7054 dmu_tx_hold_t should use refcount_t to track space
[unleashed.git] / usr / src / uts / common / fs / zfs / dmu_send.c
blob50b8aba876fe30bafca251cfdfff7346b1ab4272
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright 2016 RackTop Systems.
28 * Copyright (c) 2014 Integros [integros.com]
31 #include <sys/dmu.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dbuf.h>
35 #include <sys/dnode.h>
36 #include <sys/zfs_context.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dmu_traverse.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_synctask.h>
44 #include <sys/zfs_ioctl.h>
45 #include <sys/zap.h>
46 #include <sys/zio_checksum.h>
47 #include <sys/zfs_znode.h>
48 #include <zfs_fletcher.h>
49 #include <sys/avl.h>
50 #include <sys/ddt.h>
51 #include <sys/zfs_onexit.h>
52 #include <sys/dmu_send.h>
53 #include <sys/dsl_destroy.h>
54 #include <sys/blkptr.h>
55 #include <sys/dsl_bookmark.h>
56 #include <sys/zfeature.h>
57 #include <sys/bqueue.h>
59 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
60 int zfs_send_corrupt_data = B_FALSE;
61 int zfs_send_queue_length = 16 * 1024 * 1024;
62 int zfs_recv_queue_length = 16 * 1024 * 1024;
63 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
64 int zfs_send_set_freerecords_bit = B_TRUE;
66 static char *dmu_recv_tag = "dmu_recv_tag";
67 const char *recv_clone_name = "%recv";
69 #define BP_SPAN(datablkszsec, indblkshift, level) \
70 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
71 (level) * (indblkshift - SPA_BLKPTRSHIFT)))
73 static void byteswap_record(dmu_replay_record_t *drr);
75 struct send_thread_arg {
76 bqueue_t q;
77 dsl_dataset_t *ds; /* Dataset to traverse */
78 uint64_t fromtxg; /* Traverse from this txg */
79 int flags; /* flags to pass to traverse_dataset */
80 int error_code;
81 boolean_t cancel;
82 zbookmark_phys_t resume;
85 struct send_block_record {
86 boolean_t eos_marker; /* Marks the end of the stream */
87 blkptr_t bp;
88 zbookmark_phys_t zb;
89 uint8_t indblkshift;
90 uint16_t datablkszsec;
91 bqueue_node_t ln;
94 static int
95 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
97 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os);
98 ssize_t resid; /* have to get resid to get detailed errno */
101 * The code does not rely on this (len being a multiple of 8). We keep
102 * this assertion because of the corresponding assertion in
103 * receive_read(). Keeping this assertion ensures that we do not
104 * inadvertently break backwards compatibility (causing the assertion
105 * in receive_read() to trigger on old software).
107 * Removing the assertions could be rolled into a new feature that uses
108 * data that isn't 8-byte aligned; if the assertions were removed, a
109 * feature flag would have to be added.
112 ASSERT0(len % 8);
114 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp,
115 (caddr_t)buf, len,
116 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid);
118 mutex_enter(&ds->ds_sendstream_lock);
119 *dsp->dsa_off += len;
120 mutex_exit(&ds->ds_sendstream_lock);
122 return (dsp->dsa_err);
126 * For all record types except BEGIN, fill in the checksum (overlaid in
127 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything
128 * up to the start of the checksum itself.
130 static int
131 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len)
133 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
134 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
135 fletcher_4_incremental_native(dsp->dsa_drr,
136 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
137 &dsp->dsa_zc);
138 if (dsp->dsa_drr->drr_type != DRR_BEGIN) {
139 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u.
140 drr_checksum.drr_checksum));
141 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc;
143 fletcher_4_incremental_native(&dsp->dsa_drr->
144 drr_u.drr_checksum.drr_checksum,
145 sizeof (zio_cksum_t), &dsp->dsa_zc);
146 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0)
147 return (SET_ERROR(EINTR));
148 if (payload_len != 0) {
149 fletcher_4_incremental_native(payload, payload_len,
150 &dsp->dsa_zc);
151 if (dump_bytes(dsp, payload, payload_len) != 0)
152 return (SET_ERROR(EINTR));
154 return (0);
158 * Fill in the drr_free struct, or perform aggregation if the previous record is
159 * also a free record, and the two are adjacent.
161 * Note that we send free records even for a full send, because we want to be
162 * able to receive a full send as a clone, which requires a list of all the free
163 * and freeobject records that were generated on the source.
165 static int
166 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
167 uint64_t length)
169 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free);
172 * When we receive a free record, dbuf_free_range() assumes
173 * that the receiving system doesn't have any dbufs in the range
174 * being freed. This is always true because there is a one-record
175 * constraint: we only send one WRITE record for any given
176 * object,offset. We know that the one-record constraint is
177 * true because we always send data in increasing order by
178 * object,offset.
180 * If the increasing-order constraint ever changes, we should find
181 * another way to assert that the one-record constraint is still
182 * satisfied.
184 ASSERT(object > dsp->dsa_last_data_object ||
185 (object == dsp->dsa_last_data_object &&
186 offset > dsp->dsa_last_data_offset));
188 if (length != -1ULL && offset + length < offset)
189 length = -1ULL;
192 * If there is a pending op, but it's not PENDING_FREE, push it out,
193 * since free block aggregation can only be done for blocks of the
194 * same type (i.e., DRR_FREE records can only be aggregated with
195 * other DRR_FREE records. DRR_FREEOBJECTS records can only be
196 * aggregated with other DRR_FREEOBJECTS records.
198 if (dsp->dsa_pending_op != PENDING_NONE &&
199 dsp->dsa_pending_op != PENDING_FREE) {
200 if (dump_record(dsp, NULL, 0) != 0)
201 return (SET_ERROR(EINTR));
202 dsp->dsa_pending_op = PENDING_NONE;
205 if (dsp->dsa_pending_op == PENDING_FREE) {
207 * There should never be a PENDING_FREE if length is -1
208 * (because dump_dnode is the only place where this
209 * function is called with a -1, and only after flushing
210 * any pending record).
212 ASSERT(length != -1ULL);
214 * Check to see whether this free block can be aggregated
215 * with pending one.
217 if (drrf->drr_object == object && drrf->drr_offset +
218 drrf->drr_length == offset) {
219 drrf->drr_length += length;
220 return (0);
221 } else {
222 /* not a continuation. Push out pending record */
223 if (dump_record(dsp, NULL, 0) != 0)
224 return (SET_ERROR(EINTR));
225 dsp->dsa_pending_op = PENDING_NONE;
228 /* create a FREE record and make it pending */
229 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
230 dsp->dsa_drr->drr_type = DRR_FREE;
231 drrf->drr_object = object;
232 drrf->drr_offset = offset;
233 drrf->drr_length = length;
234 drrf->drr_toguid = dsp->dsa_toguid;
235 if (length == -1ULL) {
236 if (dump_record(dsp, NULL, 0) != 0)
237 return (SET_ERROR(EINTR));
238 } else {
239 dsp->dsa_pending_op = PENDING_FREE;
242 return (0);
245 static int
246 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type,
247 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data)
249 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write);
252 * We send data in increasing object, offset order.
253 * See comment in dump_free() for details.
255 ASSERT(object > dsp->dsa_last_data_object ||
256 (object == dsp->dsa_last_data_object &&
257 offset > dsp->dsa_last_data_offset));
258 dsp->dsa_last_data_object = object;
259 dsp->dsa_last_data_offset = offset + blksz - 1;
262 * If there is any kind of pending aggregation (currently either
263 * a grouping of free objects or free blocks), push it out to
264 * the stream, since aggregation can't be done across operations
265 * of different types.
267 if (dsp->dsa_pending_op != PENDING_NONE) {
268 if (dump_record(dsp, NULL, 0) != 0)
269 return (SET_ERROR(EINTR));
270 dsp->dsa_pending_op = PENDING_NONE;
272 /* write a WRITE record */
273 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
274 dsp->dsa_drr->drr_type = DRR_WRITE;
275 drrw->drr_object = object;
276 drrw->drr_type = type;
277 drrw->drr_offset = offset;
278 drrw->drr_length = blksz;
279 drrw->drr_toguid = dsp->dsa_toguid;
280 if (bp == NULL || BP_IS_EMBEDDED(bp)) {
282 * There's no pre-computed checksum for partial-block
283 * writes or embedded BP's, so (like
284 * fletcher4-checkummed blocks) userland will have to
285 * compute a dedup-capable checksum itself.
287 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
288 } else {
289 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
290 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
291 ZCHECKSUM_FLAG_DEDUP)
292 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP;
293 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
294 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
295 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
296 drrw->drr_key.ddk_cksum = bp->blk_cksum;
299 if (dump_record(dsp, data, blksz) != 0)
300 return (SET_ERROR(EINTR));
301 return (0);
304 static int
305 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
306 int blksz, const blkptr_t *bp)
308 char buf[BPE_PAYLOAD_SIZE];
309 struct drr_write_embedded *drrw =
310 &(dsp->dsa_drr->drr_u.drr_write_embedded);
312 if (dsp->dsa_pending_op != PENDING_NONE) {
313 if (dump_record(dsp, NULL, 0) != 0)
314 return (EINTR);
315 dsp->dsa_pending_op = PENDING_NONE;
318 ASSERT(BP_IS_EMBEDDED(bp));
320 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
321 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED;
322 drrw->drr_object = object;
323 drrw->drr_offset = offset;
324 drrw->drr_length = blksz;
325 drrw->drr_toguid = dsp->dsa_toguid;
326 drrw->drr_compression = BP_GET_COMPRESS(bp);
327 drrw->drr_etype = BPE_GET_ETYPE(bp);
328 drrw->drr_lsize = BPE_GET_LSIZE(bp);
329 drrw->drr_psize = BPE_GET_PSIZE(bp);
331 decode_embedded_bp_compressed(bp, buf);
333 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
334 return (EINTR);
335 return (0);
338 static int
339 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data)
341 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill);
343 if (dsp->dsa_pending_op != PENDING_NONE) {
344 if (dump_record(dsp, NULL, 0) != 0)
345 return (SET_ERROR(EINTR));
346 dsp->dsa_pending_op = PENDING_NONE;
349 /* write a SPILL record */
350 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
351 dsp->dsa_drr->drr_type = DRR_SPILL;
352 drrs->drr_object = object;
353 drrs->drr_length = blksz;
354 drrs->drr_toguid = dsp->dsa_toguid;
356 if (dump_record(dsp, data, blksz) != 0)
357 return (SET_ERROR(EINTR));
358 return (0);
361 static int
362 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs)
364 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects);
367 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
368 * push it out, since free block aggregation can only be done for
369 * blocks of the same type (i.e., DRR_FREE records can only be
370 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records
371 * can only be aggregated with other DRR_FREEOBJECTS records.
