Merge commit '7e3488dc6cdcb0c04e1ce167a1a3bfef83b5f2e0'
[unleashed.git] / kernel / fs / zfs / vdev_removal.c
blobc9af0e0729d480ccb36b6af24701238669a7b2b3
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/zap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/txg.h>
37 #include <sys/avl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/arc.h>
43 #include <sys/zfeature.h>
44 #include <sys/vdev_indirect_births.h>
45 #include <sys/vdev_indirect_mapping.h>
46 #include <sys/abd.h>
47 #include <sys/vdev_initialize.h>
50 * This file contains the necessary logic to remove vdevs from a
51 * storage pool. Currently, the only devices that can be removed
52 * are log, cache, and spare devices; and top level vdevs from a pool
53 * w/o raidz. (Note that members of a mirror can also be removed
54 * by the detach operation.)
56 * Log vdevs are removed by evacuating them and then turning the vdev
57 * into a hole vdev while holding spa config locks.
59 * Top level vdevs are removed and converted into an indirect vdev via
60 * a multi-step process:
62 * - Disable allocations from this device (spa_vdev_remove_top).
64 * - From a new thread (spa_vdev_remove_thread), copy data from
65 * the removing vdev to a different vdev. The copy happens in open
66 * context (spa_vdev_copy_impl) and issues a sync task
67 * (vdev_mapping_sync) so the sync thread can update the partial
68 * indirect mappings in core and on disk.
70 * - If a free happens during a removal, it is freed from the
71 * removing vdev, and if it has already been copied, from the new
72 * location as well (free_from_removing_vdev).
74 * - After the removal is completed, the copy thread converts the vdev
75 * into an indirect vdev (vdev_remove_complete) before instructing
76 * the sync thread to destroy the space maps and finish the removal
77 * (spa_finish_removal).
80 typedef struct vdev_copy_arg {
81 metaslab_t *vca_msp;
82 uint64_t vca_outstanding_bytes;
83 kcondvar_t vca_cv;
84 kmutex_t vca_lock;
85 } vdev_copy_arg_t;
88 * The maximum amount of memory we can use for outstanding i/o while
89 * doing a device removal. This determines how much i/o we can have
90 * in flight concurrently.
92 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
95 * The largest contiguous segment that we will attempt to allocate when
96 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
97 * there is a performance problem with attempting to allocate large blocks,
98 * consider decreasing this.
100 * Note: we will issue I/Os of up to this size. The mpt driver does not
101 * respond well to I/Os larger than 1MB, so we set this to 1MB. (When
102 * mpt processes an I/O larger than 1MB, it needs to do an allocation of
103 * 2 physically contiguous pages; if this allocation fails, mpt will drop
104 * the I/O and hang the device.)
106 int zfs_remove_max_segment = 1024 * 1024;
109 * Allow a remap segment to span free chunks of at most this size. The main
110 * impact of a larger span is that we will read and write larger, more
111 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
112 * for iops. The value here was chosen to align with
113 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
114 * reads (but there's no reason it has to be the same).
116 * Additionally, a higher span will have the following relatively minor
117 * effects:
118 * - the mapping will be smaller, since one entry can cover more allocated
119 * segments
120 * - more of the fragmentation in the removing device will be preserved
121 * - we'll do larger allocations, which may fail and fall back on smaller
122 * allocations
124 int vdev_removal_max_span = 32 * 1024;
127 * This is used by the test suite so that it can ensure that certain
128 * actions happen while in the middle of a removal.
130 uint64_t zfs_remove_max_bytes_pause = UINT64_MAX;
132 #define VDEV_REMOVAL_ZAP_OBJS "lzap"
134 static void spa_vdev_remove_thread(void *arg);
136 static void
137 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
139 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
140 DMU_POOL_DIRECTORY_OBJECT,
141 DMU_POOL_REMOVING, sizeof (uint64_t),
142 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
143 &spa->spa_removing_phys, tx));
146 static nvlist_t *
147 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
149 for (int i = 0; i < count; i++) {
150 uint64_t guid =
151 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
153 if (guid == target_guid)
154 return (nvpp[i]);
157 return (NULL);
160 static void
161 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
162 nvlist_t *dev_to_remove)
164 nvlist_t **newdev = NULL;
166 if (count > 1)
167 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
169 for (int i = 0, j = 0; i < count; i++) {
170 if (dev[i] == dev_to_remove)
171 continue;
172 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
175 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
176 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
178 for (int i = 0; i < count - 1; i++)
179 nvlist_free(newdev[i]);
181 if (count > 1)
182 kmem_free(newdev, (count - 1) * sizeof (void *));
185 static spa_vdev_removal_t *
186 spa_vdev_removal_create(vdev_t *vd)
188 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
189 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
190 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
191 svr->svr_allocd_segs = range_tree_create(NULL, NULL);
192 svr->svr_vdev_id = vd->vdev_id;
194 for (int i = 0; i < TXG_SIZE; i++) {
195 svr->svr_frees[i] = range_tree_create(NULL, NULL);
196 list_create(&svr->svr_new_segments[i],
197 sizeof (vdev_indirect_mapping_entry_t),
198 offsetof(vdev_indirect_mapping_entry_t, vime_node));
201 return (svr);
204 void
205 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
207 for (int i = 0; i < TXG_SIZE; i++) {
208 ASSERT0(svr->svr_bytes_done[i]);
209 ASSERT0(svr->svr_max_offset_to_sync[i]);
210 range_tree_destroy(svr->svr_frees[i]);
211 list_destroy(&svr->svr_new_segments[i]);
214 range_tree_destroy(svr->svr_allocd_segs);
215 mutex_destroy(&svr->svr_lock);
216 cv_destroy(&svr->svr_cv);
217 kmem_free(svr, sizeof (*svr));
221 * This is called as a synctask in the txg in which we will mark this vdev
222 * as removing (in the config stored in the MOS).
224 * It begins the evacuation of a toplevel vdev by:
225 * - initializing the spa_removing_phys which tracks this removal
226 * - computing the amount of space to remove for accounting purposes
227 * - dirtying all dbufs in the spa_config_object
228 * - creating the spa_vdev_removal
229 * - starting the spa_vdev_remove_thread
231 static void
232 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
234 int vdev_id = (uintptr_t)arg;
235 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
236 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
237 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
238 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
239 spa_vdev_removal_t *svr = NULL;
240 uint64_t txg = dmu_tx_get_txg(tx);
242 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
243 svr = spa_vdev_removal_create(vd);
245 ASSERT(vd->vdev_removing);
246 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
248 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
249 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
251 * By activating the OBSOLETE_COUNTS feature, we prevent
252 * the pool from being downgraded and ensure that the
253 * refcounts are precise.
255 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
256 uint64_t one = 1;
257 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
258 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
259 &one, tx));
260 ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
263 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
264 vd->vdev_indirect_mapping =
265 vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
266 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
267 vd->vdev_indirect_births =
268 vdev_indirect_births_open(mos, vic->vic_births_object);
269 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
270 spa->spa_removing_phys.sr_start_time = gethrestime_sec();
271 spa->spa_removing_phys.sr_end_time = 0;
272 spa->spa_removing_phys.sr_state = DSS_SCANNING;
273 spa->spa_removing_phys.sr_to_copy = 0;
274 spa->spa_removing_phys.sr_copied = 0;
277 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
278 * there may be space in the defer tree, which is free, but still
279 * counted in vs_alloc.
281 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
282 metaslab_t *ms = vd->vdev_ms[i];
283 if (ms->ms_sm == NULL)
284 continue;
287 * Sync tasks happen before metaslab_sync(), therefore
288 * smp_alloc and sm_alloc must be the same.
