6171 dsl_prop_unregister() slows down dataset eviction.
[unleashed.git] / usr / src / uts / common / fs / zfs / dsl_dir.c
blob7d86f72ad13dade0292e675d627e4b0131a8e337
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
30 #include <sys/dmu.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_prop.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dsl_deleg.h>
38 #include <sys/dmu_impl.h>
39 #include <sys/spa.h>
40 #include <sys/metaslab.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/arc.h>
44 #include <sys/sunddi.h>
45 #include <sys/zfeature.h>
46 #include <sys/policy.h>
47 #include <sys/zfs_znode.h>
48 #include "zfs_namecheck.h"
49 #include "zfs_prop.h"
52 * Filesystem and Snapshot Limits
53 * ------------------------------
55 * These limits are used to restrict the number of filesystems and/or snapshots
56 * that can be created at a given level in the tree or below. A typical
57 * use-case is with a delegated dataset where the administrator wants to ensure
58 * that a user within the zone is not creating too many additional filesystems
59 * or snapshots, even though they're not exceeding their space quota.
61 * The filesystem and snapshot counts are stored as extensible properties. This
62 * capability is controlled by a feature flag and must be enabled to be used.
63 * Once enabled, the feature is not active until the first limit is set. At
64 * that point, future operations to create/destroy filesystems or snapshots
65 * will validate and update the counts.
67 * Because the count properties will not exist before the feature is active,
68 * the counts are updated when a limit is first set on an uninitialized
69 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
70 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
71 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
72 * snapshot count properties on a node indicate uninitialized counts on that
73 * node.) When first setting a limit on an uninitialized node, the code starts
74 * at the filesystem with the new limit and descends into all sub-filesystems
75 * to add the count properties.
77 * In practice this is lightweight since a limit is typically set when the
78 * filesystem is created and thus has no children. Once valid, changing the
79 * limit value won't require a re-traversal since the counts are already valid.
80 * When recursively fixing the counts, if a node with a limit is encountered
81 * during the descent, the counts are known to be valid and there is no need to
82 * descend into that filesystem's children. The counts on filesystems above the
83 * one with the new limit will still be uninitialized, unless a limit is
84 * eventually set on one of those filesystems. The counts are always recursively
85 * updated when a limit is set on a dataset, unless there is already a limit.
86 * When a new limit value is set on a filesystem with an existing limit, it is
87 * possible for the new limit to be less than the current count at that level
88 * since a user who can change the limit is also allowed to exceed the limit.
90 * Once the feature is active, then whenever a filesystem or snapshot is
91 * created, the code recurses up the tree, validating the new count against the
92 * limit at each initialized level. In practice, most levels will not have a
93 * limit set. If there is a limit at any initialized level up the tree, the
94 * check must pass or the creation will fail. Likewise, when a filesystem or
95 * snapshot is destroyed, the counts are recursively adjusted all the way up
96 * the initizized nodes in the tree. Renaming a filesystem into different point
97 * in the tree will first validate, then update the counts on each branch up to
98 * the common ancestor. A receive will also validate the counts and then update
99 * them.
101 * An exception to the above behavior is that the limit is not enforced if the
102 * user has permission to modify the limit. This is primarily so that
103 * recursive snapshots in the global zone always work. We want to prevent a
104 * denial-of-service in which a lower level delegated dataset could max out its
105 * limit and thus block recursive snapshots from being taken in the global zone.
106 * Because of this, it is possible for the snapshot count to be over the limit
107 * and snapshots taken in the global zone could cause a lower level dataset to
108 * hit or exceed its limit. The administrator taking the global zone recursive
109 * snapshot should be aware of this side-effect and behave accordingly.
110 * For consistency, the filesystem limit is also not enforced if the user can
111 * modify the limit.
113 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
114 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
115 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
116 * dsl_dir_init_fs_ss_count().
118 * There is a special case when we receive a filesystem that already exists. In
119 * this case a temporary clone name of %X is created (see dmu_recv_begin). We
120 * never update the filesystem counts for temporary clones.
122 * Likewise, we do not update the snapshot counts for temporary snapshots,
123 * such as those created by zfs diff.
126 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
128 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
130 static void
131 dsl_dir_evict(void *dbu)
133 dsl_dir_t *dd = dbu;
134 dsl_pool_t *dp = dd->dd_pool;
135 int t;
137 dd->dd_dbuf = NULL;
139 for (t = 0; t < TXG_SIZE; t++) {
140 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
141 ASSERT(dd->dd_tempreserved[t] == 0);
142 ASSERT(dd->dd_space_towrite[t] == 0);
145 if (dd->dd_parent)
146 dsl_dir_async_rele(dd->dd_parent, dd);
148 spa_async_close(dd->dd_pool->dp_spa, dd);
150 dsl_prop_fini(dd);
151 mutex_destroy(&dd->dd_lock);
152 kmem_free(dd, sizeof (dsl_dir_t));
156 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
157 const char *tail, void *tag, dsl_dir_t **ddp)
159 dmu_buf_t *dbuf;
160 dsl_dir_t *dd;
161 int err;
163 ASSERT(dsl_pool_config_held(dp));
165 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
166 if (err != 0)
167 return (err);
168 dd = dmu_buf_get_user(dbuf);
169 #ifdef ZFS_DEBUG
171 dmu_object_info_t doi;
172 dmu_object_info_from_db(dbuf, &doi);
173 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
174 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
176 #endif
177 if (dd == NULL) {
178 dsl_dir_t *winner;
180 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
181 dd->dd_object = ddobj;
182 dd->dd_dbuf = dbuf;
183 dd->dd_pool = dp;
184 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
185 dsl_prop_init(dd);
187 dsl_dir_snap_cmtime_update(dd);
189 if (dsl_dir_phys(dd)->dd_parent_obj) {
190 err = dsl_dir_hold_obj(dp,
191 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
192 &dd->dd_parent);
193 if (err != 0)
194 goto errout;
195 if (tail) {
196 #ifdef ZFS_DEBUG
197 uint64_t foundobj;
199 err = zap_lookup(dp->dp_meta_objset,
200 dsl_dir_phys(dd->dd_parent)->
201 dd_child_dir_zapobj, tail,
202 sizeof (foundobj), 1, &foundobj);
203 ASSERT(err || foundobj == ddobj);
204 #endif
205 (void) strcpy(dd->dd_myname, tail);
206 } else {
207 err = zap_value_search(dp->dp_meta_objset,
208 dsl_dir_phys(dd->dd_parent)->
209 dd_child_dir_zapobj,
210 ddobj, 0, dd->dd_myname);
212 if (err != 0)
213 goto errout;
214 } else {
215 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa));
218 if (dsl_dir_is_clone(dd)) {
219 dmu_buf_t *origin_bonus;
220 dsl_dataset_phys_t *origin_phys;
223 * We can't open the origin dataset, because
224 * that would require opening this dsl_dir.
225 * Just look at its phys directly instead.