373 if (dsp->dsa_pending_op != PENDING_NONE &&
374 dsp->dsa_pending_op != PENDING_FREEOBJECTS) {
375 if (dump_record(dsp, NULL, 0) != 0)
376 return (SET_ERROR(EINTR));
377 dsp->dsa_pending_op = PENDING_NONE;
379 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) {
381 * See whether this free object array can be aggregated
382 * with pending one
384 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
385 drrfo->drr_numobjs += numobjs;
386 return (0);
387 } else {
388 /* can't be aggregated. Push out pending record */
389 if (dump_record(dsp, NULL, 0) != 0)
390 return (SET_ERROR(EINTR));
391 dsp->dsa_pending_op = PENDING_NONE;
395 /* write a FREEOBJECTS record */
396 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
397 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS;
398 drrfo->drr_firstobj = firstobj;
399 drrfo->drr_numobjs = numobjs;
400 drrfo->drr_toguid = dsp->dsa_toguid;
402 dsp->dsa_pending_op = PENDING_FREEOBJECTS;
404 return (0);
407 static int
408 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp)
410 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object);
412 if (object < dsp->dsa_resume_object) {
414 * Note: when resuming, we will visit all the dnodes in
415 * the block of dnodes that we are resuming from. In
416 * this case it's unnecessary to send the dnodes prior to
417 * the one we are resuming from. We should be at most one
418 * block's worth of dnodes behind the resume point.
420 ASSERT3U(dsp->dsa_resume_object - object, <,
421 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
422 return (0);
425 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
426 return (dump_freeobjects(dsp, object, 1));
428 if (dsp->dsa_pending_op != PENDING_NONE) {
429 if (dump_record(dsp, NULL, 0) != 0)
430 return (SET_ERROR(EINTR));
431 dsp->dsa_pending_op = PENDING_NONE;
434 /* write an OBJECT record */
435 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
436 dsp->dsa_drr->drr_type = DRR_OBJECT;
437 drro->drr_object = object;
438 drro->drr_type = dnp->dn_type;
439 drro->drr_bonustype = dnp->dn_bonustype;
440 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
441 drro->drr_bonuslen = dnp->dn_bonuslen;
442 drro->drr_checksumtype = dnp->dn_checksum;
443 drro->drr_compress = dnp->dn_compress;
444 drro->drr_toguid = dsp->dsa_toguid;
446 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
447 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
448 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
450 if (dump_record(dsp, DN_BONUS(dnp),
451 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) {
452 return (SET_ERROR(EINTR));
455 /* Free anything past the end of the file. */
456 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) *
457 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0)
458 return (SET_ERROR(EINTR));
459 if (dsp->dsa_err != 0)
460 return (SET_ERROR(EINTR));
461 return (0);
464 static boolean_t
465 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp)
467 if (!BP_IS_EMBEDDED(bp))
468 return (B_FALSE);
471 * Compression function must be legacy, or explicitly enabled.
473 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
474 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4)))
475 return (B_FALSE);
478 * Embed type must be explicitly enabled.
480 switch (BPE_GET_ETYPE(bp)) {
481 case BP_EMBEDDED_TYPE_DATA:
482 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
483 return (B_TRUE);
484 break;
485 default:
486 return (B_FALSE);
488 return (B_FALSE);
492 * This is the callback function to traverse_dataset that acts as the worker
493 * thread for dmu_send_impl.
495 /*ARGSUSED*/
496 static int
497 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
498 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
500 struct send_thread_arg *sta = arg;
501 struct send_block_record *record;
502 uint64_t record_size;
503 int err = 0;
505 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
506 zb->zb_object >= sta->resume.zb_object);
508 if (sta->cancel)
509 return (SET_ERROR(EINTR));
511 if (bp == NULL) {
512 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
513 return (0);
514 } else if (zb->zb_level < 0) {
515 return (0);
518 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP);
519 record->eos_marker = B_FALSE;
520 record->bp = *bp;
521 record->zb = *zb;
522 record->indblkshift = dnp->dn_indblkshift;
523 record->datablkszsec = dnp->dn_datablkszsec;
524 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
525 bqueue_enqueue(&sta->q, record, record_size);
527 return (err);
531 * This function kicks off the traverse_dataset. It also handles setting the
532 * error code of the thread in case something goes wrong, and pushes the End of
533 * Stream record when the traverse_dataset call has finished. If there is no
534 * dataset to traverse, the thread immediately pushes End of Stream marker.
536 static void
537 send_traverse_thread(void *arg)
539 struct send_thread_arg *st_arg = arg;
540 int err;
541 struct send_block_record *data;
543 if (st_arg->ds != NULL) {
544 err = traverse_dataset_resume(st_arg->ds,
545 st_arg->fromtxg, &st_arg->resume,
546 st_arg->flags, send_cb, st_arg);
548 if (err != EINTR)
549 st_arg->error_code = err;
551 data = kmem_zalloc(sizeof (*data), KM_SLEEP);
552 data->eos_marker = B_TRUE;
553 bqueue_enqueue(&st_arg->q, data, 1);
557 * This function actually handles figuring out what kind of record needs to be
558 * dumped, reading the data (which has hopefully been prefetched), and calling
559 * the appropriate helper function.
561 static int
562 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data)
564 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os);
565 const blkptr_t *bp = &data->bp;
566 const zbookmark_phys_t *zb = &data->zb;
567 uint8_t indblkshift = data->indblkshift;
568 uint16_t dblkszsec = data->datablkszsec;
569 spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
570 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE;
571 int err = 0;
573 ASSERT3U(zb->zb_level, >=, 0);
575 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
576 zb->zb_object >= dsa->dsa_resume_object);
578 if (zb->zb_object != DMU_META_DNODE_OBJECT &&
579 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) {
580 return (0);
581 } else if (BP_IS_HOLE(bp) &&
582 zb->zb_object == DMU_META_DNODE_OBJECT) {
583 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
584 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT;
585 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT);
586 } else if (BP_IS_HOLE(bp)) {
587 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
588 uint64_t offset = zb->zb_blkid * span;
589 err = dump_free(dsa, zb->zb_object, offset, span);
590 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) {
591 return (0);
592 } else if (type == DMU_OT_DNODE) {
593 int blksz = BP_GET_LSIZE(bp);
594 arc_flags_t aflags = ARC_FLAG_WAIT;
595 arc_buf_t *abuf;
597 ASSERT0(zb->zb_level);
599 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
600 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
601 &aflags, zb) != 0)
602 return (SET_ERROR(EIO));
604 dnode_phys_t *blk = abuf->b_data;
605 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT);
606 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) {
607 err = dump_dnode(dsa, dnobj + i, blk + i);
608 if (err != 0)
609 break;
611 (void) arc_buf_remove_ref(abuf, &abuf);
612 } else if (type == DMU_OT_SA) {
613 arc_flags_t aflags = ARC_FLAG_WAIT;
614 arc_buf_t *abuf;
615 int blksz = BP_GET_LSIZE(bp);
617 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
618 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
619 &aflags, zb) != 0)
620 return (SET_ERROR(EIO));
622 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data);
623 (void) arc_buf_remove_ref(abuf, &abuf);
624 } else if (backup_do_embed(dsa, bp)) {
625 /* it's an embedded level-0 block of a regular object */
626 int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
627 ASSERT0(zb->zb_level);
628 err = dump_write_embedded(dsa, zb->zb_object,
629 zb->zb_blkid * blksz, blksz, bp);
630 } else {
631 /* it's a level-0 block of a regular object */
632 arc_flags_t aflags = ARC_FLAG_WAIT;
633 arc_buf_t *abuf;
634 int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
635 uint64_t offset;
637 ASSERT0(zb->zb_level);
638 ASSERT(zb->zb_object > dsa->dsa_resume_object ||
639 (zb->zb_object == dsa->dsa_resume_object &&
640 zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
642 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
643 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
644 &aflags, zb) != 0) {
645 if (zfs_send_corrupt_data) {
646 /* Send a block filled with 0x"zfs badd bloc" */
647 abuf = arc_buf_alloc(spa, blksz, &abuf,
648 ARC_BUFC_DATA);
649 uint64_t *ptr;
650 for (ptr = abuf->b_data;
651 (char *)ptr < (char *)abuf->b_data + blksz;
652 ptr++)
653 *ptr = 0x2f5baddb10cULL;
654 } else {
655 return (SET_ERROR(EIO));
659 offset = zb->zb_blkid * blksz;
661 if (!(dsa->dsa_featureflags &
662 DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
663 blksz > SPA_OLD_MAXBLOCKSIZE) {
664 char *buf = abuf->b_data;
665 while (blksz > 0 && err == 0) {
666 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE);
667 err = dump_write(dsa, type, zb->zb_object,
668 offset, n, NULL, buf);
669 offset += n;
670 buf += n;
671 blksz -= n;
673 } else {
674 err = dump_write(dsa, type, zb->zb_object,
675 offset, blksz, bp, abuf->b_data);
677 (void) arc_buf_remove_ref(abuf, &abuf);
680 ASSERT(err == 0 || err == EINTR);
681 return (err);
685 * Pop the new data off the queue, and free the old data.
687 static struct send_block_record *
688 get_next_record(bqueue_t *bq, struct send_block_record *data)
690 struct send_block_record *tmp = bqueue_dequeue(bq);
691 kmem_free(data, sizeof (*data));
692 return (tmp);
696 * Actually do the bulk of the work in a zfs send.
698 * Note: Releases dp using the specified tag.