290 ASSERT3U(space_map_allocated(ms->ms_sm), ==,
291 ms->ms_sm->sm_phys->smp_alloc);
293 spa->spa_removing_phys.sr_to_copy +=
294 space_map_allocated(ms->ms_sm);
297 * Space which we are freeing this txg does not need to
298 * be copied.
300 spa->spa_removing_phys.sr_to_copy -=
301 range_tree_space(ms->ms_freeing);
303 ASSERT0(range_tree_space(ms->ms_freed));
304 for (int t = 0; t < TXG_SIZE; t++)
305 ASSERT0(range_tree_space(ms->ms_allocating[t]));
309 * Sync tasks are called before metaslab_sync(), so there should
310 * be no already-synced metaslabs in the TXG_CLEAN list.
312 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
314 spa_sync_removing_state(spa, tx);
317 * All blocks that we need to read the most recent mapping must be
318 * stored on concrete vdevs. Therefore, we must dirty anything that
319 * is read before spa_remove_init(). Specifically, the
320 * spa_config_object. (Note that although we already modified the
321 * spa_config_object in spa_sync_removing_state, that may not have
322 * modified all blocks of the object.)
324 dmu_object_info_t doi;
325 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
326 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
327 dmu_buf_t *dbuf;
328 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
329 offset, FTAG, &dbuf, 0));
330 dmu_buf_will_dirty(dbuf, tx);
331 offset += dbuf->db_size;
332 dmu_buf_rele(dbuf, FTAG);
336 * Now that we've allocated the im_object, dirty the vdev to ensure
337 * that the object gets written to the config on disk.
339 vdev_config_dirty(vd);
341 zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
342 "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
343 vic->vic_mapping_object);
345 spa_history_log_internal(spa, "vdev remove started", tx,
346 "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
347 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
349 * Setting spa_vdev_removal causes subsequent frees to call
350 * free_from_removing_vdev(). Note that we don't need any locking
351 * because we are the sync thread, and metaslab_free_impl() is only
352 * called from syncing context (potentially from a zio taskq thread,
353 * but in any case only when there are outstanding free i/os, which
354 * there are not).
356 ASSERT3P(spa->spa_vdev_removal, ==, NULL);
357 spa->spa_vdev_removal = svr;
358 svr->svr_thread = thread_create(NULL, 0,
359 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
363 * When we are opening a pool, we must read the mapping for each
364 * indirect vdev in order from most recently removed to least
365 * recently removed. We do this because the blocks for the mapping
366 * of older indirect vdevs may be stored on more recently removed vdevs.
367 * In order to read each indirect mapping object, we must have
368 * initialized all more recently removed vdevs.
371 spa_remove_init(spa_t *spa)
373 int error;
375 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
376 DMU_POOL_DIRECTORY_OBJECT,
377 DMU_POOL_REMOVING, sizeof (uint64_t),
378 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
379 &spa->spa_removing_phys);
381 if (error == ENOENT) {
382 spa->spa_removing_phys.sr_state = DSS_NONE;
383 spa->spa_removing_phys.sr_removing_vdev = -1;
384 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
385 spa->spa_indirect_vdevs_loaded = B_TRUE;
386 return (0);
387 } else if (error != 0) {
388 return (error);
391 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
393 * We are currently removing a vdev. Create and
394 * initialize a spa_vdev_removal_t from the bonus
395 * buffer of the removing vdevs vdev_im_object, and
396 * initialize its partial mapping.
398 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
399 vdev_t *vd = vdev_lookup_top(spa,
400 spa->spa_removing_phys.sr_removing_vdev);
402 if (vd == NULL) {
403 spa_config_exit(spa, SCL_STATE, FTAG);
404 return (EINVAL);
407 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
409 ASSERT(vdev_is_concrete(vd));
410 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
411 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
412 ASSERT(vd->vdev_removing);
414 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
415 spa->spa_meta_objset, vic->vic_mapping_object);
416 vd->vdev_indirect_births = vdev_indirect_births_open(
417 spa->spa_meta_objset, vic->vic_births_object);
418 spa_config_exit(spa, SCL_STATE, FTAG);
420 spa->spa_vdev_removal = svr;
423 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
424 uint64_t indirect_vdev_id =
425 spa->spa_removing_phys.sr_prev_indirect_vdev;
426 while (indirect_vdev_id != UINT64_MAX) {
427 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
428 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
430 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
431 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
432 spa->spa_meta_objset, vic->vic_mapping_object);
433 vd->vdev_indirect_births = vdev_indirect_births_open(
434 spa->spa_meta_objset, vic->vic_births_object);
436 indirect_vdev_id = vic->vic_prev_indirect_vdev;
438 spa_config_exit(spa, SCL_STATE, FTAG);
441 * Now that we've loaded all the indirect mappings, we can allow
442 * reads from other blocks (e.g. via predictive prefetch).
444 spa->spa_indirect_vdevs_loaded = B_TRUE;
445 return (0);
448 void
449 spa_restart_removal(spa_t *spa)
451 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
453 if (svr == NULL)
454 return;
457 * In general when this function is called there is no
458 * removal thread running. The only scenario where this
459 * is not true is during spa_import() where this function
460 * is called twice [once from spa_import_impl() and
461 * spa_async_resume()]. Thus, in the scenario where we
462 * import a pool that has an ongoing removal we don't
463 * want to spawn a second thread.
465 if (svr->svr_thread != NULL)
466 return;
468 if (!spa_writeable(spa))
469 return;
471 zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
472 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
473 0, &p0, TS_RUN, minclsyspri);
477 * Process freeing from a device which is in the middle of being removed.
478 * We must handle this carefully so that we attempt to copy freed data,
479 * and we correctly free already-copied data.
481 void
482 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
484 spa_t *spa = vd->vdev_spa;
485 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
486 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
487 uint64_t txg = spa_syncing_txg(spa);
488 uint64_t max_offset_yet = 0;
490 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
491 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
492 vdev_indirect_mapping_object(vim));
493 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
495 mutex_enter(&svr->svr_lock);
498 * Remove the segment from the removing vdev's spacemap. This
499 * ensures that we will not attempt to copy this space (if the
500 * removal thread has not yet visited it), and also ensures
501 * that we know what is actually allocated on the new vdevs
502 * (needed if we cancel the removal).
504 * Note: we must do the metaslab_free_concrete() with the svr_lock
505 * held, so that the remove_thread can not load this metaslab and then
506 * visit this offset between the time that we metaslab_free_concrete()
507 * and when we check to see if it has been visited.
509 * Note: The checkpoint flag is set to false as having/taking
510 * a checkpoint and removing a device can't happen at the same
511 * time.
513 ASSERT(!spa_has_checkpoint(spa));
514 metaslab_free_concrete(vd, offset, size, B_FALSE);
516 uint64_t synced_size = 0;
517 uint64_t synced_offset = 0;
518 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
519 if (offset < max_offset_synced) {
521 * The mapping for this offset is already on disk.
522 * Free from the new location.
524 * Note that we use svr_max_synced_offset because it is
525 * updated atomically with respect to the in-core mapping.
526 * By contrast, vim_max_offset is not.
528 * This block may be split between a synced entry and an
529 * in-flight or unvisited entry. Only process the synced
530 * portion of it here.
532 synced_size = MIN(size, max_offset_synced - offset);
533 synced_offset = offset;
535 ASSERT3U(max_offset_yet, <=, max_offset_synced);
536 max_offset_yet = max_offset_synced;
538 DTRACE_PROBE3(remove__free__synced,
539 spa_t *, spa,
540 uint64_t, offset,
541 uint64_t, synced_size);
543 size -= synced_size;
544 offset += synced_size;
548 * Look at all in-flight txgs starting from the currently syncing one
549 * and see if a section of this free is being copied. By starting from
550 * this txg and iterating forward, we might find that this region
551 * was copied in two different txgs and handle it appropriately.