227 err = dmu_bonus_hold(dp->dp_meta_objset,
228 dsl_dir_phys(dd)->dd_origin_obj, FTAG,
229 &origin_bonus);
230 if (err != 0)
231 goto errout;
232 origin_phys = origin_bonus->db_data;
233 dd->dd_origin_txg =
234 origin_phys->ds_creation_txg;
235 dmu_buf_rele(origin_bonus, FTAG);
238 dmu_buf_init_user(&dd->dd_dbu, dsl_dir_evict, &dd->dd_dbuf);
239 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
240 if (winner != NULL) {
241 if (dd->dd_parent)
242 dsl_dir_rele(dd->dd_parent, dd);
243 dsl_prop_fini(dd);
244 mutex_destroy(&dd->dd_lock);
245 kmem_free(dd, sizeof (dsl_dir_t));
246 dd = winner;
247 } else {
248 spa_open_ref(dp->dp_spa, dd);
253 * The dsl_dir_t has both open-to-close and instantiate-to-evict
254 * holds on the spa. We need the open-to-close holds because
255 * otherwise the spa_refcnt wouldn't change when we open a
256 * dir which the spa also has open, so we could incorrectly
257 * think it was OK to unload/export/destroy the pool. We need
258 * the instantiate-to-evict hold because the dsl_dir_t has a
259 * pointer to the dd_pool, which has a pointer to the spa_t.
261 spa_open_ref(dp->dp_spa, tag);
262 ASSERT3P(dd->dd_pool, ==, dp);
263 ASSERT3U(dd->dd_object, ==, ddobj);
264 ASSERT3P(dd->dd_dbuf, ==, dbuf);
265 *ddp = dd;
266 return (0);
268 errout:
269 if (dd->dd_parent)
270 dsl_dir_rele(dd->dd_parent, dd);
271 dsl_prop_fini(dd);
272 mutex_destroy(&dd->dd_lock);
273 kmem_free(dd, sizeof (dsl_dir_t));
274 dmu_buf_rele(dbuf, tag);
275 return (err);
278 void
279 dsl_dir_rele(dsl_dir_t *dd, void *tag)
281 dprintf_dd(dd, "%s\n", "");
282 spa_close(dd->dd_pool->dp_spa, tag);
283 dmu_buf_rele(dd->dd_dbuf, tag);
287 * Remove a reference to the given dsl dir that is being asynchronously
288 * released. Async releases occur from a taskq performing eviction of
289 * dsl datasets and dirs. This process is identical to a normal release
290 * with the exception of using the async API for releasing the reference on
291 * the spa.
293 void
294 dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
296 dprintf_dd(dd, "%s\n", "");
297 spa_async_close(dd->dd_pool->dp_spa, tag);
298 dmu_buf_rele(dd->dd_dbuf, tag);
301 /* buf must be long enough (MAXNAMELEN + strlen(MOS_DIR_NAME) + 1 should do) */
302 void
303 dsl_dir_name(dsl_dir_t *dd, char *buf)
305 if (dd->dd_parent) {
306 dsl_dir_name(dd->dd_parent, buf);
307 (void) strcat(buf, "/");
308 } else {
309 buf[0] = '\0';
311 if (!MUTEX_HELD(&dd->dd_lock)) {
313 * recursive mutex so that we can use
314 * dprintf_dd() with dd_lock held
316 mutex_enter(&dd->dd_lock);
317 (void) strcat(buf, dd->dd_myname);
318 mutex_exit(&dd->dd_lock);
319 } else {
320 (void) strcat(buf, dd->dd_myname);
324 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
326 dsl_dir_namelen(dsl_dir_t *dd)
328 int result = 0;
330 if (dd->dd_parent) {
331 /* parent's name + 1 for the "/" */
332 result = dsl_dir_namelen(dd->dd_parent) + 1;
335 if (!MUTEX_HELD(&dd->dd_lock)) {
336 /* see dsl_dir_name */
337 mutex_enter(&dd->dd_lock);
338 result += strlen(dd->dd_myname);
339 mutex_exit(&dd->dd_lock);
340 } else {
341 result += strlen(dd->dd_myname);
344 return (result);
347 static int
348 getcomponent(const char *path, char *component, const char **nextp)
350 char *p;
352 if ((path == NULL) || (path[0] == '\0'))
353 return (SET_ERROR(ENOENT));
354 /* This would be a good place to reserve some namespace... */
355 p = strpbrk(path, "/@");
356 if (p && (p[1] == '/' || p[1] == '@')) {
357 /* two separators in a row */
358 return (SET_ERROR(EINVAL));
360 if (p == NULL || p == path) {
362 * if the first thing is an @ or /, it had better be an
363 * @ and it had better not have any more ats or slashes,
364 * and it had better have something after the @.
366 if (p != NULL &&
367 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
368 return (SET_ERROR(EINVAL));
369 if (strlen(path) >= MAXNAMELEN)
370 return (SET_ERROR(ENAMETOOLONG));
371 (void) strcpy(component, path);
372 p = NULL;
373 } else if (p[0] == '/') {
374 if (p - path >= MAXNAMELEN)
375 return (SET_ERROR(ENAMETOOLONG));
376 (void) strncpy(component, path, p - path);
377 component[p - path] = '\0';
378 p++;
379 } else if (p[0] == '@') {
381 * if the next separator is an @, there better not be
382 * any more slashes.
384 if (strchr(path, '/'))
385 return (SET_ERROR(EINVAL));
386 if (p - path >= MAXNAMELEN)
387 return (SET_ERROR(ENAMETOOLONG));
388 (void) strncpy(component, path, p - path);
389 component[p - path] = '\0';
390 } else {
391 panic("invalid p=%p", (void *)p);
393 *nextp = p;
394 return (0);
398 * Return the dsl_dir_t, and possibly the last component which couldn't
399 * be found in *tail. The name must be in the specified dsl_pool_t. This
400 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
401 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
402 * (*tail)[0] == '@' means that the last component is a snapshot.
405 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
406 dsl_dir_t **ddp, const char **tailp)
408 char buf[MAXNAMELEN];
409 const char *spaname, *next, *nextnext = NULL;
410 int err;
411 dsl_dir_t *dd;
412 uint64_t ddobj;
414 err = getcomponent(name, buf, &next);
415 if (err != 0)
416 return (err);
418 /* Make sure the name is in the specified pool. */
419 spaname = spa_name(dp->dp_spa);
420 if (strcmp(buf, spaname) != 0)
421 return (SET_ERROR(EXDEV));
423 ASSERT(dsl_pool_config_held(dp));
425 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
426 if (err != 0) {
427 return (err);
430 while (next != NULL) {
431 dsl_dir_t *child_dd;
432 err = getcomponent(next, buf, &nextnext);
433 if (err != 0)
434 break;
435 ASSERT(next[0] != '\0');
436 if (next[0] == '@')
437 break;
438 dprintf("looking up %s in obj%lld\n",
439 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj);
441 err = zap_lookup(dp->dp_meta_objset,
442 dsl_dir_phys(dd)->dd_child_dir_zapobj,
443 buf, sizeof (ddobj), 1, &ddobj);
444 if (err != 0) {
445 if (err == ENOENT)
446 err = 0;
447 break;
450 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
451 if (err != 0)
452 break;
453 dsl_dir_rele(dd, tag);
454 dd = child_dd;
455 next = nextnext;
458 if (err != 0) {
459 dsl_dir_rele(dd, tag);
460 return (err);
464 * It's an error if there's more than one component left, or
465 * tailp==NULL and there's any component left.
