Merge commit '7e3488dc6cdcb0c04e1ce167a1a3bfef83b5f2e0'
[unleashed.git] / kernel / fs / zfs / zap_micro.c
blobb07079ed440861a316ce523744bc9ea0ea7e58e0
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Nexenta Systems, Inc.
30 #include <sys/zio.h>
31 #include <sys/spa.h>
32 #include <sys/dmu.h>
33 #include <sys/zfs_context.h>
34 #include <sys/zap.h>
35 #include <sys/refcount.h>
36 #include <sys/zap_impl.h>
37 #include <sys/zap_leaf.h>
38 #include <sys/avl.h>
39 #include <sys/arc.h>
40 #include <sys/dmu_objset.h>
42 #ifdef _KERNEL
43 #include <sys/sunddi.h>
44 #endif
46 extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
48 static int mzap_upgrade(zap_t **zapp,
49 void *tag, dmu_tx_t *tx, zap_flags_t flags);
51 uint64_t
52 zap_getflags(zap_t *zap)
54 if (zap->zap_ismicro)
55 return (0);
56 return (zap_f_phys(zap)->zap_flags);
59 int
60 zap_hashbits(zap_t *zap)
62 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
63 return (48);
64 else
65 return (28);
68 uint32_t
69 zap_maxcd(zap_t *zap)
71 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
72 return ((1<<16)-1);
73 else
74 return (-1U);
77 static uint64_t
78 zap_hash(zap_name_t *zn)
80 zap_t *zap = zn->zn_zap;
81 uint64_t h = 0;
83 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
84 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
85 h = *(uint64_t *)zn->zn_key_orig;
86 } else {
87 h = zap->zap_salt;
88 ASSERT(h != 0);
89 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
91 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
92 const uint64_t *wp = zn->zn_key_norm;
94 ASSERT(zn->zn_key_intlen == 8);
95 for (int i = 0; i < zn->zn_key_norm_numints;
96 wp++, i++) {
97 uint64_t word = *wp;
99 for (int j = 0; j < zn->zn_key_intlen; j++) {
100 h = (h >> 8) ^
101 zfs_crc64_table[(h ^ word) & 0xFF];
102 word >>= NBBY;
105 } else {
106 const uint8_t *cp = zn->zn_key_norm;
109 * We previously stored the terminating null on
110 * disk, but didn't hash it, so we need to
111 * continue to not hash it. (The
112 * zn_key_*_numints includes the terminating
113 * null for non-binary keys.)
115 int len = zn->zn_key_norm_numints - 1;
117 ASSERT(zn->zn_key_intlen == 1);
118 for (int i = 0; i < len; cp++, i++) {
119 h = (h >> 8) ^
120 zfs_crc64_table[(h ^ *cp) & 0xFF];
125 * Don't use all 64 bits, since we need some in the cookie for
126 * the collision differentiator. We MUST use the high bits,
127 * since those are the ones that we first pay attention to when
128 * chosing the bucket.
130 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
132 return (h);
135 static int
136 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags)
138 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
140 size_t inlen = strlen(name) + 1;
141 size_t outlen = ZAP_MAXNAMELEN;
143 int err = 0;
144 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
145 normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID,
146 U8_UNICODE_LATEST, &err);
148 return (err);
151 boolean_t
152 zap_match(zap_name_t *zn, const char *matchname)
154 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
156 if (zn->zn_matchtype & MT_NORMALIZE) {
157 char norm[ZAP_MAXNAMELEN];
159 if (zap_normalize(zn->zn_zap, matchname, norm,
160 zn->zn_normflags) != 0)
161 return (B_FALSE);
163 return (strcmp(zn->zn_key_norm, norm) == 0);
164 } else {
165 return (strcmp(zn->zn_key_orig, matchname) == 0);
169 void
170 zap_name_free(zap_name_t *zn)
172 kmem_free(zn, sizeof (zap_name_t));
175 zap_name_t *
176 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
178 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
180 zn->zn_zap = zap;
181 zn->zn_key_intlen = sizeof (*key);
182 zn->zn_key_orig = key;
183 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
184 zn->zn_matchtype = mt;
185 zn->zn_normflags = zap->zap_normflags;
188 * If we're dealing with a case sensitive lookup on a mixed or
189 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup
190 * will fold case to all caps overriding the lookup request.
192 if (mt & MT_MATCH_CASE)
193 zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER;
195 if (zap->zap_normflags) {
197 * We *must* use zap_normflags because this normalization is
198 * what the hash is computed from.
