == hdr->b_l1hdr.b_buf);
4456 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4457 mutex_exit(&buf->b_evict_lock);
4460 mutex_exit(hash_lock);
4461 VERIFY0(efunc(private));
4462 return (B_TRUE);
4466 * Release this buffer from the cache, making it an anonymous buffer. This
4467 * must be done after a read and prior to modifying the buffer contents.
4468 * If the buffer has more than one reference, we must make
4469 * a new hdr for the buffer.
4471 void
4472 arc_release(arc_buf_t *buf, void *tag)
4474 arc_buf_hdr_t *hdr = buf->b_hdr;
4477 * It would be nice to assert that if it's DMU metadata (level >
4478 * 0 || it's the dnode file), then it must be syncing context.
4479 * But we don't know that information at this level.
4482 mutex_enter(&buf->b_evict_lock);
4484 ASSERT(HDR_HAS_L1HDR(hdr));
4487 * We don't grab the hash lock prior to this check, because if
4488 * the buffer's header is in the arc_anon state, it won't be
4489 * linked into the hash table.
4491 if (hdr->b_l1hdr.b_state == arc_anon) {
4492 mutex_exit(&buf->b_evict_lock);
4493 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4494 ASSERT(!HDR_IN_HASH_TABLE(hdr));
4495 ASSERT(!HDR_HAS_L2HDR(hdr));
4496 ASSERT(BUF_EMPTY(hdr));
4498 ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4499 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4500 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4502 ASSERT3P(buf->b_efunc, ==, NULL);
4503 ASSERT3P(buf->b_private, ==, NULL);
4505 hdr->b_l1hdr.b_arc_access = 0;
4506 arc_buf_thaw(buf);
4508 return;
4511 kmutex_t *hash_lock = HDR_LOCK(hdr);
4512 mutex_enter(hash_lock);
4515 * This assignment is only valid as long as the hash_lock is
4516 * held, we must be careful not to reference state or the
4517 * b_state field after dropping the lock.
4519 arc_state_t *state = hdr->b_l1hdr.b_state;
4520 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4521 ASSERT3P(state, !=, arc_anon);
4523 /* this buffer is not on any list */
4524 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4526 if (HDR_HAS_L2HDR(hdr)) {
4527 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4530 * We have to recheck this conditional again now that
4531 * we're holding the l2ad_mtx to prevent a race with
4532 * another thread which might be concurrently calling
4533 * l2arc_evict(). In that case, l2arc_evict() might have
4534 * destroyed the header's L2 portion as we were waiting
4535 * to acquire the l2ad_mtx.
4537 if (HDR_HAS_L2HDR(hdr))
4538 arc_hdr_l2hdr_destroy(hdr);
4540 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4544 * Do we have more than one buf?
4546 if (hdr->b_l1hdr.b_datacnt > 1) {
4547 arc_buf_hdr_t *nhdr;
4548 arc_buf_t **bufp;
4549 uint64_t blksz = hdr->b_size;
4550 uint64_t spa = hdr->b_spa;
4551 arc_buf_contents_t type = arc_buf_type(hdr);
4552 uint32_t flags = hdr->b_flags;
4554 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4556 * Pull the data off of this hdr and attach it to
4557 * a new anonymous hdr.
4559 (void) remove_reference(hdr, hash_lock, tag);
4560 bufp = &hdr->b_l1hdr.b_buf;
4561 while (*bufp != buf)
4562 bufp = &(*bufp)->b_next;
4563 *bufp = buf->b_next;
4564 buf->b_next = NULL;
4566 ASSERT3P(state, !=, arc_l2c_only);
4568 (void) refcount_remove_many(
4569 &state->arcs_size, hdr->b_size, buf);
4571 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4572 ASSERT3P(state, !=, arc_l2c_only);
4573 uint64_t *size = &state->arcs_lsize[type];
4574 ASSERT3U(*size, >=, hdr->b_size);
4575 atomic_add_64(size, -hdr->b_size);
4579 * We're releasing a duplicate user data buffer, update
4580 * our statistics accordingly.
4582 if (HDR_ISTYPE_DATA(hdr)) {
4583 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4584 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4585 -hdr->b_size);
4587 hdr->b_l1hdr.b_datacnt -= 1;
4588 arc_cksum_verify(buf);
4589 arc_buf_unwatch(buf);
4591 mutex_exit(hash_lock);
4593 nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4594 nhdr->b_size = blksz;
4595 nhdr->b_spa = spa;
4597 nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4598 nhdr->b_flags |= arc_bufc_to_flags(type);
4599 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4601 nhdr->b_l1hdr.b_buf = buf;
4602 nhdr->b_l1hdr.b_datacnt = 1;
4603 nhdr->b_l1hdr.b_state = arc_anon;
4604 nhdr->b_l1hdr.b_arc_access = 0;
4605 nhdr->b_l1hdr.b_tmp_cdata = NULL;
4606 nhdr->b_freeze_cksum = NULL;
4608 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4609 buf->b_hdr = nhdr;
4610 mutex_exit(&buf->b_evict_lock);
4611 (void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
4612 } else {
4613 mutex_exit(&buf->b_evict_lock);
4614 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4615 /* protected by hash lock, or hdr is on arc_anon */
4616 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4617 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4618 arc_change_state(arc_anon, hdr, hash_lock);
4619 hdr->b_l1hdr.b_arc_access = 0;
4620 mutex_exit(hash_lock);
4622 buf_discard_identity(hdr);
4623 arc_buf_thaw(buf);
4625 buf->b_efunc = NULL;
4626 buf->b_private = NULL;
4630 arc_released(arc_buf_t *buf)
4632 int released;
4634 mutex_enter(&buf->b_evict_lock);
4635 released = (buf->b_data != NULL &&
4636 buf->b_hdr->b_l1hdr.b_state == arc_anon);
4637 mutex_exit(&buf->b_evict_lock);
4638 return (released);
4641 #ifdef ZFS_DEBUG
4643 arc_referenced(arc_buf_t *buf)
4645 int referenced;
4647 mutex_enter(&buf->b_evict_lock);
4648 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
4649 mutex_exit(&buf->b_evict_lock);
4650 return (referenced);
4652 #endif
4654 static void
4655 arc_write_ready(zio_t *zio)
4657 arc_write_callback_t *callback = zio->io_private;
4658 arc_buf_t *buf = callback->awcb_buf;
4659 arc_buf_hdr_t *hdr = buf->b_hdr;
4661 ASSERT(HDR_HAS_L1HDR(hdr));
4662 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4663 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4664 callback->awcb_ready(zio, buf, callback->awcb_private);
4667 * If the IO is already in progress, then this is a re-write
4668 * attempt, so we need to thaw and re-compute the cksum.
4669 * It is the responsibility of the callback to handle the
4670 * accounting for any re-write attempt.
4672 if (HDR_IO_IN_PROGRESS(hdr)) {
4673 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
4674 if (hdr->b_freeze_cksum != NULL) {
4675 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4676 hdr->b_freeze_cksum = NULL;
4678 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
4680 arc_cksum_compute(buf, B_FALSE);
4681 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4684 static void
4685 arc_write_children_ready(zio_t *zio)
4687 arc_write_callback_t *callback = zio->io_private;
4688 arc_buf_t *buf = callback->awcb_buf;
4690 callback->awcb_children_ready(zio, buf, callback->awcb_private);
4694 * The SPA calls this callback for each physical write that happens on behalf
4695 * of a logical write. See the comment in dbuf_write_physdone() for details.
4697 static void
4698 arc_write_physdone(zio_t *zio)
4700 arc_write_callback_t *cb = zio->io_private;
4701 if (cb->awcb_physdone != NULL)
4702 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4705 static void
4706 arc_write_done(zio_t *zio)
4708 arc_write_callback_t *callback = zio->io_private;
4709 arc_buf_t *buf = callback->awcb_buf;
4710 arc_buf_hdr_t *hdr = buf->b_hdr;
4712 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4714 if (zio->io_error == 0) {
4715 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
4716 buf_discard_identity(hdr);
4717 } else {
4718 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4719 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
4721 } else {
4722 ASSERT(BUF_EMPTY(hdr));
4726 * If the block to be written was all-zero or compressed enough to be
4727 * embedded in the BP, no write was performed so there will be no
4728 * dva/birth/checksum. The buffer must therefore remain anonymous
4729 * (and uncached).