467 if (next != NULL &&
468 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
469 /* bad path name */
470 dsl_dir_rele(dd, tag);
471 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
472 err = SET_ERROR(ENOENT);
474 if (tailp != NULL)
475 *tailp = next;
476 *ddp = dd;
477 return (err);
481 * If the counts are already initialized for this filesystem and its
482 * descendants then do nothing, otherwise initialize the counts.
484 * The counts on this filesystem, and those below, may be uninitialized due to
485 * either the use of a pre-existing pool which did not support the
486 * filesystem/snapshot limit feature, or one in which the feature had not yet
487 * been enabled.
489 * Recursively descend the filesystem tree and update the filesystem/snapshot
490 * counts on each filesystem below, then update the cumulative count on the
491 * current filesystem. If the filesystem already has a count set on it,
492 * then we know that its counts, and the counts on the filesystems below it,
493 * are already correct, so we don't have to update this filesystem.
495 static void
496 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
498 uint64_t my_fs_cnt = 0;
499 uint64_t my_ss_cnt = 0;
500 dsl_pool_t *dp = dd->dd_pool;
501 objset_t *os = dp->dp_meta_objset;
502 zap_cursor_t *zc;
503 zap_attribute_t *za;
504 dsl_dataset_t *ds;
506 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
507 ASSERT(dsl_pool_config_held(dp));
508 ASSERT(dmu_tx_is_syncing(tx));
510 dsl_dir_zapify(dd, tx);
513 * If the filesystem count has already been initialized then we
514 * don't need to recurse down any further.
516 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
517 return;
519 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
520 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
522 /* Iterate my child dirs */
523 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
524 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
525 dsl_dir_t *chld_dd;
526 uint64_t count;
528 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
529 &chld_dd));
532 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and
533 * temporary datasets.
535 if (chld_dd->dd_myname[0] == '$' ||
536 chld_dd->dd_myname[0] == '%') {
537 dsl_dir_rele(chld_dd, FTAG);
538 continue;
541 my_fs_cnt++; /* count this child */
543 dsl_dir_init_fs_ss_count(chld_dd, tx);
545 VERIFY0(zap_lookup(os, chld_dd->dd_object,
546 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
547 my_fs_cnt += count;
548 VERIFY0(zap_lookup(os, chld_dd->dd_object,
549 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
550 my_ss_cnt += count;
552 dsl_dir_rele(chld_dd, FTAG);
554 zap_cursor_fini(zc);
555 /* Count my snapshots (we counted children's snapshots above) */
556 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
557 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
559 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
560 zap_cursor_retrieve(zc, za) == 0;
561 zap_cursor_advance(zc)) {
562 /* Don't count temporary snapshots */
563 if (za->za_name[0] != '%')
564 my_ss_cnt++;
566 zap_cursor_fini(zc);
568 dsl_dataset_rele(ds, FTAG);
570 kmem_free(zc, sizeof (zap_cursor_t));
571 kmem_free(za, sizeof (zap_attribute_t));
573 /* we're in a sync task, update counts */
574 dmu_buf_will_dirty(dd->dd_dbuf, tx);
575 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
576 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
577 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
578 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
581 static int
582 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
584 char *ddname = (char *)arg;
585 dsl_pool_t *dp = dmu_tx_pool(tx);
586 dsl_dataset_t *ds;
587 dsl_dir_t *dd;
588 int error;
590 error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
591 if (error != 0)
592 return (error);
594 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
595 dsl_dataset_rele(ds, FTAG);
596 return (SET_ERROR(ENOTSUP));
599 dd = ds->ds_dir;
600 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
601 dsl_dir_is_zapified(dd) &&
602 zap_contains(dp->dp_meta_objset, dd->dd_object,
603 DD_FIELD_FILESYSTEM_COUNT) == 0) {
604 dsl_dataset_rele(ds, FTAG);
605 return (SET_ERROR(EALREADY));
608 dsl_dataset_rele(ds, FTAG);
609 return (0);
612 static void
613 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
615 char *ddname = (char *)arg;
616 dsl_pool_t *dp = dmu_tx_pool(tx);
617 dsl_dataset_t *ds;
618 spa_t *spa;
620 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
622 spa = dsl_dataset_get_spa(ds);
624 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
626 * Since the feature was not active and we're now setting a
627 * limit, increment the feature-active counter so that the
628 * feature becomes active for the first time.
630 * We are already in a sync task so we can update the MOS.
632 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
636 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
637 * we need to ensure the counts are correct. Descend down the tree from
638 * this point and update all of the counts to be accurate.
640 dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
642 dsl_dataset_rele(ds, FTAG);
646 * Make sure the feature is enabled and activate it if necessary.
647 * Since we're setting a limit, ensure the on-disk counts are valid.
648 * This is only called by the ioctl path when setting a limit value.
650 * We do not need to validate the new limit, since users who can change the
651 * limit are also allowed to exceed the limit.
654 dsl_dir_activate_fs_ss_limit(const char *ddname)
656 int error;
658 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
659 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
660 ZFS_SPACE_CHECK_RESERVED);
662 if (error == EALREADY)
663 error = 0;
665 return (error);
669 * Used to determine if the filesystem_limit or snapshot_limit should be
670 * enforced. We allow the limit to be exceeded if the user has permission to
671 * write the property value. We pass in the creds that we got in the open
672 * context since we will always be the GZ root in syncing context. We also have
673 * to handle the case where we are allowed to change the limit on the current
674 * dataset, but there may be another limit in the tree above.
676 * We can never modify these two properties within a non-global zone. In
677 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
678 * can't use that function since we are already holding the dp_config_rwlock.
679 * In addition, we already have the dd and dealing with snapshots is simplified
680 * in this code.
683 typedef enum {
684 ENFORCE_ALWAYS,
685 ENFORCE_NEVER,
686 ENFORCE_ABOVE
687 } enforce_res_t;
689 static enforce_res_t
690 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr)
692 enforce_res_t enforce = ENFORCE_ALWAYS;
693 uint64_t obj;
694 dsl_dataset_t *ds;
695 uint64_t zoned;
697 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
698 prop == ZFS_PROP_SNAPSHOT_LIMIT);
700 #ifdef _KERNEL
701 if (crgetzoneid(cr) != GLOBAL_ZONEID)
702 return (ENFORCE_ALWAYS);
704 if (secpolicy_zfs(cr) == 0)
705 return (ENFORCE_NEVER);
706 #endif
708 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
709 return (ENFORCE_ALWAYS);
711 ASSERT(dsl_pool_config_held(dd->dd_pool));
713 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
714 return (ENFORCE_ALWAYS);
716 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) {
717 /* Only root can access zoned fs's from the GZ */
718 enforce = ENFORCE_ALWAYS;
719 } else {
720 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
721 enforce = ENFORCE_ABOVE;
724 dsl_dataset_rele(ds, FTAG);
725 return (enforce);
729 * Check if adding additional child filesystem(s) would exceed any filesystem
730 * limits or adding additional snapshot(s) would exceed any snapshot limits.
