Merge commit '7e3488dc6cdcb0c04e1ce167a1a3bfef83b5f2e0'
[unleashed.git] / kernel / fs / zfs / vdev_label.c
blob8d5f17c15f7661daca332f34c2c5f4ac0140813e
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
28 * Virtual Device Labels
29 * ---------------------
31 * The vdev label serves several distinct purposes:
33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
34 * identity within the pool.
36 * 2. Verify that all the devices given in a configuration are present
37 * within the pool.
39 * 3. Determine the uberblock for the pool.
41 * 4. In case of an import operation, determine the configuration of the
42 * toplevel vdev of which it is a part.
44 * 5. If an import operation cannot find all the devices in the pool,
45 * provide enough information to the administrator to determine which
46 * devices are missing.
48 * It is important to note that while the kernel is responsible for writing the
49 * label, it only consumes the information in the first three cases. The
50 * latter information is only consumed in userland when determining the
51 * configuration to import a pool.
54 * Label Organization
55 * ------------------
57 * Before describing the contents of the label, it's important to understand how
58 * the labels are written and updated with respect to the uberblock.
60 * When the pool configuration is altered, either because it was newly created
61 * or a device was added, we want to update all the labels such that we can deal
62 * with fatal failure at any point. To this end, each disk has two labels which
63 * are updated before and after the uberblock is synced. Assuming we have
64 * labels and an uberblock with the following transaction groups:
66 * L1 UB L2
67 * +------+ +------+ +------+
68 * | | | | | |
69 * | t10 | | t10 | | t10 |
70 * | | | | | |
71 * +------+ +------+ +------+
73 * In this stable state, the labels and the uberblock were all updated within
74 * the same transaction group (10). Each label is mirrored and checksummed, so
75 * that we can detect when we fail partway through writing the label.
77 * In order to identify which labels are valid, the labels are written in the
78 * following manner:
80 * 1. For each vdev, update 'L1' to the new label
81 * 2. Update the uberblock
82 * 3. For each vdev, update 'L2' to the new label
84 * Given arbitrary failure, we can determine the correct label to use based on
85 * the transaction group. If we fail after updating L1 but before updating the
86 * UB, we will notice that L1's transaction group is greater than the uberblock,
87 * so L2 must be valid. If we fail after writing the uberblock but before
88 * writing L2, we will notice that L2's transaction group is less than L1, and
89 * therefore L1 is valid.
91 * Another added complexity is that not every label is updated when the config
92 * is synced. If we add a single device, we do not want to have to re-write
93 * every label for every device in the pool. This means that both L1 and L2 may
94 * be older than the pool uberblock, because the necessary information is stored
95 * on another vdev.
98 * On-disk Format
99 * --------------
101 * The vdev label consists of two distinct parts, and is wrapped within the
102 * vdev_label_t structure. The label includes 8k of padding to permit legacy
103 * VTOC disk labels, but is otherwise ignored.
105 * The first half of the label is a packed nvlist which contains pool wide
106 * properties, per-vdev properties, and configuration information. It is
107 * described in more detail below.
109 * The latter half of the label consists of a redundant array of uberblocks.
110 * These uberblocks are updated whenever a transaction group is committed,
111 * or when the configuration is updated. When a pool is loaded, we scan each
112 * vdev for the 'best' uberblock.
115 * Configuration Information
116 * -------------------------
118 * The nvlist describing the pool and vdev contains the following elements:
120 * version ZFS on-disk version
121 * name Pool name
122 * state Pool state
123 * txg Transaction group in which this label was written
124 * pool_guid Unique identifier for this pool
125 * vdev_tree An nvlist describing vdev tree.
126 * features_for_read
127 * An nvlist of the features necessary for reading the MOS.
129 * Each leaf device label also contains the following:
131 * top_guid Unique ID for top-level vdev in which this is contained
132 * guid Unique ID for the leaf vdev
134 * The 'vs' configuration follows the format described in 'spa_config.c'.
137 #include <sys/zfs_context.h>
138 #include <sys/spa.h>
139 #include <sys/spa_impl.h>
140 #include <sys/dmu.h>
141 #include <sys/zap.h>
142 #include <sys/vdev.h>
143 #include <sys/vdev_impl.h>
144 #include <sys/uberblock_impl.h>
145 #include <sys/metaslab.h>
146 #include <sys/metaslab_impl.h>
147 #include <sys/zio.h>
148 #include <sys/dsl_scan.h>
149 #include <sys/abd.h>
150 #include <sys/fs/zfs.h>
153 * Basic routines to read and write from a vdev label.
