1769 dladm show-link truncates OVER field
[unleashed.git] / usr / src / cmd / ssh / include / sys-tree.h
blobfbd31a8f7cd79a552cbd002fd8a9403ef0d437b2
1 /* $OpenBSD: tree.h,v 1.6 2002/06/11 22:09:52 provos Exp $ */
2 /*
3 * Copyright 2002 Niels Provos <provos@citi.umich.edu>
4 * All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 #ifndef _SYS_TREE_H
28 #define _SYS_TREE_H
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
35 * This file defines data structures for different types of trees:
36 * splay trees and red-black trees.
38 * A splay tree is a self-organizing data structure. Every operation
39 * on the tree causes a splay to happen. The splay moves the requested
40 * node to the root of the tree and partly rebalances it.
42 * This has the benefit that request locality causes faster lookups as
43 * the requested nodes move to the top of the tree. On the other hand,
44 * every lookup causes memory writes.
46 * The Balance Theorem bounds the total access time for m operations
47 * and n inserts on an initially empty tree as O((m + n)lg n). The
48 * amortized cost for a sequence of m accesses to a splay tree is O(lg n);
50 * A red-black tree is a binary search tree with the node color as an
51 * extra attribute. It fulfills a set of conditions:
52 * - every search path from the root to a leaf consists of the
53 * same number of black nodes,
54 * - each red node (except for the root) has a black parent,
55 * - each leaf node is black.
57 * Every operation on a red-black tree is bounded as O(lg n).
58 * The maximum height of a red-black tree is 2lg (n+1).
61 #define SPLAY_HEAD(name, type) \
62 struct name { \
63 struct type *sph_root; /* root of the tree */ \
66 #define SPLAY_INITIALIZER(root) \
67 { NULL }
69 #define SPLAY_INIT(root) do { \
70 (root)->sph_root = NULL; \
71 } while (0)
73 #define SPLAY_ENTRY(type) \
74 struct { \
75 struct type *spe_left; /* left element */ \
76 struct type *spe_right; /* right element */ \
79 #define SPLAY_LEFT(elm, field) (elm)->field.spe_left
80 #define SPLAY_RIGHT(elm, field) (elm)->field.spe_right
81 #define SPLAY_ROOT(head) (head)->sph_root
82 #define SPLAY_EMPTY(head) (SPLAY_ROOT(head) == NULL)
84 /* SPLAY_ROTATE_{LEFT,RIGHT} expect that tmp hold SPLAY_{RIGHT,LEFT} */
85 #define SPLAY_ROTATE_RIGHT(head, tmp, field) do { \
86 SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(tmp, field); \
87 SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
88 (head)->sph_root = tmp; \
89 } while (0)
91 #define SPLAY_ROTATE_LEFT(head, tmp, field) do { \
92 SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(tmp, field); \
93 SPLAY_LEFT(tmp, field) = (head)->sph_root; \
94 (head)->sph_root = tmp; \
95 } while (0)
97 #define SPLAY_LINKLEFT(head, tmp, field) do { \
98 SPLAY_LEFT(tmp, field) = (head)->sph_root; \
99 tmp = (head)->sph_root; \
100 (head)->sph_root = SPLAY_LEFT((head)->sph_root, field); \
101 } while (0)
103 #define SPLAY_LINKRIGHT(head, tmp, field) do { \
104 SPLAY_RIGHT(tmp, field) = (head)->sph_root; \
105 tmp = (head)->sph_root; \
106 (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field); \
107 } while (0)
109 #define SPLAY_ASSEMBLE(head, node, left, right, field) do { \
110 SPLAY_RIGHT(left, field) = SPLAY_LEFT((head)->sph_root, field); \
111 SPLAY_LEFT(right, field) = SPLAY_RIGHT((head)->sph_root, field);\
112 SPLAY_LEFT((head)->sph_root, field) = SPLAY_RIGHT(node, field); \
113 SPLAY_RIGHT((head)->sph_root, field) = SPLAY_LEFT(node, field); \
114 } while (0)
116 /* Generates prototypes and inline functions */
118 #define SPLAY_PROTOTYPE(name, type, field, cmp) \
119 void name##_SPLAY(struct name *, struct type *); \
120 void name##_SPLAY_MINMAX(struct name *, int); \
121 struct type *name##_SPLAY_INSERT(struct name *, struct type *); \
122 struct type *name##_SPLAY_REMOVE(struct name *, struct type *); \
124 /* Finds the node with the same key as elm */ \
125 static __inline struct type * \
126 name##_SPLAY_FIND(struct name *head, struct type *elm) \
128 if (SPLAY_EMPTY(head)) \
129 return(NULL); \
130 name##_SPLAY(head, elm); \
131 if ((cmp)(elm, (head)->sph_root) == 0) \
132 return (head->sph_root); \
133 return (NULL); \
136 static __inline struct type * \
137 name##_SPLAY_NEXT(struct name *head, struct type *elm) \
139 name##_SPLAY(head, elm); \
140 if (SPLAY_RIGHT(elm, field) != NULL) { \
141 elm = SPLAY_RIGHT(elm, field); \
142 while (SPLAY_LEFT(elm, field) != NULL) { \
143 elm = SPLAY_LEFT(elm, field); \
145 } else \
146 elm = NULL; \
147 return (elm); \
150 static __inline struct type * \
151 name##_SPLAY_MIN_MAX(struct name *head, int val) \
153 name##_SPLAY_MINMAX(head, val); \
154 return (SPLAY_ROOT(head)); \
157 /* Main splay operation.