553 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
554 int txgoff = (txg + i) & TXG_MASK;
555 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
557 * The mapping for this offset is in flight, and
558 * will be synced in txg+i.
560 uint64_t inflight_size = MIN(size,
561 svr->svr_max_offset_to_sync[txgoff] - offset);
563 DTRACE_PROBE4(remove__free__inflight,
564 spa_t *, spa,
565 uint64_t, offset,
566 uint64_t, inflight_size,
567 uint64_t, txg + i);
570 * We copy data in order of increasing offset.
571 * Therefore the max_offset_to_sync[] must increase
572 * (or be zero, indicating that nothing is being
573 * copied in that txg).
575 if (svr->svr_max_offset_to_sync[txgoff] != 0) {
576 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
577 >=, max_offset_yet);
578 max_offset_yet =
579 svr->svr_max_offset_to_sync[txgoff];
583 * We've already committed to copying this segment:
584 * we have allocated space elsewhere in the pool for
585 * it and have an IO outstanding to copy the data. We
586 * cannot free the space before the copy has
587 * completed, or else the copy IO might overwrite any
588 * new data. To free that space, we record the
589 * segment in the appropriate svr_frees tree and free
590 * the mapped space later, in the txg where we have
591 * completed the copy and synced the mapping (see
592 * vdev_mapping_sync).
594 range_tree_add(svr->svr_frees[txgoff],
595 offset, inflight_size);
596 size -= inflight_size;
597 offset += inflight_size;
600 * This space is already accounted for as being
601 * done, because it is being copied in txg+i.
602 * However, if i!=0, then it is being copied in
603 * a future txg. If we crash after this txg
604 * syncs but before txg+i syncs, then the space
605 * will be free. Therefore we must account
606 * for the space being done in *this* txg
607 * (when it is freed) rather than the future txg
608 * (when it will be copied).
610 ASSERT3U(svr->svr_bytes_done[txgoff], >=,
611 inflight_size);
612 svr->svr_bytes_done[txgoff] -= inflight_size;
613 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
616 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
618 if (size > 0) {
620 * The copy thread has not yet visited this offset. Ensure
621 * that it doesn't.
624 DTRACE_PROBE3(remove__free__unvisited,
625 spa_t *, spa,
626 uint64_t, offset,
627 uint64_t, size);
629 if (svr->svr_allocd_segs != NULL)
630 range_tree_clear(svr->svr_allocd_segs, offset, size);
633 * Since we now do not need to copy this data, for
634 * accounting purposes we have done our job and can count
635 * it as completed.
637 svr->svr_bytes_done[txg & TXG_MASK] += size;
639 mutex_exit(&svr->svr_lock);
642 * Now that we have dropped svr_lock, process the synced portion
643 * of this free.
645 if (synced_size > 0) {
646 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
649 * Note: this can only be called from syncing context,
650 * and the vdev_indirect_mapping is only changed from the
651 * sync thread, so we don't need svr_lock while doing
652 * metaslab_free_impl_cb.
654 boolean_t checkpoint = B_FALSE;
655 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
656 metaslab_free_impl_cb, &checkpoint);
661 * Stop an active removal and update the spa_removing phys.
663 static void
664 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
666 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
667 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
669 /* Ensure the removal thread has completed before we free the svr. */
670 spa_vdev_remove_suspend(spa);
672 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
674 if (state == DSS_FINISHED) {
675 spa_removing_phys_t *srp = &spa->spa_removing_phys;
676 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
677 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
679 if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
680 vdev_t *pvd = vdev_lookup_top(spa,
681 srp->sr_prev_indirect_vdev);
682 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
685 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
686 srp->sr_prev_indirect_vdev = vd->vdev_id;
688 spa->spa_removing_phys.sr_state = state;
689 spa->spa_removing_phys.sr_end_time = gethrestime_sec();
691 spa->spa_vdev_removal = NULL;
692 spa_vdev_removal_destroy(svr);
694 spa_sync_removing_state(spa, tx);
696 vdev_config_dirty(spa->spa_root_vdev);
699 static void
700 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
702 vdev_t *vd = arg;
703 vdev_indirect_mark_obsolete(vd, offset, size);
704 boolean_t checkpoint = B_FALSE;
705 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
706 metaslab_free_impl_cb, &checkpoint);
710 * On behalf of the removal thread, syncs an incremental bit more of
711 * the indirect mapping to disk and updates the in-memory mapping.
712 * Called as a sync task in every txg that the removal thread makes progress.
714 static void
715 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
717 spa_vdev_removal_t *svr = arg;
718 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
719 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
720 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
721 uint64_t txg = dmu_tx_get_txg(tx);
722 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
724 ASSERT(vic->vic_mapping_object != 0);
725 ASSERT3U(txg, ==, spa_syncing_txg(spa));
727 vdev_indirect_mapping_add_entries(vim,
728 &svr->svr_new_segments[txg & TXG_MASK], tx);
729 vdev_indirect_births_add_entry(vd->vdev_indirect_births,
730 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
733 * Free the copied data for anything that was freed while the
734 * mapping entries were in flight.
736 mutex_enter(&svr->svr_lock);
737 range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
738 free_mapped_segment_cb, vd);
739 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
740 vdev_indirect_mapping_max_offset(vim));
741 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
742 mutex_exit(&svr->svr_lock);
744 spa_sync_removing_state(spa, tx);
747 typedef struct vdev_copy_segment_arg {
748 spa_t *vcsa_spa;
749 dva_t *vcsa_dest_dva;
750 uint64_t vcsa_txg;
751 range_tree_t *vcsa_obsolete_segs;
752 } vdev_copy_segment_arg_t;
754 static void
755 unalloc_seg(void *arg, uint64_t start, uint64_t size)
757 vdev_copy_segment_arg_t *vcsa = arg;
758 spa_t *spa = vcsa->vcsa_spa;
759 blkptr_t bp = { 0 };
761 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
762 BP_SET_LSIZE(&bp, size);
763 BP_SET_PSIZE(&bp, size);
764 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
765 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
766 BP_SET_TYPE(&bp, DMU_OT_NONE);
767 BP_SET_LEVEL(&bp, 0);
768 BP_SET_DEDUP(&bp, 0);
769 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
771 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
772 DVA_SET_OFFSET(&bp.blk_dva[0],
773 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
774 DVA_SET_ASIZE(&bp.blk_dva[0], size);
776 zio_free(spa, vcsa->vcsa_txg, &bp);
780 * All reads and writes associated with a call to spa_vdev_copy_segment()
781 * are done.
783 static void
784 spa_vdev_copy_segment_done(zio_t *zio)
786 vdev_copy_segment_arg_t *vcsa = zio->io_private;
788 range_tree_vacate(vcsa->vcsa_obsolete_segs,
789 unalloc_seg, vcsa);
790 range_tree_destroy(vcsa->vcsa_obsolete_segs);
791 kmem_free(vcsa, sizeof (*vcsa));
793 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
797 * The write of the new location is done.
799 static void
800 spa_vdev_copy_segment_write_done(zio_t *zio)
802 vdev_copy_arg_t *vca = zio->io_private;
804 abd_free(zio->io_abd);
806 mutex_enter(&vca->vca_lock);
807 vca->vca_outstanding_bytes -= zio->io_size;
808 cv_signal(&vca->vca_cv);
809 mutex_exit(&vca->vca_lock);
813 * The read of the old location is done. The parent zio is the write to
814 * the new location. Allow it to start.
816 static void
817 spa_vdev_copy_segment_read_done(zio_t *zio)
819 zio_nowait(zio_unique_parent(zio));
823 * If the old and new vdevs are mirrors, we will read both sides of the old
824 * mirror, and write each copy to the corresponding side of the new mirror.