154 * Used throughout the rest of this file.
156 uint64_t
157 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
159 ASSERT(offset < sizeof (vdev_label_t));
160 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
162 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
163 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
167 * Returns back the vdev label associated with the passed in offset.
170 vdev_label_number(uint64_t psize, uint64_t offset)
172 int l;
174 if (offset >= psize - VDEV_LABEL_END_SIZE) {
175 offset -= psize - VDEV_LABEL_END_SIZE;
176 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
178 l = offset / sizeof (vdev_label_t);
179 return (l < VDEV_LABELS ? l : -1);
182 static void
183 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
184 uint64_t size, zio_done_func_t *done, void *private, int flags)
186 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
187 SCL_STATE_ALL);
188 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
190 zio_nowait(zio_read_phys(zio, vd,
191 vdev_label_offset(vd->vdev_psize, l, offset),
192 size, buf, ZIO_CHECKSUM_LABEL, done, private,
193 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
196 static void
197 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
198 uint64_t size, zio_done_func_t *done, void *private, int flags)
200 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
201 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
202 (SCL_CONFIG | SCL_STATE) &&
203 dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
204 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
206 zio_nowait(zio_write_phys(zio, vd,
207 vdev_label_offset(vd->vdev_psize, l, offset),
208 size, buf, ZIO_CHECKSUM_LABEL, done, private,
209 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
212 static void
213 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
215 spa_t *spa = vd->vdev_spa;
217 if (vd != spa->spa_root_vdev)
218 return;
220 /* provide either current or previous scan information */
221 pool_scan_stat_t ps;
222 if (spa_scan_get_stats(spa, &ps) == 0) {
223 fnvlist_add_uint64_array(nvl,
224 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
225 sizeof (pool_scan_stat_t) / sizeof (uint64_t));
228 pool_removal_stat_t prs;
229 if (spa_removal_get_stats(spa, &prs) == 0) {
230 fnvlist_add_uint64_array(nvl,
231 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
232 sizeof (prs) / sizeof (uint64_t));
235 pool_checkpoint_stat_t pcs;
236 if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
237 fnvlist_add_uint64_array(nvl,
238 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
239 sizeof (pcs) / sizeof (uint64_t));
244 * Generate the nvlist representing this vdev's config.
246 nvlist_t *
247 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
248 vdev_config_flag_t flags)
250 nvlist_t *nv = NULL;
251 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
253 nv = fnvlist_alloc();
255 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
256 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
257 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
258 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
260 if (vd->vdev_path != NULL)
261 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
263 if (vd->vdev_devid != NULL)
264 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
266 if (vd->vdev_physpath != NULL)
267 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
268 vd->vdev_physpath);
270 if (vd->vdev_fru != NULL)
271 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
273 if (vd->vdev_nparity != 0) {
274 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
275 VDEV_TYPE_RAIDZ) == 0);
278 * Make sure someone hasn't managed to sneak a fancy new vdev
279 * into a crufty old storage pool.
281 ASSERT(vd->vdev_nparity == 1 ||
282 (vd->vdev_nparity <= 2 &&
283 spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
284 (vd->vdev_nparity <= 3 &&
285 spa_version(spa) >= SPA_VERSION_RAIDZ3));
288 * Note that we'll add the nparity tag even on storage pools
289 * that only support a single parity device -- older software
290 * will just ignore it.