700 static int
701 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds,
702 zfs_bookmark_phys_t *ancestor_zb,
703 boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd,
704 uint64_t resumeobj, uint64_t resumeoff,
705 vnode_t *vp, offset_t *off)
707 objset_t *os;
708 dmu_replay_record_t *drr;
709 dmu_sendarg_t *dsp;
710 int err;
711 uint64_t fromtxg = 0;
712 uint64_t featureflags = 0;
713 struct send_thread_arg to_arg = { 0 };
715 err = dmu_objset_from_ds(to_ds, &os);
716 if (err != 0) {
717 dsl_pool_rele(dp, tag);
718 return (err);
721 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP);
722 drr->drr_type = DRR_BEGIN;
723 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
724 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo,
725 DMU_SUBSTREAM);
727 #ifdef _KERNEL
728 if (dmu_objset_type(os) == DMU_OST_ZFS) {
729 uint64_t version;
730 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) {
731 kmem_free(drr, sizeof (dmu_replay_record_t));
732 dsl_pool_rele(dp, tag);
733 return (SET_ERROR(EINVAL));
735 if (version >= ZPL_VERSION_SA) {
736 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
739 #endif
741 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS])
742 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
743 if (embedok &&
744 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
745 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
746 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
747 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4;
750 if (resumeobj != 0 || resumeoff != 0) {
751 featureflags |= DMU_BACKUP_FEATURE_RESUMING;
754 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo,
755 featureflags);
757 drr->drr_u.drr_begin.drr_creation_time =
758 dsl_dataset_phys(to_ds)->ds_creation_time;
759 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os);
760 if (is_clone)
761 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE;
762 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
763 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET)
764 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA;
765 if (zfs_send_set_freerecords_bit)
766 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS;
768 if (ancestor_zb != NULL) {
769 drr->drr_u.drr_begin.drr_fromguid =
770 ancestor_zb->zbm_guid;
771 fromtxg = ancestor_zb->zbm_creation_txg;
773 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname);
774 if (!to_ds->ds_is_snapshot) {
775 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--",
776 sizeof (drr->drr_u.drr_begin.drr_toname));
779 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP);
781 dsp->dsa_drr = drr;
782 dsp->dsa_vp = vp;
783 dsp->dsa_outfd = outfd;
784 dsp->dsa_proc = curproc;
785 dsp->dsa_os = os;
786 dsp->dsa_off = off;
787 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid;
788 dsp->dsa_pending_op = PENDING_NONE;
789 dsp->dsa_featureflags = featureflags;
790 dsp->dsa_resume_object = resumeobj;
791 dsp->dsa_resume_offset = resumeoff;
793 mutex_enter(&to_ds->ds_sendstream_lock);
794 list_insert_head(&to_ds->ds_sendstreams, dsp);
795 mutex_exit(&to_ds->ds_sendstream_lock);
797 dsl_dataset_long_hold(to_ds, FTAG);
798 dsl_pool_rele(dp, tag);
800 void *payload = NULL;
801 size_t payload_len = 0;
802 if (resumeobj != 0 || resumeoff != 0) {
803 dmu_object_info_t to_doi;
804 err = dmu_object_info(os, resumeobj, &to_doi);
805 if (err != 0)
806 goto out;
807 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0,
808 resumeoff / to_doi.doi_data_block_size);
810 nvlist_t *nvl = fnvlist_alloc();
811 fnvlist_add_uint64(nvl, "resume_object", resumeobj);
812 fnvlist_add_uint64(nvl, "resume_offset", resumeoff);
813 payload = fnvlist_pack(nvl, &payload_len);
814 drr->drr_payloadlen = payload_len;
815 fnvlist_free(nvl);
818 err = dump_record(dsp, payload, payload_len);
819 fnvlist_pack_free(payload, payload_len);
820 if (err != 0) {
821 err = dsp->dsa_err;
822 goto out;
825 err = bqueue_init(&to_arg.q, zfs_send_queue_length,
826 offsetof(struct send_block_record, ln));
827 to_arg.error_code = 0;
828 to_arg.cancel = B_FALSE;
829 to_arg.ds = to_ds;
830 to_arg.fromtxg = fromtxg;
831 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH;
832 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc,
833 TS_RUN, minclsyspri);
835 struct send_block_record *to_data;
836 to_data = bqueue_dequeue(&to_arg.q);
838 while (!to_data->eos_marker && err == 0) {
839 err = do_dump(dsp, to_data);
840 to_data = get_next_record(&to_arg.q, to_data);
841 if (issig(JUSTLOOKING) && issig(FORREAL))
842 err = EINTR;
845 if (err != 0) {
846 to_arg.cancel = B_TRUE;
847 while (!to_data->eos_marker) {
848 to_data = get_next_record(&to_arg.q, to_data);
851 kmem_free(to_data, sizeof (*to_data));
853 bqueue_destroy(&to_arg.q);
855 if (err == 0 && to_arg.error_code != 0)
856 err = to_arg.error_code;
858 if (err != 0)
859 goto out;
861 if (dsp->dsa_pending_op != PENDING_NONE)
862 if (dump_record(dsp, NULL, 0) != 0)
863 err = SET_ERROR(EINTR);
865 if (err != 0) {
866 if (err == EINTR && dsp->dsa_err != 0)
867 err = dsp->dsa_err;
868 goto out;
871 bzero(drr, sizeof (dmu_replay_record_t));
872 drr->drr_type = DRR_END;
873 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc;
874 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid;
876 if (dump_record(dsp, NULL, 0) != 0)
877 err = dsp->dsa_err;
879 out:
880 mutex_enter(&to_ds->ds_sendstream_lock);
881 list_remove(&to_ds->ds_sendstreams, dsp);
882 mutex_exit(&to_ds->ds_sendstream_lock);
884 kmem_free(drr, sizeof (dmu_replay_record_t));
885 kmem_free(dsp, sizeof (dmu_sendarg_t));
887 dsl_dataset_long_rele(to_ds, FTAG);
889 return (err);
893 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
894 boolean_t embedok, boolean_t large_block_ok,
895 int outfd, vnode_t *vp, offset_t *off)
897 dsl_pool_t *dp;
898 dsl_dataset_t *ds;
899 dsl_dataset_t *fromds = NULL;
900 int err;
902 err = dsl_pool_hold(pool, FTAG, &dp);
903 if (err != 0)
904 return (err);
906 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds);
907 if (err != 0) {
908 dsl_pool_rele(dp, FTAG);
909 return (err);
912 if (fromsnap != 0) {
913 zfs_bookmark_phys_t zb;
914 boolean_t is_clone;
916 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds);
917 if (err != 0) {
918 dsl_dataset_rele(ds, FTAG);
919 dsl_pool_rele(dp, FTAG);
920 return (err);
922 if (!dsl_dataset_is_before(ds, fromds, 0))
923 err = SET_ERROR(EXDEV);
924 zb.zbm_creation_time =
925 dsl_dataset_phys(fromds)->ds_creation_time;
926 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg;
927 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
928 is_clone = (fromds->ds_dir != ds->ds_dir);
929 dsl_dataset_rele(fromds, FTAG);
930 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
931 embedok, large_block_ok, outfd, 0, 0, vp, off);
932 } else {
933 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
934 embedok, large_block_ok, outfd, 0, 0, vp, off);
936 dsl_dataset_rele(ds, FTAG);
937 return (err);
941 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
942 boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff,
943 vnode_t *vp, offset_t *off)
945 dsl_pool_t *dp;
946 dsl_dataset_t *ds;
947 int err;
948 boolean_t owned = B_FALSE;
950 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
951 return (SET_ERROR(EINVAL));
953 err = dsl_pool_hold(tosnap, FTAG, &dp);
954 if (err != 0)
955 return (err);
957 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) {
959 * We are sending a filesystem or volume. Ensure
960 * that it doesn't change by owning the dataset.
962 err = dsl_dataset_own(dp, tosnap, FTAG, &ds);
963 owned = B_TRUE;
964 } else {
965 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds);
967 if (err != 0) {
968 dsl_pool_rele(dp, FTAG);
969 return (err);
972 if (fromsnap != NULL) {
973 zfs_bookmark_phys_t zb;
974 boolean_t is_clone = B_FALSE;
975 int fsnamelen = strchr(tosnap, '@') - tosnap;
978 * If the fromsnap is in a different filesystem, then
979 * mark the send stream as a clone.
981 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
982 (fromsnap[fsnamelen] != '@' &&
983 fromsnap[fsnamelen] != '#')) {
984 is_clone = B_TRUE;
987 if (strchr(fromsnap, '@')) {
988 dsl_dataset_t *fromds;
989 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds);
990 if (err == 0) {
991 if (!dsl_dataset_is_before(ds, fromds, 0))
992 err = SET_ERROR(EXDEV);
993 zb.zbm_creation_time =
994 dsl_dataset_phys(fromds)->ds_creation_time;
995 zb.zbm_creation_txg =
996 dsl_dataset_phys(fromds)->ds_creation_txg;
997 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
998 is_clone = (ds->ds_dir != fromds->ds_dir);
999 dsl_dataset_rele(fromds, FTAG);
1001 } else {
1002 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb);
1004 if (err != 0) {
1005 dsl_dataset_rele(ds, FTAG);
1006 dsl_pool_rele(dp, FTAG);
1007 return (err);
1009 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
1010 embedok, large_block_ok,
1011 outfd, resumeobj, resumeoff, vp, off);
1012 } else {
1013 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1014 embedok, large_block_ok,
1015 outfd, resumeobj, resumeoff, vp, off);
1017 if (owned)
1018 dsl_dataset_disown(ds, FTAG);
1019 else
1020 dsl_dataset_rele(ds, FTAG);
1021 return (err);
1024 static int
1025 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size,
1026 uint64_t *sizep)
1028 int err;
1030 * Assume that space (both on-disk and in-stream) is dominated by
1031 * data. We will adjust for indirect blocks and the copies property,
1032 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
1036 * Subtract out approximate space used by indirect blocks.
1037 * Assume most space is used by data blocks (non-indirect, non-dnode).
1038 * Assume all blocks are recordsize. Assume ditto blocks and
1039 * internal fragmentation counter out compression.
1041 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
1042 * block, which we observe in practice.
1044 uint64_t recordsize;
1045 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize);
1046 if (err != 0)
1047 return (err);
1048 size -= size / recordsize * sizeof (blkptr_t);
1050 /* Add in the space for the record associated with each block. */
1051 size += size / recordsize * sizeof (dmu_replay_record_t);
1053 *sizep = size;
1055 return (0);
1059 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep)
1061 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1062 int err;
1063 uint64_t size;
1065 ASSERT(dsl_pool_config_held(dp));
1067 /* tosnap must be a snapshot */
1068 if (!ds->ds_is_snapshot)
1069 return (SET_ERROR(EINVAL));
1071 /* fromsnap, if provided, must be a snapshot */
1072 if (fromds != NULL && !fromds->ds_is_snapshot)
1073 return (SET_ERROR(EINVAL));
1076 * fromsnap must be an earlier snapshot from the same fs as tosnap,
1077 * or the origin's fs.
1079 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0))
1080 return (SET_ERROR(EXDEV));
1082 /* Get uncompressed size estimate of changed data. */
1083 if (fromds == NULL) {
1084 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
1085 } else {
1086 uint64_t used, comp;
1087 err = dsl_dataset_space_written(fromds, ds,
1088 &used, &comp, &size);
1089 if (err != 0)
1090 return (err);
1093 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1094 return (err);
1098 * Simple callback used to traverse the blocks of a snapshot and sum their
1099 * uncompressed size
1101 /* ARGSUSED */
1102 static int
1103 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1104 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1106 uint64_t *spaceptr = arg;
1107 if (bp != NULL && !BP_IS_HOLE(bp)) {
1108 *spaceptr += BP_GET_UCSIZE(bp);
1110 return (0);
1114 * Given a desination snapshot and a TXG, calculate the approximate size of a
1115 * send stream sent from that TXG. from_txg may be zero, indicating that the
1116 * whole snapshot will be sent.
1119 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg,
1120 uint64_t *sizep)
1122 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1123 int err;
1124 uint64_t size = 0;
1126 ASSERT(dsl_pool_config_held(dp));
1128 /* tosnap must be a snapshot */
1129 if (!dsl_dataset_is_snapshot(ds))
1130 return (SET_ERROR(EINVAL));
1132 /* verify that from_txg is before the provided snapshot was taken */
1133 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) {
1134 return (SET_ERROR(EXDEV));
1138 * traverse the blocks of the snapshot with birth times after
1139 * from_txg, summing their uncompressed size
1141 err = traverse_dataset(ds, from_txg, TRAVERSE_POST,
1142 dmu_calculate_send_traversal, &size);
1143 if (err)
1144 return (err);
1146 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1147 return (err);
1150 typedef struct dmu_recv_begin_arg {
1151 const char *drba_origin;
1152 dmu_recv_cookie_t *drba_cookie;
1153 cred_t *drba_cred;
1154 uint64_t drba_snapobj;
1155 } dmu_recv_begin_arg_t;
1157 static int
1158 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
1159 uint64_t fromguid)
1161 uint64_t val;
1162 int error;
1163 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1165 /* temporary clone name must not exist */
1166 error = zap_lookup(dp->dp_meta_objset,
1167 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
1168 8, 1, &val);
1169 if (error != ENOENT)
1170 return (error == 0 ? EBUSY : error);
1172 /* new snapshot name must not exist */
1173 error = zap_lookup(dp->dp_meta_objset,
1174 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
1175 drba->drba_cookie->drc_tosnap, 8, 1, &val);
1176 if (error != ENOENT)
1177 return (error == 0 ? EEXIST : error);
1180 * Check snapshot limit before receiving. We'll recheck again at the
1181 * end, but might as well abort before receiving if we're already over
1182 * the limit.
1184 * Note that we do not check the file system limit with
1185 * dsl_dir_fscount_check because the temporary %clones don't count
1186 * against that limit.