200 if (zap_normalize(zap, key, zn->zn_normbuf,
201 zap->zap_normflags) != 0) {
202 zap_name_free(zn);
203 return (NULL);
205 zn->zn_key_norm = zn->zn_normbuf;
206 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
207 } else {
208 if (mt != 0) {
209 zap_name_free(zn);
210 return (NULL);
212 zn->zn_key_norm = zn->zn_key_orig;
213 zn->zn_key_norm_numints = zn->zn_key_orig_numints;
216 zn->zn_hash = zap_hash(zn);
218 if (zap->zap_normflags != zn->zn_normflags) {
220 * We *must* use zn_normflags because this normalization is
221 * what the matching is based on. (Not the hash!)
223 if (zap_normalize(zap, key, zn->zn_normbuf,
224 zn->zn_normflags) != 0) {
225 zap_name_free(zn);
226 return (NULL);
228 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
231 return (zn);
234 zap_name_t *
235 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
237 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
239 ASSERT(zap->zap_normflags == 0);
240 zn->zn_zap = zap;
241 zn->zn_key_intlen = sizeof (*key);
242 zn->zn_key_orig = zn->zn_key_norm = key;
243 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
244 zn->zn_matchtype = 0;
246 zn->zn_hash = zap_hash(zn);
247 return (zn);
250 static void
251 mzap_byteswap(mzap_phys_t *buf, size_t size)
253 buf->mz_block_type = BSWAP_64(buf->mz_block_type);
254 buf->mz_salt = BSWAP_64(buf->mz_salt);
255 buf->mz_normflags = BSWAP_64(buf->mz_normflags);
256 int max = (size / MZAP_ENT_LEN) - 1;
257 for (int i = 0; i < max; i++) {
258 buf->mz_chunk[i].mze_value =
259 BSWAP_64(buf->mz_chunk[i].mze_value);
260 buf->mz_chunk[i].mze_cd =
261 BSWAP_32(buf->mz_chunk[i].mze_cd);
265 void
266 zap_byteswap(void *buf, size_t size)
268 uint64_t block_type = *(uint64_t *)buf;
270 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
271 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
272 mzap_byteswap(buf, size);
273 } else {
274 fzap_byteswap(buf, size);
278 static int
279 mze_compare(const void *arg1, const void *arg2)
281 const mzap_ent_t *mze1 = arg1;
282 const mzap_ent_t *mze2 = arg2;
284 if (mze1->mze_hash > mze2->mze_hash)
285 return (+1);
286 if (mze1->mze_hash < mze2->mze_hash)
287 return (-1);
288 if (mze1->mze_cd > mze2->mze_cd)
289 return (+1);
290 if (mze1->mze_cd < mze2->mze_cd)
291 return (-1);
292 return (0);
295 static void
296 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
298 ASSERT(zap->zap_ismicro);
299 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
301 mzap_ent_t *mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
302 mze->mze_chunkid = chunkid;
303 mze->mze_hash = hash;
304 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
305 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
306 avl_add(&zap->zap_m.zap_avl, mze);
309 static mzap_ent_t *
310 mze_find(zap_name_t *zn)
312 mzap_ent_t mze_tofind;
313 mzap_ent_t *mze;
314 avl_index_t idx;
315 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
317 ASSERT(zn->zn_zap->zap_ismicro);
318 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
320 mze_tofind.mze_hash = zn->zn_hash;
321 mze_tofind.mze_cd = 0;
323 mze = avl_find(avl, &mze_tofind, &idx);
324 if (mze == NULL)
325 mze = avl_nearest(avl, idx, AVL_AFTER);
326 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
327 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
328 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
329 return (mze);
332 return (NULL);
335 static uint32_t
336 mze_find_unused_cd(zap_t *zap, uint64_t hash)
338 mzap_ent_t mze_tofind;
339 avl_index_t idx;
340 avl_tree_t *avl = &zap->zap_m.zap_avl;
342 ASSERT(zap->zap_ismicro);
343 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
345 mze_tofind.mze_hash = hash;
346 mze_tofind.mze_cd = 0;
348 uint32_t cd = 0;
349 for (mzap_ent_t *mze = avl_find(avl, &mze_tofind, &idx);
350 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
351 if (mze->mze_cd != cd)
352 break;
353 cd++;
356 return (cd);
359 static void
360 mze_remove(zap_t *zap, mzap_ent_t *mze)
362 ASSERT(zap->zap_ismicro);
363 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
365 avl_remove(&zap->zap_m.zap_avl, mze);
366 kmem_free(mze, sizeof (mzap_ent_t));
369 static void
370 mze_destroy(zap_t *zap)
372 mzap_ent_t *mze;
373 void *avlcookie = NULL;
375 while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
376 kmem_free(mze, sizeof (mzap_ent_t));
377 avl_destroy(&zap->zap_m.zap_avl);
380 static zap_t *
381 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
383 zap_t *winner;
384 uint64_t *zap_hdr = (uint64_t *)db->db_data;
385 uint64_t zap_block_type = zap_hdr[0];
386 uint64_t zap_magic = zap_hdr[1];
388 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
390 zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
391 rw_init(&zap->zap_rwlock, 0, 0, 0);
392 rw_enter(&zap->zap_rwlock, RW_WRITER);
393 zap->zap_objset = os;
394 zap->zap_object = obj;
395 zap->zap_dbuf = db;
397 if (zap_block_type != ZBT_MICRO) {
398 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
399 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
400 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
401 winner = NULL; /* No actual winner here... */
402 goto handle_winner;
404 } else {
405 zap->zap_ismicro = TRUE;
409 * Make sure that zap_ismicro is set before we let others see
410 * it, because zap_lockdir() checks zap_ismicro without the lock
411 * held.