731 * The prop argument indicates which limit to check.
733 * Note that all filesystem limits up to the root (or the highest
734 * initialized) filesystem or the given ancestor must be satisfied.
737 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
738 dsl_dir_t *ancestor, cred_t *cr)
740 objset_t *os = dd->dd_pool->dp_meta_objset;
741 uint64_t limit, count;
742 char *count_prop;
743 enforce_res_t enforce;
744 int err = 0;
746 ASSERT(dsl_pool_config_held(dd->dd_pool));
747 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
748 prop == ZFS_PROP_SNAPSHOT_LIMIT);
751 * If we're allowed to change the limit, don't enforce the limit
752 * e.g. this can happen if a snapshot is taken by an administrative
753 * user in the global zone (i.e. a recursive snapshot by root).
754 * However, we must handle the case of delegated permissions where we
755 * are allowed to change the limit on the current dataset, but there
756 * is another limit in the tree above.
758 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr);
759 if (enforce == ENFORCE_NEVER)
760 return (0);
763 * e.g. if renaming a dataset with no snapshots, count adjustment
764 * is 0.
766 if (delta == 0)
767 return (0);
769 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
771 * We don't enforce the limit for temporary snapshots. This is
772 * indicated by a NULL cred_t argument.
774 if (cr == NULL)
775 return (0);
777 count_prop = DD_FIELD_SNAPSHOT_COUNT;
778 } else {
779 count_prop = DD_FIELD_FILESYSTEM_COUNT;
783 * If an ancestor has been provided, stop checking the limit once we
784 * hit that dir. We need this during rename so that we don't overcount
785 * the check once we recurse up to the common ancestor.
787 if (ancestor == dd)
788 return (0);
791 * If we hit an uninitialized node while recursing up the tree, we can
792 * stop since we know there is no limit here (or above). The counts are
793 * not valid on this node and we know we won't touch this node's counts.
795 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object,
796 count_prop, sizeof (count), 1, &count) == ENOENT)
797 return (0);
799 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
800 B_FALSE);
801 if (err != 0)
802 return (err);
804 /* Is there a limit which we've hit? */
805 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
806 return (SET_ERROR(EDQUOT));
808 if (dd->dd_parent != NULL)
809 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
810 ancestor, cr);
812 return (err);
816 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
817 * parents. When a new filesystem/snapshot is created, increment the count on
818 * all parents, and when a filesystem/snapshot is destroyed, decrement the
819 * count.
821 void
822 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
823 dmu_tx_t *tx)
825 int err;
826 objset_t *os = dd->dd_pool->dp_meta_objset;
827 uint64_t count;
829 ASSERT(dsl_pool_config_held(dd->dd_pool));
830 ASSERT(dmu_tx_is_syncing(tx));
831 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
832 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
835 * When we receive an incremental stream into a filesystem that already
836 * exists, a temporary clone is created. We don't count this temporary
837 * clone, whose name begins with a '%'. We also ignore hidden ($FREE,
838 * $MOS & $ORIGIN) objsets.
840 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') &&
841 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0)
842 return;
845 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
847 if (delta == 0)
848 return;
851 * If we hit an uninitialized node while recursing up the tree, we can
852 * stop since we know the counts are not valid on this node and we
853 * know we shouldn't touch this node's counts. An uninitialized count
854 * on the node indicates that either the feature has not yet been
855 * activated or there are no limits on this part of the tree.
857 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
858 prop, sizeof (count), 1, &count)) == ENOENT)
859 return;
860 VERIFY0(err);
862 count += delta;
863 /* Use a signed verify to make sure we're not neg. */
864 VERIFY3S(count, >=, 0);
866 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
867 tx));
869 /* Roll up this additional count into our ancestors */
870 if (dd->dd_parent != NULL)
871 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
874 uint64_t
875 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
876 dmu_tx_t *tx)
878 objset_t *mos = dp->dp_meta_objset;
879 uint64_t ddobj;
880 dsl_dir_phys_t *ddphys;
881 dmu_buf_t *dbuf;
883 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
884 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
885 if (pds) {
886 VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
887 name, sizeof (uint64_t), 1, &ddobj, tx));
888 } else {
889 /* it's the root dir */
890 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
891 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
893 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
894 dmu_buf_will_dirty(dbuf, tx);
895 ddphys = dbuf->db_data;
897 ddphys->dd_creation_time = gethrestime_sec();
898 if (pds) {
899 ddphys->dd_parent_obj = pds->dd_object;
901 /* update the filesystem counts */
902 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
904 ddphys->dd_props_zapobj = zap_create(mos,
905 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
906 ddphys->dd_child_dir_zapobj = zap_create(mos,
907 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
908 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
909 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
910 dmu_buf_rele(dbuf, FTAG);
912 return (ddobj);
915 boolean_t
916 dsl_dir_is_clone(dsl_dir_t *dd)
918 return (dsl_dir_phys(dd)->dd_origin_obj &&
919 (dd->dd_pool->dp_origin_snap == NULL ||
920 dsl_dir_phys(dd)->dd_origin_obj !=
921 dd->dd_pool->dp_origin_snap->ds_object));
924 void
925 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
927 mutex_enter(&dd->dd_lock);
928 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED,
929 dsl_dir_phys(dd)->dd_used_bytes);
930 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
931 dsl_dir_phys(dd)->dd_quota);
932 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
933 dsl_dir_phys(dd)->dd_reserved);
934 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO,
935 dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
936 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
937 dsl_dir_phys(dd)->dd_compressed_bytes));
938 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
939 dsl_dir_phys(dd)->dd_uncompressed_bytes);
940 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
941 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
942 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
943 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
944 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
945 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
946 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
947 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
948 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
949 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
951 mutex_exit(&dd->dd_lock);
953 if (dsl_dir_is_zapified(dd)) {
954 uint64_t count;
955 objset_t *os = dd->dd_pool->dp_meta_objset;
957 if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
958 sizeof (count), 1, &count) == 0) {
959 dsl_prop_nvlist_add_uint64(nv,
960 ZFS_PROP_FILESYSTEM_COUNT, count);
962 if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
963 sizeof (count), 1, &count) == 0) {
964 dsl_prop_nvlist_add_uint64(nv,
965 ZFS_PROP_SNAPSHOT_COUNT, count);
969 if (dsl_dir_is_clone(dd)) {
970 dsl_dataset_t *ds;
971 char buf[MAXNAMELEN];
973 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
974 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
975 dsl_dataset_name(ds, buf);
976 dsl_dataset_rele(ds, FTAG);
977 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
981 void
982 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
984 dsl_pool_t *dp = dd->dd_pool;
986 ASSERT(dsl_dir_phys(dd));
988 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
989 /* up the hold count until we can be written out */
990 dmu_buf_add_ref(dd->dd_dbuf, dd);
994 static int64_t
995 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
997 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
998 uint64_t new_accounted =
999 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1000 return (new_accounted - old_accounted);
1003 void
1004 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1006 ASSERT(dmu_tx_is_syncing(tx));
1008 mutex_enter(&dd->dd_lock);
1009 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]);
1010 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
1011 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024);
1012 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0;
1013 mutex_exit(&dd->dd_lock);
1015 /* release the hold from dsl_dir_dirty */
1016 dmu_buf_rele(dd->dd_dbuf, dd);
1019 static uint64_t
1020 dsl_dir_space_towrite(dsl_dir_t *dd)
1022 uint64_t space = 0;
1023 int i;
1025 ASSERT(MUTEX_HELD(&dd->dd_lock));
1027 for (i = 0; i < TXG_SIZE; i++) {
1028 space += dd->dd_space_towrite[i&TXG_MASK];
1029 ASSERT3U(dd->dd_space_towrite[i&TXG_MASK], >=, 0);
1031 return (space);
1035 * How much space would dd have available if ancestor had delta applied
1036 * to it? If ondiskonly is set, we're only interested in what's
1037 * on-disk, not estimated pending changes.