1188 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
1189 NULL, drba->drba_cred);
1190 if (error != 0)
1191 return (error);
1193 if (fromguid != 0) {
1194 dsl_dataset_t *snap;
1195 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
1197 /* Find snapshot in this dir that matches fromguid. */
1198 while (obj != 0) {
1199 error = dsl_dataset_hold_obj(dp, obj, FTAG,
1200 &snap);
1201 if (error != 0)
1202 return (SET_ERROR(ENODEV));
1203 if (snap->ds_dir != ds->ds_dir) {
1204 dsl_dataset_rele(snap, FTAG);
1205 return (SET_ERROR(ENODEV));
1207 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
1208 break;
1209 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
1210 dsl_dataset_rele(snap, FTAG);
1212 if (obj == 0)
1213 return (SET_ERROR(ENODEV));
1215 if (drba->drba_cookie->drc_force) {
1216 drba->drba_snapobj = obj;
1217 } else {
1219 * If we are not forcing, there must be no
1220 * changes since fromsnap.
1222 if (dsl_dataset_modified_since_snap(ds, snap)) {
1223 dsl_dataset_rele(snap, FTAG);
1224 return (SET_ERROR(ETXTBSY));
1226 drba->drba_snapobj = ds->ds_prev->ds_object;
1229 dsl_dataset_rele(snap, FTAG);
1230 } else {
1231 /* if full, then must be forced */
1232 if (!drba->drba_cookie->drc_force)
1233 return (SET_ERROR(EEXIST));
1234 /* start from $ORIGIN@$ORIGIN, if supported */
1235 drba->drba_snapobj = dp->dp_origin_snap != NULL ?
1236 dp->dp_origin_snap->ds_object : 0;
1239 return (0);
1243 static int
1244 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
1246 dmu_recv_begin_arg_t *drba = arg;
1247 dsl_pool_t *dp = dmu_tx_pool(tx);
1248 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1249 uint64_t fromguid = drrb->drr_fromguid;
1250 int flags = drrb->drr_flags;
1251 int error;
1252 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1253 dsl_dataset_t *ds;
1254 const char *tofs = drba->drba_cookie->drc_tofs;
1256 /* already checked */
1257 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1258 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
1260 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1261 DMU_COMPOUNDSTREAM ||
1262 drrb->drr_type >= DMU_OST_NUMTYPES ||
1263 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
1264 return (SET_ERROR(EINVAL));
1266 /* Verify pool version supports SA if SA_SPILL feature set */
1267 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1268 spa_version(dp->dp_spa) < SPA_VERSION_SA)
1269 return (SET_ERROR(ENOTSUP));
1271 if (drba->drba_cookie->drc_resumable &&
1272 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
1273 return (SET_ERROR(ENOTSUP));
1276 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1277 * record to a plan WRITE record, so the pool must have the
1278 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1279 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
1281 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1282 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1283 return (SET_ERROR(ENOTSUP));
1284 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1285 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1286 return (SET_ERROR(ENOTSUP));
1289 * The receiving code doesn't know how to translate large blocks
1290 * to smaller ones, so the pool must have the LARGE_BLOCKS
1291 * feature enabled if the stream has LARGE_BLOCKS.
1293 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
1294 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
1295 return (SET_ERROR(ENOTSUP));
1297 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1298 if (error == 0) {
1299 /* target fs already exists; recv into temp clone */
1301 /* Can't recv a clone into an existing fs */
1302 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
1303 dsl_dataset_rele(ds, FTAG);
1304 return (SET_ERROR(EINVAL));
1307 error = recv_begin_check_existing_impl(drba, ds, fromguid);
1308 dsl_dataset_rele(ds, FTAG);
1309 } else if (error == ENOENT) {
1310 /* target fs does not exist; must be a full backup or clone */
1311 char buf[MAXNAMELEN];
1314 * If it's a non-clone incremental, we are missing the
1315 * target fs, so fail the recv.
1317 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
1318 drba->drba_origin))
1319 return (SET_ERROR(ENOENT));
1322 * If we're receiving a full send as a clone, and it doesn't
1323 * contain all the necessary free records and freeobject
1324 * records, reject it.
1326 if (fromguid == 0 && drba->drba_origin &&
1327 !(flags & DRR_FLAG_FREERECORDS))
1328 return (SET_ERROR(EINVAL));
1330 /* Open the parent of tofs */
1331 ASSERT3U(strlen(tofs), <, MAXNAMELEN);
1332 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
1333 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
1334 if (error != 0)
1335 return (error);
1338 * Check filesystem and snapshot limits before receiving. We'll
1339 * recheck snapshot limits again at the end (we create the
1340 * filesystems and increment those counts during begin_sync).
1342 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1343 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
1344 if (error != 0) {
1345 dsl_dataset_rele(ds, FTAG);
1346 return (error);
1349 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1350 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
1351 if (error != 0) {
1352 dsl_dataset_rele(ds, FTAG);
1353 return (error);
1356 if (drba->drba_origin != NULL) {
1357 dsl_dataset_t *origin;
1358 error = dsl_dataset_hold(dp, drba->drba_origin,
1359 FTAG, &origin);
1360 if (error != 0) {
1361 dsl_dataset_rele(ds, FTAG);
1362 return (error);
1364 if (!origin->ds_is_snapshot) {
1365 dsl_dataset_rele(origin, FTAG);
1366 dsl_dataset_rele(ds, FTAG);
1367 return (SET_ERROR(EINVAL));
1369 if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
1370 fromguid != 0) {
1371 dsl_dataset_rele(origin, FTAG);
1372 dsl_dataset_rele(ds, FTAG);
1373 return (SET_ERROR(ENODEV));
1375 dsl_dataset_rele(origin, FTAG);
1377 dsl_dataset_rele(ds, FTAG);
1378 error = 0;
1380 return (error);
1383 static void
1384 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
1386 dmu_recv_begin_arg_t *drba = arg;
1387 dsl_pool_t *dp = dmu_tx_pool(tx);
1388 objset_t *mos = dp->dp_meta_objset;
1389 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1390 const char *tofs = drba->drba_cookie->drc_tofs;
1391 dsl_dataset_t *ds, *newds;
1392 uint64_t dsobj;
1393 int error;
1394 uint64_t crflags = 0;
1396 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
1397 crflags |= DS_FLAG_CI_DATASET;
1399 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1400 if (error == 0) {
1401 /* create temporary clone */
1402 dsl_dataset_t *snap = NULL;
1403 if (drba->drba_snapobj != 0) {
1404 VERIFY0(dsl_dataset_hold_obj(dp,
1405 drba->drba_snapobj, FTAG, &snap));
1407 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
1408 snap, crflags, drba->drba_cred, tx);
1409 if (drba->drba_snapobj != 0)
1410 dsl_dataset_rele(snap, FTAG);
1411 dsl_dataset_rele(ds, FTAG);
1412 } else {
1413 dsl_dir_t *dd;
1414 const char *tail;
1415 dsl_dataset_t *origin = NULL;
1417 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
1419 if (drba->drba_origin != NULL) {
1420 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
1421 FTAG, &origin));
1424 /* Create new dataset. */
1425 dsobj = dsl_dataset_create_sync(dd,
1426 strrchr(tofs, '/') + 1,
1427 origin, crflags, drba->drba_cred, tx);
1428 if (origin != NULL)
1429 dsl_dataset_rele(origin, FTAG);
1430 dsl_dir_rele(dd, FTAG);
1431 drba->drba_cookie->drc_newfs = B_TRUE;
1433 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds));
1435 if (drba->drba_cookie->drc_resumable) {
1436 dsl_dataset_zapify(newds, tx);
1437 if (drrb->drr_fromguid != 0) {
1438 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
1439 8, 1, &drrb->drr_fromguid, tx));
1441 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
1442 8, 1, &drrb->drr_toguid, tx));
1443 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1444 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
1445 uint64_t one = 1;
1446 uint64_t zero = 0;
1447 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
1448 8, 1, &one, tx));
1449 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
1450 8, 1, &zero, tx));
1451 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
1452 8, 1, &zero, tx));
1453 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1454 DMU_BACKUP_FEATURE_EMBED_DATA) {
1455 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
1456 8, 1, &one, tx));
1460 dmu_buf_will_dirty(newds->ds_dbuf, tx);
1461 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1464 * If we actually created a non-clone, we need to create the
1465 * objset in our new dataset.
1467 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) {
1468 (void) dmu_objset_create_impl(dp->dp_spa,
1469 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1472 drba->drba_cookie->drc_ds = newds;
1474 spa_history_log_internal_ds(newds, "receive", tx, "");
1477 static int
1478 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1480 dmu_recv_begin_arg_t *drba = arg;
1481 dsl_pool_t *dp = dmu_tx_pool(tx);
1482 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1483 int error;
1484 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1485 dsl_dataset_t *ds;
1486 const char *tofs = drba->drba_cookie->drc_tofs;
1488 /* already checked */
1489 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1490 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
1492 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1493 DMU_COMPOUNDSTREAM ||
1494 drrb->drr_type >= DMU_OST_NUMTYPES)
1495 return (SET_ERROR(EINVAL));
1497 /* Verify pool version supports SA if SA_SPILL feature set */
1498 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1499 spa_version(dp->dp_spa) < SPA_VERSION_SA)
1500 return (SET_ERROR(ENOTSUP));
1503 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1504 * record to a plain WRITE record, so the pool must have the
1505 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1506 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
1508 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1509 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1510 return (SET_ERROR(ENOTSUP));
1511 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1512 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1513 return (SET_ERROR(ENOTSUP));
1515 char recvname[ZFS_MAXNAMELEN];
1517 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1518 tofs, recv_clone_name);
1520 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1521 /* %recv does not exist; continue in tofs */
1522 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1523 if (error != 0)
1524 return (error);
1527 /* check that ds is marked inconsistent */
1528 if (!DS_IS_INCONSISTENT(ds)) {
1529 dsl_dataset_rele(ds, FTAG);
1530 return (SET_ERROR(EINVAL));
1533 /* check that there is resuming data, and that the toguid matches */
1534 if (!dsl_dataset_is_zapified(ds)) {
1535 dsl_dataset_rele(ds, FTAG);
1536 return (SET_ERROR(EINVAL));
1538 uint64_t val;
1539 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1540 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1541 if (error != 0 || drrb->drr_toguid != val) {
1542 dsl_dataset_rele(ds, FTAG);
1543 return (SET_ERROR(EINVAL));
1547 * Check if the receive is still running. If so, it will be owned.
1548 * Note that nothing else can own the dataset (e.g. after the receive
1549 * fails) because it will be marked inconsistent.
1551 if (dsl_dataset_has_owner(ds)) {
1552 dsl_dataset_rele(ds, FTAG);
1553 return (SET_ERROR(EBUSY));
1556 /* There should not be any snapshots of this fs yet. */
1557 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1558 dsl_dataset_rele(ds, FTAG);
1559 return (SET_ERROR(EINVAL));
1563 * Note: resume point will be checked when we process the first WRITE
1564 * record.