292 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
295 if (vd->vdev_wholedisk != -1ULL)
296 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
297 vd->vdev_wholedisk);
299 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
300 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
302 if (vd->vdev_isspare)
303 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
305 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
306 vd == vd->vdev_top) {
307 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
308 vd->vdev_ms_array);
309 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
310 vd->vdev_ms_shift);
311 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
312 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
313 vd->vdev_asize);
314 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
315 if (vd->vdev_removing) {
316 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
317 vd->vdev_removing);
321 if (vd->vdev_dtl_sm != NULL) {
322 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
323 space_map_object(vd->vdev_dtl_sm));
326 if (vic->vic_mapping_object != 0) {
327 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
328 vic->vic_mapping_object);
331 if (vic->vic_births_object != 0) {
332 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
333 vic->vic_births_object);
336 if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
337 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
338 vic->vic_prev_indirect_vdev);
341 if (vd->vdev_crtxg)
342 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
344 if (flags & VDEV_CONFIG_MOS) {
345 if (vd->vdev_leaf_zap != 0) {
346 ASSERT(vd->vdev_ops->vdev_op_leaf);
347 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
348 vd->vdev_leaf_zap);
351 if (vd->vdev_top_zap != 0) {
352 ASSERT(vd == vd->vdev_top);
353 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
354 vd->vdev_top_zap);
358 if (getstats) {
359 vdev_stat_t vs;
361 vdev_get_stats(vd, &vs);
362 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
363 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t));
365 root_vdev_actions_getprogress(vd, nv);
368 * Note: this can be called from open context
369 * (spa_get_stats()), so we need the rwlock to prevent
370 * the mapping from being changed by condensing.
372 rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
373 if (vd->vdev_indirect_mapping != NULL) {
374 ASSERT(vd->vdev_indirect_births != NULL);
375 vdev_indirect_mapping_t *vim =
376 vd->vdev_indirect_mapping;
377 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
378 vdev_indirect_mapping_size(vim));
380 rw_exit(&vd->vdev_indirect_rwlock);
381 if (vd->vdev_mg != NULL &&
382 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
384 * Compute approximately how much memory would be used
385 * for the indirect mapping if this device were to
386 * be removed.
388 * Note: If the frag metric is invalid, then not
389 * enough metaslabs have been converted to have
390 * histograms.
392 uint64_t seg_count = 0;
393 uint64_t to_alloc = vd->vdev_stat.vs_alloc;
396 * There are the same number of allocated segments
397 * as free segments, so we will have at least one
398 * entry per free segment. However, small free
399 * segments (smaller than vdev_removal_max_span)
400 * will be combined with adjacent allocated segments
401 * as a single mapping.
403 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
404 if (1ULL << (i + 1) < vdev_removal_max_span) {
405 to_alloc +=
406 vd->vdev_mg->mg_histogram[i] <<
407 i + 1;
408 } else {
409 seg_count +=
410 vd->vdev_mg->mg_histogram[i];
415 * The maximum length of a mapping is
416 * zfs_remove_max_segment, so we need at least one entry
417 * per zfs_remove_max_segment of allocated data.
419 seg_count += to_alloc / zfs_remove_max_segment;
421 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
422 seg_count *
423 sizeof (vdev_indirect_mapping_entry_phys_t));
427 if (!vd->vdev_ops->vdev_op_leaf) {
428 nvlist_t **child;
429 int c, idx;
431 ASSERT(!vd->vdev_ishole);
433 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
434 KM_SLEEP);
436 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
437 vdev_t *cvd = vd->vdev_child[c];
440 * If we're generating an nvlist of removing
441 * vdevs then skip over any device which is
442 * not being removed.
444 if ((flags & VDEV_CONFIG_REMOVING) &&
445 !cvd->vdev_removing)
446 continue;
448 child[idx++] = vdev_config_generate(spa, cvd,
449 getstats, flags);
452 if (idx) {
453 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
454 child, idx);
457 for (c = 0; c < idx; c++)
458 nvlist_free(child[c]);
460 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
462 } else {
463 const char *aux = NULL;
465 if (vd->vdev_offline && !vd->vdev_tmpoffline)
466 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
467 if (vd->vdev_resilver_txg != 0)
468 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
469 vd->vdev_resilver_txg);
470 if (vd->vdev_faulted)
471 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
472 if (vd->vdev_degraded)
473 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
474 if (vd->vdev_removed)
475 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
476 if (vd->vdev_unspare)
477 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
478 if (vd->vdev_ishole)
479 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
481 switch (vd->vdev_stat.vs_aux) {
482 case VDEV_AUX_ERR_EXCEEDED:
483 aux = "err_exceeded";
484 break;
486 case VDEV_AUX_EXTERNAL:
487 aux = "external";
488 break;
491 if (aux != NULL)
492 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
494 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
495 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
496 vd->vdev_orig_guid);
500 return (nv);
504 * Generate a view of the top-level vdevs. If we currently have holes
505 * in the namespace, then generate an array which contains a list of holey
506 * vdevs. Additionally, add the number of top-level children that currently
507 * exist.