4731 if (!BUF_EMPTY(hdr)) {
4732 arc_buf_hdr_t *exists;
4733 kmutex_t *hash_lock;
4735 ASSERT(zio->io_error == 0);
4737 arc_cksum_verify(buf);
4739 exists = buf_hash_insert(hdr, &hash_lock);
4740 if (exists != NULL) {
4742 * This can only happen if we overwrite for
4743 * sync-to-convergence, because we remove
4744 * buffers from the hash table when we arc_free().
4746 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
4747 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4748 panic("bad overwrite, hdr=%p exists=%p",
4749 (void *)hdr, (void *)exists);
4750 ASSERT(refcount_is_zero(
4751 &exists->b_l1hdr.b_refcnt));
4752 arc_change_state(arc_anon, exists, hash_lock);
4753 mutex_exit(hash_lock);
4754 arc_hdr_destroy(exists);
4755 exists = buf_hash_insert(hdr, &hash_lock);
4756 ASSERT3P(exists, ==, NULL);
4757 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
4758 /* nopwrite */
4759 ASSERT(zio->io_prop.zp_nopwrite);
4760 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4761 panic("bad nopwrite, hdr=%p exists=%p",
4762 (void *)hdr, (void *)exists);
4763 } else {
4764 /* Dedup */
4765 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4766 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
4767 ASSERT(BP_GET_DEDUP(zio->io_bp));
4768 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
4771 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4772 /* if it's not anon, we are doing a scrub */
4773 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
4774 arc_access(hdr, hash_lock);
4775 mutex_exit(hash_lock);
4776 } else {
4777 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4780 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4781 callback->awcb_done(zio, buf, callback->awcb_private);
4783 kmem_free(callback, sizeof (arc_write_callback_t));
4786 zio_t *
4787 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
4788 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
4789 const zio_prop_t *zp, arc_done_func_t *ready,
4790 arc_done_func_t *children_ready, arc_done_func_t *physdone,
4791 arc_done_func_t *done, void *private, zio_priority_t priority,
4792 int zio_flags, const zbookmark_phys_t *zb)
4794 arc_buf_hdr_t *hdr = buf->b_hdr;
4795 arc_write_callback_t *callback;
4796 zio_t *zio;
4798 ASSERT(ready != NULL);
4799 ASSERT(done != NULL);
4800 ASSERT(!HDR_IO_ERROR(hdr));
4801 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4802 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4803 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4804 if (l2arc)
4805 hdr->b_flags |= ARC_FLAG_L2CACHE;
4806 if (l2arc_compress)
4807 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4808 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
4809 callback->awcb_ready = ready;
4810 callback->awcb_children_ready = children_ready;
4811 callback->awcb_physdone = physdone;
4812 callback->awcb_done = done;
4813 callback->awcb_private = private;
4814 callback->awcb_buf = buf;
4816 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
4817 arc_write_ready,
4818 (children_ready != NULL) ? arc_write_children_ready : NULL,
4819 arc_write_physdone, arc_write_done, callback,
4820 priority, zio_flags, zb);
4822 return (zio);
4825 static int
4826 arc_memory_throttle(uint64_t reserve, uint64_t txg)
4828 #ifdef _KERNEL
4829 uint64_t available_memory = ptob(freemem);
4830 static uint64_t page_load = 0;
4831 static uint64_t last_txg = 0;
4833 #if defined(__i386)
4834 available_memory =
4835 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
4836 #endif
4838 if (freemem > physmem * arc_lotsfree_percent / 100)
4839 return (0);
4841 if (txg > last_txg) {
4842 last_txg = txg;
4843 page_load = 0;
4846 * If we are in pageout, we know that memory is already tight,
4847 * the arc is already going to be evicting, so we just want to
4848 * continue to let page writes occur as quickly as possible.
4850 if (curproc == proc_pageout) {
4851 if (page_load > MAX(ptob(minfree), available_memory) / 4)
4852 return (SET_ERROR(ERESTART));
4853 /* Note: reserve is inflated, so we deflate */
4854 page_load += reserve / 8;
4855 return (0);
4856 } else if (page_load > 0 && arc_reclaim_needed()) {
4857 /* memory is low, delay before restarting */
4858 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
4859 return (SET_ERROR(EAGAIN));
4861 page_load = 0;
4862 #endif
4863 return (0);
4866 void
4867 arc_tempreserve_clear(uint64_t reserve)
4869 atomic_add_64(&arc_tempreserve, -reserve);
4870 ASSERT((int64_t)arc_tempreserve >= 0);
4874 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
4876 int error;
4877 uint64_t anon_size;
4879 if (reserve > arc_c/4 && !arc_no_grow)
4880 arc_c = MIN(arc_c_max, reserve * 4);
4881 if (reserve > arc_c)
4882 return (SET_ERROR(ENOMEM));
4885 * Don't count loaned bufs as in flight dirty data to prevent long
4886 * network delays from blocking transactions that are ready to be
4887 * assigned to a txg.
4889 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
4890 arc_loaned_bytes), 0);
4893 * Writes will, almost always, require additional memory allocations
4894 * in order to compress/encrypt/etc the data. We therefore need to
4895 * make sure that there is sufficient available memory for this.
4897 error = arc_memory_throttle(reserve, txg);
4898 if (error != 0)
4899 return (error);
4902 * Throttle writes when the amount of dirty data in the cache
4903 * gets too large. We try to keep the cache less than half full
4904 * of dirty blocks so that our sync times don't grow too large.
4905 * Note: if two requests come in concurrently, we might let them
4906 * both succeed, when one of them should fail. Not a huge deal.
4909 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
4910 anon_size > arc_c / 4) {
4911 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
4912 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
4913 arc_tempreserve>>10,
4914 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
4915 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
4916 reserve>>10, arc_c>>10);
4917 return (SET_ERROR(ERESTART));
4919 atomic_add_64(&arc_tempreserve, reserve);
4920 return (0);
4923 static void
4924 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
4925 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
4927 size->value.ui64 = refcount_count(&state->arcs_size);
4928 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
4929 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
4932 static int
4933 arc_kstat_update(kstat_t *ksp, int rw)
4935 arc_stats_t *as = ksp->ks_data;
4937 if (rw == KSTAT_WRITE) {
4938 return (EACCES);
4939 } else {
4940 arc_kstat_update_state(arc_anon,
4941 &as->arcstat_anon_size,
4942 &as->arcstat_anon_evictable_data,
4943 &as->arcstat_anon_evictable_metadata);
4944 arc_kstat_update_state(arc_mru,
4945 &as->arcstat_mru_size,
4946 &as->arcstat_mru_evictable_data,
4947 &as->arcstat_mru_evictable_metadata);
4948 arc_kstat_update_state(arc_mru_ghost,
4949 &as->arcstat_mru_ghost_size,
4950 &as->arcstat_mru_ghost_evictable_data,
4951 &as->arcstat_mru_ghost_evictable_metadata);
4952 arc_kstat_update_state(arc_mfu,
4953 &as->arcstat_mfu_size,
4954 &as->arcstat_mfu_evictable_data,
4955 &as->arcstat_mfu_evictable_metadata);
4956 arc_kstat_update_state(arc_mfu_ghost,
4957 &as->arcstat_mfu_ghost_size,
4958 &as->arcstat_mfu_ghost_evictable_data,
4959 &as->arcstat_mfu_ghost_evictable_metadata);
4962 return (0);
4966 * This function *must* return indices evenly distributed between all
4967 * sublists of the multilist. This is needed due to how the ARC eviction
4968 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
4969 * distributed between all sublists and uses this assumption when
4970 * deciding which sublist to evict from and how much to evict from it.
4972 unsigned int
4973 arc_state_multilist_index_func(multilist_t *ml, void *obj)
4975 arc_buf_hdr_t *hdr = obj;
4978 * We rely on b_dva to generate evenly distributed index
4979 * numbers using buf_hash below. So, as an added precaution,
4980 * let's make sure we never add empty buffers to the arc lists.
4982 ASSERT(!BUF_EMPTY(hdr));
4985 * The assumption here, is the hash value for a given
4986 * arc_buf_hdr_t will remain constant throughout it's lifetime
4987 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
4988 * Thus, we don't need to store the header's sublist index
4989 * on insertion, as this index can be recalculated on removal.