158 * Moves node close to the key of elm to top
160 #define SPLAY_GENERATE(name, type, field, cmp) \
161 struct type * \
162 name##_SPLAY_INSERT(struct name *head, struct type *elm) \
164 if (SPLAY_EMPTY(head)) { \
165 SPLAY_LEFT(elm, field) = SPLAY_RIGHT(elm, field) = NULL; \
166 } else { \
167 int __comp; \
168 name##_SPLAY(head, elm); \
169 __comp = (cmp)(elm, (head)->sph_root); \
170 if(__comp < 0) { \
171 SPLAY_LEFT(elm, field) = SPLAY_LEFT((head)->sph_root, field);\
172 SPLAY_RIGHT(elm, field) = (head)->sph_root; \
173 SPLAY_LEFT((head)->sph_root, field) = NULL; \
174 } else if (__comp > 0) { \
175 SPLAY_RIGHT(elm, field) = SPLAY_RIGHT((head)->sph_root, field);\
176 SPLAY_LEFT(elm, field) = (head)->sph_root; \
177 SPLAY_RIGHT((head)->sph_root, field) = NULL; \
178 } else \
179 return ((head)->sph_root); \
181 (head)->sph_root = (elm); \
182 return (NULL); \
185 struct type * \
186 name##_SPLAY_REMOVE(struct name *head, struct type *elm) \
188 struct type *__tmp; \
189 if (SPLAY_EMPTY(head)) \
190 return (NULL); \
191 name##_SPLAY(head, elm); \
192 if ((cmp)(elm, (head)->sph_root) == 0) { \
193 if (SPLAY_LEFT((head)->sph_root, field) == NULL) { \
194 (head)->sph_root = SPLAY_RIGHT((head)->sph_root, field);\
195 } else { \
196 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
197 (head)->sph_root = SPLAY_LEFT((head)->sph_root, field);\
198 name##_SPLAY(head, elm); \
199 SPLAY_RIGHT((head)->sph_root, field) = __tmp; \
201 return (elm); \
203 return (NULL); \
206 void \
207 name##_SPLAY(struct name *head, struct type *elm) \
209 struct type __node, *__left, *__right, *__tmp; \
210 int __comp; \
212 SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
213 __left = __right = &__node; \
215 while ((__comp = (cmp)(elm, (head)->sph_root))) { \
216 if (__comp < 0) { \
217 __tmp = SPLAY_LEFT((head)->sph_root, field); \
218 if (__tmp == NULL) \
219 break; \
220 if ((cmp)(elm, __tmp) < 0){ \
221 SPLAY_ROTATE_RIGHT(head, __tmp, field); \
222 if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
223 break; \
225 SPLAY_LINKLEFT(head, __right, field); \
226 } else if (__comp > 0) { \
227 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
228 if (__tmp == NULL) \
229 break; \
230 if ((cmp)(elm, __tmp) > 0){ \
231 SPLAY_ROTATE_LEFT(head, __tmp, field); \
232 if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
233 break; \
235 SPLAY_LINKRIGHT(head, __left, field); \
238 SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
241 /* Splay with either the minimum or the maximum element \
242 * Used to find minimum or maximum element in tree. \
243 */ \
244 void name##_SPLAY_MINMAX(struct name *head, int __comp) \
246 struct type __node, *__left, *__right, *__tmp; \
248 SPLAY_LEFT(&__node, field) = SPLAY_RIGHT(&__node, field) = NULL;\
249 __left = __right = &__node; \
251 while (1) { \
252 if (__comp < 0) { \
253 __tmp = SPLAY_LEFT((head)->sph_root, field); \
254 if (__tmp == NULL) \
255 break; \
256 if (__comp < 0){ \
257 SPLAY_ROTATE_RIGHT(head, __tmp, field); \
258 if (SPLAY_LEFT((head)->sph_root, field) == NULL)\
259 break; \
261 SPLAY_LINKLEFT(head, __right, field); \
262 } else if (__comp > 0) { \
