Merge commit '7e3488dc6cdcb0c04e1ce167a1a3bfef83b5f2e0'
[unleashed.git] / kernel / fs / zfs / vdev_mirror.c
blob133558d3d3d137163bcd8455aaa1d54412bc2b5e
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dsl_pool.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/zio.h>
37 #include <sys/abd.h>
38 #include <sys/fs/zfs.h>
41 * Virtual device vector for mirroring.
44 typedef struct mirror_child {
45 vdev_t *mc_vd;
46 uint64_t mc_offset;
47 int mc_error;
48 uint8_t mc_tried;
49 uint8_t mc_skipped;
50 uint8_t mc_speculative;
51 } mirror_child_t;
53 typedef struct mirror_map {
54 int mm_children;
55 int mm_resilvering;
56 int mm_preferred;
57 int mm_root;
58 mirror_child_t mm_child[1];
59 } mirror_map_t;
61 int vdev_mirror_shift = 21;
63 static void
64 vdev_mirror_map_free(zio_t *zio)
66 mirror_map_t *mm = zio->io_vsd;
68 kmem_free(mm, offsetof(mirror_map_t, mm_child[mm->mm_children]));
71 static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
72 vdev_mirror_map_free,
73 zio_vsd_default_cksum_report
76 static mirror_map_t *
77 vdev_mirror_map_alloc(zio_t *zio)
79 mirror_map_t *mm = NULL;
80 mirror_child_t *mc;
81 vdev_t *vd = zio->io_vd;
82 int c, d;
84 if (vd == NULL) {
85 dva_t *dva = zio->io_bp->blk_dva;
86 spa_t *spa = zio->io_spa;
87 dva_t dva_copy[SPA_DVAS_PER_BP];
89 c = BP_GET_NDVAS(zio->io_bp);
92 * If we do not trust the pool config, some DVAs might be
93 * invalid or point to vdevs that do not exist. We skip them.
95 if (!spa_trust_config(spa)) {
96 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
97 int j = 0;
98 for (int i = 0; i < c; i++) {
99 if (zfs_dva_valid(spa, &dva[i], zio->io_bp))
100 dva_copy[j++] = dva[i];
102 if (j == 0) {
103 zio->io_vsd = NULL;
104 zio->io_error = ENXIO;
105 return (NULL);
107 if (j < c) {
108 dva = dva_copy;
109 c = j;
113 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP);
114 mm->mm_children = c;
115 mm->mm_resilvering = B_FALSE;
116 mm->mm_preferred = spa_get_random(c);
117 mm->mm_root = B_TRUE;
120 * Check the other, lower-index DVAs to see if they're on
121 * the same vdev as the child we picked. If they are, use
122 * them since they are likely to have been allocated from
123 * the primary metaslab in use at the time, and hence are
124 * more likely to have locality with single-copy data.
126 for (c = mm->mm_preferred, d = c - 1; d >= 0; d--) {
127 if (DVA_GET_VDEV(&dva[d]) == DVA_GET_VDEV(&dva[c]))
128 mm->mm_preferred = d;
131 for (c = 0; c < mm->mm_children; c++) {
132 mc = &mm->mm_child[c];
134 mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
135 mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
137 } else {
138 int replacing;
140 c = vd->vdev_children;
142 mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP);
143 mm->mm_children = c;
145 * If we are resilvering, then we should handle scrub reads
146 * differently; we shouldn't issue them to the resilvering
147 * device because it might not have those blocks.
149 * We are resilvering iff:
150 * 1) We are a replacing vdev (ie our name is "replacing-1" or
151 * "spare-1" or something like that), and
152 * 2) The pool is currently being resilvered.
154 * We cannot simply check vd->vdev_resilver_txg, because it's
155 * not set in this path.
157 * Nor can we just check our vdev_ops; there are cases (such as
158 * when a user types "zpool replace pool odev spare_dev" and
159 * spare_dev is in the spare list, or when a spare device is
160 * automatically used to replace a DEGRADED device) when
161 * resilvering is complete but both the original vdev and the
162 * spare vdev remain in the pool. That behavior is intentional.