4991 * Also, the low order bits of the hash value are thought to be
4992 * distributed evenly. Otherwise, in the case that the multilist
4993 * has a power of two number of sublists, each sublists' usage
4994 * would not be evenly distributed.
4996 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
4997 multilist_get_num_sublists(ml));
5000 void
5001 arc_init(void)
5004 * allmem is "all memory that we could possibly use".
5006 #ifdef _KERNEL
5007 uint64_t allmem = ptob(physmem - swapfs_minfree);
5008 #else
5009 uint64_t allmem = (physmem * PAGESIZE) / 2;
5010 #endif
5012 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5013 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5014 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5016 mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5017 cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
5019 /* Convert seconds to clock ticks */
5020 arc_min_prefetch_lifespan = 1 * hz;
5022 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
5023 arc_c_min = MAX(allmem / 32, 64 << 20);
5024 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
5025 if (allmem >= 1 << 30)
5026 arc_c_max = allmem - (1 << 30);
5027 else
5028 arc_c_max = arc_c_min;
5029 arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
5032 * In userland, there's only the memory pressure that we artificially
5033 * create (see arc_available_memory()). Don't let arc_c get too
5034 * small, because it can cause transactions to be larger than
5035 * arc_c, causing arc_tempreserve_space() to fail.
5037 #ifndef _KERNEL
5038 arc_c_min = arc_c_max / 2;
5039 #endif
5042 * Allow the tunables to override our calculations if they are
5043 * reasonable (ie. over 64MB)
5045 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem)
5046 arc_c_max = zfs_arc_max;
5047 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
5048 arc_c_min = zfs_arc_min;
5050 arc_c = arc_c_max;
5051 arc_p = (arc_c >> 1);
5053 /* limit meta-data to 1/4 of the arc capacity */
5054 arc_meta_limit = arc_c_max / 4;
5056 #ifdef _KERNEL
5058 * Metadata is stored in the kernel's heap. Don't let us
5059 * use more than half the heap for the ARC.
5061 arc_meta_limit = MIN(arc_meta_limit,
5062 vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
5063 #endif
5065 /* Allow the tunable to override if it is reasonable */
5066 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
5067 arc_meta_limit = zfs_arc_meta_limit;
5069 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
5070 arc_c_min = arc_meta_limit / 2;
5072 if (zfs_arc_meta_min > 0) {
5073 arc_meta_min = zfs_arc_meta_min;
5074 } else {
5075 arc_meta_min = arc_c_min / 2;
5078 if (zfs_arc_grow_retry > 0)
5079 arc_grow_retry = zfs_arc_grow_retry;
5081 if (zfs_arc_shrink_shift > 0)
5082 arc_shrink_shift = zfs_arc_shrink_shift;
5085 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
5087 if (arc_no_grow_shift >= arc_shrink_shift)
5088 arc_no_grow_shift = arc_shrink_shift - 1;
5090 if (zfs_arc_p_min_shift > 0)
5091 arc_p_min_shift = zfs_arc_p_min_shift;
5093 if (zfs_arc_num_sublists_per_state < 1)
5094 zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1);
5096 /* if kmem_flags are set, lets try to use less memory */
5097 if (kmem_debugging())
5098 arc_c = arc_c / 2;
5099 if (arc_c < arc_c_min)
5100 arc_c = arc_c_min;
5102 arc_anon = &ARC_anon;
5103 arc_mru = &ARC_mru;
5104 arc_mru_ghost = &ARC_mru_ghost;
5105 arc_mfu = &ARC_mfu;
5106 arc_mfu_ghost = &ARC_mfu_ghost;
5107 arc_l2c_only = &ARC_l2c_only;
5108 arc_size = 0;
5110 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5111 sizeof (arc_buf_hdr_t),
5112 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5113 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5114 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5115 sizeof (arc_buf_hdr_t),
5116 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5117 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5118 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5119 sizeof (arc_buf_hdr_t),
5120 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5121 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5122 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5123 sizeof (arc_buf_hdr_t),
5124 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5125 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5126 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5127 sizeof (arc_buf_hdr_t),
5128 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5129 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5130 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5131 sizeof (arc_buf_hdr_t),
5132 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5133 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5134 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5135 sizeof (arc_buf_hdr_t),
5136 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5137 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5138 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5139 sizeof (arc_buf_hdr_t),
5140 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5141 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5142 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5143 sizeof (arc_buf_hdr_t),
5144 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5145 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5146 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5147 sizeof (arc_buf_hdr_t),
5148 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5149 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5151 refcount_create(&arc_anon->arcs_size);
5152 refcount_create(&arc_mru->arcs_size);
5153 refcount_create(&arc_mru_ghost->arcs_size);
5154 refcount_create(&arc_mfu->arcs_size);
5155 refcount_create(&arc_mfu_ghost->arcs_size);
5156 refcount_create(&arc_l2c_only->arcs_size);
5158 buf_init();
5160 arc_reclaim_thread_exit = FALSE;
5161 arc_user_evicts_thread_exit = FALSE;
5162 arc_eviction_list = NULL;
5163 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5165 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5166 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5168 if (arc_ksp != NULL) {
5169 arc_ksp->ks_data = &arc_stats;
5170 arc_ksp->ks_update = arc_kstat_update;
5171 kstat_install(arc_ksp);
5174 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5175 TS_RUN, minclsyspri);
5177 (void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5178 TS_RUN, minclsyspri);
5180 arc_dead = FALSE;
5181 arc_warm = B_FALSE;
5184 * Calculate maximum amount of dirty data per pool.
5186 * If it has been set by /etc/system, take that.
5187 * Otherwise, use a percentage of physical memory defined by
5188 * zfs_dirty_data_max_percent (default 10%) with a cap at
5189 * zfs_dirty_data_max_max (default 4GB).
5191 if (zfs_dirty_data_max == 0) {
5192 zfs_dirty_data_max = physmem * PAGESIZE *
5193 zfs_dirty_data_max_percent / 100;
5194 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5195 zfs_dirty_data_max_max);
5199 void
5200 arc_fini(void)
5202 mutex_enter(&arc_reclaim_lock);
5203 arc_reclaim_thread_exit = TRUE;
5205 * The reclaim thread will set arc_reclaim_thread_exit back to
5206 * FALSE when it is finished exiting; we're waiting for that.
5208 while (arc_reclaim_thread_exit) {
5209 cv_signal(&arc_reclaim_thread_cv);
5210 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5212 mutex_exit(&arc_reclaim_lock);
5214 mutex_enter(&arc_user_evicts_lock);
5215 arc_user_evicts_thread_exit = TRUE;
5217 * The user evicts thread will set arc_user_evicts_thread_exit
5218 * to FALSE when it is finished exiting; we're waiting for that.
5220 while (arc_user_evicts_thread_exit) {
5221 cv_signal(&arc_user_evicts_cv);
5222 cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5224 mutex_exit(&arc_user_evicts_lock);
5226 /* Use TRUE to ensure *all* buffers are evicted */
5227 arc_flush(NULL, TRUE);
5229 arc_dead = TRUE;
5231 if (arc_ksp != NULL) {
5232 kstat_delete(arc_ksp);
5233 arc_ksp = NULL;
5236 mutex_destroy(&arc_reclaim_lock);
5237 cv_destroy(&arc_reclaim_thread_cv);
5238 cv_destroy(&arc_reclaim_waiters_cv);
5240 mutex_destroy(&arc_user_evicts_lock);
5241 cv_destroy(&arc_user_evicts_cv);
5243 refcount_destroy(&arc_anon->arcs_size);
5244 refcount_destroy(&arc_mru->arcs_size);
5245 refcount_destroy(&arc_mru_ghost->arcs_size);
5246 refcount_destroy(&arc_mfu->arcs_size);
5247 refcount_destroy(&arc_mfu_ghost->arcs_size);
5248 refcount_destroy(&arc_l2c_only->arcs_size);
5250 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5251 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5252 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5253 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5254 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
5255 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5256 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5257 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5258 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5259 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
5261 buf_fini();
5263 ASSERT0(arc_loaned_bytes);
5267 * Level 2 ARC
5269 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5270 * It uses dedicated storage devices to hold cached data, which are populated
5271 * using large infrequent writes. The main role of this cache is to boost
5272 * the performance of random read workloads. The intended L2ARC devices
5273 * include short-stroked disks, solid state disks, and other media with
5274 * substantially faster read latency than disk.