263 __tmp = SPLAY_RIGHT((head)->sph_root, field); \
264 if (__tmp == NULL) \
265 break; \
266 if (__comp > 0) { \
267 SPLAY_ROTATE_LEFT(head, __tmp, field); \
268 if (SPLAY_RIGHT((head)->sph_root, field) == NULL)\
269 break; \
271 SPLAY_LINKRIGHT(head, __left, field); \
274 SPLAY_ASSEMBLE(head, &__node, __left, __right, field); \
277 #define SPLAY_NEGINF -1
278 #define SPLAY_INF 1
280 #define SPLAY_INSERT(name, x, y) name##_SPLAY_INSERT(x, y)
281 #define SPLAY_REMOVE(name, x, y) name##_SPLAY_REMOVE(x, y)
282 #define SPLAY_FIND(name, x, y) name##_SPLAY_FIND(x, y)
283 #define SPLAY_NEXT(name, x, y) name##_SPLAY_NEXT(x, y)
284 #define SPLAY_MIN(name, x) (SPLAY_EMPTY(x) ? NULL \
285 : name##_SPLAY_MIN_MAX(x, SPLAY_NEGINF))
286 #define SPLAY_MAX(name, x) (SPLAY_EMPTY(x) ? NULL \
287 : name##_SPLAY_MIN_MAX(x, SPLAY_INF))
289 #define SPLAY_FOREACH(x, name, head) \
290 for ((x) = SPLAY_MIN(name, head); \
291 (x) != NULL; \
292 (x) = SPLAY_NEXT(name, head, x))
294 /* Macros that define a red-back tree */
295 #define RB_HEAD(name, type) \
296 struct name { \
297 struct type *rbh_root; /* root of the tree */ \
300 #define RB_INITIALIZER(root) \
301 { NULL }
303 #define RB_INIT(root) do { \
304 (root)->rbh_root = NULL; \
305 } while (0)
307 #define RB_BLACK 0
308 #define RB_RED 1
309 #define RB_ENTRY(type) \
310 struct { \
311 struct type *rbe_left; /* left element */ \
312 struct type *rbe_right; /* right element */ \
313 struct type *rbe_parent; /* parent element */ \
314 int rbe_color; /* node color */ \
317 #define RB_LEFT(elm, field) (elm)->field.rbe_left
318 #define RB_RIGHT(elm, field) (elm)->field.rbe_right
319 #define RB_PARENT(elm, field) (elm)->field.rbe_parent
320 #define RB_COLOR(elm, field) (elm)->field.rbe_color
321 #define RB_ROOT(head) (head)->rbh_root
322 #define RB_EMPTY(head) (RB_ROOT(head) == NULL)
324 #define RB_SET(elm, parent, field) do { \
325 RB_PARENT(elm, field) = parent; \
326 RB_LEFT(elm, field) = RB_RIGHT(elm, field) = NULL; \
327 RB_COLOR(elm, field) = RB_RED; \
328 } while (0)
330 #define RB_SET_BLACKRED(black, red, field) do { \
331 RB_COLOR(black, field) = RB_BLACK; \
332 RB_COLOR(red, field) = RB_RED; \
333 } while (0)
335 #ifndef RB_AUGMENT
336 #define RB_AUGMENT(x)
337 #endif
339 #define RB_ROTATE_LEFT(head, elm, tmp, field) do { \
340 (tmp) = RB_RIGHT(elm, field); \
341 if ((RB_RIGHT(elm, field) = RB_LEFT(tmp, field))) { \
342 RB_PARENT(RB_LEFT(tmp, field), field) = (elm); \
344 RB_AUGMENT(elm); \
345 if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
346 if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
347 RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
348 else \
349 RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
350 RB_AUGMENT(RB_PARENT(elm, field)); \
351 } else \
352 (head)->rbh_root = (tmp); \
353 RB_LEFT(tmp, field) = (elm); \
354 RB_PARENT(elm, field) = (tmp); \
355 RB_AUGMENT(tmp); \
356 } while (0)
358 #define RB_ROTATE_RIGHT(head, elm, tmp, field) do { \
359 (tmp) = RB_LEFT(elm, field); \
360 if ((RB_LEFT(elm, field) = RB_RIGHT(tmp, field))) { \
361 RB_PARENT(RB_RIGHT(tmp, field), field) = (elm); \
363 RB_AUGMENT(elm); \