1039 uint64_t
1040 dsl_dir_space_available(dsl_dir_t *dd,
1041 dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1043 uint64_t parentspace, myspace, quota, used;
1046 * If there are no restrictions otherwise, assume we have
1047 * unlimited space available.
1049 quota = UINT64_MAX;
1050 parentspace = UINT64_MAX;
1052 if (dd->dd_parent != NULL) {
1053 parentspace = dsl_dir_space_available(dd->dd_parent,
1054 ancestor, delta, ondiskonly);
1057 mutex_enter(&dd->dd_lock);
1058 if (dsl_dir_phys(dd)->dd_quota != 0)
1059 quota = dsl_dir_phys(dd)->dd_quota;
1060 used = dsl_dir_phys(dd)->dd_used_bytes;
1061 if (!ondiskonly)
1062 used += dsl_dir_space_towrite(dd);
1064 if (dd->dd_parent == NULL) {
1065 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE);
1066 quota = MIN(quota, poolsize);
1069 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1071 * We have some space reserved, in addition to what our
1072 * parent gave us.
1074 parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1077 if (dd == ancestor) {
1078 ASSERT(delta <= 0);
1079 ASSERT(used >= -delta);
1080 used += delta;
1081 if (parentspace != UINT64_MAX)
1082 parentspace -= delta;
1085 if (used > quota) {
1086 /* over quota */
1087 myspace = 0;
1088 } else {
1090 * the lesser of the space provided by our parent and
1091 * the space left in our quota
1093 myspace = MIN(parentspace, quota - used);
1096 mutex_exit(&dd->dd_lock);
1098 return (myspace);
1101 struct tempreserve {
1102 list_node_t tr_node;
1103 dsl_dir_t *tr_ds;
1104 uint64_t tr_size;
1107 static int
1108 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1109 boolean_t ignorequota, boolean_t checkrefquota, list_t *tr_list,
1110 dmu_tx_t *tx, boolean_t first)
1112 uint64_t txg = tx->tx_txg;
1113 uint64_t est_inflight, used_on_disk, quota, parent_rsrv;
1114 uint64_t deferred = 0;
1115 struct tempreserve *tr;
1116 int retval = EDQUOT;
1117 int txgidx = txg & TXG_MASK;
1118 int i;
1119 uint64_t ref_rsrv = 0;
1121 ASSERT3U(txg, !=, 0);
1122 ASSERT3S(asize, >, 0);
1124 mutex_enter(&dd->dd_lock);
1127 * Check against the dsl_dir's quota. We don't add in the delta
1128 * when checking for over-quota because they get one free hit.
1130 est_inflight = dsl_dir_space_towrite(dd);
1131 for (i = 0; i < TXG_SIZE; i++)
1132 est_inflight += dd->dd_tempreserved[i];
1133 used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1136 * On the first iteration, fetch the dataset's used-on-disk and
1137 * refreservation values. Also, if checkrefquota is set, test if
1138 * allocating this space would exceed the dataset's refquota.
1140 if (first && tx->tx_objset) {
1141 int error;
1142 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1144 error = dsl_dataset_check_quota(ds, checkrefquota,
1145 asize, est_inflight, &used_on_disk, &ref_rsrv);
1146 if (error) {
1147 mutex_exit(&dd->dd_lock);
1148 return (error);
1153 * If this transaction will result in a net free of space,
1154 * we want to let it through.
1156 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1157 quota = UINT64_MAX;
1158 else
1159 quota = dsl_dir_phys(dd)->dd_quota;
1162 * Adjust the quota against the actual pool size at the root
1163 * minus any outstanding deferred frees.
1164 * To ensure that it's possible to remove files from a full
1165 * pool without inducing transient overcommits, we throttle
1166 * netfree transactions against a quota that is slightly larger,
1167 * but still within the pool's allocation slop. In cases where
1168 * we're very close to full, this will allow a steady trickle of
1169 * removes to get through.
1171 if (dd->dd_parent == NULL) {
1172 spa_t *spa = dd->dd_pool->dp_spa;
1173 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree);
1174 deferred = metaslab_class_get_deferred(spa_normal_class(spa));
1175 if (poolsize - deferred < quota) {
1176 quota = poolsize - deferred;
1177 retval = ENOSPC;
1182 * If they are requesting more space, and our current estimate
1183 * is over quota, they get to try again unless the actual
1184 * on-disk is over quota and there are no pending changes (which
1185 * may free up space for us).
1187 if (used_on_disk + est_inflight >= quota) {
1188 if (est_inflight > 0 || used_on_disk < quota ||
1189 (retval == ENOSPC && used_on_disk < quota + deferred))
1190 retval = ERESTART;
1191 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1192 "quota=%lluK tr=%lluK err=%d\n",
1193 used_on_disk>>10, est_inflight>>10,
1194 quota>>10, asize>>10, retval);
1195 mutex_exit(&dd->dd_lock);
1196 return (SET_ERROR(retval));
1199 /* We need to up our estimated delta before dropping dd_lock */
1200 dd->dd_tempreserved[txgidx] += asize;
1202 parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1203 asize - ref_rsrv);
1204 mutex_exit(&dd->dd_lock);
1206 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1207 tr->tr_ds = dd;
1208 tr->tr_size = asize;
1209 list_insert_tail(tr_list, tr);
1211 /* see if it's OK with our parent */
1212 if (dd->dd_parent && parent_rsrv) {
1213 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1215 return (dsl_dir_tempreserve_impl(dd->dd_parent,
1216 parent_rsrv, netfree, ismos, TRUE, tr_list, tx, FALSE));
1217 } else {
1218 return (0);
1223 * Reserve space in this dsl_dir, to be used in this tx's txg.