5276 * +-----------------------+
5277 * | ARC |
5278 * +-----------------------+
5279 * | ^ ^
5280 * | | |
5281 * l2arc_feed_thread() arc_read()
5282 * | | |
5283 * | l2arc read |
5284 * V | |
5285 * +---------------+ |
5286 * | L2ARC | |
5287 * +---------------+ |
5288 * | ^ |
5289 * l2arc_write() | |
5290 * | | |
5291 * V | |
5292 * +-------+ +-------+
5293 * | vdev | | vdev |
5294 * | cache | | cache |
5295 * +-------+ +-------+
5296 * +=========+ .-----.
5297 * : L2ARC : |-_____-|
5298 * : devices : | Disks |
5299 * +=========+ `-_____-'
5301 * Read requests are satisfied from the following sources, in order:
5303 * 1) ARC
5304 * 2) vdev cache of L2ARC devices
5305 * 3) L2ARC devices
5306 * 4) vdev cache of disks
5307 * 5) disks
5309 * Some L2ARC device types exhibit extremely slow write performance.
5310 * To accommodate for this there are some significant differences between
5311 * the L2ARC and traditional cache design:
5313 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
5314 * the ARC behave as usual, freeing buffers and placing headers on ghost
5315 * lists. The ARC does not send buffers to the L2ARC during eviction as
5316 * this would add inflated write latencies for all ARC memory pressure.
5318 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5319 * It does this by periodically scanning buffers from the eviction-end of
5320 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5321 * not already there. It scans until a headroom of buffers is satisfied,
5322 * which itself is a buffer for ARC eviction. If a compressible buffer is
5323 * found during scanning and selected for writing to an L2ARC device, we
5324 * temporarily boost scanning headroom during the next scan cycle to make
5325 * sure we adapt to compression effects (which might significantly reduce
5326 * the data volume we write to L2ARC). The thread that does this is
5327 * l2arc_feed_thread(), illustrated below; example sizes are included to
5328 * provide a better sense of ratio than this diagram:
5330 * head --> tail
5331 * +---------------------+----------+
5332 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
5333 * +---------------------+----------+ | o L2ARC eligible
5334 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
5335 * +---------------------+----------+ |
5336 * 15.9 Gbytes ^ 32 Mbytes |
5337 * headroom |
5338 * l2arc_feed_thread()
5340 * l2arc write hand <--[oooo]--'
5341 * | 8 Mbyte
5342 * | write max
5344 * +==============================+
5345 * L2ARC dev |####|#|###|###| |####| ... |
5346 * +==============================+
5347 * 32 Gbytes
5349 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5350 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5351 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
5352 * safe to say that this is an uncommon case, since buffers at the end of
5353 * the ARC lists have moved there due to inactivity.
5355 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5356 * then the L2ARC simply misses copying some buffers. This serves as a
5357 * pressure valve to prevent heavy read workloads from both stalling the ARC
5358 * with waits and clogging the L2ARC with writes. This also helps prevent
5359 * the potential for the L2ARC to churn if it attempts to cache content too
5360 * quickly, such as during backups of the entire pool.
5362 * 5. After system boot and before the ARC has filled main memory, there are
5363 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5364 * lists can remain mostly static. Instead of searching from tail of these
5365 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5366 * for eligible buffers, greatly increasing its chance of finding them.
5368 * The L2ARC device write speed is also boosted during this time so that
5369 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
5370 * there are no L2ARC reads, and no fear of degrading read performance
5371 * through increased writes.
5373 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5374 * the vdev queue can aggregate them into larger and fewer writes. Each
5375 * device is written to in a rotor fashion, sweeping writes through
5376 * available space then repeating.
5378 * 7. The L2ARC does not store dirty content. It never needs to flush
5379 * write buffers back to disk based storage.
5381 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5382 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5384 * The performance of the L2ARC can be tweaked by a number of tunables, which
5385 * may be necessary for different workloads:
5387 * l2arc_write_max max write bytes per interval
5388 * l2arc_write_boost extra write bytes during device warmup
5389 * l2arc_noprefetch skip caching prefetched buffers
5390 * l2arc_headroom number of max device writes to precache
5391 * l2arc_headroom_boost when we find compressed buffers during ARC
5392 * scanning, we multiply headroom by this
5393 * percentage factor for the next scan cycle,
5394 * since more compressed buffers are likely to
5395 * be present
5396 * l2arc_feed_secs seconds between L2ARC writing
5398 * Tunables may be removed or added as future performance improvements are
5399 * integrated, and also may become zpool properties.
5401 * There are three key functions that control how the L2ARC warms up:
5403 * l2arc_write_eligible() check if a buffer is eligible to cache
5404 * l2arc_write_size() calculate how much to write
5405 * l2arc_write_interval() calculate sleep delay between writes
5407 * These three functions determine what to write, how much, and how quickly
5408 * to send writes.
5411 static boolean_t
5412 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
5415 * A buffer is *not* eligible for the L2ARC if it:
5416 * 1. belongs to a different spa.
5417 * 2. is already cached on the L2ARC.
5418 * 3. has an I/O in progress (it may be an incomplete read).
5419 * 4. is flagged not eligible (zfs property).
5421 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
5422 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
5423 return (B_FALSE);
5425 return (B_TRUE);
5428 static uint64_t
5429 l2arc_write_size(void)
5431 uint64_t size;
5434 * Make sure our globals have meaningful values in case the user
5435 * altered them.
5437 size = l2arc_write_max;
5438 if (size == 0) {
5439 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5440 "be greater than zero, resetting it to the default (%d)",
5441 L2ARC_WRITE_SIZE);
5442 size = l2arc_write_max = L2ARC_WRITE_SIZE;
5445 if (arc_warm == B_FALSE)
5446 size += l2arc_write_boost;
5448 return (size);
5452 static clock_t
5453 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5455 clock_t interval, next, now;
5458 * If the ARC lists are busy, increase our write rate; if the
5459 * lists are stale, idle back. This is achieved by checking
5460 * how much we previously wrote - if it was more than half of
5461 * what we wanted, schedule the next write much sooner.
5463 if (l2arc_feed_again && wrote > (wanted / 2))
5464 interval = (hz * l2arc_feed_min_ms) / 1000;
5465 else
5466 interval = hz * l2arc_feed_secs;
5468 now = ddi_get_lbolt();
5469 next = MAX(now, MIN(now + interval, began + interval));
5471 return (next);
5475 * Cycle through L2ARC devices. This is how L2ARC load balances.
5476 * If a device is returned, this also returns holding the spa config lock.
5478 static l2arc_dev_t *
5479 l2arc_dev_get_next(void)
5481 l2arc_dev_t *first, *next = NULL;
5484 * Lock out the removal of spas (spa_namespace_lock), then removal
5485 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
5486 * both locks will be dropped and a spa config lock held instead.
5488 mutex_enter(&spa_namespace_lock);
5489 mutex_enter(&l2arc_dev_mtx);
5491 /* if there are no vdevs, there is nothing to do */
5492 if (l2arc_ndev == 0)
5493 goto out;
5495 first = NULL;
5496 next = l2arc_dev_last;
5497 do {
5498 /* loop around the list looking for a non-faulted vdev */
5499 if (next == NULL) {
5500 next = list_head(l2arc_dev_list);
5501 } else {
5502 next = list_next(l2arc_dev_list, next);
5503 if (next == NULL)
5504 next = list_head(l2arc_dev_list);
5507 /* if we have come back to the start, bail out */
5508 if (first == NULL)
5509 first = next;
5510 else if (next == first)
5511 break;
5513 } while (vdev_is_dead(next->l2ad_vdev));
5515 /* if we were unable to find any usable vdevs, return NULL */
5516 if (vdev_is_dead(next->l2ad_vdev))
5517 next = NULL;
5519 l2arc_dev_last = next;
5521 out:
5522 mutex_exit(&l2arc_dev_mtx);
5525 * Grab the config lock to prevent the 'next' device from being
5526 * removed while we are writing to it.
5528 if (next != NULL)
5529 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5530 mutex_exit(&spa_namespace_lock);
5532 return (next);
5536 * Free buffers that were tagged for destruction.