825 * If the old and new vdevs have a different number of children, we will do
826 * this as best as possible. Since we aren't verifying checksums, this
827 * ensures that as long as there's a good copy of the data, we'll have a
828 * good copy after the removal, even if there's silent damage to one side
829 * of the mirror. If we're removing a mirror that has some silent damage,
830 * we'll have exactly the same damage in the new location (assuming that
831 * the new location is also a mirror).
833 * We accomplish this by creating a tree of zio_t's, with as many writes as
834 * there are "children" of the new vdev (a non-redundant vdev counts as one
835 * child, a 2-way mirror has 2 children, etc). Each write has an associated
836 * read from a child of the old vdev. Typically there will be the same
837 * number of children of the old and new vdevs. However, if there are more
838 * children of the new vdev, some child(ren) of the old vdev will be issued
839 * multiple reads. If there are more children of the old vdev, some copies
840 * will be dropped.
842 * For example, the tree of zio_t's for a 2-way mirror is:
844 * null
845 * / \
846 * write(new vdev, child 0) write(new vdev, child 1)
847 * | |
848 * read(old vdev, child 0) read(old vdev, child 1)
850 * Child zio's complete before their parents complete. However, zio's
851 * created with zio_vdev_child_io() may be issued before their children
852 * complete. In this case we need to make sure that the children (reads)
853 * complete before the parents (writes) are *issued*. We do this by not
854 * calling zio_nowait() on each write until its corresponding read has
855 * completed.
857 * The spa_config_lock must be held while zio's created by
858 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
859 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
860 * zio is needed to release the spa_config_lock after all the reads and
861 * writes complete. (Note that we can't grab the config lock for each read,
862 * because it is not reentrant - we could deadlock with a thread waiting
863 * for a write lock.)
865 static void
866 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
867 vdev_t *source_vd, uint64_t source_offset,
868 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
870 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
872 mutex_enter(&vca->vca_lock);
873 vca->vca_outstanding_bytes += size;
874 mutex_exit(&vca->vca_lock);
876 abd_t *abd = abd_alloc_for_io(size, B_FALSE);
878 vdev_t *source_child_vd;
879 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
881 * Source and dest are both mirrors. Copy from the same
882 * child id as we are copying to (wrapping around if there
883 * are more dest children than source children).
885 source_child_vd =
886 source_vd->vdev_child[dest_id % source_vd->vdev_children];
887 } else {
888 source_child_vd = source_vd;
891 zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
892 dest_child_vd, dest_offset, abd, size,
893 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
894 ZIO_FLAG_CANFAIL,
895 spa_vdev_copy_segment_write_done, vca);
897 zio_nowait(zio_vdev_child_io(write_zio, NULL,
898 source_child_vd, source_offset, abd, size,
899 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
900 ZIO_FLAG_CANFAIL,
901 spa_vdev_copy_segment_read_done, vca));
905 * Allocate a new location for this segment, and create the zio_t's to
906 * read from the old location and write to the new location.
908 static int
909 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
910 uint64_t maxalloc, uint64_t txg,
911 vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
913 metaslab_group_t *mg = vd->vdev_mg;
914 spa_t *spa = vd->vdev_spa;
915 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
916 vdev_indirect_mapping_entry_t *entry;
917 dva_t dst = { 0 };
918 uint64_t start = range_tree_min(segs);
920 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
922 uint64_t size = range_tree_span(segs);
923 if (range_tree_span(segs) > maxalloc) {
925 * We can't allocate all the segments. Prefer to end
926 * the allocation at the end of a segment, thus avoiding
927 * additional split blocks.
929 range_seg_t search;
930 avl_index_t where;
931 search.rs_start = start + maxalloc;
932 search.rs_end = search.rs_start;
933 range_seg_t *rs = avl_find(&segs->rt_root, &search, &where);
934 if (rs == NULL) {
935 rs = avl_nearest(&segs->rt_root, where, AVL_BEFORE);
936 } else {
937 rs = AVL_PREV(&segs->rt_root, rs);
939 if (rs != NULL) {
940 size = rs->rs_end - start;
941 } else {
943 * There are no segments that end before maxalloc.
944 * I.e. the first segment is larger than maxalloc,
945 * so we must split it.
947 size = maxalloc;
950 ASSERT3U(size, <=, maxalloc);
953 * We use allocator 0 for this I/O because we don't expect device remap
954 * to be the steady state of the system, so parallelizing is not as
955 * critical as it is for other allocation types. We also want to ensure
956 * that the IOs are allocated together as much as possible, to reduce
957 * mapping sizes.
959 int error = metaslab_alloc_dva(spa, mg->mg_class, size,
960 &dst, 0, NULL, txg, 0, zal, 0);
961 if (error != 0)
962 return (error);
965 * Determine the ranges that are not actually needed. Offsets are
966 * relative to the start of the range to be copied (i.e. relative to the
967 * local variable "start").
969 range_tree_t *obsolete_segs = range_tree_create(NULL, NULL);
971 range_seg_t *rs = avl_first(&segs->rt_root);
972 ASSERT3U(rs->rs_start, ==, start);
973 uint64_t prev_seg_end = rs->rs_end;
974 while ((rs = AVL_NEXT(&segs->rt_root, rs)) != NULL) {
975 if (rs->rs_start >= start + size) {
976 break;
977 } else {
978 range_tree_add(obsolete_segs,
979 prev_seg_end - start,
980 rs->rs_start - prev_seg_end);
982 prev_seg_end = rs->rs_end;
984 /* We don't end in the middle of an obsolete range */
985 ASSERT3U(start + size, <=, prev_seg_end);
987 range_tree_clear(segs, start, size);
990 * We can't have any padding of the allocated size, otherwise we will
991 * misunderstand what's allocated, and the size of the mapping.
992 * The caller ensures this will be true by passing in a size that is
993 * aligned to the worst (highest) ashift in the pool.
995 ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
997 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
998 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
999 entry->vime_mapping.vimep_dst = dst;
1000 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1001 entry->vime_obsolete_count = range_tree_space(obsolete_segs);
1004 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1005 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1006 vcsa->vcsa_obsolete_segs = obsolete_segs;
1007 vcsa->vcsa_spa = spa;
1008 vcsa->vcsa_txg = txg;
1011 * See comment before spa_vdev_copy_one_child().
1013 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1014 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1015 spa_vdev_copy_segment_done, vcsa, 0);
1016 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1017 if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1018 for (int i = 0; i < dest_vd->vdev_children; i++) {
1019 vdev_t *child = dest_vd->vdev_child[i];
1020 spa_vdev_copy_one_child(vca, nzio, vd, start,
1021 child, DVA_GET_OFFSET(&dst), i, size);
1023 } else {
1024 spa_vdev_copy_one_child(vca, nzio, vd, start,
1025 dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1027 zio_nowait(nzio);
1029 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1030 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1031 vdev_dirty(vd, 0, NULL, txg);
1033 return (0);
1037 * Complete the removal of a toplevel vdev. This is called as a
1038 * synctask in the same txg that we will sync out the new config (to the
1039 * MOS object) which indicates that this vdev is indirect.
1041 static void
1042 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1044 spa_vdev_removal_t *svr = arg;
1045 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1046 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1048 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1050 for (int i = 0; i < TXG_SIZE; i++) {
1051 ASSERT0(svr->svr_bytes_done[i]);
1054 ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1055 spa->spa_removing_phys.sr_to_copy);
1057 vdev_destroy_spacemaps(vd, tx);
1059 /* destroy leaf zaps, if any */
1060 ASSERT3P(svr->svr_zaplist, !=, NULL);
1061 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1062 pair != NULL;
1063 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1064 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1066 fnvlist_free(svr->svr_zaplist);
1068 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1069 /* vd->vdev_path is not available here */
1070 spa_history_log_internal(spa, "vdev remove completed", tx,
1071 "%s vdev %llu", spa_name(spa), vd->vdev_id);
1074 static void
1075 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1077 ASSERT3P(zlist, !=, NULL);
1078 ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
1080 if (vd->vdev_leaf_zap != 0) {
1081 char zkey[32];
1082 (void) snprintf(zkey, sizeof (zkey), "%s-%"PRIu64,
1083 VDEV_REMOVAL_ZAP_OBJS, vd->vdev_leaf_zap);
1084 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1087 for (uint64_t id = 0; id < vd->vdev_children; id++) {
1088 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1092 static void
1093 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1095 vdev_t *ivd;
1096 dmu_tx_t *tx;
1097 spa_t *spa = vd->vdev_spa;
1098 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1101 * First, build a list of leaf zaps to be destroyed.