413 dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf);
414 winner = dmu_buf_set_user(db, &zap->zap_dbu);
416 if (winner != NULL)
417 goto handle_winner;
419 if (zap->zap_ismicro) {
420 zap->zap_salt = zap_m_phys(zap)->mz_salt;
421 zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
422 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
423 avl_create(&zap->zap_m.zap_avl, mze_compare,
424 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
426 for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
427 mzap_ent_phys_t *mze =
428 &zap_m_phys(zap)->mz_chunk[i];
429 if (mze->mze_name[0]) {
430 zap_name_t *zn;
432 zap->zap_m.zap_num_entries++;
433 zn = zap_name_alloc(zap, mze->mze_name, 0);
434 mze_insert(zap, i, zn->zn_hash);
435 zap_name_free(zn);
438 } else {
439 zap->zap_salt = zap_f_phys(zap)->zap_salt;
440 zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
442 ASSERT3U(sizeof (struct zap_leaf_header), ==,
443 2*ZAP_LEAF_CHUNKSIZE);
446 * The embedded pointer table should not overlap the
447 * other members.
449 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
450 &zap_f_phys(zap)->zap_salt);
453 * The embedded pointer table should end at the end of
454 * the block
456 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
457 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
458 (uintptr_t)zap_f_phys(zap), ==,
459 zap->zap_dbuf->db_size);
461 rw_exit(&zap->zap_rwlock);
462 return (zap);
464 handle_winner:
465 rw_exit(&zap->zap_rwlock);
466 rw_destroy(&zap->zap_rwlock);
467 if (!zap->zap_ismicro)
468 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
469 kmem_free(zap, sizeof (zap_t));
470 return (winner);
474 * This routine "consumes" the caller's hold on the dbuf, which must
475 * have the specified tag.
477 static int
478 zap_lockdir_impl(dmu_buf_t *db, void *tag, dmu_tx_t *tx,
479 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
481 ASSERT0(db->db_offset);
482 objset_t *os = dmu_buf_get_objset(db);
483 uint64_t obj = db->db_object;
485 *zapp = NULL;
487 zap_t *zap = dmu_buf_get_user(db);
488 if (zap == NULL) {
489 zap = mzap_open(os, obj, db);
490 if (zap == NULL) {
492 * mzap_open() didn't like what it saw on-disk.
493 * Check for corruption!
495 return (SET_ERROR(EIO));
500 * We're checking zap_ismicro without the lock held, in order to
501 * tell what type of lock we want. Once we have some sort of
502 * lock, see if it really is the right type. In practice this
503 * can only be different if it was upgraded from micro to fat,
504 * and micro wanted WRITER but fat only needs READER.
506 krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
507 rw_enter(&zap->zap_rwlock, lt);
508 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
509 /* it was upgraded, now we only need reader */
510 ASSERT(lt == RW_WRITER);
511 ASSERT(RW_READER ==
512 (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
513 rw_downgrade(&zap->zap_rwlock);
514 lt = RW_READER;
517 zap->zap_objset = os;
519 if (lt == RW_WRITER)
520 dmu_buf_will_dirty(db, tx);
522 ASSERT3P(zap->zap_dbuf, ==, db);
524 ASSERT(!zap->zap_ismicro ||
525 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
526 if (zap->zap_ismicro && tx && adding &&
527 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
528 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
529 if (newsz > MZAP_MAX_BLKSZ) {
530 dprintf("upgrading obj %llu: num_entries=%u\n",
531 obj, zap->zap_m.zap_num_entries);
532 *zapp = zap;
533 int err = mzap_upgrade(zapp, tag, tx, 0);
534 if (err != 0)
535 rw_exit(&zap->zap_rwlock);
536 return (err);
538 VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx));
539 zap->zap_m.zap_num_chunks =
540 db->db_size / MZAP_ENT_LEN - 1;
543 *zapp = zap;
544 return (0);
547 static int
548 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx,
549 krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
551 dmu_buf_t *db;
553 int err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
554 if (err != 0) {
555 return (err);
557 #ifdef ZFS_DEBUG
559 dmu_object_info_t doi;
560 dmu_object_info_from_db(db, &doi);
561 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
563 #endif
565 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
566 if (err != 0) {
567 dmu_buf_rele(db, tag);
569 return (err);
573 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
574 krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
576 dmu_buf_t *db;
578 int err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH);
579 if (err != 0)
580 return (err);
581 #ifdef ZFS_DEBUG
583 dmu_object_info_t doi;
584 dmu_object_info_from_db(db, &doi);
585 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
587 #endif
588 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
589 if (err != 0)