5538 static void
5539 l2arc_do_free_on_write()
5541 list_t *buflist;
5542 l2arc_data_free_t *df, *df_prev;
5544 mutex_enter(&l2arc_free_on_write_mtx);
5545 buflist = l2arc_free_on_write;
5547 for (df = list_tail(buflist); df; df = df_prev) {
5548 df_prev = list_prev(buflist, df);
5549 ASSERT(df->l2df_data != NULL);
5550 ASSERT(df->l2df_func != NULL);
5551 df->l2df_func(df->l2df_data, df->l2df_size);
5552 list_remove(buflist, df);
5553 kmem_free(df, sizeof (l2arc_data_free_t));
5556 mutex_exit(&l2arc_free_on_write_mtx);
5560 * A write to a cache device has completed. Update all headers to allow
5561 * reads from these buffers to begin.
5563 static void
5564 l2arc_write_done(zio_t *zio)
5566 l2arc_write_callback_t *cb;
5567 l2arc_dev_t *dev;
5568 list_t *buflist;
5569 arc_buf_hdr_t *head, *hdr, *hdr_prev;
5570 kmutex_t *hash_lock;
5571 int64_t bytes_dropped = 0;
5573 cb = zio->io_private;
5574 ASSERT(cb != NULL);
5575 dev = cb->l2wcb_dev;
5576 ASSERT(dev != NULL);
5577 head = cb->l2wcb_head;
5578 ASSERT(head != NULL);
5579 buflist = &dev->l2ad_buflist;
5580 ASSERT(buflist != NULL);
5581 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5582 l2arc_write_callback_t *, cb);
5584 if (zio->io_error != 0)
5585 ARCSTAT_BUMP(arcstat_l2_writes_error);
5588 * All writes completed, or an error was hit.
5590 top:
5591 mutex_enter(&dev->l2ad_mtx);
5592 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5593 hdr_prev = list_prev(buflist, hdr);
5595 hash_lock = HDR_LOCK(hdr);
5598 * We cannot use mutex_enter or else we can deadlock
5599 * with l2arc_write_buffers (due to swapping the order
5600 * the hash lock and l2ad_mtx are taken).
5602 if (!mutex_tryenter(hash_lock)) {
5604 * Missed the hash lock. We must retry so we
5605 * don't leave the ARC_FLAG_L2_WRITING bit set.
5607 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5610 * We don't want to rescan the headers we've
5611 * already marked as having been written out, so
5612 * we reinsert the head node so we can pick up
5613 * where we left off.
5615 list_remove(buflist, head);
5616 list_insert_after(buflist, hdr, head);
5618 mutex_exit(&dev->l2ad_mtx);
5621 * We wait for the hash lock to become available
5622 * to try and prevent busy waiting, and increase
5623 * the chance we'll be able to acquire the lock
5624 * the next time around.
5626 mutex_enter(hash_lock);
5627 mutex_exit(hash_lock);
5628 goto top;
5632 * We could not have been moved into the arc_l2c_only
5633 * state while in-flight due to our ARC_FLAG_L2_WRITING
5634 * bit being set. Let's just ensure that's being enforced.
5636 ASSERT(HDR_HAS_L1HDR(hdr));
5639 * We may have allocated a buffer for L2ARC compression,
5640 * we must release it to avoid leaking this data.
5642 l2arc_release_cdata_buf(hdr);
5644 if (zio->io_error != 0) {
5646 * Error - drop L2ARC entry.
5648 list_remove(buflist, hdr);
5649 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5651 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5652 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5654 bytes_dropped += hdr->b_l2hdr.b_asize;
5655 (void) refcount_remove_many(&dev->l2ad_alloc,
5656 hdr->b_l2hdr.b_asize, hdr);
5660 * Allow ARC to begin reads and ghost list evictions to
5661 * this L2ARC entry.
5663 hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
5665 mutex_exit(hash_lock);
5668 atomic_inc_64(&l2arc_writes_done);
5669 list_remove(buflist, head);
5670 ASSERT(!HDR_HAS_L1HDR(head));
5671 kmem_cache_free(hdr_l2only_cache, head);
5672 mutex_exit(&dev->l2ad_mtx);
5674 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
5676 l2arc_do_free_on_write();
5678 kmem_free(cb, sizeof (l2arc_write_callback_t));
5682 * A read to a cache device completed. Validate buffer contents before
5683 * handing over to the regular ARC routines.
5685 static void
5686 l2arc_read_done(zio_t *zio)
5688 l2arc_read_callback_t *cb;
5689 arc_buf_hdr_t *hdr;
5690 arc_buf_t *buf;
5691 kmutex_t *hash_lock;
5692 int equal;
5694 ASSERT(zio->io_vd != NULL);
5695 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
5697 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
5699 cb = zio->io_private;
5700 ASSERT(cb != NULL);
5701 buf = cb->l2rcb_buf;
5702 ASSERT(buf != NULL);
5704 hash_lock = HDR_LOCK(buf->b_hdr);
5705 mutex_enter(hash_lock);
5706 hdr = buf->b_hdr;
5707 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5710 * If the buffer was compressed, decompress it first.
5712 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
5713 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
5714 ASSERT(zio->io_data != NULL);
5715 ASSERT3U(zio->io_size, ==, hdr->b_size);
5716 ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size);
5719 * Check this survived the L2ARC journey.
5721 equal = arc_cksum_equal(buf);
5722 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
5723 mutex_exit(hash_lock);
5724 zio->io_private = buf;
5725 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
5726 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
5727 arc_read_done(zio);
5728 } else {
5729 mutex_exit(hash_lock);
5731 * Buffer didn't survive caching. Increment stats and
5732 * reissue to the original storage device.
5734 if (zio->io_error != 0) {
5735 ARCSTAT_BUMP(arcstat_l2_io_error);
5736 } else {
5737 zio->io_error = SET_ERROR(EIO);
5739 if (!equal)
5740 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
5743 * If there's no waiter, issue an async i/o to the primary
5744 * storage now. If there *is* a waiter, the caller must
5745 * issue the i/o in a context where it's OK to block.
5747 if (zio->io_waiter == NULL) {
5748 zio_t *pio = zio_unique_parent(zio);
5750 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
5752 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
5753 buf->b_data, hdr->b_size, arc_read_done, buf,
5754 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
5758 kmem_free(cb, sizeof (l2arc_read_callback_t));
5762 * This is the list priority from which the L2ARC will search for pages to
5763 * cache. This is used within loops (0..3) to cycle through lists in the
5764 * desired order. This order can have a significant effect on cache
5765 * performance.
5767 * Currently the metadata lists are hit first, MFU then MRU, followed by
5768 * the data lists. This function returns a locked list, and also returns
5769 * the lock pointer.
5771 static multilist_sublist_t *
5772 l2arc_sublist_lock(int list_num)
5774 multilist_t *ml = NULL;
5775 unsigned int idx;
5777 ASSERT(list_num >= 0 && list_num <= 3);
5779 switch (list_num) {
5780 case 0:
5781 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
5782 break;
5783 case 1:
5784 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
5785 break;
5786 case 2:
5787 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
5788 break;
5789 case 3:
5790 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
5791 break;
5795 * Return a randomly-selected sublist. This is acceptable
5796 * because the caller feeds only a little bit of data for each
5797 * call (8MB). Subsequent calls will result in different
5798 * sublists being selected.
5800 idx = multilist_get_random_index(ml);
5801 return (multilist_sublist_lock(ml, idx));
5805 * Evict buffers from the device write hand to the distance specified in
5806 * bytes. This distance may span populated buffers, it may span nothing.
5807 * This is clearing a region on the L2ARC device ready for writing.
5808 * If the 'all' boolean is set, every buffer is evicted.
5810 static void
5811 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
5813 list_t *buflist;
5814 arc_buf_hdr_t *hdr, *hdr_prev;
5815 kmutex_t *hash_lock;
5816 uint64_t taddr;
5818 buflist = &dev->l2ad_buflist;
5820 if (!all && dev->l2ad_first) {
5822 * This is the first sweep through the device. There is
5823 * nothing to evict.
5825 return;
5828 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
5830 * When nearing the end of the device, evict to the end
5831 * before the device write hand jumps to the start.