1102 * This is passed to the sync context thread,
1103 * which does the actual unlinking.
1105 svr->svr_zaplist = fnvlist_alloc();
1106 vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1108 ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1109 ivd->vdev_removing = 0;
1111 vd->vdev_leaf_zap = 0;
1113 vdev_remove_child(ivd, vd);
1114 vdev_compact_children(ivd);
1116 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1118 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1119 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
1120 0, ZFS_SPACE_CHECK_NONE, tx);
1121 dmu_tx_commit(tx);
1124 * Indicate that this thread has exited.
1125 * After this, we can not use svr.
1127 mutex_enter(&svr->svr_lock);
1128 svr->svr_thread = NULL;
1129 cv_broadcast(&svr->svr_cv);
1130 mutex_exit(&svr->svr_lock);
1134 * Complete the removal of a toplevel vdev. This is called in open
1135 * context by the removal thread after we have copied all vdev's data.
1137 static void
1138 vdev_remove_complete(spa_t *spa)
1140 uint64_t txg;
1143 * Wait for any deferred frees to be synced before we call
1144 * vdev_metaslab_fini()
1146 txg_wait_synced(spa->spa_dsl_pool, 0);
1147 txg = spa_vdev_enter(spa);
1148 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1149 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1151 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1152 ESC_ZFS_VDEV_REMOVE_DEV);
1154 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1155 vd->vdev_id, txg);
1158 * Discard allocation state.
1160 if (vd->vdev_mg != NULL) {
1161 vdev_metaslab_fini(vd);
1162 metaslab_group_destroy(vd->vdev_mg);
1163 vd->vdev_mg = NULL;
1165 ASSERT0(vd->vdev_stat.vs_space);
1166 ASSERT0(vd->vdev_stat.vs_dspace);
1168 vdev_remove_replace_with_indirect(vd, txg);
1171 * We now release the locks, allowing spa_sync to run and finish the
1172 * removal via vdev_remove_complete_sync in syncing context.
1174 * Note that we hold on to the vdev_t that has been replaced. Since
1175 * it isn't part of the vdev tree any longer, it can't be concurrently
1176 * manipulated, even while we don't have the config lock.
1178 (void) spa_vdev_exit(spa, NULL, txg, 0);
1181 * Top ZAP should have been transferred to the indirect vdev in
1182 * vdev_remove_replace_with_indirect.
1184 ASSERT0(vd->vdev_top_zap);
1187 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1189 ASSERT0(vd->vdev_leaf_zap);
1191 txg = spa_vdev_enter(spa);
1192 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1194 * Request to update the config and the config cachefile.
1196 vdev_config_dirty(spa->spa_root_vdev);
1197 (void) spa_vdev_exit(spa, vd, txg, 0);
1199 spa_event_post(ev);
1203 * Evacuates a segment of size at most max_alloc from the vdev
1204 * via repeated calls to spa_vdev_copy_segment. If an allocation
1205 * fails, the pool is probably too fragmented to handle such a
1206 * large size, so decrease max_alloc so that the caller will not try
1207 * this size again this txg.
1209 static void
1210 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1211 uint64_t *max_alloc, dmu_tx_t *tx)
1213 uint64_t txg = dmu_tx_get_txg(tx);
1214 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1216 mutex_enter(&svr->svr_lock);
1219 * Determine how big of a chunk to copy. We can allocate up
1220 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1221 * bytes of unallocated space at a time. "segs" will track the
1222 * allocated segments that we are copying. We may also be copying
1223 * free segments (of up to vdev_removal_max_span bytes).
1225 range_tree_t *segs = range_tree_create(NULL, NULL);
1226 for (;;) {
1227 range_seg_t *rs = avl_first(&svr->svr_allocd_segs->rt_root);
1228 if (rs == NULL)
1229 break;
1231 uint64_t seg_length;
1233 if (range_tree_is_empty(segs)) {
1234 /* need to truncate the first seg based on max_alloc */
1235 seg_length =
1236 MIN(rs->rs_end - rs->rs_start, *max_alloc);
1237 } else {
1238 if (rs->rs_start - range_tree_max(segs) >
1239 vdev_removal_max_span) {
1241 * Including this segment would cause us to
1242 * copy a larger unneeded chunk than is allowed.
1244 break;
1245 } else if (rs->rs_end - range_tree_min(segs) >
1246 *max_alloc) {
1248 * This additional segment would extend past
1249 * max_alloc. Rather than splitting this
1250 * segment, leave it for the next mapping.
1252 break;
1253 } else {
1254 seg_length = rs->rs_end - rs->rs_start;
1258 range_tree_add(segs, rs->rs_start, seg_length);
1259 range_tree_remove(svr->svr_allocd_segs,
1260 rs->rs_start, seg_length);
1263 if (range_tree_is_empty(segs)) {
1264 mutex_exit(&svr->svr_lock);
1265 range_tree_destroy(segs);
1266 return;
1269 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1270 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1271 svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1274 svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1277 * Note: this is the amount of *allocated* space
1278 * that we are taking care of each txg.
1280 svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1282 mutex_exit(&svr->svr_lock);
1284 zio_alloc_list_t zal;
1285 metaslab_trace_init(&zal);
1286 uint64_t thismax = SPA_MAXBLOCKSIZE;
1287 while (!range_tree_is_empty(segs)) {
1288 int error = spa_vdev_copy_segment(vd,
1289 segs, thismax, txg, vca, &zal);
1291 if (error == ENOSPC) {
1293 * Cut our segment in half, and don't try this
1294 * segment size again this txg. Note that the
1295 * allocation size must be aligned to the highest
1296 * ashift in the pool, so that the allocation will
1297 * not be padded out to a multiple of the ashift,
1298 * which could cause us to think that this mapping
1299 * is larger than we intended.
1301 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1302 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1303 uint64_t attempted =
1304 MIN(range_tree_span(segs), thismax);
1305 thismax = P2ROUNDUP(attempted / 2,
1306 1 << spa->spa_max_ashift);
1308 * The minimum-size allocation can not fail.
1310 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1311 *max_alloc = attempted - (1 << spa->spa_max_ashift);
1312 } else {
1313 ASSERT0(error);
1316 * We've performed an allocation, so reset the
1317 * alloc trace list.
1319 metaslab_trace_fini(&zal);
1320 metaslab_trace_init(&zal);
1323 metaslab_trace_fini(&zal);
1324 range_tree_destroy(segs);
1328 * The removal thread operates in open context. It iterates over all
1329 * allocated space in the vdev, by loading each metaslab's spacemap.
1330 * For each contiguous segment of allocated space (capping the segment
1331 * size at SPA_MAXBLOCKSIZE), we:
1332 * - Allocate space for it on another vdev.
1333 * - Create a new mapping from the old location to the new location
1334 * (as a record in svr_new_segments).
1335 * - Initiate a logical read zio to get the data off the removing disk.
1336 * - In the read zio's done callback, initiate a logical write zio to
1337 * write it to the new vdev.
1338 * Note that all of this will take effect when a particular TXG syncs.