509 void
510 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
512 vdev_t *rvd = spa->spa_root_vdev;
513 uint64_t *array;
514 uint_t c, idx;
516 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
518 for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
519 vdev_t *tvd = rvd->vdev_child[c];
521 if (tvd->vdev_ishole) {
522 array[idx++] = c;
526 if (idx) {
527 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
528 array, idx) == 0);
531 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
532 rvd->vdev_children) == 0);
534 kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
538 * Returns the configuration from the label of the given vdev. For vdevs
539 * which don't have a txg value stored on their label (i.e. spares/cache)
540 * or have not been completely initialized (txg = 0) just return
541 * the configuration from the first valid label we find. Otherwise,
542 * find the most up-to-date label that does not exceed the specified
543 * 'txg' value.
545 nvlist_t *
546 vdev_label_read_config(vdev_t *vd, uint64_t txg)
548 spa_t *spa = vd->vdev_spa;
549 nvlist_t *config = NULL;
550 vdev_phys_t *vp;
551 abd_t *vp_abd;
552 zio_t *zio;
553 uint64_t best_txg = 0;
554 uint64_t label_txg = 0;
555 int error = 0;
556 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
557 ZIO_FLAG_SPECULATIVE;
559 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
561 if (!vdev_readable(vd))
562 return (NULL);
564 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
565 vp = abd_to_buf(vp_abd);
567 retry:
568 for (int l = 0; l < VDEV_LABELS; l++) {
569 nvlist_t *label = NULL;
571 zio = zio_root(spa, NULL, NULL, flags);
573 vdev_label_read(zio, vd, l, vp_abd,
574 offsetof(vdev_label_t, vl_vdev_phys),
575 sizeof (vdev_phys_t), NULL, NULL, flags);
577 if (zio_wait(zio) == 0 &&
578 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
579 &label, 0) == 0) {
581 * Auxiliary vdevs won't have txg values in their
582 * labels and newly added vdevs may not have been
583 * completely initialized so just return the
584 * configuration from the first valid label we
585 * encounter.
587 error = nvlist_lookup_uint64(label,
588 ZPOOL_CONFIG_POOL_TXG, &label_txg);
589 if ((error || label_txg == 0) && !config) {
590 config = label;
591 break;
592 } else if (label_txg <= txg && label_txg > best_txg) {
593 best_txg = label_txg;
594 nvlist_free(config);
595 config = fnvlist_dup(label);
599 if (label != NULL) {
600 nvlist_free(label);
601 label = NULL;
605 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
606 flags |= ZIO_FLAG_TRYHARD;
607 goto retry;
611 * We found a valid label but it didn't pass txg restrictions.
613 if (config == NULL && label_txg != 0) {
614 vdev_dbgmsg(vd, "label discarded as txg is too large "
615 "(%llu > %llu)", (u_longlong_t)label_txg,
616 (u_longlong_t)txg);
619 abd_free(vp_abd);
621 return (config);
625 * Determine if a device is in use. The 'spare_guid' parameter will be filled
626 * in with the device guid if this spare is active elsewhere on the system.
628 static boolean_t
629 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
630 uint64_t *spare_guid, uint64_t *l2cache_guid)
632 spa_t *spa = vd->vdev_spa;
633 uint64_t state, pool_guid, device_guid, txg, spare_pool;
634 uint64_t vdtxg = 0;
635 nvlist_t *label;
637 if (spare_guid)
638 *spare_guid = 0ULL;
639 if (l2cache_guid)
640 *l2cache_guid = 0ULL;
643 * Read the label, if any, and perform some basic sanity checks.
645 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
646 return (B_FALSE);
648 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
649 &vdtxg);
651 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
652 &state) != 0 ||
653 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
654 &device_guid) != 0) {
655 nvlist_free(label);
656 return (B_FALSE);
659 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
660 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
661 &pool_guid) != 0 ||
662 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
663 &txg) != 0)) {
664 nvlist_free(label);
665 return (B_FALSE);
668 nvlist_free(label);
671 * Check to see if this device indeed belongs to the pool it claims to
672 * be a part of. The only way this is allowed is if the device is a hot
673 * spare (which we check for later on).