590 dmu_buf_rele(db, tag);
591 return (err);
594 void
595 zap_unlockdir(zap_t *zap, void *tag)
597 rw_exit(&zap->zap_rwlock);
598 dmu_buf_rele(zap->zap_dbuf, tag);
601 static int
602 mzap_upgrade(zap_t **zapp, void *tag, dmu_tx_t *tx, zap_flags_t flags)
604 int err = 0;
605 zap_t *zap = *zapp;
607 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
609 int sz = zap->zap_dbuf->db_size;
610 mzap_phys_t *mzp = zio_buf_alloc(sz);
611 bcopy(zap->zap_dbuf->db_data, mzp, sz);
612 int nchunks = zap->zap_m.zap_num_chunks;
614 if (!flags) {
615 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
616 1ULL << fzap_default_block_shift, 0, tx);
617 if (err != 0) {
618 zio_buf_free(mzp, sz);
619 return (err);
623 dprintf("upgrading obj=%llu with %u chunks\n",
624 zap->zap_object, nchunks);
625 /* XXX destroy the avl later, so we can use the stored hash value */
626 mze_destroy(zap);
628 fzap_upgrade(zap, tx, flags);
630 for (int i = 0; i < nchunks; i++) {
631 mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
632 if (mze->mze_name[0] == 0)
633 continue;
634 dprintf("adding %s=%llu\n",
635 mze->mze_name, mze->mze_value);
636 zap_name_t *zn = zap_name_alloc(zap, mze->mze_name, 0);
637 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd,
638 tag, tx);
639 zap = zn->zn_zap; /* fzap_add_cd() may change zap */
640 zap_name_free(zn);
641 if (err != 0)
642 break;
644 zio_buf_free(mzp, sz);
645 *zapp = zap;
646 return (err);
650 * The "normflags" determine the behavior of the matchtype_t which is
651 * passed to zap_lookup_norm(). Names which have the same normalized
652 * version will be stored with the same hash value, and therefore we can
653 * perform normalization-insensitive lookups. We can be Unicode form-
654 * insensitive and/or case-insensitive. The following flags are valid for
655 * "normflags":
657 * U8_TEXTPREP_NFC
658 * U8_TEXTPREP_NFD
659 * U8_TEXTPREP_NFKC
660 * U8_TEXTPREP_NFKD
661 * U8_TEXTPREP_TOUPPER
663 * The *_NF* (Normalization Form) flags are mutually exclusive; at most one
664 * of them may be supplied.
666 void
667 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
668 dmu_tx_t *tx)
670 dmu_buf_t *db;
672 VERIFY0(dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
674 dmu_buf_will_dirty(db, tx);
675 mzap_phys_t *zp = db->db_data;
676 zp->mz_block_type = ZBT_MICRO;
677 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
678 zp->mz_normflags = normflags;
680 if (flags != 0) {
681 zap_t *zap;
682 /* Only fat zap supports flags; upgrade immediately. */
683 VERIFY0(zap_lockdir_impl(db, FTAG, tx, RW_WRITER,
684 B_FALSE, B_FALSE, &zap));
685 VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags));
686 zap_unlockdir(zap, FTAG);
687 } else {
688 dmu_buf_rele(db, FTAG);
693 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
694 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
696 return (zap_create_claim_norm(os, obj,
697 0, ot, bonustype, bonuslen, tx));
701 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
702 dmu_object_type_t ot,
703 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
705 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
706 int err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
707 if (err != 0)
708 return (err);
709 mzap_create_impl(os, obj, normflags, 0, tx);
710 return (0);
713 uint64_t
714 zap_create(objset_t *os, dmu_object_type_t ot,
715 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
717 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
720 uint64_t
721 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
722 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
724 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
725 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
727 mzap_create_impl(os, obj, normflags, 0, tx);
728 return (obj);
731 uint64_t
732 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
733 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
734 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
736 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
737 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
739 ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
740 leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT &&
741 indirect_blockshift >= SPA_MINBLOCKSHIFT &&
742 indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT);
744 VERIFY(dmu_object_set_blocksize(os, obj,
745 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
747 mzap_create_impl(os, obj, normflags, flags, tx);
748 return (obj);
752 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
755 * dmu_object_free will free the object number and free the
756 * data. Freeing the data will cause our pageout function to be
757 * called, which will destroy our data (zap_leaf_t's and zap_t).