163 * It helps implement the policy that a spare should be
164 * automatically removed from the pool after the user replaces
165 * the device that originally failed.
167 replacing = (vd->vdev_ops == &vdev_replacing_ops ||
168 vd->vdev_ops == &vdev_spare_ops);
170 * If a spa load is in progress, then spa_dsl_pool may be
171 * uninitialized. But we shouldn't be resilvering during a spa
172 * load anyway.
174 if (replacing &&
175 (spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE) &&
176 dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool)) {
177 mm->mm_resilvering = B_TRUE;
178 } else {
179 mm->mm_resilvering = B_FALSE;
182 mm->mm_preferred = mm->mm_resilvering ? 0 :
183 (zio->io_offset >> vdev_mirror_shift) % c;
184 mm->mm_root = B_FALSE;
186 for (c = 0; c < mm->mm_children; c++) {
187 mc = &mm->mm_child[c];
188 mc->mc_vd = vd->vdev_child[c];
189 mc->mc_offset = zio->io_offset;
193 zio->io_vsd = mm;
194 zio->io_vsd_ops = &vdev_mirror_vsd_ops;
195 return (mm);
198 static int
199 vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
200 uint64_t *ashift)
202 int numerrors = 0;
203 int lasterror = 0;
205 if (vd->vdev_children == 0) {
206 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
207 return (SET_ERROR(EINVAL));
210 vdev_open_children(vd);
212 for (int c = 0; c < vd->vdev_children; c++) {
213 vdev_t *cvd = vd->vdev_child[c];
215 if (cvd->vdev_open_error) {
216 lasterror = cvd->vdev_open_error;
217 numerrors++;
218 continue;
221 *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
222 *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
223 *ashift = MAX(*ashift, cvd->vdev_ashift);
226 if (numerrors == vd->vdev_children) {
227 if (vdev_children_are_offline(vd))
228 vd->vdev_stat.vs_aux = VDEV_AUX_CHILDREN_OFFLINE;
229 else
230 vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
231 return (lasterror);
234 return (0);
237 static void
238 vdev_mirror_close(vdev_t *vd)
240 for (int c = 0; c < vd->vdev_children; c++)
241 vdev_close(vd->vdev_child[c]);
244 static void
245 vdev_mirror_child_done(zio_t *zio)
247 mirror_child_t *mc = zio->io_private;
249 mc->mc_error = zio->io_error;
250 mc->mc_tried = 1;
251 mc->mc_skipped = 0;
254 static void
255 vdev_mirror_scrub_done(zio_t *zio)
257 mirror_child_t *mc = zio->io_private;
259 if (zio->io_error == 0) {
260 zio_t *pio;
261 zio_link_t *zl = NULL;
263 mutex_enter(&zio->io_lock);
264 while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
265 mutex_enter(&pio->io_lock);
266 ASSERT3U(zio->io_size, >=, pio->io_size);
267 abd_copy(pio->io_abd, zio->io_abd, pio->io_size);
268 mutex_exit(&pio->io_lock);
270 mutex_exit(&zio->io_lock);
272 abd_free(zio->io_abd);
274 mc->mc_error = zio->io_error;
275 mc->mc_tried = 1;
276 mc->mc_skipped = 0;
280 * Try to find a child whose DTL doesn't contain the block we want to read.
281 * If we can't, try the read on any vdev we haven't already tried.
283 static int
284 vdev_mirror_child_select(zio_t *zio)
286 mirror_map_t *mm = zio->io_vsd;
287 mirror_child_t *mc;
288 uint64_t txg = zio->io_txg;
289 int i, c;
291 ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
294 * Try to find a child whose DTL doesn't contain the block to read.
295 * If a child is known to be completely inaccessible (indicated by
296 * vdev_readable() returning B_FALSE), don't even try.