1567 /* check that the origin matches */
1568 val = 0;
1569 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1570 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1571 if (drrb->drr_fromguid != val) {
1572 dsl_dataset_rele(ds, FTAG);
1573 return (SET_ERROR(EINVAL));
1576 dsl_dataset_rele(ds, FTAG);
1577 return (0);
1580 static void
1581 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1583 dmu_recv_begin_arg_t *drba = arg;
1584 dsl_pool_t *dp = dmu_tx_pool(tx);
1585 const char *tofs = drba->drba_cookie->drc_tofs;
1586 dsl_dataset_t *ds;
1587 uint64_t dsobj;
1588 char recvname[ZFS_MAXNAMELEN];
1590 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1591 tofs, recv_clone_name);
1593 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1594 /* %recv does not exist; continue in tofs */
1595 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds));
1596 drba->drba_cookie->drc_newfs = B_TRUE;
1599 /* clear the inconsistent flag so that we can own it */
1600 ASSERT(DS_IS_INCONSISTENT(ds));
1601 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1602 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
1603 dsobj = ds->ds_object;
1604 dsl_dataset_rele(ds, FTAG);
1606 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds));
1608 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1609 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
1611 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)));
1613 drba->drba_cookie->drc_ds = ds;
1615 spa_history_log_internal_ds(ds, "resume receive", tx, "");
1619 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1620 * succeeds; otherwise we will leak the holds on the datasets.
1623 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1624 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc)
1626 dmu_recv_begin_arg_t drba = { 0 };
1628 bzero(drc, sizeof (dmu_recv_cookie_t));
1629 drc->drc_drr_begin = drr_begin;
1630 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1631 drc->drc_tosnap = tosnap;
1632 drc->drc_tofs = tofs;
1633 drc->drc_force = force;
1634 drc->drc_resumable = resumable;
1635 drc->drc_cred = CRED();
1637 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1638 drc->drc_byteswap = B_TRUE;
1639 fletcher_4_incremental_byteswap(drr_begin,
1640 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1641 byteswap_record(drr_begin);
1642 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1643 fletcher_4_incremental_native(drr_begin,
1644 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1645 } else {
1646 return (SET_ERROR(EINVAL));
1649 drba.drba_origin = origin;
1650 drba.drba_cookie = drc;
1651 drba.drba_cred = CRED();
1653 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1654 DMU_BACKUP_FEATURE_RESUMING) {
1655 return (dsl_sync_task(tofs,
1656 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1657 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1658 } else {
1659 return (dsl_sync_task(tofs,
1660 dmu_recv_begin_check, dmu_recv_begin_sync,
1661 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1665 struct receive_record_arg {
1666 dmu_replay_record_t header;
1667 void *payload; /* Pointer to a buffer containing the payload */
1669 * If the record is a write, pointer to the arc_buf_t containing the
1670 * payload.
1672 arc_buf_t *write_buf;
1673 int payload_size;
1674 uint64_t bytes_read; /* bytes read from stream when record created */
1675 boolean_t eos_marker; /* Marks the end of the stream */
1676 bqueue_node_t node;
1679 struct receive_writer_arg {
1680 objset_t *os;
1681 boolean_t byteswap;
1682 bqueue_t q;
1685 * These three args are used to signal to the main thread that we're
1686 * done.
1688 kmutex_t mutex;
1689 kcondvar_t cv;
1690 boolean_t done;
1692 int err;
1693 /* A map from guid to dataset to help handle dedup'd streams. */
1694 avl_tree_t *guid_to_ds_map;
1695 boolean_t resumable;
1696 uint64_t last_object, last_offset;
1697 uint64_t bytes_read; /* bytes read when current record created */
1700 struct objlist {
1701 list_t list; /* List of struct receive_objnode. */
1703 * Last object looked up. Used to assert that objects are being looked
1704 * up in ascending order.
1706 uint64_t last_lookup;
1709 struct receive_objnode {
1710 list_node_t node;
1711 uint64_t object;
1714 struct receive_arg {
1715 objset_t *os;
1716 vnode_t *vp; /* The vnode to read the stream from */
1717 uint64_t voff; /* The current offset in the stream */
1718 uint64_t bytes_read;
1720 * A record that has had its payload read in, but hasn't yet been handed
1721 * off to the worker thread.
1723 struct receive_record_arg *rrd;
1724 /* A record that has had its header read in, but not its payload. */
1725 struct receive_record_arg *next_rrd;
1726 zio_cksum_t cksum;
1727 zio_cksum_t prev_cksum;
1728 int err;
1729 boolean_t byteswap;
1730 /* Sorted list of objects not to issue prefetches for. */
1731 struct objlist ignore_objlist;
1734 typedef struct guid_map_entry {
1735 uint64_t guid;
1736 dsl_dataset_t *gme_ds;
1737 avl_node_t avlnode;
1738 } guid_map_entry_t;
1740 static int
1741 guid_compare(const void *arg1, const void *arg2)
1743 const guid_map_entry_t *gmep1 = arg1;
1744 const guid_map_entry_t *gmep2 = arg2;
1746 if (gmep1->guid < gmep2->guid)
1747 return (-1);
1748 else if (gmep1->guid > gmep2->guid)
1749 return (1);
1750 return (0);
1753 static void
1754 free_guid_map_onexit(void *arg)
1756 avl_tree_t *ca = arg;
1757 void *cookie = NULL;
1758 guid_map_entry_t *gmep;
1760 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
1761 dsl_dataset_long_rele(gmep->gme_ds, gmep);
1762 dsl_dataset_rele(gmep->gme_ds, gmep);
1763 kmem_free(gmep, sizeof (guid_map_entry_t));
1765 avl_destroy(ca);
1766 kmem_free(ca, sizeof (avl_tree_t));
1769 static int
1770 receive_read(struct receive_arg *ra, int len, void *buf)
1772 int done = 0;
1775 * The code doesn't rely on this (lengths being multiples of 8). See
1776 * comment in dump_bytes.
1778 ASSERT0(len % 8);
1780 while (done < len) {
1781 ssize_t resid;
1783 ra->err = vn_rdwr(UIO_READ, ra->vp,
1784 (char *)buf + done, len - done,
1785 ra->voff, UIO_SYSSPACE, FAPPEND,
1786 RLIM64_INFINITY, CRED(), &resid);
1788 if (resid == len - done) {
1790 * Note: ECKSUM indicates that the receive
1791 * was interrupted and can potentially be resumed.
1793 ra->err = SET_ERROR(ECKSUM);
1795 ra->voff += len - done - resid;
1796 done = len - resid;
1797 if (ra->err != 0)
1798 return (ra->err);
1801 ra->bytes_read += len;
1803 ASSERT3U(done, ==, len);
1804 return (0);
1807 static void
1808 byteswap_record(dmu_replay_record_t *drr)
1810 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
1811 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
1812 drr->drr_type = BSWAP_32(drr->drr_type);
1813 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
1815 switch (drr->drr_type) {
1816 case DRR_BEGIN:
1817 DO64(drr_begin.drr_magic);
1818 DO64(drr_begin.drr_versioninfo);
1819 DO64(drr_begin.drr_creation_time);
1820 DO32(drr_begin.drr_type);
1821 DO32(drr_begin.drr_flags);
1822 DO64(drr_begin.drr_toguid);
1823 DO64(drr_begin.drr_fromguid);
1824 break;
1825 case DRR_OBJECT:
1826 DO64(drr_object.drr_object);
1827 DO32(drr_object.drr_type);
1828 DO32(drr_object.drr_bonustype);
1829 DO32(drr_object.drr_blksz);
1830 DO32(drr_object.drr_bonuslen);
1831 DO64(drr_object.drr_toguid);
1832 break;
1833 case DRR_FREEOBJECTS:
1834 DO64(drr_freeobjects.drr_firstobj);
1835 DO64(drr_freeobjects.drr_numobjs);
1836 DO64(drr_freeobjects.drr_toguid);
1837 break;
1838 case DRR_WRITE:
1839 DO64(drr_write.drr_object);
1840 DO32(drr_write.drr_type);
1841 DO64(drr_write.drr_offset);
1842 DO64(drr_write.drr_length);
1843 DO64(drr_write.drr_toguid);
1844 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
1845 DO64(drr_write.drr_key.ddk_prop);
1846 break;
1847 case DRR_WRITE_BYREF:
1848 DO64(drr_write_byref.drr_object);
1849 DO64(drr_write_byref.drr_offset);
1850 DO64(drr_write_byref.drr_length);
1851 DO64(drr_write_byref.drr_toguid);
1852 DO64(drr_write_byref.drr_refguid);
1853 DO64(drr_write_byref.drr_refobject);
1854 DO64(drr_write_byref.drr_refoffset);
1855 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
1856 drr_key.ddk_cksum);
1857 DO64(drr_write_byref.drr_key.ddk_prop);
1858 break;
1859 case DRR_WRITE_EMBEDDED:
1860 DO64(drr_write_embedded.drr_object);
1861 DO64(drr_write_embedded.drr_offset);
1862 DO64(drr_write_embedded.drr_length);
1863 DO64(drr_write_embedded.drr_toguid);
1864 DO32(drr_write_embedded.drr_lsize);
1865 DO32(drr_write_embedded.drr_psize);
1866 break;
1867 case DRR_FREE:
1868 DO64(drr_free.drr_object);
1869 DO64(drr_free.drr_offset);
1870 DO64(drr_free.drr_length);
1871 DO64(drr_free.drr_toguid);
1872 break;
1873 case DRR_SPILL:
1874 DO64(drr_spill.drr_object);
1875 DO64(drr_spill.drr_length);
1876 DO64(drr_spill.drr_toguid);
1877 break;
1878 case DRR_END:
1879 DO64(drr_end.drr_toguid);
1880 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
1881 break;
1884 if (drr->drr_type != DRR_BEGIN) {
1885 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
1888 #undef DO64
1889 #undef DO32
1892 static inline uint8_t
1893 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1895 if (bonus_type == DMU_OT_SA) {
1896 return (1);
1897 } else {
1898 return (1 +
1899 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT));
1903 static void
1904 save_resume_state(struct receive_writer_arg *rwa,
1905 uint64_t object, uint64_t offset, dmu_tx_t *tx)
1907 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1909 if (!rwa->resumable)
1910 return;
1913 * We use ds_resume_bytes[] != 0 to indicate that we need to
1914 * update this on disk, so it must not be 0.
1916 ASSERT(rwa->bytes_read != 0);
1919 * We only resume from write records, which have a valid
1920 * (non-meta-dnode) object number.
1922 ASSERT(object != 0);
1925 * For resuming to work correctly, we must receive records in order,
1926 * sorted by object,offset. This is checked by the callers, but
1927 * assert it here for good measure.
1929 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1930 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1931 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1932 ASSERT3U(rwa->bytes_read, >=,
1933 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1935 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1936 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1937 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1940 static int
1941 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1942 void *data)
1944 dmu_object_info_t doi;
1945 dmu_tx_t *tx;
1946 uint64_t object;
1947 int err;
1949 if (drro->drr_type == DMU_OT_NONE ||
1950 !DMU_OT_IS_VALID(drro->drr_type) ||
1951 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1952 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1953 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1954 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1955 drro->drr_blksz < SPA_MINBLOCKSIZE ||
1956 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1957 drro->drr_bonuslen > DN_MAX_BONUSLEN) {
1958 return (SET_ERROR(EINVAL));
1961 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1963 if (err != 0 && err != ENOENT)
1964 return (SET_ERROR(EINVAL));
1965 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
1968 * If we are losing blkptrs or changing the block size this must
1969 * be a new file instance. We must clear out the previous file
1970 * contents before we can change this type of metadata in the dnode.