675 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
676 !spa_guid_exists(pool_guid, device_guid) &&
677 !spa_spare_exists(device_guid, NULL, NULL) &&
678 !spa_l2cache_exists(device_guid, NULL))
679 return (B_FALSE);
682 * If the transaction group is zero, then this an initialized (but
683 * unused) label. This is only an error if the create transaction
684 * on-disk is the same as the one we're using now, in which case the
685 * user has attempted to add the same vdev multiple times in the same
686 * transaction.
688 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
689 txg == 0 && vdtxg == crtxg)
690 return (B_TRUE);
693 * Check to see if this is a spare device. We do an explicit check for
694 * spa_has_spare() here because it may be on our pending list of spares
695 * to add. We also check if it is an l2cache device.
697 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
698 spa_has_spare(spa, device_guid)) {
699 if (spare_guid)
700 *spare_guid = device_guid;
702 switch (reason) {
703 case VDEV_LABEL_CREATE:
704 case VDEV_LABEL_L2CACHE:
705 return (B_TRUE);
707 case VDEV_LABEL_REPLACE:
708 return (!spa_has_spare(spa, device_guid) ||
709 spare_pool != 0ULL);
711 case VDEV_LABEL_SPARE:
712 return (spa_has_spare(spa, device_guid));
717 * Check to see if this is an l2cache device.
719 if (spa_l2cache_exists(device_guid, NULL))
720 return (B_TRUE);
723 * We can't rely on a pool's state if it's been imported
724 * read-only. Instead we look to see if the pools is marked
725 * read-only in the namespace and set the state to active.
727 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
728 (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
729 spa_mode(spa) == FREAD)
730 state = POOL_STATE_ACTIVE;
733 * If the device is marked ACTIVE, then this device is in use by another
734 * pool on the system.
736 return (state == POOL_STATE_ACTIVE);
740 * Initialize a vdev label. We check to make sure each leaf device is not in
741 * use, and writable. We put down an initial label which we will later
742 * overwrite with a complete label. Note that it's important to do this
743 * sequentially, not in parallel, so that we catch cases of multiple use of the
744 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
745 * itself.
748 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
750 spa_t *spa = vd->vdev_spa;
751 nvlist_t *label;
752 vdev_phys_t *vp;
753 abd_t *vp_abd;
754 abd_t *pad2;
755 uberblock_t *ub;
756 abd_t *ub_abd;
757 zio_t *zio;
758 char *buf;
759 size_t buflen;
760 int error;
761 uint64_t spare_guid, l2cache_guid;
762 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
764 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
766 for (int c = 0; c < vd->vdev_children; c++)
767 if ((error = vdev_label_init(vd->vdev_child[c],
768 crtxg, reason)) != 0)
769 return (error);
771 /* Track the creation time for this vdev */
772 vd->vdev_crtxg = crtxg;
774 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
775 return (0);
778 * Dead vdevs cannot be initialized.
780 if (vdev_is_dead(vd))
781 return (SET_ERROR(EIO));
784 * Determine if the vdev is in use.
786 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
787 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
788 return (SET_ERROR(EBUSY));
791 * If this is a request to add or replace a spare or l2cache device
792 * that is in use elsewhere on the system, then we must update the
793 * guid (which was initialized to a random value) to reflect the
794 * actual GUID (which is shared between multiple pools).
796 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
797 spare_guid != 0ULL) {
798 uint64_t guid_delta = spare_guid - vd->vdev_guid;
800 vd->vdev_guid += guid_delta;
802 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
803 pvd->vdev_guid_sum += guid_delta;
806 * If this is a replacement, then we want to fallthrough to the
807 * rest of the code. If we're adding a spare, then it's already
808 * labeled appropriately and we can just return.
810 if (reason == VDEV_LABEL_SPARE)
811 return (0);
812 ASSERT(reason == VDEV_LABEL_REPLACE ||
813 reason == VDEV_LABEL_SPLIT);
816 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
817 l2cache_guid != 0ULL) {
818 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
820 vd->vdev_guid += guid_delta;
822 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
823 pvd->vdev_guid_sum += guid_delta;
826 * If this is a replacement, then we want to fallthrough to the
827 * rest of the code. If we're adding an l2cache, then it's
828 * already labeled appropriately and we can just return.