298 for (i = 0, c = mm->mm_preferred; i < mm->mm_children; i++, c++) {
299 if (c >= mm->mm_children)
300 c = 0;
301 mc = &mm->mm_child[c];
302 if (mc->mc_tried || mc->mc_skipped)
303 continue;
304 if (!vdev_readable(mc->mc_vd)) {
305 mc->mc_error = SET_ERROR(ENXIO);
306 mc->mc_tried = 1; /* don't even try */
307 mc->mc_skipped = 1;
308 continue;
310 if (!vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1))
311 return (c);
312 mc->mc_error = SET_ERROR(ESTALE);
313 mc->mc_skipped = 1;
314 mc->mc_speculative = 1;
318 * Every device is either missing or has this txg in its DTL.
319 * Look for any child we haven't already tried before giving up.
321 for (c = 0; c < mm->mm_children; c++)
322 if (!mm->mm_child[c].mc_tried)
323 return (c);
326 * Every child failed. There's no place left to look.
328 return (-1);
331 static void
332 vdev_mirror_io_start(zio_t *zio)
334 mirror_map_t *mm;
335 mirror_child_t *mc;
336 int c, children;
338 mm = vdev_mirror_map_alloc(zio);
340 if (mm == NULL) {
341 ASSERT(!spa_trust_config(zio->io_spa));
342 ASSERT(zio->io_type == ZIO_TYPE_READ);
343 zio_execute(zio);
344 return;
347 if (zio->io_type == ZIO_TYPE_READ) {
348 if (zio->io_bp != NULL &&
349 (zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) {
351 * For scrubbing reads (if we can verify the
352 * checksum here, as indicated by io_bp being
353 * non-NULL) we need to allocate a read buffer for
354 * each child and issue reads to all children. If
355 * any child succeeds, it will copy its data into
356 * zio->io_data in vdev_mirror_scrub_done.
358 for (c = 0; c < mm->mm_children; c++) {
359 mc = &mm->mm_child[c];
360 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
361 mc->mc_vd, mc->mc_offset,
362 abd_alloc_sametype(zio->io_abd,
363 zio->io_size), zio->io_size,
364 zio->io_type, zio->io_priority, 0,
365 vdev_mirror_scrub_done, mc));
367 zio_execute(zio);
368 return;
371 * For normal reads just pick one child.
373 c = vdev_mirror_child_select(zio);
374 children = (c >= 0);
375 } else {
376 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
379 * Writes go to all children.
381 c = 0;
382 children = mm->mm_children;
385 while (children--) {
386 mc = &mm->mm_child[c];
387 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
388 mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
389 zio->io_type, zio->io_priority, 0,
390 vdev_mirror_child_done, mc));
391 c++;
394 zio_execute(zio);
397 static int
398 vdev_mirror_worst_error(mirror_map_t *mm)
400 int error[2] = { 0, 0 };
402 for (int c = 0; c < mm->mm_children; c++) {
403 mirror_child_t *mc = &mm->mm_child[c];
404 int s = mc->mc_speculative;
405 error[s] = zio_worst_error(error[s], mc->mc_error);
408 return (error[0] ? error[0] : error[1]);
411 static void
412 vdev_mirror_io_done(zio_t *zio)
414 mirror_map_t *mm = zio->io_vsd;
415 mirror_child_t *mc;
416 int c;
417 int good_copies = 0;
418 int unexpected_errors = 0;
420 if (mm == NULL)
421 return;
423 for (c = 0; c < mm->mm_children; c++) {
424 mc = &mm->mm_child[c];
426 if (mc->mc_error) {
427 if (!mc->mc_skipped)
428 unexpected_errors++;
429 } else if (mc->mc_tried) {
430 good_copies++;
434 if (zio->io_type == ZIO_TYPE_WRITE) {
436 * XXX -- for now, treat partial writes as success.
438 * Now that we support write reallocation, it would be better
439 * to treat partial failure as real failure unless there are
440 * no non-degraded top-level vdevs left, and not update DTLs
441 * if we intend to reallocate.
443 /* XXPOLICY */
444 if (good_copies != mm->mm_children) {
446 * Always require at least one good copy.
448 * For ditto blocks (io_vd == NULL), require
449 * all copies to be good.
451 * XXX -- for replacing vdevs, there's no great answer.
452 * If the old device is really dead, we may not even
453 * be able to access it -- so we only want to
454 * require good writes to the new device. But if
455 * the new device turns out to be flaky, we want
456 * to be able to detach it -- which requires all
457 * writes to the old device to have succeeded.