760 return (dmu_object_free(os, zapobj, tx));
763 void
764 zap_evict_sync(void *dbu)
766 zap_t *zap = dbu;
768 rw_destroy(&zap->zap_rwlock);
770 if (zap->zap_ismicro)
771 mze_destroy(zap);
772 else
773 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
775 kmem_free(zap, sizeof (zap_t));
779 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
781 zap_t *zap;
783 int err =
784 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
785 if (err != 0)
786 return (err);
787 if (!zap->zap_ismicro) {
788 err = fzap_count(zap, count);
789 } else {
790 *count = zap->zap_m.zap_num_entries;
792 zap_unlockdir(zap, FTAG);
793 return (err);
797 * zn may be NULL; if not specified, it will be computed if needed.
798 * See also the comment above zap_entry_normalization_conflict().
800 static boolean_t
801 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
803 int direction = AVL_BEFORE;
804 boolean_t allocdzn = B_FALSE;
806 if (zap->zap_normflags == 0)
807 return (B_FALSE);
809 again:
810 for (mzap_ent_t *other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
811 other && other->mze_hash == mze->mze_hash;
812 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
814 if (zn == NULL) {
815 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
816 MT_NORMALIZE);
817 allocdzn = B_TRUE;
819 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
820 if (allocdzn)
821 zap_name_free(zn);
822 return (B_TRUE);
826 if (direction == AVL_BEFORE) {
827 direction = AVL_AFTER;
828 goto again;
831 if (allocdzn)
832 zap_name_free(zn);
833 return (B_FALSE);
837 * Routines for manipulating attributes.
841 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
842 uint64_t integer_size, uint64_t num_integers, void *buf)
844 return (zap_lookup_norm(os, zapobj, name, integer_size,
845 num_integers, buf, 0, NULL, 0, NULL));
848 static int
849 zap_lookup_impl(zap_t *zap, const char *name,
850 uint64_t integer_size, uint64_t num_integers, void *buf,
851 matchtype_t mt, char *realname, int rn_len,
852 boolean_t *ncp)
854 int err = 0;
856 zap_name_t *zn = zap_name_alloc(zap, name, mt);
857 if (zn == NULL)
858 return (SET_ERROR(ENOTSUP));
860 if (!zap->zap_ismicro) {
861 err = fzap_lookup(zn, integer_size, num_integers, buf,
862 realname, rn_len, ncp);
863 } else {
864 mzap_ent_t *mze = mze_find(zn);
865 if (mze == NULL) {
866 err = SET_ERROR(ENOENT);
867 } else {
868 if (num_integers < 1) {
869 err = SET_ERROR(EOVERFLOW);
870 } else if (integer_size != 8) {
871 err = SET_ERROR(EINVAL);
872 } else {
873 *(uint64_t *)buf =
874 MZE_PHYS(zap, mze)->mze_value;
875 (void) strlcpy(realname,
876 MZE_PHYS(zap, mze)->mze_name, rn_len);
877 if (ncp) {
878 *ncp = mzap_normalization_conflict(zap,
879 zn, mze);
884 zap_name_free(zn);
885 return (err);
889 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
890 uint64_t integer_size, uint64_t num_integers, void *buf,
891 matchtype_t mt, char *realname, int rn_len,
892 boolean_t *ncp)
894 zap_t *zap;
896 int err =
897 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
898 if (err != 0)
899 return (err);
900 err = zap_lookup_impl(zap, name, integer_size,
901 num_integers, buf, mt, realname, rn_len, ncp);
902 zap_unlockdir(zap, FTAG);
903 return (err);
907 zap_lookup_by_dnode(dnode_t *dn, const char *name,
908 uint64_t integer_size, uint64_t num_integers, void *buf)
910 return (zap_lookup_norm_by_dnode(dn, name, integer_size,
911 num_integers, buf, 0, NULL, 0, NULL));
915 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
916 uint64_t integer_size, uint64_t num_integers, void *buf,
917 matchtype_t mt, char *realname, int rn_len,
918 boolean_t *ncp)
920 zap_t *zap;
922 int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
923 FTAG, &zap);
924 if (err != 0)
925 return (err);
926 err = zap_lookup_impl(zap, name, integer_size,
927 num_integers, buf, mt, realname, rn_len, ncp);
928 zap_unlockdir(zap, FTAG);
929 return (err);
933 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
934 int key_numints)
936 zap_t *zap;
938 int err =
939 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
940 if (err != 0)
941 return (err);
942 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
943 if (zn == NULL) {
944 zap_unlockdir(zap, FTAG);
945 return (SET_ERROR(ENOTSUP));
948 fzap_prefetch(zn);
949 zap_name_free(zn);
950 zap_unlockdir(zap, FTAG);
951 return (err);
955 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
956 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
958 zap_t *zap;
960 int err =
961 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
962 if (err != 0)
963 return (err);
964 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
965 if (zn == NULL) {
966 zap_unlockdir(zap, FTAG);
967 return (SET_ERROR(ENOTSUP));
970 err = fzap_lookup(zn, integer_size, num_integers, buf,