830 if (reason == VDEV_LABEL_L2CACHE)
831 return (0);
832 ASSERT(reason == VDEV_LABEL_REPLACE);
836 * Initialize its label.
838 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
839 abd_zero(vp_abd, sizeof (vdev_phys_t));
840 vp = abd_to_buf(vp_abd);
843 * Generate a label describing the pool and our top-level vdev.
844 * We mark it as being from txg 0 to indicate that it's not
845 * really part of an active pool just yet. The labels will
846 * be written again with a meaningful txg by spa_sync().
848 if (reason == VDEV_LABEL_SPARE ||
849 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
851 * For inactive hot spares, we generate a special label that
852 * identifies as a mutually shared hot spare. We write the
853 * label if we are adding a hot spare, or if we are removing an
854 * active hot spare (in which case we want to revert the
855 * labels).
857 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
859 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
860 spa_version(spa)) == 0);
861 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
862 POOL_STATE_SPARE) == 0);
863 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
864 vd->vdev_guid) == 0);
865 } else if (reason == VDEV_LABEL_L2CACHE ||
866 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
868 * For level 2 ARC devices, add a special label.
870 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
872 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
873 spa_version(spa)) == 0);
874 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
875 POOL_STATE_L2CACHE) == 0);
876 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
877 vd->vdev_guid) == 0);
878 } else {
879 uint64_t txg = 0ULL;
881 if (reason == VDEV_LABEL_SPLIT)
882 txg = spa->spa_uberblock.ub_txg;
883 label = spa_config_generate(spa, vd, txg, B_FALSE);
886 * Add our creation time. This allows us to detect multiple
887 * vdev uses as described above, and automatically expires if we
888 * fail.
890 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
891 crtxg) == 0);
894 buf = vp->vp_nvlist;
895 buflen = sizeof (vp->vp_nvlist);
897 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
898 if (error != 0) {
899 nvlist_free(label);
900 abd_free(vp_abd);
901 /* EFAULT means nvlist_pack ran out of room */
902 return (error == EFAULT ? ENAMETOOLONG : EINVAL);
906 * Initialize uberblock template.
908 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
909 abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
910 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
911 ub = abd_to_buf(ub_abd);
912 ub->ub_txg = 0;
914 /* Initialize the 2nd padding area. */
915 pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
916 abd_zero(pad2, VDEV_PAD_SIZE);
919 * Write everything in parallel.
921 retry:
922 zio = zio_root(spa, NULL, NULL, flags);
924 for (int l = 0; l < VDEV_LABELS; l++) {
926 vdev_label_write(zio, vd, l, vp_abd,
927 offsetof(vdev_label_t, vl_vdev_phys),
928 sizeof (vdev_phys_t), NULL, NULL, flags);
931 * Skip the 1st padding area.
932 * Zero out the 2nd padding area where it might have
933 * left over data from previous filesystem format.
935 vdev_label_write(zio, vd, l, pad2,
936 offsetof(vdev_label_t, vl_pad2),
937 VDEV_PAD_SIZE, NULL, NULL, flags);
939 vdev_label_write(zio, vd, l, ub_abd,
940 offsetof(vdev_label_t, vl_uberblock),
941 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
944 error = zio_wait(zio);
946 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
947 flags |= ZIO_FLAG_TRYHARD;
948 goto retry;
951 nvlist_free(label);
952 abd_free(pad2);
953 abd_free(ub_abd);
954 abd_free(vp_abd);
957 * If this vdev hasn't been previously identified as a spare, then we
958 * mark it as such only if a) we are labeling it as a spare, or b) it
959 * exists as a spare elsewhere in the system. Do the same for
960 * level 2 ARC devices.
962 if (error == 0 && !vd->vdev_isspare &&
963 (reason == VDEV_LABEL_SPARE ||
964 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
965 spa_spare_add(vd);
967 if (error == 0 && !vd->vdev_isl2cache &&
968 (reason == VDEV_LABEL_L2CACHE ||
969 spa_l2cache_exists(vd->vdev_guid, NULL)))
970 spa_l2cache_add(vd);
972 return (error);
976 * ==========================================================================
977 * uberblock load/sync
978 * ==========================================================================
982 * Consider the following situation: txg is safely synced to disk. We've
983 * written the first uberblock for txg + 1, and then we lose power. When we
984 * come back up, we fail to see the uberblock for txg + 1 because, say,
985 * it was on a mirrored device and the replica to which we wrote txg + 1
986 * is now offline. If we then make some changes and sync txg + 1, and then
987 * the missing replica comes back, then for a few seconds we'll have two
988 * conflicting uberblocks on disk with the same txg. The solution is simple:
989 * among uberblocks with equal txg, choose the one with the latest timestamp.