364 if ((RB_PARENT(tmp, field) = RB_PARENT(elm, field))) { \
365 if ((elm) == RB_LEFT(RB_PARENT(elm, field), field)) \
366 RB_LEFT(RB_PARENT(elm, field), field) = (tmp); \
367 else \
368 RB_RIGHT(RB_PARENT(elm, field), field) = (tmp); \
369 RB_AUGMENT(RB_PARENT(elm, field)); \
370 } else \
371 (head)->rbh_root = (tmp); \
372 RB_RIGHT(tmp, field) = (elm); \
373 RB_PARENT(elm, field) = (tmp); \
374 RB_AUGMENT(tmp); \
375 } while (0)
377 /* Generates prototypes and inline functions */
378 #define RB_PROTOTYPE(name, type, field, cmp) \
379 void name##_RB_INSERT_COLOR(struct name *, struct type *); \
380 void name##_RB_REMOVE_COLOR(struct name *, struct type *, struct type *);\
381 struct type *name##_RB_REMOVE(struct name *, struct type *); \
382 struct type *name##_RB_INSERT(struct name *, struct type *); \
383 struct type *name##_RB_FIND(struct name *, struct type *); \
384 struct type *name##_RB_NEXT(struct name *, struct type *); \
385 struct type *name##_RB_MINMAX(struct name *, int);
387 /* Main rb operation.
388 * Moves node close to the key of elm to top
390 #define RB_GENERATE(name, type, field, cmp) \
391 void \
392 name##_RB_INSERT_COLOR(struct name *head, struct type *elm) \
394 struct type *parent, *gparent, *tmp; \
395 while ((parent = RB_PARENT(elm, field)) && \
396 RB_COLOR(parent, field) == RB_RED) { \
397 gparent = RB_PARENT(parent, field); \
398 if (parent == RB_LEFT(gparent, field)) { \
399 tmp = RB_RIGHT(gparent, field); \
400 if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
401 RB_COLOR(tmp, field) = RB_BLACK; \
402 RB_SET_BLACKRED(parent, gparent, field);\
403 elm = gparent; \
404 continue; \
406 if (RB_RIGHT(parent, field) == elm) { \
407 RB_ROTATE_LEFT(head, parent, tmp, field);\
408 tmp = parent; \
409 parent = elm; \
410 elm = tmp; \
412 RB_SET_BLACKRED(parent, gparent, field); \
413 RB_ROTATE_RIGHT(head, gparent, tmp, field); \
414 } else { \
415 tmp = RB_LEFT(gparent, field); \
416 if (tmp && RB_COLOR(tmp, field) == RB_RED) { \
417 RB_COLOR(tmp, field) = RB_BLACK; \
418 RB_SET_BLACKRED(parent, gparent, field);\
419 elm = gparent; \
420 continue; \
422 if (RB_LEFT(parent, field) == elm) { \
423 RB_ROTATE_RIGHT(head, parent, tmp, field);\
424 tmp = parent; \
425 parent = elm; \
426 elm = tmp; \
428 RB_SET_BLACKRED(parent, gparent, field); \
429 RB_ROTATE_LEFT(head, gparent, tmp, field); \
432 RB_COLOR(head->rbh_root, field) = RB_BLACK; \
435 void \
436 name##_RB_REMOVE_COLOR(struct name *head, struct type *parent, struct type *elm) \
438 struct type *tmp; \
439 while ((elm == NULL || RB_COLOR(elm, field) == RB_BLACK) && \
440 elm != RB_ROOT(head)) { \
441 if (RB_LEFT(parent, field) == elm) { \
442 tmp = RB_RIGHT(parent, field); \
443 if (RB_COLOR(tmp, field) == RB_RED) { \
444 RB_SET_BLACKRED(tmp, parent, field); \
445 RB_ROTATE_LEFT(head, parent, tmp, field);\
446 tmp = RB_RIGHT(parent, field); \
448 if ((RB_LEFT(tmp, field) == NULL || \
449 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
450 (RB_RIGHT(tmp, field) == NULL || \
451 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
452 RB_COLOR(tmp, field) = RB_RED; \
453 elm = parent; \
454 parent = RB_PARENT(elm, field); \