971 NULL, 0, NULL);
972 zap_name_free(zn);
973 zap_unlockdir(zap, FTAG);
974 return (err);
978 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
980 int err = zap_lookup_norm(os, zapobj, name, 0,
981 0, NULL, 0, NULL, 0, NULL);
982 if (err == EOVERFLOW || err == EINVAL)
983 err = 0; /* found, but skipped reading the value */
984 return (err);
988 zap_length(objset_t *os, uint64_t zapobj, const char *name,
989 uint64_t *integer_size, uint64_t *num_integers)
991 zap_t *zap;
993 int err =
994 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
995 if (err != 0)
996 return (err);
997 zap_name_t *zn = zap_name_alloc(zap, name, 0);
998 if (zn == NULL) {
999 zap_unlockdir(zap, FTAG);
1000 return (SET_ERROR(ENOTSUP));
1002 if (!zap->zap_ismicro) {
1003 err = fzap_length(zn, integer_size, num_integers);
1004 } else {
1005 mzap_ent_t *mze = mze_find(zn);
1006 if (mze == NULL) {
1007 err = SET_ERROR(ENOENT);
1008 } else {
1009 if (integer_size)
1010 *integer_size = 8;
1011 if (num_integers)
1012 *num_integers = 1;
1015 zap_name_free(zn);
1016 zap_unlockdir(zap, FTAG);
1017 return (err);
1021 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1022 int key_numints, uint64_t *integer_size, uint64_t *num_integers)
1024 zap_t *zap;
1026 int err =
1027 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1028 if (err != 0)
1029 return (err);
1030 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1031 if (zn == NULL) {
1032 zap_unlockdir(zap, FTAG);
1033 return (SET_ERROR(ENOTSUP));
1035 err = fzap_length(zn, integer_size, num_integers);
1036 zap_name_free(zn);
1037 zap_unlockdir(zap, FTAG);
1038 return (err);
1041 static void
1042 mzap_addent(zap_name_t *zn, uint64_t value)
1044 zap_t *zap = zn->zn_zap;
1045 int start = zap->zap_m.zap_alloc_next;
1047 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1049 #ifdef ZFS_DEBUG
1050 for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
1051 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1052 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
1054 #endif
1056 uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash);
1057 /* given the limited size of the microzap, this can't happen */
1058 ASSERT(cd < zap_maxcd(zap));
1060 again:
1061 for (int i = start; i < zap->zap_m.zap_num_chunks; i++) {
1062 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1063 if (mze->mze_name[0] == 0) {
1064 mze->mze_value = value;
1065 mze->mze_cd = cd;
1066 (void) strcpy(mze->mze_name, zn->zn_key_orig);
1067 zap->zap_m.zap_num_entries++;
1068 zap->zap_m.zap_alloc_next = i+1;
1069 if (zap->zap_m.zap_alloc_next ==
1070 zap->zap_m.zap_num_chunks)
1071 zap->zap_m.zap_alloc_next = 0;
1072 mze_insert(zap, i, zn->zn_hash);
1073 return;
1076 if (start != 0) {
1077 start = 0;
1078 goto again;
1080 ASSERT(!"out of entries!");
1083 static int
1084 zap_add_impl(zap_t *zap, const char *key,
1085 int integer_size, uint64_t num_integers,
1086 const void *val, dmu_tx_t *tx, void *tag)
1088 const uint64_t *intval = val;
1089 int err = 0;
1091 zap_name_t *zn = zap_name_alloc(zap, key, 0);
1092 if (zn == NULL) {
1093 zap_unlockdir(zap, tag);
1094 return (SET_ERROR(ENOTSUP));
1096 if (!zap->zap_ismicro) {
1097 err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
1098 zap = zn->zn_zap; /* fzap_add() may change zap */
1099 } else if (integer_size != 8 || num_integers != 1 ||
1100 strlen(key) >= MZAP_NAME_LEN) {
1101 err = mzap_upgrade(&zn->zn_zap, tag, tx, 0);
1102 if (err == 0) {
1103 err = fzap_add(zn, integer_size, num_integers, val,
1104 tag, tx);
1106 zap = zn->zn_zap; /* fzap_add() may change zap */
1107 } else {
1108 if (mze_find(zn) != NULL) {
1109 err = SET_ERROR(EEXIST);
1110 } else {
1111 mzap_addent(zn, *intval);
1114 ASSERT(zap == zn->zn_zap);
1115 zap_name_free(zn);
1116 if (zap != NULL) /* may be NULL if fzap_add() failed */
1117 zap_unlockdir(zap, tag);
1118 return (err);
1122 zap_add(objset_t *os, uint64_t zapobj, const char *key,
1123 int integer_size, uint64_t num_integers,
1124 const void *val, dmu_tx_t *tx)
1126 zap_t *zap;
1127 int err;
1129 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1130 if (err != 0)
1131 return (err);
1132 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1133 /* zap_add_impl() calls zap_unlockdir() */
1134 return (err);
1138 zap_add_by_dnode(dnode_t *dn, const char *key,
1139 int integer_size, uint64_t num_integers,
1140 const void *val, dmu_tx_t *tx)
1142 zap_t *zap;
1143 int err;
1145 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1146 if (err != 0)
1147 return (err);
1148 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1149 /* zap_add_impl() calls zap_unlockdir() */
1150 return (err);
1154 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1155 int key_numints, int integer_size, uint64_t num_integers,