991 static int
992 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
994 if (ub1->ub_txg < ub2->ub_txg)
995 return (-1);
996 if (ub1->ub_txg > ub2->ub_txg)
997 return (1);
999 if (ub1->ub_timestamp < ub2->ub_timestamp)
1000 return (-1);
1001 if (ub1->ub_timestamp > ub2->ub_timestamp)
1002 return (1);
1004 return (0);
1007 struct ubl_cbdata {
1008 uberblock_t *ubl_ubbest; /* Best uberblock */
1009 vdev_t *ubl_vd; /* vdev associated with the above */
1012 static void
1013 vdev_uberblock_load_done(zio_t *zio)
1015 vdev_t *vd = zio->io_vd;
1016 spa_t *spa = zio->io_spa;
1017 zio_t *rio = zio->io_private;
1018 uberblock_t *ub = abd_to_buf(zio->io_abd);
1019 struct ubl_cbdata *cbp = rio->io_private;
1021 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1023 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1024 mutex_enter(&rio->io_lock);
1025 if (ub->ub_txg <= spa->spa_load_max_txg &&
1026 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1028 * Keep track of the vdev in which this uberblock
1029 * was found. We will use this information later
1030 * to obtain the config nvlist associated with
1031 * this uberblock.
1033 *cbp->ubl_ubbest = *ub;
1034 cbp->ubl_vd = vd;
1036 mutex_exit(&rio->io_lock);
1039 abd_free(zio->io_abd);
1042 static void
1043 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1044 struct ubl_cbdata *cbp)
1046 for (int c = 0; c < vd->vdev_children; c++)
1047 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1049 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1050 for (int l = 0; l < VDEV_LABELS; l++) {
1051 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1052 vdev_label_read(zio, vd, l,
1053 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1054 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1055 VDEV_UBERBLOCK_SIZE(vd),
1056 vdev_uberblock_load_done, zio, flags);
1063 * Reads the 'best' uberblock from disk along with its associated
1064 * configuration. First, we read the uberblock array of each label of each
1065 * vdev, keeping track of the uberblock with the highest txg in each array.
1066 * Then, we read the configuration from the same vdev as the best uberblock.
1068 void
1069 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1071 zio_t *zio;
1072 spa_t *spa = rvd->vdev_spa;
1073 struct ubl_cbdata cb;
1074 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1075 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1077 ASSERT(ub);
1078 ASSERT(config);
1080 bzero(ub, sizeof (uberblock_t));
1081 *config = NULL;
1083 cb.ubl_ubbest = ub;
1084 cb.ubl_vd = NULL;
1086 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1087 zio = zio_root(spa, NULL, &cb, flags);
1088 vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1089 (void) zio_wait(zio);
1092 * It's possible that the best uberblock was discovered on a label
1093 * that has a configuration which was written in a future txg.
1094 * Search all labels on this vdev to find the configuration that
1095 * matches the txg for our uberblock.
1097 if (cb.ubl_vd != NULL) {
1098 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1099 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1101 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1102 if (*config == NULL && spa->spa_extreme_rewind) {
1103 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1104 "Trying again without txg restrictions.");
1105 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1107 if (*config == NULL) {
1108 vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1111 spa_config_exit(spa, SCL_ALL, FTAG);
1115 * On success, increment root zio's count of good writes.
1116 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1118 static void
1119 vdev_uberblock_sync_done(zio_t *zio)
1121 uint64_t *good_writes = zio->io_private;
1123 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1124 atomic_inc_64(good_writes);
1128 * Write the uberblock to all labels of all leaves of the specified vdev.