1224 * After the space has been dirtied (and dsl_dir_willuse_space()
1225 * has been called), the reservation should be canceled, using
1226 * dsl_dir_tempreserve_clear().
1229 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1230 uint64_t fsize, uint64_t usize, void **tr_cookiep, dmu_tx_t *tx)
1232 int err;
1233 list_t *tr_list;
1235 if (asize == 0) {
1236 *tr_cookiep = NULL;
1237 return (0);
1240 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1241 list_create(tr_list, sizeof (struct tempreserve),
1242 offsetof(struct tempreserve, tr_node));
1243 ASSERT3S(asize, >, 0);
1244 ASSERT3S(fsize, >=, 0);
1246 err = arc_tempreserve_space(lsize, tx->tx_txg);
1247 if (err == 0) {
1248 struct tempreserve *tr;
1250 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1251 tr->tr_size = lsize;
1252 list_insert_tail(tr_list, tr);
1253 } else {
1254 if (err == EAGAIN) {
1256 * If arc_memory_throttle() detected that pageout
1257 * is running and we are low on memory, we delay new
1258 * non-pageout transactions to give pageout an
1259 * advantage.
1261 * It is unfortunate to be delaying while the caller's
1262 * locks are held.
1264 txg_delay(dd->dd_pool, tx->tx_txg,
1265 MSEC2NSEC(10), MSEC2NSEC(10));
1266 err = SET_ERROR(ERESTART);
1270 if (err == 0) {
1271 err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize,
1272 FALSE, asize > usize, tr_list, tx, TRUE);
1275 if (err != 0)
1276 dsl_dir_tempreserve_clear(tr_list, tx);
1277 else
1278 *tr_cookiep = tr_list;
1280 return (err);
1284 * Clear a temporary reservation that we previously made with
1285 * dsl_dir_tempreserve_space().
1287 void
1288 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1290 int txgidx = tx->tx_txg & TXG_MASK;
1291 list_t *tr_list = tr_cookie;
1292 struct tempreserve *tr;
1294 ASSERT3U(tx->tx_txg, !=, 0);
1296 if (tr_cookie == NULL)
1297 return;
1299 while ((tr = list_head(tr_list)) != NULL) {
1300 if (tr->tr_ds) {
1301 mutex_enter(&tr->tr_ds->dd_lock);
1302 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1303 tr->tr_size);
1304 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1305 mutex_exit(&tr->tr_ds->dd_lock);
1306 } else {
1307 arc_tempreserve_clear(tr->tr_size);
1309 list_remove(tr_list, tr);
1310 kmem_free(tr, sizeof (struct tempreserve));
1313 kmem_free(tr_list, sizeof (list_t));
1317 * This should be called from open context when we think we're going to write
1318 * or free space, for example when dirtying data. Be conservative; it's okay
1319 * to write less space or free more, but we don't want to write more or free
1320 * less than the amount specified.
1322 void
1323 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1325 int64_t parent_space;
1326 uint64_t est_used;
1328 mutex_enter(&dd->dd_lock);
1329 if (space > 0)
1330 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1332 est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes;
1333 parent_space = parent_delta(dd, est_used, space);
1334 mutex_exit(&dd->dd_lock);
1336 /* Make sure that we clean up dd_space_to* */
1337 dsl_dir_dirty(dd, tx);
1339 /* XXX this is potentially expensive and unnecessary... */
1340 if (parent_space && dd->dd_parent)
1341 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx);
1344 /* call from syncing context when we actually write/free space for this dd */
1345 void
1346 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1347 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1349 int64_t accounted_delta;
1352 * dsl_dataset_set_refreservation_sync_impl() calls this with
1353 * dd_lock held, so that it can atomically update
1354 * ds->ds_reserved and the dsl_dir accounting, so that
1355 * dsl_dataset_check_quota() can see dataset and dir accounting
1356 * consistently.
1358 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1360 ASSERT(dmu_tx_is_syncing(tx));
1361 ASSERT(type < DD_USED_NUM);
1363 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1365 if (needlock)
1366 mutex_enter(&dd->dd_lock);
1367 accounted_delta =
1368 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
1369 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
1370 ASSERT(compressed >= 0 ||
1371 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
1372 ASSERT(uncompressed >= 0 ||
1373 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
1374 dsl_dir_phys(dd)->dd_used_bytes += used;
1375 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
1376 dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
1378 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1379 ASSERT(used > 0 ||
1380 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
1381 dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
1382 #ifdef DEBUG
1383 dd_used_t t;
1384 uint64_t u = 0;
1385 for (t = 0; t < DD_USED_NUM; t++)
1386 u += dsl_dir_phys(dd)->dd_used_breakdown[t];
1387 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
1388 #endif
1390 if (needlock)
1391 mutex_exit(&dd->dd_lock);
1393 if (dd->dd_parent != NULL) {
1394 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1395 accounted_delta, compressed, uncompressed, tx);
1396 dsl_dir_transfer_space(dd->dd_parent,
1397 used - accounted_delta,
1398 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1402 void
1403 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1404 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1406 ASSERT(dmu_tx_is_syncing(tx));
1407 ASSERT(oldtype < DD_USED_NUM);
1408 ASSERT(newtype < DD_USED_NUM);
1410 if (delta == 0 ||
1411 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
1412 return;
1414 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1415 mutex_enter(&dd->dd_lock);
1416 ASSERT(delta > 0 ?
1417 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
1418 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
1419 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
1420 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
1421 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
1422 mutex_exit(&dd->dd_lock);
1425 typedef struct dsl_dir_set_qr_arg {
1426 const char *ddsqra_name;
1427 zprop_source_t ddsqra_source;
1428 uint64_t ddsqra_value;
1429 } dsl_dir_set_qr_arg_t;
1431 static int
1432 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1434 dsl_dir_set_qr_arg_t *ddsqra = arg;
1435 dsl_pool_t *dp = dmu_tx_pool(tx);
1436 dsl_dataset_t *ds;
1437 int error;
1438 uint64_t towrite, newval;
1440 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1441 if (error != 0)
1442 return (error);
1444 error = dsl_prop_predict(ds->ds_dir, "quota",
1445 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1446 if (error != 0) {
1447 dsl_dataset_rele(ds, FTAG);
1448 return (error);
1451 if (newval == 0) {
1452 dsl_dataset_rele(ds, FTAG);
1453 return (0);
1456 mutex_enter(&ds->ds_dir->dd_lock);
1458 * If we are doing the preliminary check in open context, and
1459 * there are pending changes, then don't fail it, since the
1460 * pending changes could under-estimate the amount of space to be
1461 * freed up.