5833 taddr = dev->l2ad_end;
5834 } else {
5835 taddr = dev->l2ad_hand + distance;
5837 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
5838 uint64_t, taddr, boolean_t, all);
5840 top:
5841 mutex_enter(&dev->l2ad_mtx);
5842 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
5843 hdr_prev = list_prev(buflist, hdr);
5845 hash_lock = HDR_LOCK(hdr);
5848 * We cannot use mutex_enter or else we can deadlock
5849 * with l2arc_write_buffers (due to swapping the order
5850 * the hash lock and l2ad_mtx are taken).
5852 if (!mutex_tryenter(hash_lock)) {
5854 * Missed the hash lock. Retry.
5856 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
5857 mutex_exit(&dev->l2ad_mtx);
5858 mutex_enter(hash_lock);
5859 mutex_exit(hash_lock);
5860 goto top;
5863 if (HDR_L2_WRITE_HEAD(hdr)) {
5865 * We hit a write head node. Leave it for
5866 * l2arc_write_done().
5868 list_remove(buflist, hdr);
5869 mutex_exit(hash_lock);
5870 continue;
5873 if (!all && HDR_HAS_L2HDR(hdr) &&
5874 (hdr->b_l2hdr.b_daddr > taddr ||
5875 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
5877 * We've evicted to the target address,
5878 * or the end of the device.
5880 mutex_exit(hash_lock);
5881 break;
5884 ASSERT(HDR_HAS_L2HDR(hdr));
5885 if (!HDR_HAS_L1HDR(hdr)) {
5886 ASSERT(!HDR_L2_READING(hdr));
5888 * This doesn't exist in the ARC. Destroy.
5889 * arc_hdr_destroy() will call list_remove()
5890 * and decrement arcstat_l2_size.
5892 arc_change_state(arc_anon, hdr, hash_lock);
5893 arc_hdr_destroy(hdr);
5894 } else {
5895 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
5896 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
5898 * Invalidate issued or about to be issued
5899 * reads, since we may be about to write
5900 * over this location.
5902 if (HDR_L2_READING(hdr)) {
5903 ARCSTAT_BUMP(arcstat_l2_evict_reading);
5904 hdr->b_flags |= ARC_FLAG_L2_EVICTED;
5907 /* Ensure this header has finished being written */
5908 ASSERT(!HDR_L2_WRITING(hdr));
5909 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
5911 arc_hdr_l2hdr_destroy(hdr);
5913 mutex_exit(hash_lock);
5915 mutex_exit(&dev->l2ad_mtx);
5919 * Find and write ARC buffers to the L2ARC device.
5921 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
5922 * for reading until they have completed writing.
5923 * The headroom_boost is an in-out parameter used to maintain headroom boost
5924 * state between calls to this function.
5926 * Returns the number of bytes actually written (which may be smaller than
5927 * the delta by which the device hand has changed due to alignment).
5929 static uint64_t
5930 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
5931 boolean_t *headroom_boost)
5933 arc_buf_hdr_t *hdr, *hdr_prev, *head;
5934 uint64_t write_asize, write_sz, headroom,
5935 buf_compress_minsz;
5936 void *buf_data;
5937 boolean_t full;
5938 l2arc_write_callback_t *cb;
5939 zio_t *pio, *wzio;
5940 uint64_t guid = spa_load_guid(spa);
5941 const boolean_t do_headroom_boost = *headroom_boost;
5943 ASSERT(dev->l2ad_vdev != NULL);
5945 /* Lower the flag now, we might want to raise it again later. */
5946 *headroom_boost = B_FALSE;
5948 pio = NULL;
5949 write_sz = write_asize = 0;
5950 full = B_FALSE;
5951 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
5952 head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
5953 head->b_flags |= ARC_FLAG_HAS_L2HDR;
5956 * We will want to try to compress buffers that are at least 2x the
5957 * device sector size.
5959 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
5962 * Copy buffers for L2ARC writing.
5964 for (int try = 0; try <= 3; try++) {
5965 multilist_sublist_t *mls = l2arc_sublist_lock(try);
5966 uint64_t passed_sz = 0;
5969 * L2ARC fast warmup.
5971 * Until the ARC is warm and starts to evict, read from the
5972 * head of the ARC lists rather than the tail.
5974 if (arc_warm == B_FALSE)
5975 hdr = multilist_sublist_head(mls);
5976 else
5977 hdr = multilist_sublist_tail(mls);
5979 headroom = target_sz * l2arc_headroom;
5980 if (do_headroom_boost)
5981 headroom = (headroom * l2arc_headroom_boost) / 100;
5983 for (; hdr; hdr = hdr_prev) {
5984 kmutex_t *hash_lock;
5985 uint64_t buf_sz;
5986 uint64_t buf_a_sz;
5988 if (arc_warm == B_FALSE)
5989 hdr_prev = multilist_sublist_next(mls, hdr);
5990 else
5991 hdr_prev = multilist_sublist_prev(mls, hdr);
5993 hash_lock = HDR_LOCK(hdr);
5994 if (!mutex_tryenter(hash_lock)) {
5996 * Skip this buffer rather than waiting.
5998 continue;
6001 passed_sz += hdr->b_size;
6002 if (passed_sz > headroom) {
6004 * Searched too far.
6006 mutex_exit(hash_lock);
6007 break;
6010 if (!l2arc_write_eligible(guid, hdr)) {
6011 mutex_exit(hash_lock);
6012 continue;
6016 * Assume that the buffer is not going to be compressed
6017 * and could take more space on disk because of a larger
6018 * disk block size.
6020 buf_sz = hdr->b_size;
6021 buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6023 if ((write_asize + buf_a_sz) > target_sz) {
6024 full = B_TRUE;
6025 mutex_exit(hash_lock);
6026 break;
6029 if (pio == NULL) {
6031 * Insert a dummy header on the buflist so
6032 * l2arc_write_done() can find where the
6033 * write buffers begin without searching.
6035 mutex_enter(&dev->l2ad_mtx);
6036 list_insert_head(&dev->l2ad_buflist, head);
6037 mutex_exit(&dev->l2ad_mtx);
6039 cb = kmem_alloc(
6040 sizeof (l2arc_write_callback_t), KM_SLEEP);
6041 cb->l2wcb_dev = dev;
6042 cb->l2wcb_head = head;
6043 pio = zio_root(spa, l2arc_write_done, cb,
6044 ZIO_FLAG_CANFAIL);
6048 * Create and add a new L2ARC header.
6050 hdr->b_l2hdr.b_dev = dev;
6051 hdr->b_flags |= ARC_FLAG_L2_WRITING;
6053 * Temporarily stash the data buffer in b_tmp_cdata.
6054 * The subsequent write step will pick it up from
6055 * there. This is because can't access b_l1hdr.b_buf
6056 * without holding the hash_lock, which we in turn
6057 * can't access without holding the ARC list locks
6058 * (which we want to avoid during compression/writing).
6060 hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF;
6061 hdr->b_l2hdr.b_asize = hdr->b_size;
6062 hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6065 * Explicitly set the b_daddr field to a known
6066 * value which means "invalid address". This
6067 * enables us to differentiate which stage of
6068 * l2arc_write_buffers() the particular header
6069 * is in (e.g. this loop, or the one below).
6070 * ARC_FLAG_L2_WRITING is not enough to make
6071 * this distinction, and we need to know in
6072 * order to do proper l2arc vdev accounting in
6073 * arc_release() and arc_hdr_destroy().
6075 * Note, we can't use a new flag to distinguish
6076 * the two stages because we don't hold the
6077 * header's hash_lock below, in the second stage
6078 * of this function. Thus, we can't simply
6079 * change the b_flags field to denote that the
6080 * IO has been sent. We can change the b_daddr
6081 * field of the L2 portion, though, since we'll
6082 * be holding the l2ad_mtx; which is why we're
6083 * using it to denote the header's state change.
6085 hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6087 hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6089 mutex_enter(&dev->l2ad_mtx);
6090 list_insert_head(&dev->l2ad_buflist, hdr);
6091 mutex_exit(&dev->l2ad_mtx);
6094 * Compute and store the buffer cksum before
6095 * writing. On debug the cksum is verified first.