1156 const void *val, dmu_tx_t *tx)
1158 zap_t *zap;
1160 int err =
1161 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1162 if (err != 0)
1163 return (err);
1164 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1165 if (zn == NULL) {
1166 zap_unlockdir(zap, FTAG);
1167 return (SET_ERROR(ENOTSUP));
1169 err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx);
1170 zap = zn->zn_zap; /* fzap_add() may change zap */
1171 zap_name_free(zn);
1172 if (zap != NULL) /* may be NULL if fzap_add() failed */
1173 zap_unlockdir(zap, FTAG);
1174 return (err);
1178 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1179 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1181 zap_t *zap;
1182 uint64_t oldval;
1183 const uint64_t *intval = val;
1185 #ifdef ZFS_DEBUG
1187 * If there is an old value, it shouldn't change across the
1188 * lockdir (eg, due to bprewrite's xlation).
1190 if (integer_size == 8 && num_integers == 1)
1191 (void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1192 #endif
1194 int err =
1195 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1196 if (err != 0)
1197 return (err);
1198 zap_name_t *zn = zap_name_alloc(zap, name, 0);
1199 if (zn == NULL) {
1200 zap_unlockdir(zap, FTAG);
1201 return (SET_ERROR(ENOTSUP));
1203 if (!zap->zap_ismicro) {
1204 err = fzap_update(zn, integer_size, num_integers, val,
1205 FTAG, tx);
1206 zap = zn->zn_zap; /* fzap_update() may change zap */
1207 } else if (integer_size != 8 || num_integers != 1 ||
1208 strlen(name) >= MZAP_NAME_LEN) {
1209 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1210 zapobj, integer_size, num_integers, name);
1211 err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
1212 if (err == 0) {
1213 err = fzap_update(zn, integer_size, num_integers,
1214 val, FTAG, tx);
1216 zap = zn->zn_zap; /* fzap_update() may change zap */
1217 } else {
1218 mzap_ent_t *mze = mze_find(zn);
1219 if (mze != NULL) {
1220 ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1221 MZE_PHYS(zap, mze)->mze_value = *intval;
1222 } else {
1223 mzap_addent(zn, *intval);
1226 ASSERT(zap == zn->zn_zap);
1227 zap_name_free(zn);
1228 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1229 zap_unlockdir(zap, FTAG);
1230 return (err);
1234 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1235 int key_numints,
1236 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1238 zap_t *zap;
1240 int err =
1241 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1242 if (err != 0)
1243 return (err);
1244 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1245 if (zn == NULL) {
1246 zap_unlockdir(zap, FTAG);
1247 return (SET_ERROR(ENOTSUP));
1249 err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx);
1250 zap = zn->zn_zap; /* fzap_update() may change zap */
1251 zap_name_free(zn);
1252 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1253 zap_unlockdir(zap, FTAG);
1254 return (err);
1258 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1260 return (zap_remove_norm(os, zapobj, name, 0, tx));
1263 static int
1264 zap_remove_impl(zap_t *zap, const char *name,
1265 matchtype_t mt, dmu_tx_t *tx)
1267 int err = 0;
1269 zap_name_t *zn = zap_name_alloc(zap, name, mt);
1270 if (zn == NULL)
1271 return (SET_ERROR(ENOTSUP));
1272 if (!zap->zap_ismicro) {
1273 err = fzap_remove(zn, tx);
1274 } else {
1275 mzap_ent_t *mze = mze_find(zn);
1276 if (mze == NULL) {
1277 err = SET_ERROR(ENOENT);
1278 } else {
1279 zap->zap_m.zap_num_entries--;
1280 bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1281 sizeof (mzap_ent_phys_t));
1282 mze_remove(zap, mze);
1285 zap_name_free(zn);
1286 return (err);
1290 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1291 matchtype_t mt, dmu_tx_t *tx)
1293 zap_t *zap;
1294 int err;
1296 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1297 if (err)
1298 return (err);
1299 err = zap_remove_impl(zap, name, mt, tx);
1300 zap_unlockdir(zap, FTAG);
1301 return (err);
1305 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx)
1307 zap_t *zap;
1308 int err;
1310 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1311 if (err)
1312 return (err);
1313 err = zap_remove_impl(zap, name, 0, tx);
1314 zap_unlockdir(zap, FTAG);
1315 return (err);
1319 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1320 int key_numints, dmu_tx_t *tx)
1322 zap_t *zap;
1324 int err =
1325 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1326 if (err != 0)
1327 return (err);
1328 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1329 if (zn == NULL) {
1330 zap_unlockdir(zap, FTAG);
1331 return (SET_ERROR(ENOTSUP));
1333 err = fzap_remove(zn, tx);
1334 zap_name_free(zn);
1335 zap_unlockdir(zap, FTAG);
1336 return (err);
1340 * Routines for iterating over the attributes.