1463 towrite = dsl_dir_space_towrite(ds->ds_dir);
1464 if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1465 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1466 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1467 error = SET_ERROR(ENOSPC);
1469 mutex_exit(&ds->ds_dir->dd_lock);
1470 dsl_dataset_rele(ds, FTAG);
1471 return (error);
1474 static void
1475 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1477 dsl_dir_set_qr_arg_t *ddsqra = arg;
1478 dsl_pool_t *dp = dmu_tx_pool(tx);
1479 dsl_dataset_t *ds;
1480 uint64_t newval;
1482 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1484 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1485 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1486 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1487 &ddsqra->ddsqra_value, tx);
1489 VERIFY0(dsl_prop_get_int_ds(ds,
1490 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1491 } else {
1492 newval = ddsqra->ddsqra_value;
1493 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1494 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1497 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1498 mutex_enter(&ds->ds_dir->dd_lock);
1499 dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1500 mutex_exit(&ds->ds_dir->dd_lock);
1501 dsl_dataset_rele(ds, FTAG);
1505 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1507 dsl_dir_set_qr_arg_t ddsqra;
1509 ddsqra.ddsqra_name = ddname;
1510 ddsqra.ddsqra_source = source;
1511 ddsqra.ddsqra_value = quota;
1513 return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1514 dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1518 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1520 dsl_dir_set_qr_arg_t *ddsqra = arg;
1521 dsl_pool_t *dp = dmu_tx_pool(tx);
1522 dsl_dataset_t *ds;
1523 dsl_dir_t *dd;
1524 uint64_t newval, used, avail;
1525 int error;
1527 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1528 if (error != 0)
1529 return (error);
1530 dd = ds->ds_dir;
1533 * If we are doing the preliminary check in open context, the
1534 * space estimates may be inaccurate.
1536 if (!dmu_tx_is_syncing(tx)) {
1537 dsl_dataset_rele(ds, FTAG);
1538 return (0);
1541 error = dsl_prop_predict(ds->ds_dir,
1542 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1543 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1544 if (error != 0) {
1545 dsl_dataset_rele(ds, FTAG);
1546 return (error);
1549 mutex_enter(&dd->dd_lock);
1550 used = dsl_dir_phys(dd)->dd_used_bytes;
1551 mutex_exit(&dd->dd_lock);
1553 if (dd->dd_parent) {
1554 avail = dsl_dir_space_available(dd->dd_parent,
1555 NULL, 0, FALSE);
1556 } else {
1557 avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used;
1560 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1561 uint64_t delta = MAX(used, newval) -
1562 MAX(used, dsl_dir_phys(dd)->dd_reserved);
1564 if (delta > avail ||
1565 (dsl_dir_phys(dd)->dd_quota > 0 &&
1566 newval > dsl_dir_phys(dd)->dd_quota))
1567 error = SET_ERROR(ENOSPC);
1570 dsl_dataset_rele(ds, FTAG);
1571 return (error);
1574 void
1575 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1577 uint64_t used;
1578 int64_t delta;
1580 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1582 mutex_enter(&dd->dd_lock);
1583 used = dsl_dir_phys(dd)->dd_used_bytes;
1584 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1585 dsl_dir_phys(dd)->dd_reserved = value;
1587 if (dd->dd_parent != NULL) {
1588 /* Roll up this additional usage into our ancestors */
1589 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1590 delta, 0, 0, tx);
1592 mutex_exit(&dd->dd_lock);
1596 static void
1597 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1599 dsl_dir_set_qr_arg_t *ddsqra = arg;
1600 dsl_pool_t *dp = dmu_tx_pool(tx);
1601 dsl_dataset_t *ds;
1602 uint64_t newval;
1604 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1606 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1607 dsl_prop_set_sync_impl(ds,
1608 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1609 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1610 &ddsqra->ddsqra_value, tx);
1612 VERIFY0(dsl_prop_get_int_ds(ds,
1613 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1614 } else {
1615 newval = ddsqra->ddsqra_value;
1616 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1617 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1618 (longlong_t)newval);
1621 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1622 dsl_dataset_rele(ds, FTAG);
1626 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1627 uint64_t reservation)
1629 dsl_dir_set_qr_arg_t ddsqra;
1631 ddsqra.ddsqra_name = ddname;
1632 ddsqra.ddsqra_source = source;
1633 ddsqra.ddsqra_value = reservation;
1635 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1636 dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1639 static dsl_dir_t *
1640 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1642 for (; ds1; ds1 = ds1->dd_parent) {
1643 dsl_dir_t *dd;
1644 for (dd = ds2; dd; dd = dd->dd_parent) {
1645 if (ds1 == dd)
1646 return (dd);
1649 return (NULL);
1653 * If delta is applied to dd, how much of that delta would be applied to
1654 * ancestor? Syncing context only.
1656 static int64_t
1657 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1659 if (dd == ancestor)
1660 return (delta);
1662 mutex_enter(&dd->dd_lock);
1663 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1664 mutex_exit(&dd->dd_lock);
1665 return (would_change(dd->dd_parent, delta, ancestor));
1668 typedef struct dsl_dir_rename_arg {
1669 const char *ddra_oldname;
1670 const char *ddra_newname;
1671 cred_t *ddra_cred;
1672 } dsl_dir_rename_arg_t;
1674 /* ARGSUSED */
1675 static int
1676 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1678 int *deltap = arg;
1679 char namebuf[MAXNAMELEN];
1681 dsl_dataset_name(ds, namebuf);
1683 if (strlen(namebuf) + *deltap >= MAXNAMELEN)
1684 return (SET_ERROR(ENAMETOOLONG));
1685 return (0);
1688 static int
1689 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1691 dsl_dir_rename_arg_t *ddra = arg;
1692 dsl_pool_t *dp = dmu_tx_pool(tx);
1693 dsl_dir_t *dd, *newparent;
1694 const char *mynewname;
1695 int error;
1696 int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname);
1698 /* target dir should exist */
1699 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1700 if (error != 0)
1701 return (error);
1703 /* new parent should exist */
1704 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1705 &newparent, &mynewname);
1706 if (error != 0) {
1707 dsl_dir_rele(dd, FTAG);
1708 return (error);
1711 /* can't rename to different pool */
1712 if (dd->dd_pool != newparent->dd_pool) {
1713 dsl_dir_rele(newparent, FTAG);
1714 dsl_dir_rele(dd, FTAG);
1715 return (SET_ERROR(ENXIO));
1718 /* new name should not already exist */
1719 if (mynewname == NULL) {
1720 dsl_dir_rele(newparent, FTAG);
1721 dsl_dir_rele(dd, FTAG);
1722 return (SET_ERROR(EEXIST));
1725 /* if the name length is growing, validate child name lengths */
1726 if (delta > 0) {
1727 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
1728 &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1729 if (error != 0) {
1730 dsl_dir_rele(newparent, FTAG);
1731 dsl_dir_rele(dd, FTAG);
1732 return (error);
1736 if (dmu_tx_is_syncing(tx)) {
1737 if (spa_feature_is_active(dp->dp_spa,
1738 SPA_FEATURE_FS_SS_LIMIT)) {
1740 * Although this is the check function and we don't
1741 * normally make on-disk changes in check functions,
1742 * we need to do that here.
1744 * Ensure this portion of the tree's counts have been
1745 * initialized in case the new parent has limits set.