455 } else { \
456 if (RB_RIGHT(tmp, field) == NULL || \
457 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK) {\
458 struct type *oleft; \
459 if ((oleft = RB_LEFT(tmp, field)))\
460 RB_COLOR(oleft, field) = RB_BLACK;\
461 RB_COLOR(tmp, field) = RB_RED; \
462 RB_ROTATE_RIGHT(head, tmp, oleft, field);\
463 tmp = RB_RIGHT(parent, field); \
465 RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
466 RB_COLOR(parent, field) = RB_BLACK; \
467 if (RB_RIGHT(tmp, field)) \
468 RB_COLOR(RB_RIGHT(tmp, field), field) = RB_BLACK;\
469 RB_ROTATE_LEFT(head, parent, tmp, field);\
470 elm = RB_ROOT(head); \
471 break; \
473 } else { \
474 tmp = RB_LEFT(parent, field); \
475 if (RB_COLOR(tmp, field) == RB_RED) { \
476 RB_SET_BLACKRED(tmp, parent, field); \
477 RB_ROTATE_RIGHT(head, parent, tmp, field);\
478 tmp = RB_LEFT(parent, field); \
480 if ((RB_LEFT(tmp, field) == NULL || \
481 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) &&\
482 (RB_RIGHT(tmp, field) == NULL || \
483 RB_COLOR(RB_RIGHT(tmp, field), field) == RB_BLACK)) {\
484 RB_COLOR(tmp, field) = RB_RED; \
485 elm = parent; \
486 parent = RB_PARENT(elm, field); \
487 } else { \
488 if (RB_LEFT(tmp, field) == NULL || \
489 RB_COLOR(RB_LEFT(tmp, field), field) == RB_BLACK) {\
490 struct type *oright; \
491 if ((oright = RB_RIGHT(tmp, field)))\
492 RB_COLOR(oright, field) = RB_BLACK;\
493 RB_COLOR(tmp, field) = RB_RED; \
494 RB_ROTATE_LEFT(head, tmp, oright, field);\
495 tmp = RB_LEFT(parent, field); \
497 RB_COLOR(tmp, field) = RB_COLOR(parent, field);\
498 RB_COLOR(parent, field) = RB_BLACK; \
499 if (RB_LEFT(tmp, field)) \
500 RB_COLOR(RB_LEFT(tmp, field), field) = RB_BLACK;\
501 RB_ROTATE_RIGHT(head, parent, tmp, field);\
502 elm = RB_ROOT(head); \
503 break; \
507 if (elm) \
508 RB_COLOR(elm, field) = RB_BLACK; \
511 struct type * \
512 name##_RB_REMOVE(struct name *head, struct type *elm) \
514 struct type *child, *parent, *old = elm; \
515 int color; \
516 if (RB_LEFT(elm, field) == NULL) \
517 child = RB_RIGHT(elm, field); \
518 else if (RB_RIGHT(elm, field) == NULL) \
519 child = RB_LEFT(elm, field); \
520 else { \
521 struct type *left; \
522 elm = RB_RIGHT(elm, field); \
523 while ((left = RB_LEFT(elm, field))) \
524 elm = left; \
525 child = RB_RIGHT(elm, field); \
526 parent = RB_PARENT(elm, field); \
527 color = RB_COLOR(elm, field); \
528 if (child) \
529 RB_PARENT(child, field) = parent; \
530 if (parent) { \
531 if (RB_LEFT(parent, field) == elm) \
532 RB_LEFT(parent, field) = child; \
533 else \
534 RB_RIGHT(parent, field) = child; \
535 RB_AUGMENT(parent); \
536 } else \
537 RB_ROOT(head) = child; \
538 if (RB_PARENT(elm, field) == old) \
539 parent = elm; \
540 (elm)->field = (old)->field; \
541 if (RB_PARENT(old, field)) { \
542 if (RB_LEFT(RB_PARENT(old, field), field) == old)\
543 RB_LEFT(RB_PARENT(old, field), field) = elm;\
544 else \
545 RB_RIGHT(RB_PARENT(old, field), field) = elm;\
546 RB_AUGMENT(RB_PARENT(old, field)); \
547 } else \
548 RB_ROOT(head) = elm; \
549 RB_PARENT(RB_LEFT(old, field), field) = elm; \
550 if (RB_RIGHT(old, field)) \
551 RB_PARENT(RB_RIGHT(old, field), field) = elm; \
552 if (parent) { \