1972 if (err == 0) {
1973 int nblkptr;
1975 nblkptr = deduce_nblkptr(drro->drr_bonustype,
1976 drro->drr_bonuslen);
1978 if (drro->drr_blksz != doi.doi_data_block_size ||
1979 nblkptr < doi.doi_nblkptr) {
1980 err = dmu_free_long_range(rwa->os, drro->drr_object,
1981 0, DMU_OBJECT_END);
1982 if (err != 0)
1983 return (SET_ERROR(EINVAL));
1987 tx = dmu_tx_create(rwa->os);
1988 dmu_tx_hold_bonus(tx, object);
1989 err = dmu_tx_assign(tx, TXG_WAIT);
1990 if (err != 0) {
1991 dmu_tx_abort(tx);
1992 return (err);
1995 if (object == DMU_NEW_OBJECT) {
1996 /* currently free, want to be allocated */
1997 err = dmu_object_claim(rwa->os, drro->drr_object,
1998 drro->drr_type, drro->drr_blksz,
1999 drro->drr_bonustype, drro->drr_bonuslen, tx);
2000 } else if (drro->drr_type != doi.doi_type ||
2001 drro->drr_blksz != doi.doi_data_block_size ||
2002 drro->drr_bonustype != doi.doi_bonus_type ||
2003 drro->drr_bonuslen != doi.doi_bonus_size) {
2004 /* currently allocated, but with different properties */
2005 err = dmu_object_reclaim(rwa->os, drro->drr_object,
2006 drro->drr_type, drro->drr_blksz,
2007 drro->drr_bonustype, drro->drr_bonuslen, tx);
2009 if (err != 0) {
2010 dmu_tx_commit(tx);
2011 return (SET_ERROR(EINVAL));
2014 dmu_object_set_checksum(rwa->os, drro->drr_object,
2015 drro->drr_checksumtype, tx);
2016 dmu_object_set_compress(rwa->os, drro->drr_object,
2017 drro->drr_compress, tx);
2019 if (data != NULL) {
2020 dmu_buf_t *db;
2022 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db));
2023 dmu_buf_will_dirty(db, tx);
2025 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2026 bcopy(data, db->db_data, drro->drr_bonuslen);
2027 if (rwa->byteswap) {
2028 dmu_object_byteswap_t byteswap =
2029 DMU_OT_BYTESWAP(drro->drr_bonustype);
2030 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2031 drro->drr_bonuslen);
2033 dmu_buf_rele(db, FTAG);
2035 dmu_tx_commit(tx);
2037 return (0);
2040 /* ARGSUSED */
2041 static int
2042 receive_freeobjects(struct receive_writer_arg *rwa,
2043 struct drr_freeobjects *drrfo)
2045 uint64_t obj;
2046 int next_err = 0;
2048 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2049 return (SET_ERROR(EINVAL));
2051 for (obj = drrfo->drr_firstobj;
2052 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
2053 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2054 int err;
2056 if (dmu_object_info(rwa->os, obj, NULL) != 0)
2057 continue;
2059 err = dmu_free_long_object(rwa->os, obj);
2060 if (err != 0)
2061 return (err);
2063 if (next_err != ESRCH)
2064 return (next_err);
2065 return (0);
2068 static int
2069 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
2070 arc_buf_t *abuf)
2072 dmu_tx_t *tx;
2073 int err;
2075 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset ||
2076 !DMU_OT_IS_VALID(drrw->drr_type))
2077 return (SET_ERROR(EINVAL));
2080 * For resuming to work, records must be in increasing order
2081 * by (object, offset).
2083 if (drrw->drr_object < rwa->last_object ||
2084 (drrw->drr_object == rwa->last_object &&
2085 drrw->drr_offset < rwa->last_offset)) {
2086 return (SET_ERROR(EINVAL));
2088 rwa->last_object = drrw->drr_object;
2089 rwa->last_offset = drrw->drr_offset;
2091 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
2092 return (SET_ERROR(EINVAL));
2094 tx = dmu_tx_create(rwa->os);
2096 dmu_tx_hold_write(tx, drrw->drr_object,
2097 drrw->drr_offset, drrw->drr_length);
2098 err = dmu_tx_assign(tx, TXG_WAIT);
2099 if (err != 0) {
2100 dmu_tx_abort(tx);
2101 return (err);
2103 if (rwa->byteswap) {
2104 dmu_object_byteswap_t byteswap =
2105 DMU_OT_BYTESWAP(drrw->drr_type);
2106 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
2107 drrw->drr_length);
2110 dmu_buf_t *bonus;
2111 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0)
2112 return (SET_ERROR(EINVAL));
2113 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx);
2116 * Note: If the receive fails, we want the resume stream to start
2117 * with the same record that we last successfully received (as opposed
2118 * to the next record), so that we can verify that we are
2119 * resuming from the correct location.
2121 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2122 dmu_tx_commit(tx);
2123 dmu_buf_rele(bonus, FTAG);
2125 return (0);
2129 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
2130 * streams to refer to a copy of the data that is already on the
2131 * system because it came in earlier in the stream. This function
2132 * finds the earlier copy of the data, and uses that copy instead of
2133 * data from the stream to fulfill this write.
2135 static int
2136 receive_write_byref(struct receive_writer_arg *rwa,
2137 struct drr_write_byref *drrwbr)
2139 dmu_tx_t *tx;
2140 int err;
2141 guid_map_entry_t gmesrch;
2142 guid_map_entry_t *gmep;
2143 avl_index_t where;
2144 objset_t *ref_os = NULL;
2145 dmu_buf_t *dbp;
2147 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
2148 return (SET_ERROR(EINVAL));
2151 * If the GUID of the referenced dataset is different from the
2152 * GUID of the target dataset, find the referenced dataset.
2154 if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
2155 gmesrch.guid = drrwbr->drr_refguid;
2156 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
2157 &where)) == NULL) {
2158 return (SET_ERROR(EINVAL));
2160 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
2161 return (SET_ERROR(EINVAL));
2162 } else {
2163 ref_os = rwa->os;
2166 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
2167 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH);
2168 if (err != 0)
2169 return (err);
2171 tx = dmu_tx_create(rwa->os);
2173 dmu_tx_hold_write(tx, drrwbr->drr_object,
2174 drrwbr->drr_offset, drrwbr->drr_length);
2175 err = dmu_tx_assign(tx, TXG_WAIT);
2176 if (err != 0) {
2177 dmu_tx_abort(tx);
2178 return (err);
2180 dmu_write(rwa->os, drrwbr->drr_object,
2181 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
2182 dmu_buf_rele(dbp, FTAG);
2184 /* See comment in restore_write. */
2185 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
2186 dmu_tx_commit(tx);
2187 return (0);
2190 static int
2191 receive_write_embedded(struct receive_writer_arg *rwa,
2192 struct drr_write_embedded *drrwe, void *data)
2194 dmu_tx_t *tx;
2195 int err;
2197 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2198 return (EINVAL);
2200 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2201 return (EINVAL);
2203 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2204 return (EINVAL);
2205 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2206 return (EINVAL);
2208 tx = dmu_tx_create(rwa->os);
2210 dmu_tx_hold_write(tx, drrwe->drr_object,
2211 drrwe->drr_offset, drrwe->drr_length);
2212 err = dmu_tx_assign(tx, TXG_WAIT);
2213 if (err != 0) {
2214 dmu_tx_abort(tx);
2215 return (err);
2218 dmu_write_embedded(rwa->os, drrwe->drr_object,
2219 drrwe->drr_offset, data, drrwe->drr_etype,
2220 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2221 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2223 /* See comment in restore_write. */
2224 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2225 dmu_tx_commit(tx);
2226 return (0);
2229 static int
2230 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2231 void *data)
2233 dmu_tx_t *tx;
2234 dmu_buf_t *db, *db_spill;
2235 int err;
2237 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2238 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2239 return (SET_ERROR(EINVAL));
2241 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2242 return (SET_ERROR(EINVAL));
2244 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2245 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) {
2246 dmu_buf_rele(db, FTAG);
2247 return (err);
2250 tx = dmu_tx_create(rwa->os);
2252 dmu_tx_hold_spill(tx, db->db_object);
2254 err = dmu_tx_assign(tx, TXG_WAIT);
2255 if (err != 0) {
2256 dmu_buf_rele(db, FTAG);
2257 dmu_buf_rele(db_spill, FTAG);
2258 dmu_tx_abort(tx);
2259 return (err);
2261 dmu_buf_will_dirty(db_spill, tx);
2263 if (db_spill->db_size < drrs->drr_length)
2264 VERIFY(0 == dbuf_spill_set_blksz(db_spill,
2265 drrs->drr_length, tx));
2266 bcopy(data, db_spill->db_data, drrs->drr_length);
2268 dmu_buf_rele(db, FTAG);
2269 dmu_buf_rele(db_spill, FTAG);
2271 dmu_tx_commit(tx);
2272 return (0);
2275 /* ARGSUSED */
2276 static int
2277 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2279 int err;
2281 if (drrf->drr_length != -1ULL &&
2282 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2283 return (SET_ERROR(EINVAL));
2285 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2286 return (SET_ERROR(EINVAL));
2288 err = dmu_free_long_range(rwa->os, drrf->drr_object,
2289 drrf->drr_offset, drrf->drr_length);
2291 return (err);
2294 /* used to destroy the drc_ds on error */
2295 static void
2296 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2298 if (drc->drc_resumable) {
2299 /* wait for our resume state to be written to disk */
2300 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0);
2301 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2302 } else {
2303 char name[MAXNAMELEN];
2304 dsl_dataset_name(drc->drc_ds, name);
2305 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2306 (void) dsl_destroy_head(name);
2310 static void
2311 receive_cksum(struct receive_arg *ra, int len, void *buf)
2313 if (ra->byteswap) {
2314 fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
2315 } else {
2316 fletcher_4_incremental_native(buf, len, &ra->cksum);
2321 * Read the payload into a buffer of size len, and update the current record's
2322 * payload field.
2323 * Allocate ra->next_rrd and read the next record's header into
2324 * ra->next_rrd->header.
2325 * Verify checksum of payload and next record.
2327 static int
2328 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
2330 int err;
2332 if (len != 0) {
2333 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2334 err = receive_read(ra, len, buf);
2335 if (err != 0)
2336 return (err);
2337 receive_cksum(ra, len, buf);
2339 /* note: rrd is NULL when reading the begin record's payload */
2340 if (ra->rrd != NULL) {
2341 ra->rrd->payload = buf;
2342 ra->rrd->payload_size = len;
2343 ra->rrd->bytes_read = ra->bytes_read;
2347 ra->prev_cksum = ra->cksum;
2349 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
2350 err = receive_read(ra, sizeof (ra->next_rrd->header),
2351 &ra->next_rrd->header);
2352 ra->next_rrd->bytes_read = ra->bytes_read;
2353 if (err != 0) {
2354 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2355 ra->next_rrd = NULL;
2356 return (err);
2358 if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
2359 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2360 ra->next_rrd = NULL;
2361 return (SET_ERROR(EINVAL));
2365 * Note: checksum is of everything up to but not including the
2366 * checksum itself.