6097 arc_cksum_verify(hdr->b_l1hdr.b_buf);
6098 arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6100 mutex_exit(hash_lock);
6102 write_sz += buf_sz;
6103 write_asize += buf_a_sz;
6106 multilist_sublist_unlock(mls);
6108 if (full == B_TRUE)
6109 break;
6112 /* No buffers selected for writing? */
6113 if (pio == NULL) {
6114 ASSERT0(write_sz);
6115 ASSERT(!HDR_HAS_L1HDR(head));
6116 kmem_cache_free(hdr_l2only_cache, head);
6117 return (0);
6120 mutex_enter(&dev->l2ad_mtx);
6123 * Note that elsewhere in this file arcstat_l2_asize
6124 * and the used space on l2ad_vdev are updated using b_asize,
6125 * which is not necessarily rounded up to the device block size.
6126 * Too keep accounting consistent we do the same here as well:
6127 * stats_size accumulates the sum of b_asize of the written buffers,
6128 * while write_asize accumulates the sum of b_asize rounded up
6129 * to the device block size.
6130 * The latter sum is used only to validate the corectness of the code.
6132 uint64_t stats_size = 0;
6133 write_asize = 0;
6136 * Now start writing the buffers. We're starting at the write head
6137 * and work backwards, retracing the course of the buffer selector
6138 * loop above.
6140 for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6141 hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6142 uint64_t buf_sz;
6145 * We rely on the L1 portion of the header below, so
6146 * it's invalid for this header to have been evicted out
6147 * of the ghost cache, prior to being written out. The
6148 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6150 ASSERT(HDR_HAS_L1HDR(hdr));
6153 * We shouldn't need to lock the buffer here, since we flagged
6154 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6155 * take care to only access its L2 cache parameters. In
6156 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6157 * ARC eviction.
6159 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6161 if ((HDR_L2COMPRESS(hdr)) &&
6162 hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
6163 if (l2arc_compress_buf(hdr)) {
6165 * If compression succeeded, enable headroom
6166 * boost on the next scan cycle.
6168 *headroom_boost = B_TRUE;
6173 * Pick up the buffer data we had previously stashed away
6174 * (and now potentially also compressed).
6176 buf_data = hdr->b_l1hdr.b_tmp_cdata;
6177 buf_sz = hdr->b_l2hdr.b_asize;
6180 * We need to do this regardless if buf_sz is zero or
6181 * not, otherwise, when this l2hdr is evicted we'll
6182 * remove a reference that was never added.
6184 (void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6186 /* Compression may have squashed the buffer to zero length. */
6187 if (buf_sz != 0) {
6188 uint64_t buf_a_sz;
6190 wzio = zio_write_phys(pio, dev->l2ad_vdev,
6191 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6192 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6193 ZIO_FLAG_CANFAIL, B_FALSE);
6195 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6196 zio_t *, wzio);
6197 (void) zio_nowait(wzio);
6199 stats_size += buf_sz;
6202 * Keep the clock hand suitably device-aligned.
6204 buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6205 write_asize += buf_a_sz;
6206 dev->l2ad_hand += buf_a_sz;
6210 mutex_exit(&dev->l2ad_mtx);
6212 ASSERT3U(write_asize, <=, target_sz);
6213 ARCSTAT_BUMP(arcstat_l2_writes_sent);
6214 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
6215 ARCSTAT_INCR(arcstat_l2_size, write_sz);
6216 ARCSTAT_INCR(arcstat_l2_asize, stats_size);
6217 vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
6220 * Bump device hand to the device start if it is approaching the end.
6221 * l2arc_evict() will already have evicted ahead for this case.
6223 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
6224 dev->l2ad_hand = dev->l2ad_start;
6225 dev->l2ad_first = B_FALSE;
6228 dev->l2ad_writing = B_TRUE;
6229 (void) zio_wait(pio);
6230 dev->l2ad_writing = B_FALSE;
6232 return (write_asize);
6236 * Compresses an L2ARC buffer.
6237 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6238 * size in l2hdr->b_asize. This routine tries to compress the data and
6239 * depending on the compression result there are three possible outcomes:
6240 * *) The buffer was incompressible. The original l2hdr contents were left
6241 * untouched and are ready for writing to an L2 device.
6242 * *) The buffer was all-zeros, so there is no need to write it to an L2
6243 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6244 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6245 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6246 * data buffer which holds the compressed data to be written, and b_asize
6247 * tells us how much data there is. b_compress is set to the appropriate
6248 * compression algorithm. Once writing is done, invoke
6249 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6251 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6252 * buffer was incompressible).
6254 static boolean_t
6255 l2arc_compress_buf(arc_buf_hdr_t *hdr)
6257 void *cdata;
6258 size_t csize, len, rounded;
6259 ASSERT(HDR_HAS_L2HDR(hdr));
6260 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
6262 ASSERT(HDR_HAS_L1HDR(hdr));
6263 ASSERT3S(l2hdr->b_compress, ==, ZIO_COMPRESS_OFF);
6264 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6266 len = l2hdr->b_asize;
6267 cdata = zio_data_buf_alloc(len);
6268 ASSERT3P(cdata, !=, NULL);
6269 csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
6270 cdata, l2hdr->b_asize);
6272 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
6273 if (rounded > csize) {
6274 bzero((char *)cdata + csize, rounded - csize);
6275 csize = rounded;
6278 if (csize == 0) {
6279 /* zero block, indicate that there's nothing to write */
6280 zio_data_buf_free(cdata, len);
6281 l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
6282 l2hdr->b_asize = 0;
6283 hdr->b_l1hdr.b_tmp_cdata = NULL;
6284 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6285 return (B_TRUE);
6286 } else if (csize > 0 && csize < len) {
6288 * Compression succeeded, we'll keep the cdata around for
6289 * writing and release it afterwards.
6291 l2hdr->b_compress = ZIO_COMPRESS_LZ4;
6292 l2hdr->b_asize = csize;
6293 hdr->b_l1hdr.b_tmp_cdata = cdata;
6294 ARCSTAT_BUMP(arcstat_l2_compress_successes);
6295 return (B_TRUE);
6296 } else {
6298 * Compression failed, release the compressed buffer.
6299 * l2hdr will be left unmodified.
6301 zio_data_buf_free(cdata, len);
6302 ARCSTAT_BUMP(arcstat_l2_compress_failures);
6303 return (B_FALSE);
6308 * Decompresses a zio read back from an l2arc device. On success, the
6309 * underlying zio's io_data buffer is overwritten by the uncompressed
6310 * version. On decompression error (corrupt compressed stream), the
6311 * zio->io_error value is set to signal an I/O error.
6313 * Please note that the compressed data stream is not checksummed, so
6314 * if the underlying device is experiencing data corruption, we may feed
6315 * corrupt data to the decompressor, so the decompressor needs to be
6316 * able to handle this situation (LZ4 does).
6318 static void
6319 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6321 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6323 if (zio->io_error != 0) {
6325 * An io error has occured, just restore the original io
6326 * size in preparation for a main pool read.
6328 zio->io_orig_size = zio->io_size = hdr->b_size;
6329 return;
6332 if (c == ZIO_COMPRESS_EMPTY) {
6334 * An empty buffer results in a null zio, which means we
6335 * need to fill its io_data after we're done restoring the
6336 * buffer's contents.
6338 ASSERT(hdr->b_l1hdr.b_buf != NULL);
6339 bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6340 zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6341 } else {
6342 ASSERT(zio->io_data != NULL);
6344 * We copy the compressed data from the start of the arc buffer
6345 * (the zio_read will have pulled in only what we need, the
6346 * rest is garbage which we will overwrite at decompression)
6347 * and then decompress back to the ARC data buffer. This way we
6348 * can minimize copying by simply decompressing back over the
6349 * original compressed data (rather than decompressing to an
6350 * aux buffer and then copying back the uncompressed buffer,
6351 * which is likely to be much larger).
6353 uint64_t csize;
6354 void *cdata;
6356 csize = zio->io_size;
6357 cdata = zio_data_buf_alloc(csize);
6358 bcopy(zio->io_data, cdata, csize);
6359 if (zio_decompress_data(c, cdata, zio->io_data, csize,
6360 hdr->b_size) != 0)
6361 zio->io_error = EIO;
6362 zio_data_buf_free(cdata, csize);
6365 /* Restore the expected uncompressed IO size. */
6366 zio->io_orig_size = zio->io_size = hdr->b_size;
6370 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6371 * This buffer serves as a temporary holder of compressed data while
6372 * the buffer entry is being written to an l2arc device. Once that is
6373 * done, we can dispose of it.