459 if (good_copies == 0 || zio->io_vd == NULL)
460 zio->io_error = vdev_mirror_worst_error(mm);
462 return;
465 ASSERT(zio->io_type == ZIO_TYPE_READ);
468 * If we don't have a good copy yet, keep trying other children.
470 /* XXPOLICY */
471 if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
472 ASSERT(c >= 0 && c < mm->mm_children);
473 mc = &mm->mm_child[c];
474 zio_vdev_io_redone(zio);
475 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
476 mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
477 ZIO_TYPE_READ, zio->io_priority, 0,
478 vdev_mirror_child_done, mc));
479 return;
482 /* XXPOLICY */
483 if (good_copies == 0) {
484 zio->io_error = vdev_mirror_worst_error(mm);
485 ASSERT(zio->io_error != 0);
488 if (good_copies && spa_writeable(zio->io_spa) &&
489 (unexpected_errors ||
490 (zio->io_flags & ZIO_FLAG_RESILVER) ||
491 ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) {
493 * Use the good data we have in hand to repair damaged children.
495 for (c = 0; c < mm->mm_children; c++) {
497 * Don't rewrite known good children.
498 * Not only is it unnecessary, it could
499 * actually be harmful: if the system lost
500 * power while rewriting the only good copy,
501 * there would be no good copies left!
503 mc = &mm->mm_child[c];
505 if (mc->mc_error == 0) {
506 if (mc->mc_tried)
507 continue;
509 * We didn't try this child. We need to
510 * repair it if:
511 * 1. it's a scrub (in which case we have
512 * tried everything that was healthy)
513 * - or -
514 * 2. it's an indirect vdev (in which case
515 * it could point to any other vdev, which
516 * might have a bad DTL)
517 * - or -
518 * 3. the DTL indicates that this data is
519 * missing from this vdev
521 if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
522 mc->mc_vd->vdev_ops != &vdev_indirect_ops &&
523 !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
524 zio->io_txg, 1))
525 continue;
526 mc->mc_error = SET_ERROR(ESTALE);
529 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
530 mc->mc_vd, mc->mc_offset,
531 zio->io_abd, zio->io_size,
532 ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
533 ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
534 ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
539 static void
540 vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
542 if (faulted == vd->vdev_children) {
543 if (vdev_children_are_offline(vd)) {
544 vdev_set_state(vd, B_FALSE, VDEV_STATE_OFFLINE,
545 VDEV_AUX_CHILDREN_OFFLINE);
546 } else {
547 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
548 VDEV_AUX_NO_REPLICAS);
550 } else if (degraded + faulted != 0) {
551 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
552 } else {
553 vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
557 vdev_ops_t vdev_mirror_ops = {
558 vdev_mirror_open,
559 vdev_mirror_close,
560 vdev_default_asize,
561 vdev_mirror_io_start,
562 vdev_mirror_io_done,
563 vdev_mirror_state_change,
564 NULL,
565 NULL,
566 NULL,
567 vdev_default_xlate,
568 VDEV_TYPE_MIRROR, /* name of this vdev type */
569 B_FALSE /* not a leaf vdev */
572 vdev_ops_t vdev_replacing_ops = {
573 vdev_mirror_open,
574 vdev_mirror_close,
575 vdev_default_asize,
576 vdev_mirror_io_start,
577 vdev_mirror_io_done,
578 vdev_mirror_state_change,
579 NULL,
580 NULL,
581 NULL,
582 vdev_default_xlate,
583 VDEV_TYPE_REPLACING, /* name of this vdev type */
584 B_FALSE /* not a leaf vdev */
587 vdev_ops_t vdev_spare_ops = {
588 vdev_mirror_open,
589 vdev_mirror_close,
590 vdev_default_asize,
591 vdev_mirror_io_start,
592 vdev_mirror_io_done,
593 vdev_mirror_state_change,
594 NULL,
595 NULL,
596 NULL,
597 vdev_default_xlate,
598 VDEV_TYPE_SPARE, /* name of this vdev type */
599 B_FALSE /* not a leaf vdev */