1700 Add SCSI UNMAP support
[unleashed.git] / usr / src / uts / common / sys / sysmacros.h
blob6f5882b54b298bf0b3b09496912a74342987f53f
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
22 /* All Rights Reserved */
26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
29 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
31 * Copyright 2018 Joyent Inc.
34 #ifndef _SYS_SYSMACROS_H
35 #define _SYS_SYSMACROS_H
37 #include <sys/param.h>
38 #include <sys/stddef.h>
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
45 * Some macros for units conversion
48 * Disk blocks (sectors) and bytes.
50 #define dtob(DD) ((DD) << DEV_BSHIFT)
51 #define btod(BB) (((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
52 #define btodt(BB) ((BB) >> DEV_BSHIFT)
53 #define lbtod(BB) (((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
55 /* common macros */
56 #ifndef MIN
57 #define MIN(a, b) ((a) < (b) ? (a) : (b))
58 #endif
59 #ifndef MAX
60 #define MAX(a, b) ((a) < (b) ? (b) : (a))
61 #endif
62 #ifndef ABS
63 #define ABS(a) ((a) < 0 ? -(a) : (a))
64 #endif
65 #ifndef SIGNOF
66 #define SIGNOF(a) ((a) < 0 ? -1 : (a) > 0)
67 #endif
69 #ifdef _KERNEL
72 * Convert a single byte to/from binary-coded decimal (BCD).
74 extern unsigned char byte_to_bcd[256];
75 extern unsigned char bcd_to_byte[256];
77 #define BYTE_TO_BCD(x) byte_to_bcd[(x) & 0xff]
78 #define BCD_TO_BYTE(x) bcd_to_byte[(x) & 0xff]
80 #endif /* _KERNEL */
83 * WARNING: The device number macros defined here should not be used by device
84 * drivers or user software. Device drivers should use the device functions
85 * defined in the DDI/DKI interface (see also ddi.h). Application software
86 * should make use of the library routines available in makedev(3). A set of
87 * new device macros are provided to operate on the expanded device number
88 * format supported in SVR4. Macro versions of the DDI device functions are
89 * provided for use by kernel proper routines only. Macro routines bmajor(),
90 * major(), minor(), emajor(), eminor(), and makedev() will be removed or
91 * their definitions changed at the next major release following SVR4.
94 #define O_BITSMAJOR 7 /* # of SVR3 major device bits */
95 #define O_BITSMINOR 8 /* # of SVR3 minor device bits */
96 #define O_MAXMAJ 0x7f /* SVR3 max major value */
97 #define O_MAXMIN 0xff /* SVR3 max minor value */
100 #define L_BITSMAJOR32 14 /* # of SVR4 major device bits */
101 #define L_BITSMINOR32 18 /* # of SVR4 minor device bits */
102 #define L_MAXMAJ32 0x3fff /* SVR4 max major value */
103 #define L_MAXMIN32 0x3ffff /* MAX minor for 3b2 software drivers. */
104 /* For 3b2 hardware devices the minor is */
105 /* restricted to 256 (0-255) */
107 #ifdef _LP64
108 #define L_BITSMAJOR 32 /* # of major device bits in 64-bit Solaris */
109 #define L_BITSMINOR 32 /* # of minor device bits in 64-bit Solaris */
110 #define L_MAXMAJ 0xfffffffful /* max major value */
111 #define L_MAXMIN 0xfffffffful /* max minor value */
112 #else
113 #define L_BITSMAJOR L_BITSMAJOR32
114 #define L_BITSMINOR L_BITSMINOR32
115 #define L_MAXMAJ L_MAXMAJ32
116 #define L_MAXMIN L_MAXMIN32
117 #endif
119 #ifdef _KERNEL
121 /* major part of a device internal to the kernel */
123 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
124 #define bmajor(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
126 /* get internal major part of expanded device number */
128 #define getmajor(x) (major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ)
130 /* minor part of a device internal to the kernel */
132 #define minor(x) (minor_t)((x) & O_MAXMIN)
134 /* get internal minor part of expanded device number */
136 #define getminor(x) (minor_t)((x) & L_MAXMIN)
138 #else /* _KERNEL */
140 /* major part of a device external from the kernel (same as emajor below) */
142 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
144 /* minor part of a device external from the kernel (same as eminor below) */
146 #define minor(x) (minor_t)((x) & O_MAXMIN)
148 #endif /* _KERNEL */
150 /* create old device number */
152 #define makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN))
154 /* make an new device number */
156 #define makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN))
160 * emajor() allows kernel/driver code to print external major numbers
161 * eminor() allows kernel/driver code to print external minor numbers
164 #define emajor(x) \
165 (major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \
166 NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ)
168 #define eminor(x) \
169 (minor_t)((x) & O_MAXMIN)
172 * get external major and minor device
173 * components from expanded device number
175 #define getemajor(x) (major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \
176 NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ))
177 #define geteminor(x) (minor_t)((x) & L_MAXMIN)
180 * These are versions of the kernel routines for compressing and
181 * expanding long device numbers that don't return errors.
183 #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR)
185 #define DEVCMPL(x) (x)
186 #define DEVEXPL(x) (x)
188 #else
190 #define DEVCMPL(x) \
191 (dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \
192 ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \
193 ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32)))
195 #define DEVEXPL(x) \
196 (((x) == NODEV32) ? NODEV : \
197 makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32))
199 #endif /* L_BITSMAJOR32 ... */
201 /* convert to old (SVR3.2) dev format */
203 #define cmpdev(x) \
204 (o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \
205 ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \
206 ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN)))
208 /* convert to new (SVR4) dev format */
210 #define expdev(x) \
211 (dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \
212 ((x) & O_MAXMIN))
215 * Macro for checking power of 2 address alignment.