2368 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2369 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2370 receive_cksum(ra,
2371 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2372 &ra->next_rrd->header);
2374 zio_cksum_t cksum_orig =
2375 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2376 zio_cksum_t *cksump =
2377 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2379 if (ra->byteswap)
2380 byteswap_record(&ra->next_rrd->header);
2382 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2383 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
2384 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2385 ra->next_rrd = NULL;
2386 return (SET_ERROR(ECKSUM));
2389 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
2391 return (0);
2394 static void
2395 objlist_create(struct objlist *list)
2397 list_create(&list->list, sizeof (struct receive_objnode),
2398 offsetof(struct receive_objnode, node));
2399 list->last_lookup = 0;
2402 static void
2403 objlist_destroy(struct objlist *list)
2405 for (struct receive_objnode *n = list_remove_head(&list->list);
2406 n != NULL; n = list_remove_head(&list->list)) {
2407 kmem_free(n, sizeof (*n));
2409 list_destroy(&list->list);
2413 * This function looks through the objlist to see if the specified object number
2414 * is contained in the objlist. In the process, it will remove all object
2415 * numbers in the list that are smaller than the specified object number. Thus,
2416 * any lookup of an object number smaller than a previously looked up object
2417 * number will always return false; therefore, all lookups should be done in
2418 * ascending order.
2420 static boolean_t
2421 objlist_exists(struct objlist *list, uint64_t object)
2423 struct receive_objnode *node = list_head(&list->list);
2424 ASSERT3U(object, >=, list->last_lookup);
2425 list->last_lookup = object;
2426 while (node != NULL && node->object < object) {
2427 VERIFY3P(node, ==, list_remove_head(&list->list));
2428 kmem_free(node, sizeof (*node));
2429 node = list_head(&list->list);
2431 return (node != NULL && node->object == object);
2435 * The objlist is a list of object numbers stored in ascending order. However,
2436 * the insertion of new object numbers does not seek out the correct location to
2437 * store a new object number; instead, it appends it to the list for simplicity.
2438 * Thus, any users must take care to only insert new object numbers in ascending
2439 * order.
2441 static void
2442 objlist_insert(struct objlist *list, uint64_t object)
2444 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
2445 node->object = object;
2446 #ifdef ZFS_DEBUG
2447 struct receive_objnode *last_object = list_tail(&list->list);
2448 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
2449 ASSERT3U(node->object, >, last_objnum);
2450 #endif
2451 list_insert_tail(&list->list, node);
2455 * Issue the prefetch reads for any necessary indirect blocks.
2457 * We use the object ignore list to tell us whether or not to issue prefetches
2458 * for a given object. We do this for both correctness (in case the blocksize
2459 * of an object has changed) and performance (if the object doesn't exist, don't
2460 * needlessly try to issue prefetches). We also trim the list as we go through
2461 * the stream to prevent it from growing to an unbounded size.
2463 * The object numbers within will always be in sorted order, and any write
2464 * records we see will also be in sorted order, but they're not sorted with
2465 * respect to each other (i.e. we can get several object records before
2466 * receiving each object's write records). As a result, once we've reached a
2467 * given object number, we can safely remove any reference to lower object
2468 * numbers in the ignore list. In practice, we receive up to 32 object records
2469 * before receiving write records, so the list can have up to 32 nodes in it.
2471 /* ARGSUSED */
2472 static void
2473 receive_read_prefetch(struct receive_arg *ra,
2474 uint64_t object, uint64_t offset, uint64_t length)
2476 if (!objlist_exists(&ra->ignore_objlist, object)) {
2477 dmu_prefetch(ra->os, object, 1, offset, length,
2478 ZIO_PRIORITY_SYNC_READ);
2483 * Read records off the stream, issuing any necessary prefetches.
2485 static int
2486 receive_read_record(struct receive_arg *ra)
2488 int err;
2490 switch (ra->rrd->header.drr_type) {
2491 case DRR_OBJECT:
2493 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
2494 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8);
2495 void *buf = kmem_zalloc(size, KM_SLEEP);
2496 dmu_object_info_t doi;
2497 err = receive_read_payload_and_next_header(ra, size, buf);
2498 if (err != 0) {
2499 kmem_free(buf, size);
2500 return (err);
2502 err = dmu_object_info(ra->os, drro->drr_object, &doi);
2504 * See receive_read_prefetch for an explanation why we're
2505 * storing this object in the ignore_obj_list.
2507 if (err == ENOENT ||
2508 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2509 objlist_insert(&ra->ignore_objlist, drro->drr_object);
2510 err = 0;
2512 return (err);
2514 case DRR_FREEOBJECTS:
2516 err = receive_read_payload_and_next_header(ra, 0, NULL);
2517 return (err);
2519 case DRR_WRITE:
2521 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
2522 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2523 drrw->drr_length);
2525 err = receive_read_payload_and_next_header(ra,
2526 drrw->drr_length, abuf->b_data);
2527 if (err != 0) {
2528 dmu_return_arcbuf(abuf);
2529 return (err);
2531 ra->rrd->write_buf = abuf;
2532 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
2533 drrw->drr_length);
2534 return (err);
2536 case DRR_WRITE_BYREF:
2538 struct drr_write_byref *drrwb =
2539 &ra->rrd->header.drr_u.drr_write_byref;
2540 err = receive_read_payload_and_next_header(ra, 0, NULL);
2541 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2542 drrwb->drr_length);
2543 return (err);
2545 case DRR_WRITE_EMBEDDED:
2547 struct drr_write_embedded *drrwe =
2548 &ra->rrd->header.drr_u.drr_write_embedded;
2549 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2550 void *buf = kmem_zalloc(size, KM_SLEEP);
2552 err = receive_read_payload_and_next_header(ra, size, buf);
2553 if (err != 0) {
2554 kmem_free(buf, size);
2555 return (err);
2558 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2559 drrwe->drr_length);
2560 return (err);
2562 case DRR_FREE:
2565 * It might be beneficial to prefetch indirect blocks here, but
2566 * we don't really have the data to decide for sure.
2568 err = receive_read_payload_and_next_header(ra, 0, NULL);
2569 return (err);
2571 case DRR_END:
2573 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2574 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2575 return (SET_ERROR(ECKSUM));
2576 return (0);
2578 case DRR_SPILL:
2580 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2581 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP);
2582 err = receive_read_payload_and_next_header(ra, drrs->drr_length,
2583 buf);
2584 if (err != 0)
2585 kmem_free(buf, drrs->drr_length);
2586 return (err);
2588 default:
2589 return (SET_ERROR(EINVAL));
2594 * Commit the records to the pool.
2596 static int
2597 receive_process_record(struct receive_writer_arg *rwa,
2598 struct receive_record_arg *rrd)
2600 int err;
2602 /* Processing in order, therefore bytes_read should be increasing. */
2603 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2604 rwa->bytes_read = rrd->bytes_read;
2606 switch (rrd->header.drr_type) {
2607 case DRR_OBJECT:
2609 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2610 err = receive_object(rwa, drro, rrd->payload);
2611 kmem_free(rrd->payload, rrd->payload_size);
2612 rrd->payload = NULL;
2613 return (err);
2615 case DRR_FREEOBJECTS:
2617 struct drr_freeobjects *drrfo =
2618 &rrd->header.drr_u.drr_freeobjects;
2619 return (receive_freeobjects(rwa, drrfo));
2621 case DRR_WRITE:
2623 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2624 err = receive_write(rwa, drrw, rrd->write_buf);
2625 /* if receive_write() is successful, it consumes the arc_buf */
2626 if (err != 0)
2627 dmu_return_arcbuf(rrd->write_buf);
2628 rrd->write_buf = NULL;
2629 rrd->payload = NULL;
2630 return (err);
2632 case DRR_WRITE_BYREF:
2634 struct drr_write_byref *drrwbr =
2635 &rrd->header.drr_u.drr_write_byref;
2636 return (receive_write_byref(rwa, drrwbr));
2638 case DRR_WRITE_EMBEDDED:
2640 struct drr_write_embedded *drrwe =
2641 &rrd->header.drr_u.drr_write_embedded;
2642 err = receive_write_embedded(rwa, drrwe, rrd->payload);
2643 kmem_free(rrd->payload, rrd->payload_size);
2644 rrd->payload = NULL;
2645 return (err);
2647 case DRR_FREE:
2649 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2650 return (receive_free(rwa, drrf));
2652 case DRR_SPILL:
2654 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2655 err = receive_spill(rwa, drrs, rrd->payload);
2656 kmem_free(rrd->payload, rrd->payload_size);
2657 rrd->payload = NULL;
2658 return (err);
2660 default:
2661 return (SET_ERROR(EINVAL));
2666 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2667 * receive_process_record When we're done, signal the main thread and exit.
2669 static void
2670 receive_writer_thread(void *arg)
2672 struct receive_writer_arg *rwa = arg;
2673 struct receive_record_arg *rrd;
2674 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2675 rrd = bqueue_dequeue(&rwa->q)) {
2677 * If there's an error, the main thread will stop putting things
2678 * on the queue, but we need to clear everything in it before we
2679 * can exit.
2681 if (rwa->err == 0) {
2682 rwa->err = receive_process_record(rwa, rrd);
2683 } else if (rrd->write_buf != NULL) {
2684 dmu_return_arcbuf(rrd->write_buf);
2685 rrd->write_buf = NULL;
2686 rrd->payload = NULL;
2687 } else if (rrd->payload != NULL) {
2688 kmem_free(rrd->payload, rrd->payload_size);
2689 rrd->payload = NULL;
2691 kmem_free(rrd, sizeof (*rrd));
2693 kmem_free(rrd, sizeof (*rrd));
2694 mutex_enter(&rwa->mutex);
2695 rwa->done = B_TRUE;
2696 cv_signal(&rwa->cv);
2697 mutex_exit(&rwa->mutex);
2700 static int
2701 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2703 uint64_t val;
2704 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2705 uint64_t dsobj = dmu_objset_id(ra->os);
2706 uint64_t resume_obj, resume_off;
2708 if (nvlist_lookup_uint64(begin_nvl,
2709 "resume_object", &resume_obj) != 0 ||
2710 nvlist_lookup_uint64(begin_nvl,
2711 "resume_offset", &resume_off) != 0) {
2712 return (SET_ERROR(EINVAL));
2714 VERIFY0(zap_lookup(mos, dsobj,
2715 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2716 if (resume_obj != val)
2717 return (SET_ERROR(EINVAL));
2718 VERIFY0(zap_lookup(mos, dsobj,
2719 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2720 if (resume_off != val)
2721 return (SET_ERROR(EINVAL));
2723 return (0);
2727 * Read in the stream's records, one by one, and apply them to the pool. There
2728 * are two threads involved; the thread that calls this function will spin up a
2729 * worker thread, read the records off the stream one by one, and issue
2730 * prefetches for any necessary indirect blocks. It will then push the records
2731 * onto an internal blocking queue. The worker thread will pull the records off
2732 * the queue, and actually write the data into the DMU. This way, the worker
2733 * thread doesn't have to wait for reads to complete, since everything it needs
2734 * (the indirect blocks) will be prefetched.
2736 * NB: callers *must* call dmu_recv_end() if this succeeds.
2739 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
2740 int cleanup_fd, uint64_t *action_handlep)
2742 int err = 0;
2743 struct receive_arg ra = { 0 };
2744 struct receive_writer_arg rwa = { 0 };
2745 int featureflags;
2746 nvlist_t *begin_nvl = NULL;
2748 ra.byteswap = drc->drc_byteswap;
2749 ra.cksum = drc->drc_cksum;
2750 ra.vp = vp;
2751 ra.voff = *voffp;
2753 if (dsl_dataset_is_zapified(drc->drc_ds)) {
2754 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2755 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2756 sizeof (ra.bytes_read), 1, &ra.bytes_read);
2759 objlist_create(&ra.ignore_objlist);
2761 /* these were verified in dmu_recv_begin */
2762 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2763 DMU_SUBSTREAM);
2764 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2767 * Open the objset we are modifying.