1339 * The sync thread ensures that all the phys reads and writes for the syncing
1340 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1341 * (see vdev_mapping_sync()).
1343 static void
1344 spa_vdev_remove_thread(void *arg)
1346 spa_t *spa = arg;
1347 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1348 vdev_copy_arg_t vca;
1349 uint64_t max_alloc = zfs_remove_max_segment;
1350 uint64_t last_txg = 0;
1352 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1353 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1354 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1355 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1357 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1358 ASSERT(vdev_is_concrete(vd));
1359 ASSERT(vd->vdev_removing);
1360 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1361 ASSERT(vim != NULL);
1363 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1364 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1365 vca.vca_outstanding_bytes = 0;
1367 mutex_enter(&svr->svr_lock);
1370 * Start from vim_max_offset so we pick up where we left off
1371 * if we are restarting the removal after opening the pool.
1373 uint64_t msi;
1374 for (msi = start_offset >> vd->vdev_ms_shift;
1375 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1376 metaslab_t *msp = vd->vdev_ms[msi];
1377 ASSERT3U(msi, <=, vd->vdev_ms_count);
1379 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1381 mutex_enter(&msp->ms_sync_lock);
1382 mutex_enter(&msp->ms_lock);
1385 * Assert nothing in flight -- ms_*tree is empty.
1387 for (int i = 0; i < TXG_SIZE; i++) {
1388 ASSERT0(range_tree_space(msp->ms_allocating[i]));
1392 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1393 * read the allocated segments from the space map object
1394 * into svr_allocd_segs. Since we do this while holding
1395 * svr_lock and ms_sync_lock, concurrent frees (which
1396 * would have modified the space map) will wait for us
1397 * to finish loading the spacemap, and then take the
1398 * appropriate action (see free_from_removing_vdev()).
1400 if (msp->ms_sm != NULL) {
1401 space_map_t *sm = NULL;
1404 * We have to open a new space map here, because
1405 * ms_sm's sm_length and sm_alloc may not reflect
1406 * what's in the object contents, if we are in between
1407 * metaslab_sync() and metaslab_sync_done().
1409 VERIFY0(space_map_open(&sm,
1410 spa->spa_dsl_pool->dp_meta_objset,
1411 msp->ms_sm->sm_object, msp->ms_sm->sm_start,
1412 msp->ms_sm->sm_size, msp->ms_sm->sm_shift));
1413 space_map_update(sm);
1414 VERIFY0(space_map_load(sm, svr->svr_allocd_segs,
1415 SM_ALLOC));
1416 space_map_close(sm);
1418 range_tree_walk(msp->ms_freeing,
1419 range_tree_remove, svr->svr_allocd_segs);
1422 * When we are resuming from a paused removal (i.e.
1423 * when importing a pool with a removal in progress),
1424 * discard any state that we have already processed.
1426 range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1428 mutex_exit(&msp->ms_lock);
1429 mutex_exit(&msp->ms_sync_lock);
1431 vca.vca_msp = msp;
1432 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1433 avl_numnodes(&svr->svr_allocd_segs->rt_root),
1434 msp->ms_id);
1436 while (!svr->svr_thread_exit &&
1437 !range_tree_is_empty(svr->svr_allocd_segs)) {
1439 mutex_exit(&svr->svr_lock);
1442 * We need to periodically drop the config lock so that
1443 * writers can get in. Additionally, we can't wait
1444 * for a txg to sync while holding a config lock
1445 * (since a waiting writer could cause a 3-way deadlock
1446 * with the sync thread, which also gets a config
1447 * lock for reader). So we can't hold the config lock
1448 * while calling dmu_tx_assign().
1450 spa_config_exit(spa, SCL_CONFIG, FTAG);
1453 * This delay will pause the removal around the point
1454 * specified by zfs_remove_max_bytes_pause. We do this
1455 * solely from the test suite or during debugging.
1457 uint64_t bytes_copied =
1458 spa->spa_removing_phys.sr_copied;
1459 for (int i = 0; i < TXG_SIZE; i++)
1460 bytes_copied += svr->svr_bytes_done[i];
1461 while (zfs_remove_max_bytes_pause <= bytes_copied &&
1462 !svr->svr_thread_exit)
1463 delay(hz);
1465 mutex_enter(&vca.vca_lock);
1466 while (vca.vca_outstanding_bytes >
1467 zfs_remove_max_copy_bytes) {
1468 cv_wait(&vca.vca_cv, &vca.vca_lock);
1470 mutex_exit(&vca.vca_lock);
1472 dmu_tx_t *tx =
1473 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1475 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1476 uint64_t txg = dmu_tx_get_txg(tx);
1479 * Reacquire the vdev_config lock. The vdev_t
1480 * that we're removing may have changed, e.g. due
1481 * to a vdev_attach or vdev_detach.
1483 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1484 vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1486 if (txg != last_txg)
1487 max_alloc = zfs_remove_max_segment;
1488 last_txg = txg;
1490 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1492 dmu_tx_commit(tx);
1493 mutex_enter(&svr->svr_lock);
1497 mutex_exit(&svr->svr_lock);
1499 spa_config_exit(spa, SCL_CONFIG, FTAG);
1502 * Wait for all copies to finish before cleaning up the vca.
1504 txg_wait_synced(spa->spa_dsl_pool, 0);
1505 ASSERT0(vca.vca_outstanding_bytes);
1507 mutex_destroy(&vca.vca_lock);
1508 cv_destroy(&vca.vca_cv);
1510 if (svr->svr_thread_exit) {
1511 mutex_enter(&svr->svr_lock);
1512 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1513 svr->svr_thread = NULL;
1514 cv_broadcast(&svr->svr_cv);
1515 mutex_exit(&svr->svr_lock);
1516 } else {
1517 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1518 vdev_remove_complete(spa);
1522 void
1523 spa_vdev_remove_suspend(spa_t *spa)
1525 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1527 if (svr == NULL)
1528 return;
1530 mutex_enter(&svr->svr_lock);
1531 svr->svr_thread_exit = B_TRUE;
1532 while (svr->svr_thread != NULL)
1533 cv_wait(&svr->svr_cv, &svr->svr_lock);
1534 svr->svr_thread_exit = B_FALSE;
1535 mutex_exit(&svr->svr_lock);
1538 /* ARGSUSED */
1539 static int
1540 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1542 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1544 if (spa->spa_vdev_removal == NULL)
1545 return (ENOTACTIVE);
1546 return (0);
1550 * Cancel a removal by freeing all entries from the partial mapping
1551 * and marking the vdev as no longer being removing.
1553 /* ARGSUSED */
1554 static void
1555 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1557 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1558 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1559 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1560 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1561 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1562 objset_t *mos = spa->spa_meta_objset;
1564 ASSERT3P(svr->svr_thread, ==, NULL);
1566 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1567 if (vdev_obsolete_counts_are_precise(vd)) {
1568 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1569 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1570 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1573 if (vdev_obsolete_sm_object(vd) != 0) {
1574 ASSERT(vd->vdev_obsolete_sm != NULL);
1575 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1576 space_map_object(vd->vdev_obsolete_sm));
1578 space_map_free(vd->vdev_obsolete_sm, tx);
1579 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1580 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1581 space_map_close(vd->vdev_obsolete_sm);
1582 vd->vdev_obsolete_sm = NULL;
1583 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1585 for (int i = 0; i < TXG_SIZE; i++) {
1586 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1587 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1588 vdev_indirect_mapping_max_offset(vim));
1591 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1592 metaslab_t *msp = vd->vdev_ms[msi];
1594 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1595 break;
1597 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1599 mutex_enter(&msp->ms_lock);
1602 * Assert nothing in flight -- ms_*tree is empty.