217 #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
220 * Macros for counting and rounding.
222 #define howmany(x, y) (((x)+((y)-1))/(y))
223 #define roundup(x, y) ((((x)+((y)-1))/(y))*(y))
226 * Macro to determine if value is a power of 2
228 #define ISP2(x) (((x) & ((x) - 1)) == 0)
231 * Macros for various sorts of alignment and rounding. The "align" must
232 * be a power of 2. Often times it is a block, sector, or page.
236 * return x rounded down to an align boundary
237 * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
238 * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
239 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
240 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
242 #define P2ALIGN(x, align) ((x) & -(align))
245 * return x % (mod) align
246 * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align)
247 * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align)
249 #define P2PHASE(x, align) ((x) & ((align) - 1))
252 * return how much space is left in this block (but if it's perfectly
253 * aligned, return 0).
254 * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x)
255 * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x)
257 #define P2NPHASE(x, align) (-(x) & ((align) - 1))
260 * return x rounded up to an align boundary
261 * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align)
262 * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align)
264 #define P2ROUNDUP(x, align) (-(-(x) & -(align)))
267 * return the ending address of the block that x is in
268 * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1)
269 * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1)
271 #define P2END(x, align) (-(~(x) & -(align)))
274 * return x rounded up to the next phase (offset) within align.
275 * phase should be < align.
276 * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase)
277 * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase)
279 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align)))
282 * return TRUE if adding len to off would cause it to cross an align
283 * boundary.
284 * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314)
285 * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284)
287 #define P2BOUNDARY(off, len, align) \
288 (((off) ^ ((off) + (len) - 1)) > (align) - 1)
291 * Return TRUE if they have the same highest bit set.
292 * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000)
293 * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000)
295 #define P2SAMEHIGHBIT(x, y) (((x) ^ (y)) < ((x) & (y)))
298 * Typed version of the P2* macros. These macros should be used to ensure
299 * that the result is correctly calculated based on the data type of (x),
300 * which is passed in as the last argument, regardless of the data
301 * type of the alignment. For example, if (x) is of type uint64_t,
302 * and we want to round it up to a page boundary using "PAGESIZE" as
303 * the alignment, we can do either
304 * P2ROUNDUP(x, (uint64_t)PAGESIZE)
305 * or
306 * P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t)
308 #define P2ALIGN_TYPED(x, align, type) \
309 ((type)(x) & -(type)(align))
310 #define P2PHASE_TYPED(x, align, type) \
311 ((type)(x) & ((type)(align) - 1))
312 #define P2NPHASE_TYPED(x, align, type) \
313 (-(type)(x) & ((type)(align) - 1))
314 #define P2ROUNDUP_TYPED(x, align, type) \
315 (-(-(type)(x) & -(type)(align)))
316 #define P2END_TYPED(x, align, type) \
317 (-(~(type)(x) & -(type)(align)))
318 #define P2PHASEUP_TYPED(x, align, phase, type) \
319 ((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align)))
320 #define P2CROSS_TYPED(x, y, align, type) \
321 (((type)(x) ^ (type)(y)) > (type)(align) - 1)
322 #define P2SAMEHIGHBIT_TYPED(x, y, type) \
323 (((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y)))
326 * Macros to atomically increment/decrement a variable. mutex and var
327 * must be pointers.
329 #define INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex)
330 #define DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex)
333 * Macros to declare bitfields - the order in the parameter list is
334 * Low to High - that is, declare bit 0 first. We only support 8-bit bitfields
335 * because if a field crosses a byte boundary it's not likely to be meaningful
336 * without reassembly in its nonnative endianness.
338 #if defined(_BIT_FIELDS_LTOH)
339 #define DECL_BITFIELD2(_a, _b) \
340 uint8_t _a, _b
341 #define DECL_BITFIELD3(_a, _b, _c) \
342 uint8_t _a, _b, _c
343 #define DECL_BITFIELD4(_a, _b, _c, _d) \
344 uint8_t _a, _b, _c, _d
345 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \
346 uint8_t _a, _b, _c, _d, _e
347 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \
348 uint8_t _a, _b, _c, _d, _e, _f
349 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \
350 uint8_t _a, _b, _c, _d, _e, _f, _g
351 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \
352 uint8_t _a, _b, _c, _d, _e, _f, _g, _h
353 #elif defined(_BIT_FIELDS_HTOL)
354 #define DECL_BITFIELD2(_a, _b) \
355 uint8_t _b, _a
356 #define DECL_BITFIELD3(_a, _b, _c) \
357 uint8_t _c, _b, _a
358 #define DECL_BITFIELD4(_a, _b, _c, _d) \
359 uint8_t _d, _c, _b, _a
360 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \
361 uint8_t _e, _d, _c, _b, _a
362 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \
363 uint8_t _f, _e, _d, _c, _b, _a
364 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \
365 uint8_t _g, _f, _e, _d, _c, _b, _a
366 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \
367 uint8_t _h, _g, _f, _e, _d, _c, _b, _a
368 #else
369 #error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
370 #endif /* _BIT_FIELDS_LTOH */
372 #if !defined(ARRAY_SIZE)
373 #define ARRAY_SIZE(x) (sizeof (x) / sizeof (x[0]))
374 #endif
376 #ifdef __cplusplus
378 #endif
380 #endif /* _SYS_SYSMACROS_H */