1343 void
1344 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1345 uint64_t serialized)
1347 zc->zc_objset = os;
1348 zc->zc_zap = NULL;
1349 zc->zc_leaf = NULL;
1350 zc->zc_zapobj = zapobj;
1351 zc->zc_serialized = serialized;
1352 zc->zc_hash = 0;
1353 zc->zc_cd = 0;
1356 void
1357 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1359 zap_cursor_init_serialized(zc, os, zapobj, 0);
1362 void
1363 zap_cursor_fini(zap_cursor_t *zc)
1365 if (zc->zc_zap) {
1366 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1367 zap_unlockdir(zc->zc_zap, NULL);
1368 zc->zc_zap = NULL;
1370 if (zc->zc_leaf) {
1371 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1372 zap_put_leaf(zc->zc_leaf);
1373 zc->zc_leaf = NULL;
1375 zc->zc_objset = NULL;
1378 uint64_t
1379 zap_cursor_serialize(zap_cursor_t *zc)
1381 if (zc->zc_hash == -1ULL)
1382 return (-1ULL);
1383 if (zc->zc_zap == NULL)
1384 return (zc->zc_serialized);
1385 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1386 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1389 * We want to keep the high 32 bits of the cursor zero if we can, so
1390 * that 32-bit programs can access this. So usually use a small
1391 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1392 * of the cursor.
1394 * [ collision differentiator | zap_hashbits()-bit hash value ]
1396 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1397 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1401 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1403 int err;
1405 if (zc->zc_hash == -1ULL)
1406 return (SET_ERROR(ENOENT));
1408 if (zc->zc_zap == NULL) {
1409 int hb;
1410 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1411 RW_READER, TRUE, FALSE, NULL, &zc->zc_zap);
1412 if (err != 0)
1413 return (err);
1416 * To support zap_cursor_init_serialized, advance, retrieve,
1417 * we must add to the existing zc_cd, which may already
1418 * be 1 due to the zap_cursor_advance.
1420 ASSERT(zc->zc_hash == 0);
1421 hb = zap_hashbits(zc->zc_zap);
1422 zc->zc_hash = zc->zc_serialized << (64 - hb);
1423 zc->zc_cd += zc->zc_serialized >> hb;
1424 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1425 zc->zc_cd = 0;
1426 } else {
1427 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1429 if (!zc->zc_zap->zap_ismicro) {
1430 err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1431 } else {
1432 avl_index_t idx;
1433 mzap_ent_t mze_tofind;
1435 mze_tofind.mze_hash = zc->zc_hash;
1436 mze_tofind.mze_cd = zc->zc_cd;
1438 mzap_ent_t *mze =
1439 avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1440 if (mze == NULL) {
1441 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1442 idx, AVL_AFTER);
1444 if (mze) {
1445 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1446 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1447 za->za_normalization_conflict =
1448 mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1449 za->za_integer_length = 8;
1450 za->za_num_integers = 1;
1451 za->za_first_integer = mzep->mze_value;
1452 (void) strcpy(za->za_name, mzep->mze_name);
1453 zc->zc_hash = mze->mze_hash;
1454 zc->zc_cd = mze->mze_cd;
1455 err = 0;
1456 } else {
1457 zc->zc_hash = -1ULL;
1458 err = SET_ERROR(ENOENT);
1461 rw_exit(&zc->zc_zap->zap_rwlock);
1462 return (err);
1465 void
1466 zap_cursor_advance(zap_cursor_t *zc)
1468 if (zc->zc_hash == -1ULL)
1469 return;
1470 zc->zc_cd++;
1474 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1476 zap_t *zap;
1478 int err =
1479 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1480 if (err != 0)
1481 return (err);
1483 bzero(zs, sizeof (zap_stats_t));
1485 if (zap->zap_ismicro) {
1486 zs->zs_blocksize = zap->zap_dbuf->db_size;
1487 zs->zs_num_entries = zap->zap_m.zap_num_entries;
1488 zs->zs_num_blocks = 1;
1489 } else {
1490 fzap_get_stats(zap, zs);
1492 zap_unlockdir(zap, FTAG);
1493 return (0);