1747 dsl_dir_init_fs_ss_count(dd, tx);
1751 if (newparent != dd->dd_parent) {
1752 /* is there enough space? */
1753 uint64_t myspace =
1754 MAX(dsl_dir_phys(dd)->dd_used_bytes,
1755 dsl_dir_phys(dd)->dd_reserved);
1756 objset_t *os = dd->dd_pool->dp_meta_objset;
1757 uint64_t fs_cnt = 0;
1758 uint64_t ss_cnt = 0;
1760 if (dsl_dir_is_zapified(dd)) {
1761 int err;
1763 err = zap_lookup(os, dd->dd_object,
1764 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1765 &fs_cnt);
1766 if (err != ENOENT && err != 0) {
1767 dsl_dir_rele(newparent, FTAG);
1768 dsl_dir_rele(dd, FTAG);
1769 return (err);
1773 * have to add 1 for the filesystem itself that we're
1774 * moving
1776 fs_cnt++;
1778 err = zap_lookup(os, dd->dd_object,
1779 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1780 &ss_cnt);
1781 if (err != ENOENT && err != 0) {
1782 dsl_dir_rele(newparent, FTAG);
1783 dsl_dir_rele(dd, FTAG);
1784 return (err);
1788 /* no rename into our descendant */
1789 if (closest_common_ancestor(dd, newparent) == dd) {
1790 dsl_dir_rele(newparent, FTAG);
1791 dsl_dir_rele(dd, FTAG);
1792 return (SET_ERROR(EINVAL));
1795 error = dsl_dir_transfer_possible(dd->dd_parent,
1796 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred);
1797 if (error != 0) {
1798 dsl_dir_rele(newparent, FTAG);
1799 dsl_dir_rele(dd, FTAG);
1800 return (error);
1804 dsl_dir_rele(newparent, FTAG);
1805 dsl_dir_rele(dd, FTAG);
1806 return (0);
1809 static void
1810 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
1812 dsl_dir_rename_arg_t *ddra = arg;
1813 dsl_pool_t *dp = dmu_tx_pool(tx);
1814 dsl_dir_t *dd, *newparent;
1815 const char *mynewname;
1816 int error;
1817 objset_t *mos = dp->dp_meta_objset;
1819 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
1820 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
1821 &mynewname));
1823 /* Log this before we change the name. */
1824 spa_history_log_internal_dd(dd, "rename", tx,
1825 "-> %s", ddra->ddra_newname);
1827 if (newparent != dd->dd_parent) {
1828 objset_t *os = dd->dd_pool->dp_meta_objset;
1829 uint64_t fs_cnt = 0;
1830 uint64_t ss_cnt = 0;
1833 * We already made sure the dd counts were initialized in the
1834 * check function.
1836 if (spa_feature_is_active(dp->dp_spa,
1837 SPA_FEATURE_FS_SS_LIMIT)) {
1838 VERIFY0(zap_lookup(os, dd->dd_object,
1839 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1840 &fs_cnt));
1841 /* add 1 for the filesystem itself that we're moving */
1842 fs_cnt++;
1844 VERIFY0(zap_lookup(os, dd->dd_object,
1845 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1846 &ss_cnt));
1849 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
1850 DD_FIELD_FILESYSTEM_COUNT, tx);
1851 dsl_fs_ss_count_adjust(newparent, fs_cnt,
1852 DD_FIELD_FILESYSTEM_COUNT, tx);
1854 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
1855 DD_FIELD_SNAPSHOT_COUNT, tx);
1856 dsl_fs_ss_count_adjust(newparent, ss_cnt,
1857 DD_FIELD_SNAPSHOT_COUNT, tx);
1859 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1860 -dsl_dir_phys(dd)->dd_used_bytes,
1861 -dsl_dir_phys(dd)->dd_compressed_bytes,
1862 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1863 dsl_dir_diduse_space(newparent, DD_USED_CHILD,
1864 dsl_dir_phys(dd)->dd_used_bytes,
1865 dsl_dir_phys(dd)->dd_compressed_bytes,
1866 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1868 if (dsl_dir_phys(dd)->dd_reserved >
1869 dsl_dir_phys(dd)->dd_used_bytes) {
1870 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
1871 dsl_dir_phys(dd)->dd_used_bytes;
1873 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1874 -unused_rsrv, 0, 0, tx);
1875 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
1876 unused_rsrv, 0, 0, tx);
1880 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1882 /* remove from old parent zapobj */
1883 error = zap_remove(mos,
1884 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
1885 dd->dd_myname, tx);
1886 ASSERT0(error);
1888 (void) strcpy(dd->dd_myname, mynewname);
1889 dsl_dir_rele(dd->dd_parent, dd);
1890 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
1891 VERIFY0(dsl_dir_hold_obj(dp,
1892 newparent->dd_object, NULL, dd, &dd->dd_parent));
1894 /* add to new parent zapobj */
1895 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
1896 dd->dd_myname, 8, 1, &dd->dd_object, tx));
1898 dsl_prop_notify_all(dd);
1900 dsl_dir_rele(newparent, FTAG);
1901 dsl_dir_rele(dd, FTAG);
1905 dsl_dir_rename(const char *oldname, const char *newname)
1907 dsl_dir_rename_arg_t ddra;
1909 ddra.ddra_oldname = oldname;
1910 ddra.ddra_newname = newname;
1911 ddra.ddra_cred = CRED();
1913 return (dsl_sync_task(oldname,
1914 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
1915 3, ZFS_SPACE_CHECK_RESERVED));
1919 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
1920 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr)
1922 dsl_dir_t *ancestor;
1923 int64_t adelta;
1924 uint64_t avail;
1925 int err;
1927 ancestor = closest_common_ancestor(sdd, tdd);
1928 adelta = would_change(sdd, -space, ancestor);
1929 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
1930 if (avail < space)
1931 return (SET_ERROR(ENOSPC));
1933 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
1934 ancestor, cr);
1935 if (err != 0)
1936 return (err);
1937 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
1938 ancestor, cr);
1939 if (err != 0)
1940 return (err);
1942 return (0);
1945 timestruc_t
1946 dsl_dir_snap_cmtime(dsl_dir_t *dd)
1948 timestruc_t t;
1950 mutex_enter(&dd->dd_lock);
1951 t = dd->dd_snap_cmtime;
1952 mutex_exit(&dd->dd_lock);
1954 return (t);
1957 void
1958 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
1960 timestruc_t t;
1962 gethrestime(&t);
1963 mutex_enter(&dd->dd_lock);
1964 dd->dd_snap_cmtime = t;
1965 mutex_exit(&dd->dd_lock);
1968 void
1969 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
1971 objset_t *mos = dd->dd_pool->dp_meta_objset;
1972 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
1975 boolean_t
1976 dsl_dir_is_zapified(dsl_dir_t *dd)
1978 dmu_object_info_t doi;
1980 dmu_object_info_from_db(dd->dd_dbuf, &doi);
1981 return (doi.doi_type == DMU_OTN_ZAP_METADATA);