553 left = parent; \
554 do { \
555 RB_AUGMENT(left); \
556 } while ((left = RB_PARENT(left, field))); \
558 goto color; \
560 parent = RB_PARENT(elm, field); \
561 color = RB_COLOR(elm, field); \
562 if (child) \
563 RB_PARENT(child, field) = parent; \
564 if (parent) { \
565 if (RB_LEFT(parent, field) == elm) \
566 RB_LEFT(parent, field) = child; \
567 else \
568 RB_RIGHT(parent, field) = child; \
569 RB_AUGMENT(parent); \
570 } else \
571 RB_ROOT(head) = child; \
572 color: \
573 if (color == RB_BLACK) \
574 name##_RB_REMOVE_COLOR(head, parent, child); \
575 return (old); \
578 /* Inserts a node into the RB tree */ \
579 struct type * \
580 name##_RB_INSERT(struct name *head, struct type *elm) \
582 struct type *tmp; \
583 struct type *parent = NULL; \
584 int comp = 0; \
585 tmp = RB_ROOT(head); \
586 while (tmp) { \
587 parent = tmp; \
588 comp = (cmp)(elm, parent); \
589 if (comp < 0) \
590 tmp = RB_LEFT(tmp, field); \
591 else if (comp > 0) \
592 tmp = RB_RIGHT(tmp, field); \
593 else \
594 return (tmp); \
596 RB_SET(elm, parent, field); \
597 if (parent != NULL) { \
598 if (comp < 0) \
599 RB_LEFT(parent, field) = elm; \
600 else \
601 RB_RIGHT(parent, field) = elm; \
602 RB_AUGMENT(parent); \
603 } else \
604 RB_ROOT(head) = elm; \
605 name##_RB_INSERT_COLOR(head, elm); \
606 return (NULL); \
609 /* Finds the node with the same key as elm */ \
610 struct type * \
611 name##_RB_FIND(struct name *head, struct type *elm) \
613 struct type *tmp = RB_ROOT(head); \
614 int comp; \
615 while (tmp) { \
616 comp = cmp(elm, tmp); \
617 if (comp < 0) \
618 tmp = RB_LEFT(tmp, field); \
619 else if (comp > 0) \
620 tmp = RB_RIGHT(tmp, field); \
621 else \
622 return (tmp); \
624 return (NULL); \
627 struct type * \
628 name##_RB_NEXT(struct name *head, struct type *elm) \
630 if (RB_RIGHT(elm, field)) { \
631 elm = RB_RIGHT(elm, field); \
632 while (RB_LEFT(elm, field)) \
633 elm = RB_LEFT(elm, field); \
634 } else { \
635 if (RB_PARENT(elm, field) && \
636 (elm == RB_LEFT(RB_PARENT(elm, field), field))) \
637 elm = RB_PARENT(elm, field); \
638 else { \
639 while (RB_PARENT(elm, field) && \
640 (elm == RB_RIGHT(RB_PARENT(elm, field), field)))\
641 elm = RB_PARENT(elm, field); \
642 elm = RB_PARENT(elm, field); \
645 return (elm); \
648 struct type * \
649 name##_RB_MINMAX(struct name *head, int val) \
651 struct type *tmp = RB_ROOT(head); \
652 struct type *parent = NULL; \
653 while (tmp) { \
654 parent = tmp; \
655 if (val < 0) \
656 tmp = RB_LEFT(tmp, field); \
657 else \
658 tmp = RB_RIGHT(tmp, field); \
660 return (parent); \
663 #define RB_NEGINF -1
664 #define RB_INF 1
666 #define RB_INSERT(name, x, y) name##_RB_INSERT(x, y)
667 #define RB_REMOVE(name, x, y) name##_RB_REMOVE(x, y)
668 #define RB_FIND(name, x, y) name##_RB_FIND(x, y)
669 #define RB_NEXT(name, x, y) name##_RB_NEXT(x, y)
670 #define RB_MIN(name, x) name##_RB_MINMAX(x, RB_NEGINF)
671 #define RB_MAX(name, x) name##_RB_MINMAX(x, RB_INF)
673 #define RB_FOREACH(x, name, head) \
674 for ((x) = RB_MIN(name, head); \
675 (x) != NULL; \
676 (x) = name##_RB_NEXT(head, x))
678 #ifdef __cplusplus
680 #endif
682 #endif /* _SYS_TREE_H */