2769 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os));
2771 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2773 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2775 /* if this stream is dedup'ed, set up the avl tree for guid mapping */
2776 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2777 minor_t minor;
2779 if (cleanup_fd == -1) {
2780 ra.err = SET_ERROR(EBADF);
2781 goto out;
2783 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2784 if (ra.err != 0) {
2785 cleanup_fd = -1;
2786 goto out;
2789 if (*action_handlep == 0) {
2790 rwa.guid_to_ds_map =
2791 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2792 avl_create(rwa.guid_to_ds_map, guid_compare,
2793 sizeof (guid_map_entry_t),
2794 offsetof(guid_map_entry_t, avlnode));
2795 err = zfs_onexit_add_cb(minor,
2796 free_guid_map_onexit, rwa.guid_to_ds_map,
2797 action_handlep);
2798 if (ra.err != 0)
2799 goto out;
2800 } else {
2801 err = zfs_onexit_cb_data(minor, *action_handlep,
2802 (void **)&rwa.guid_to_ds_map);
2803 if (ra.err != 0)
2804 goto out;
2807 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map;
2810 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
2811 void *payload = NULL;
2812 if (payloadlen != 0)
2813 payload = kmem_alloc(payloadlen, KM_SLEEP);
2815 err = receive_read_payload_and_next_header(&ra, payloadlen, payload);
2816 if (err != 0) {
2817 if (payloadlen != 0)
2818 kmem_free(payload, payloadlen);
2819 goto out;
2821 if (payloadlen != 0) {
2822 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
2823 kmem_free(payload, payloadlen);
2824 if (err != 0)
2825 goto out;
2828 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2829 err = resume_check(&ra, begin_nvl);
2830 if (err != 0)
2831 goto out;
2834 (void) bqueue_init(&rwa.q, zfs_recv_queue_length,
2835 offsetof(struct receive_record_arg, node));
2836 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL);
2837 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL);
2838 rwa.os = ra.os;
2839 rwa.byteswap = drc->drc_byteswap;
2840 rwa.resumable = drc->drc_resumable;
2842 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc,
2843 TS_RUN, minclsyspri);
2845 * We're reading rwa.err without locks, which is safe since we are the
2846 * only reader, and the worker thread is the only writer. It's ok if we
2847 * miss a write for an iteration or two of the loop, since the writer
2848 * thread will keep freeing records we send it until we send it an eos
2849 * marker.
2851 * We can leave this loop in 3 ways: First, if rwa.err is
2852 * non-zero. In that case, the writer thread will free the rrd we just
2853 * pushed. Second, if we're interrupted; in that case, either it's the
2854 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd
2855 * has been handed off to the writer thread who will free it. Finally,
2856 * if receive_read_record fails or we're at the end of the stream, then
2857 * we free ra.rrd and exit.
2859 while (rwa.err == 0) {
2860 if (issig(JUSTLOOKING) && issig(FORREAL)) {
2861 err = SET_ERROR(EINTR);
2862 break;
2865 ASSERT3P(ra.rrd, ==, NULL);
2866 ra.rrd = ra.next_rrd;
2867 ra.next_rrd = NULL;
2868 /* Allocates and loads header into ra.next_rrd */
2869 err = receive_read_record(&ra);
2871 if (ra.rrd->header.drr_type == DRR_END || err != 0) {
2872 kmem_free(ra.rrd, sizeof (*ra.rrd));
2873 ra.rrd = NULL;
2874 break;
2877 bqueue_enqueue(&rwa.q, ra.rrd,
2878 sizeof (struct receive_record_arg) + ra.rrd->payload_size);
2879 ra.rrd = NULL;
2881 if (ra.next_rrd == NULL)
2882 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP);
2883 ra.next_rrd->eos_marker = B_TRUE;
2884 bqueue_enqueue(&rwa.q, ra.next_rrd, 1);
2886 mutex_enter(&rwa.mutex);
2887 while (!rwa.done) {
2888 cv_wait(&rwa.cv, &rwa.mutex);
2890 mutex_exit(&rwa.mutex);
2892 cv_destroy(&rwa.cv);
2893 mutex_destroy(&rwa.mutex);
2894 bqueue_destroy(&rwa.q);
2895 if (err == 0)
2896 err = rwa.err;
2898 out:
2899 nvlist_free(begin_nvl);
2900 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
2901 zfs_onexit_fd_rele(cleanup_fd);
2903 if (err != 0) {
2905 * Clean up references. If receive is not resumable,
2906 * destroy what we created, so we don't leave it in
2907 * the inconsistent state.
2909 dmu_recv_cleanup_ds(drc);
2912 *voffp = ra.voff;
2913 objlist_destroy(&ra.ignore_objlist);
2914 return (err);
2917 static int
2918 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
2920 dmu_recv_cookie_t *drc = arg;
2921 dsl_pool_t *dp = dmu_tx_pool(tx);
2922 int error;
2924 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
2926 if (!drc->drc_newfs) {
2927 dsl_dataset_t *origin_head;
2929 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
2930 if (error != 0)
2931 return (error);
2932 if (drc->drc_force) {
2934 * We will destroy any snapshots in tofs (i.e. before
2935 * origin_head) that are after the origin (which is
2936 * the snap before drc_ds, because drc_ds can not
2937 * have any snaps of its own).
2939 uint64_t obj;
2941 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2942 while (obj !=
2943 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2944 dsl_dataset_t *snap;
2945 error = dsl_dataset_hold_obj(dp, obj, FTAG,
2946 &snap);
2947 if (error != 0)
2948 break;
2949 if (snap->ds_dir != origin_head->ds_dir)
2950 error = SET_ERROR(EINVAL);
2951 if (error == 0) {
2952 error = dsl_destroy_snapshot_check_impl(
2953 snap, B_FALSE);
2955 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
2956 dsl_dataset_rele(snap, FTAG);
2957 if (error != 0)
2958 break;
2960 if (error != 0) {
2961 dsl_dataset_rele(origin_head, FTAG);
2962 return (error);
2965 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
2966 origin_head, drc->drc_force, drc->drc_owner, tx);
2967 if (error != 0) {
2968 dsl_dataset_rele(origin_head, FTAG);
2969 return (error);
2971 error = dsl_dataset_snapshot_check_impl(origin_head,
2972 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2973 dsl_dataset_rele(origin_head, FTAG);
2974 if (error != 0)
2975 return (error);
2977 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
2978 } else {
2979 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
2980 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2982 return (error);
2985 static void
2986 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
2988 dmu_recv_cookie_t *drc = arg;
2989 dsl_pool_t *dp = dmu_tx_pool(tx);
2991 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
2992 tx, "snap=%s", drc->drc_tosnap);
2994 if (!drc->drc_newfs) {
2995 dsl_dataset_t *origin_head;
2997 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
2998 &origin_head));
3000 if (drc->drc_force) {
3002 * Destroy any snapshots of drc_tofs (origin_head)
3003 * after the origin (the snap before drc_ds).
3005 uint64_t obj;
3007 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3008 while (obj !=
3009 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3010 dsl_dataset_t *snap;
3011 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3012 &snap));
3013 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3014 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3015 dsl_destroy_snapshot_sync_impl(snap,
3016 B_FALSE, tx);
3017 dsl_dataset_rele(snap, FTAG);
3020 VERIFY3P(drc->drc_ds->ds_prev, ==,
3021 origin_head->ds_prev);
3023 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3024 origin_head, tx);
3025 dsl_dataset_snapshot_sync_impl(origin_head,
3026 drc->drc_tosnap, tx);
3028 /* set snapshot's creation time and guid */
3029 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3030 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3031 drc->drc_drrb->drr_creation_time;
3032 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3033 drc->drc_drrb->drr_toguid;
3034 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3035 ~DS_FLAG_INCONSISTENT;
3037 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3038 dsl_dataset_phys(origin_head)->ds_flags &=
3039 ~DS_FLAG_INCONSISTENT;
3041 dsl_dataset_rele(origin_head, FTAG);
3042 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3044 if (drc->drc_owner != NULL)
3045 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3046 } else {
3047 dsl_dataset_t *ds = drc->drc_ds;
3049 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3051 /* set snapshot's creation time and guid */
3052 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3053 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3054 drc->drc_drrb->drr_creation_time;
3055 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3056 drc->drc_drrb->drr_toguid;
3057 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3058 ~DS_FLAG_INCONSISTENT;
3060 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3061 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3062 if (dsl_dataset_has_resume_receive_state(ds)) {
3063 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3064 DS_FIELD_RESUME_FROMGUID, tx);
3065 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3066 DS_FIELD_RESUME_OBJECT, tx);
3067 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3068 DS_FIELD_RESUME_OFFSET, tx);
3069 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3070 DS_FIELD_RESUME_BYTES, tx);
3071 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3072 DS_FIELD_RESUME_TOGUID, tx);
3073 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3074 DS_FIELD_RESUME_TONAME, tx);
3077 drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3079 * Release the hold from dmu_recv_begin. This must be done before
3080 * we return to open context, so that when we free the dataset's dnode,
3081 * we can evict its bonus buffer.
3083 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
3084 drc->drc_ds = NULL;
3087 static int
3088 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj)
3090 dsl_pool_t *dp;
3091 dsl_dataset_t *snapds;
3092 guid_map_entry_t *gmep;
3093 int err;
3095 ASSERT(guid_map != NULL);
3097 err = dsl_pool_hold(name, FTAG, &dp);
3098 if (err != 0)
3099 return (err);
3100 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
3101 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds);
3102 if (err == 0) {
3103 gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
3104 gmep->gme_ds = snapds;
3105 avl_add(guid_map, gmep);
3106 dsl_dataset_long_hold(snapds, gmep);
3107 } else {
3108 kmem_free(gmep, sizeof (*gmep));
3111 dsl_pool_rele(dp, FTAG);
3112 return (err);
3115 static int dmu_recv_end_modified_blocks = 3;
3117 static int
3118 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3120 int error;
3121 char name[MAXNAMELEN];
3123 #ifdef _KERNEL
3125 * We will be destroying the ds; make sure its origin is unmounted if
3126 * necessary.
3128 dsl_dataset_name(drc->drc_ds, name);
3129 zfs_destroy_unmount_origin(name);
3130 #endif
3132 error = dsl_sync_task(drc->drc_tofs,
3133 dmu_recv_end_check, dmu_recv_end_sync, drc,
3134 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3136 if (error != 0)
3137 dmu_recv_cleanup_ds(drc);
3138 return (error);
3141 static int
3142 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3144 int error;
3146 error = dsl_sync_task(drc->drc_tofs,
3147 dmu_recv_end_check, dmu_recv_end_sync, drc,
3148 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3150 if (error != 0) {
3151 dmu_recv_cleanup_ds(drc);
3152 } else if (drc->drc_guid_to_ds_map != NULL) {
3153 (void) add_ds_to_guidmap(drc->drc_tofs,
3154 drc->drc_guid_to_ds_map,
3155 drc->drc_newsnapobj);
3157 return (error);
3161 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3163 drc->drc_owner = owner;
3165 if (drc->drc_newfs)
3166 return (dmu_recv_new_end(drc));
3167 else
3168 return (dmu_recv_existing_end(drc));
3172 * Return TRUE if this objset is currently being received into.
3174 boolean_t
3175 dmu_objset_is_receiving(objset_t *os)
3177 return (os->os_dsl_dataset != NULL &&
3178 os->os_dsl_dataset->ds_owner == dmu_recv_tag);