6375 static void
6376 l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6378 ASSERT(HDR_HAS_L2HDR(hdr));
6379 enum zio_compress comp = hdr->b_l2hdr.b_compress;
6381 ASSERT(HDR_HAS_L1HDR(hdr));
6382 ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6384 if (comp == ZIO_COMPRESS_OFF) {
6386 * In this case, b_tmp_cdata points to the same buffer
6387 * as the arc_buf_t's b_data field. We don't want to
6388 * free it, since the arc_buf_t will handle that.
6390 hdr->b_l1hdr.b_tmp_cdata = NULL;
6391 } else if (comp == ZIO_COMPRESS_EMPTY) {
6393 * In this case, b_tmp_cdata was compressed to an empty
6394 * buffer, thus there's nothing to free and b_tmp_cdata
6395 * should have been set to NULL in l2arc_write_buffers().
6397 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6398 } else {
6400 * If the data was compressed, then we've allocated a
6401 * temporary buffer for it, so now we need to release it.
6403 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6404 zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6405 hdr->b_size);
6406 hdr->b_l1hdr.b_tmp_cdata = NULL;
6412 * This thread feeds the L2ARC at regular intervals. This is the beating
6413 * heart of the L2ARC.
6415 static void
6416 l2arc_feed_thread(void)
6418 callb_cpr_t cpr;
6419 l2arc_dev_t *dev;
6420 spa_t *spa;
6421 uint64_t size, wrote;
6422 clock_t begin, next = ddi_get_lbolt();
6423 boolean_t headroom_boost = B_FALSE;
6425 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6427 mutex_enter(&l2arc_feed_thr_lock);
6429 while (l2arc_thread_exit == 0) {
6430 CALLB_CPR_SAFE_BEGIN(&cpr);
6431 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
6432 next);
6433 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6434 next = ddi_get_lbolt() + hz;
6437 * Quick check for L2ARC devices.
6439 mutex_enter(&l2arc_dev_mtx);
6440 if (l2arc_ndev == 0) {
6441 mutex_exit(&l2arc_dev_mtx);
6442 continue;
6444 mutex_exit(&l2arc_dev_mtx);
6445 begin = ddi_get_lbolt();
6448 * This selects the next l2arc device to write to, and in
6449 * doing so the next spa to feed from: dev->l2ad_spa. This
6450 * will return NULL if there are now no l2arc devices or if
6451 * they are all faulted.
6453 * If a device is returned, its spa's config lock is also
6454 * held to prevent device removal. l2arc_dev_get_next()
6455 * will grab and release l2arc_dev_mtx.
6457 if ((dev = l2arc_dev_get_next()) == NULL)
6458 continue;
6460 spa = dev->l2ad_spa;
6461 ASSERT(spa != NULL);
6464 * If the pool is read-only then force the feed thread to
6465 * sleep a little longer.
6467 if (!spa_writeable(spa)) {
6468 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6469 spa_config_exit(spa, SCL_L2ARC, dev);
6470 continue;
6474 * Avoid contributing to memory pressure.
6476 if (arc_reclaim_needed()) {
6477 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6478 spa_config_exit(spa, SCL_L2ARC, dev);
6479 continue;
6482 ARCSTAT_BUMP(arcstat_l2_feeds);
6484 size = l2arc_write_size();
6487 * Evict L2ARC buffers that will be overwritten.
6489 l2arc_evict(dev, size, B_FALSE);
6492 * Write ARC buffers.
6494 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6497 * Calculate interval between writes.
6499 next = l2arc_write_interval(begin, size, wrote);
6500 spa_config_exit(spa, SCL_L2ARC, dev);
6503 l2arc_thread_exit = 0;
6504 cv_broadcast(&l2arc_feed_thr_cv);
6505 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
6506 thread_exit();
6509 boolean_t
6510 l2arc_vdev_present(vdev_t *vd)
6512 l2arc_dev_t *dev;
6514 mutex_enter(&l2arc_dev_mtx);
6515 for (dev = list_head(l2arc_dev_list); dev != NULL;
6516 dev = list_next(l2arc_dev_list, dev)) {
6517 if (dev->l2ad_vdev == vd)
6518 break;
6520 mutex_exit(&l2arc_dev_mtx);
6522 return (dev != NULL);
6526 * Add a vdev for use by the L2ARC. By this point the spa has already
6527 * validated the vdev and opened it.
6529 void
6530 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
6532 l2arc_dev_t *adddev;
6534 ASSERT(!l2arc_vdev_present(vd));
6537 * Create a new l2arc device entry.
6539 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6540 adddev->l2ad_spa = spa;
6541 adddev->l2ad_vdev = vd;
6542 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6543 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
6544 adddev->l2ad_hand = adddev->l2ad_start;
6545 adddev->l2ad_first = B_TRUE;
6546 adddev->l2ad_writing = B_FALSE;
6548 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
6550 * This is a list of all ARC buffers that are still valid on the
6551 * device.
6553 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6554 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
6556 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
6557 refcount_create(&adddev->l2ad_alloc);
6560 * Add device to global list
6562 mutex_enter(&l2arc_dev_mtx);
6563 list_insert_head(l2arc_dev_list, adddev);
6564 atomic_inc_64(&l2arc_ndev);
6565 mutex_exit(&l2arc_dev_mtx);
6569 * Remove a vdev from the L2ARC.
6571 void
6572 l2arc_remove_vdev(vdev_t *vd)
6574 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6577 * Find the device by vdev
6579 mutex_enter(&l2arc_dev_mtx);
6580 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6581 nextdev = list_next(l2arc_dev_list, dev);
6582 if (vd == dev->l2ad_vdev) {
6583 remdev = dev;
6584 break;
6587 ASSERT(remdev != NULL);
6590 * Remove device from global list
6592 list_remove(l2arc_dev_list, remdev);
6593 l2arc_dev_last = NULL; /* may have been invalidated */
6594 atomic_dec_64(&l2arc_ndev);
6595 mutex_exit(&l2arc_dev_mtx);
6598 * Clear all buflists and ARC references. L2ARC device flush.
6600 l2arc_evict(remdev, 0, B_TRUE);
6601 list_destroy(&remdev->l2ad_buflist);
6602 mutex_destroy(&remdev->l2ad_mtx);
6603 refcount_destroy(&remdev->l2ad_alloc);
6604 kmem_free(remdev, sizeof (l2arc_dev_t));
6607 void
6608 l2arc_init(void)
6610 l2arc_thread_exit = 0;
6611 l2arc_ndev = 0;
6612 l2arc_writes_sent = 0;
6613 l2arc_writes_done = 0;
6615 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6616 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6617 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
6618 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6620 l2arc_dev_list = &L2ARC_dev_list;
6621 l2arc_free_on_write = &L2ARC_free_on_write;
6622 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6623 offsetof(l2arc_dev_t, l2ad_node));
6624 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6625 offsetof(l2arc_data_free_t, l2df_list_node));
6628 void
6629 l2arc_fini(void)
6632 * This is called from dmu_fini(), which is called from spa_fini();
6633 * Because of this, we can assume that all l2arc devices have
6634 * already been removed when the pools themselves were removed.
6637 l2arc_do_free_on_write();
6639 mutex_destroy(&l2arc_feed_thr_lock);
6640 cv_destroy(&l2arc_feed_thr_cv);
6641 mutex_destroy(&l2arc_dev_mtx);
6642 mutex_destroy(&l2arc_free_on_write_mtx);
6644 list_destroy(l2arc_dev_list);
6645 list_destroy(l2arc_free_on_write);
6648 void
6649 l2arc_start(void)
6651 if (!(spa_mode_global & FWRITE))
6652 return;
6654 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
6655 TS_RUN, minclsyspri);
6658 void
6659 l2arc_stop(void)
6661 if (!(spa_mode_global & FWRITE))
6662 return;
6664 mutex_enter(&l2arc_feed_thr_lock);
6665 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
6666 l2arc_thread_exit = 1;
6667 while (l2arc_thread_exit != 0)
6668 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6669 mutex_exit(&l2arc_feed_thr_lock);