1604 for (int i = 0; i < TXG_SIZE; i++)
1605 ASSERT0(range_tree_space(msp->ms_allocating[i]));
1606 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1607 ASSERT0(range_tree_space(msp->ms_defer[i]));
1608 ASSERT0(range_tree_space(msp->ms_freed));
1610 if (msp->ms_sm != NULL) {
1612 * Assert that the in-core spacemap has the same
1613 * length as the on-disk one, so we can use the
1614 * existing in-core spacemap to load it from disk.
1616 ASSERT3U(msp->ms_sm->sm_alloc, ==,
1617 msp->ms_sm->sm_phys->smp_alloc);
1618 ASSERT3U(msp->ms_sm->sm_length, ==,
1619 msp->ms_sm->sm_phys->smp_objsize);
1621 mutex_enter(&svr->svr_lock);
1622 VERIFY0(space_map_load(msp->ms_sm,
1623 svr->svr_allocd_segs, SM_ALLOC));
1624 range_tree_walk(msp->ms_freeing,
1625 range_tree_remove, svr->svr_allocd_segs);
1628 * Clear everything past what has been synced,
1629 * because we have not allocated mappings for it yet.
1631 uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1632 uint64_t sm_end = msp->ms_sm->sm_start +
1633 msp->ms_sm->sm_size;
1634 if (sm_end > syncd)
1635 range_tree_clear(svr->svr_allocd_segs,
1636 syncd, sm_end - syncd);
1638 mutex_exit(&svr->svr_lock);
1640 mutex_exit(&msp->ms_lock);
1642 mutex_enter(&svr->svr_lock);
1643 range_tree_vacate(svr->svr_allocd_segs,
1644 free_mapped_segment_cb, vd);
1645 mutex_exit(&svr->svr_lock);
1649 * Note: this must happen after we invoke free_mapped_segment_cb,
1650 * because it adds to the obsolete_segments.
1652 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1654 ASSERT3U(vic->vic_mapping_object, ==,
1655 vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1656 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1657 vd->vdev_indirect_mapping = NULL;
1658 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1659 vic->vic_mapping_object = 0;
1661 ASSERT3U(vic->vic_births_object, ==,
1662 vdev_indirect_births_object(vd->vdev_indirect_births));
1663 vdev_indirect_births_close(vd->vdev_indirect_births);
1664 vd->vdev_indirect_births = NULL;
1665 vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1666 vic->vic_births_object = 0;
1669 * We may have processed some frees from the removing vdev in this
1670 * txg, thus increasing svr_bytes_done; discard that here to
1671 * satisfy the assertions in spa_vdev_removal_destroy().
1672 * Note that future txg's can not have any bytes_done, because
1673 * future TXG's are only modified from open context, and we have
1674 * already shut down the copying thread.
1676 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1677 spa_finish_removal(spa, DSS_CANCELED, tx);
1679 vd->vdev_removing = B_FALSE;
1680 vdev_config_dirty(vd);
1682 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1683 vd->vdev_id, dmu_tx_get_txg(tx));
1684 spa_history_log_internal(spa, "vdev remove canceled", tx,
1685 "%s vdev %llu %s", spa_name(spa),
1686 vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1690 spa_vdev_remove_cancel(spa_t *spa)
1692 spa_vdev_remove_suspend(spa);
1694 if (spa->spa_vdev_removal == NULL)
1695 return (ENOTACTIVE);
1697 uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1699 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1700 spa_vdev_remove_cancel_sync, NULL, 0,
1701 ZFS_SPACE_CHECK_EXTRA_RESERVED);
1703 if (error == 0) {
1704 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1705 vdev_t *vd = vdev_lookup_top(spa, vdid);
1706 metaslab_group_activate(vd->vdev_mg);
1707 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1710 return (error);
1714 * Called every sync pass of every txg if there's a svr.
1716 void
1717 svr_sync(spa_t *spa, dmu_tx_t *tx)
1719 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1720 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1723 * This check is necessary so that we do not dirty the
1724 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1725 * is nothing to do. Dirtying it every time would prevent us
1726 * from syncing-to-convergence.
1728 if (svr->svr_bytes_done[txgoff] == 0)
1729 return;
1732 * Update progress accounting.
1734 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1735 svr->svr_bytes_done[txgoff] = 0;
1737 spa_sync_removing_state(spa, tx);
1740 static void
1741 vdev_remove_make_hole_and_free(vdev_t *vd)
1743 uint64_t id = vd->vdev_id;
1744 spa_t *spa = vd->vdev_spa;
1745 vdev_t *rvd = spa->spa_root_vdev;
1746 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1748 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1749 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1751 vdev_free(vd);
1753 if (last_vdev) {
1754 vdev_compact_children(rvd);
1755 } else {
1756 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1757 vdev_add_child(rvd, vd);
1759 vdev_config_dirty(rvd);
1762 * Reassess the health of our root vdev.
1764 vdev_reopen(rvd);
1768 * Remove a log device. The config lock is held for the specified TXG.
1770 static int
1771 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1773 metaslab_group_t *mg = vd->vdev_mg;
1774 spa_t *spa = vd->vdev_spa;
1775 int error = 0;
1777 ASSERT(vd->vdev_islog);
1778 ASSERT(vd == vd->vdev_top);
1781 * Stop allocating from this vdev.
1783 metaslab_group_passivate(mg);
1786 * Wait for the youngest allocations and frees to sync,
1787 * and then wait for the deferral of those frees to finish.
1789 spa_vdev_config_exit(spa, NULL,
1790 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1793 * Evacuate the device. We don't hold the config lock as writer
1794 * since we need to do I/O but we do keep the
1795 * spa_namespace_lock held. Once this completes the device
1796 * should no longer have any blocks allocated on it.
1798 if (vd->vdev_islog) {
1799 if (vd->vdev_stat.vs_alloc != 0)
1800 error = spa_reset_logs(spa);
1803 *txg = spa_vdev_config_enter(spa);
1805 if (error != 0) {
1806 metaslab_group_activate(mg);
1807 return (error);
1809 ASSERT0(vd->vdev_stat.vs_alloc);
1812 * The evacuation succeeded. Remove any remaining MOS metadata
1813 * associated with this vdev, and wait for these changes to sync.
1815 vd->vdev_removing = B_TRUE;
1817 vdev_dirty_leaves(vd, VDD_DTL, *txg);
1818 vdev_config_dirty(vd);
1820 spa_history_log_internal(spa, "vdev remove", NULL,
1821 "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1822 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1824 /* Make sure these changes are sync'ed */
1825 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1827 /* Stop initializing */
1828 (void) vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
1830 *txg = spa_vdev_config_enter(spa);
1832 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1833 ESC_ZFS_VDEV_REMOVE_DEV);
1834 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1835 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1837 /* The top ZAP should have been destroyed by vdev_remove_empty. */
1838 ASSERT0(vd->vdev_top_zap);
1839 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1840 ASSERT0(vd->vdev_leaf_zap);
1842 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1844 if (list_link_active(&vd->vdev_state_dirty_node))
1845 vdev_state_clean(vd);
1846 if (list_link_active(&vd->vdev_config_dirty_node))
1847 vdev_config_clean(vd);
1850 * Clean up the vdev namespace.
1852 vdev_remove_make_hole_and_free(vd);
1854 if (ev != NULL)
1855 spa_event_post(ev);
1857 return (0);
1860 static int
1861 spa_vdev_remove_top_check(vdev_t *vd)
1863 spa_t *spa = vd->vdev_spa;
1865 if (vd != vd->vdev_top)
1866 return (SET_ERROR(ENOTSUP));
1868 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1869 return (SET_ERROR(ENOTSUP));
1872 * There has to be enough free space to remove the
1873 * device and leave double the "slop" space (i.e. we
1874 * must leave at least 3% of the pool free, in addition to
1875 * the normal slop space).
1877 if (dsl_dir_space_available(spa->spa_dsl_pool->dp_root_dir,
1878 NULL, 0, B_TRUE) <
1879 vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1880 return (SET_ERROR(ENOSPC));
1884 * There can not be a removal in progress.
1886 if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1887 return (SET_ERROR(EBUSY));
1890 * The device must have all its data.
1892 if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1893 !vdev_dtl_empty(vd, DTL_OUTAGE))
1894 return (SET_ERROR(EBUSY));
1897 * The device must be healthy.
1899 if (!vdev_readable(vd))
1900 return (SET_ERROR(EIO));
1903 * All vdevs in normal class must have the same ashift.
1905 if (spa->spa_max_ashift != spa->spa_min_ashift) {
1906 return (SET_ERROR(EINVAL));
1910 * All vdevs in normal class must have the same ashift
1911 * and not be raidz.
1913 vdev_t *rvd = spa->spa_root_vdev;
1914 int num_indirect = 0;
1915 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1916 vdev_t *cvd = rvd->vdev_child[id];
1917 if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1918 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1919 if (cvd->vdev_ops == &vdev_indirect_ops)
1920 num_indirect++;
1921 if (!vdev_is_concrete(cvd))
1922 continue;
1923 if (cvd->vdev_ops == &vdev_raidz_ops)
1924 return (SET_ERROR(EINVAL));
1926 * Need the mirror to be mirror of leaf vdevs only
1928 if (cvd->vdev_ops == &vdev_mirror_ops) {
1929 for (uint64_t cid = 0;
1930 cid < cvd->vdev_children; cid++) {
1931 vdev_t *tmp = cvd->vdev_child[cid];
1932 if (!tmp->vdev_ops->vdev_op_leaf)
1933 return (SET_ERROR(EINVAL));
1938 return (0);
1942 * Initiate removal of a top-level vdev, reducing the total space in the pool.
1943 * The config lock is held for the specified TXG. Once initiated,
1944 * evacuation of all allocated space (copying it to other vdevs) happens
1945 * in the background (see spa_vdev_remove_thread()), and can be canceled
1946 * (see spa_vdev_remove_cancel()). If successful, the vdev will
1947 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1949 static int
1950 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1952 spa_t *spa = vd->vdev_spa;
1953 int error;
1956 * Check for errors up-front, so that we don't waste time
1957 * passivating the metaslab group and clearing the ZIL if there
1958 * are errors.
1960 error = spa_vdev_remove_top_check(vd);
1961 if (error != 0)
1962 return (error);
1965 * Stop allocating from this vdev. Note that we must check
1966 * that this is not the only device in the pool before
1967 * passivating, otherwise we will not be able to make
1968 * progress because we can't allocate from any vdevs.
1969 * The above check for sufficient free space serves this
1970 * purpose.
1972 metaslab_group_t *mg = vd->vdev_mg;
1973 metaslab_group_passivate(mg);
1976 * Wait for the youngest allocations and frees to sync,
1977 * and then wait for the deferral of those frees to finish.
1979 spa_vdev_config_exit(spa, NULL,
1980 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1983 * We must ensure that no "stubby" log blocks are allocated
1984 * on the device to be removed. These blocks could be
1985 * written at any time, including while we are in the middle
1986 * of copying them.
1988 error = spa_reset_logs(spa);
1991 * We stop any initializing that is currently in progress but leave
1992 * the state as "active". This will allow the initializing to resume
1993 * if the removal is canceled sometime later.
1995 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
1997 *txg = spa_vdev_config_enter(spa);
2000 * Things might have changed while the config lock was dropped
2001 * (e.g. space usage). Check for errors again.
2003 if (error == 0)
2004 error = spa_vdev_remove_top_check(vd);
2006 if (error != 0) {
2007 metaslab_group_activate(mg);
2008 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2009 return (error);
2012 vd->vdev_removing = B_TRUE;
2014 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2015 vdev_config_dirty(vd);
2016 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2017 dsl_sync_task_nowait(spa->spa_dsl_pool,
2018 vdev_remove_initiate_sync,
2019 (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx);
2020 dmu_tx_commit(tx);
2022 return (0);
2026 * Remove a device from the pool.
2028 * Removing a device from the vdev namespace requires several steps
2029 * and can take a significant amount of time. As a result we use
2030 * the spa_vdev_config_[enter/exit] functions which allow us to
2031 * grab and release the spa_config_lock while still holding the namespace
2032 * lock. During each step the configuration is synced out.
2035 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2037 vdev_t *vd;
2038 nvlist_t **spares, **l2cache, *nv;
2039 uint64_t txg = 0;
2040 uint_t nspares, nl2cache;
2041 int error = 0;
2042 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2043 sysevent_t *ev = NULL;
2045 ASSERT(spa_writeable(spa));
2047 if (!locked)
2048 txg = spa_vdev_enter(spa);
2050 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2051 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2052 error = (spa_has_checkpoint(spa)) ?
2053 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2055 if (!locked)
2056 return (spa_vdev_exit(spa, NULL, txg, error));
2058 return (error);
2061 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2063 if (spa->spa_spares.sav_vdevs != NULL &&
2064 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2065 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2066 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2068 * Only remove the hot spare if it's not currently in use
2069 * in this pool.
2071 if (vd == NULL || unspare) {
2072 char *nvstr = fnvlist_lookup_string(nv,
2073 ZPOOL_CONFIG_PATH);
2074 spa_history_log_internal(spa, "vdev remove", NULL,
2075 "%s vdev (%s) %s", spa_name(spa),
2076 VDEV_TYPE_SPARE, nvstr);
2077 if (vd == NULL)
2078 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2079 ev = spa_event_create(spa, vd, NULL,
2080 ESC_ZFS_VDEV_REMOVE_AUX);
2081 spa_vdev_remove_aux(spa->spa_spares.sav_config,
2082 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2083 spa_load_spares(spa);
2084 spa->spa_spares.sav_sync = B_TRUE;
2085 } else {
2086 error = SET_ERROR(EBUSY);
2088 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2089 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2090 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2091 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2092 char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
2093 spa_history_log_internal(spa, "vdev remove", NULL,
2094 "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
2096 * Cache devices can always be removed.
2098 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2099 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2100 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2101 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2102 spa_load_l2cache(spa);
2103 spa->spa_l2cache.sav_sync = B_TRUE;
2104 } else if (vd != NULL && vd->vdev_islog) {
2105 ASSERT(!locked);
2106 error = spa_vdev_remove_log(vd, &txg);
2107 } else if (vd != NULL) {
2108 ASSERT(!locked);
2109 error = spa_vdev_remove_top(vd, &txg);
2110 } else {
2112 * There is no vdev of any kind with the specified guid.
2114 error = SET_ERROR(ENOENT);
2117 if (!locked)
2118 error = spa_vdev_exit(spa, NULL, txg, error);
2120 if (ev != NULL) {
2121 if (error != 0) {
2122 spa_event_discard(ev);
2123 } else {
2124 spa_event_post(ev);
2128 return (error);
2132 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2134 prs->prs_state = spa->spa_removing_phys.sr_state;
2136 if (prs->prs_state == DSS_NONE)
2137 return (SET_ERROR(ENOENT));
2139 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2140 prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2141 prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2142 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2143 prs->prs_copied = spa->spa_removing_phys.sr_copied;
2145 if (spa->spa_vdev_removal != NULL) {
2146 for (int i = 0; i < TXG_SIZE; i++) {
2147 prs->prs_copied +=
2148 spa->spa_vdev_removal->svr_bytes_done[i];
2152 prs->prs_mapping_memory = 0;
2153 uint64_t indirect_vdev_id =
2154 spa->spa_removing_phys.sr_prev_indirect_vdev;
2155 while (indirect_vdev_id != -1) {
2156 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2157 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2158 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2160 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2161 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2162 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2165 return (0);