1130 static void
1131 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1132 uberblock_t *ub, vdev_t *vd, int flags)
1134 for (uint64_t c = 0; c < vd->vdev_children; c++) {
1135 vdev_uberblock_sync(zio, good_writes,
1136 ub, vd->vdev_child[c], flags);
1139 if (!vd->vdev_ops->vdev_op_leaf)
1140 return;
1142 if (!vdev_writeable(vd))
1143 return;
1145 int n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1147 /* Copy the uberblock_t into the ABD */
1148 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1149 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1150 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1152 for (int l = 0; l < VDEV_LABELS; l++)
1153 vdev_label_write(zio, vd, l, ub_abd,
1154 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1155 vdev_uberblock_sync_done, good_writes,
1156 flags | ZIO_FLAG_DONT_PROPAGATE);
1158 abd_free(ub_abd);
1161 /* Sync the uberblocks to all vdevs in svd[] */
1163 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1165 spa_t *spa = svd[0]->vdev_spa;
1166 zio_t *zio;
1167 uint64_t good_writes = 0;
1169 zio = zio_root(spa, NULL, NULL, flags);
1171 for (int v = 0; v < svdcount; v++)
1172 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1174 (void) zio_wait(zio);
1177 * Flush the uberblocks to disk. This ensures that the odd labels
1178 * are no longer needed (because the new uberblocks and the even
1179 * labels are safely on disk), so it is safe to overwrite them.
1181 zio = zio_root(spa, NULL, NULL, flags);
1183 for (int v = 0; v < svdcount; v++) {
1184 if (vdev_writeable(svd[v])) {
1185 zio_flush(zio, svd[v]);
1189 (void) zio_wait(zio);
1191 return (good_writes >= 1 ? 0 : EIO);
1195 * On success, increment the count of good writes for our top-level vdev.
1197 static void
1198 vdev_label_sync_done(zio_t *zio)
1200 uint64_t *good_writes = zio->io_private;
1202 if (zio->io_error == 0)
1203 atomic_inc_64(good_writes);
1207 * If there weren't enough good writes, indicate failure to the parent.
1209 static void
1210 vdev_label_sync_top_done(zio_t *zio)
1212 uint64_t *good_writes = zio->io_private;
1214 if (*good_writes == 0)
1215 zio->io_error = SET_ERROR(EIO);
1217 kmem_free(good_writes, sizeof (uint64_t));
1221 * We ignore errors for log and cache devices, simply free the private data.
1223 static void
1224 vdev_label_sync_ignore_done(zio_t *zio)
1226 kmem_free(zio->io_private, sizeof (uint64_t));
1230 * Write all even or odd labels to all leaves of the specified vdev.
1232 static void
1233 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1234 vdev_t *vd, int l, uint64_t txg, int flags)
1236 nvlist_t *label;
1237 vdev_phys_t *vp;
1238 abd_t *vp_abd;
1239 char *buf;
1240 size_t buflen;
1242 for (int c = 0; c < vd->vdev_children; c++) {
1243 vdev_label_sync(zio, good_writes,
1244 vd->vdev_child[c], l, txg, flags);
1247 if (!vd->vdev_ops->vdev_op_leaf)
1248 return;
1250 if (!vdev_writeable(vd))
1251 return;
1254 * Generate a label describing the top-level config to which we belong.
1256 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1258 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1259 abd_zero(vp_abd, sizeof (vdev_phys_t));
1260 vp = abd_to_buf(vp_abd);
1262 buf = vp->vp_nvlist;
1263 buflen = sizeof (vp->vp_nvlist);
1265 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1266 for (; l < VDEV_LABELS; l += 2) {
1267 vdev_label_write(zio, vd, l, vp_abd,
1268 offsetof(vdev_label_t, vl_vdev_phys),
1269 sizeof (vdev_phys_t),
1270 vdev_label_sync_done, good_writes,
1271 flags | ZIO_FLAG_DONT_PROPAGATE);
1275 abd_free(vp_abd);
1276 nvlist_free(label);
1280 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1282 list_t *dl = &spa->spa_config_dirty_list;
1283 vdev_t *vd;
1284 zio_t *zio;
1285 int error;
1288 * Write the new labels to disk.
1290 zio = zio_root(spa, NULL, NULL, flags);
1292 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1293 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1294 KM_SLEEP);
1296 ASSERT(!vd->vdev_ishole);
1298 zio_t *vio = zio_null(zio, spa, NULL,
1299 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1300 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1301 good_writes, flags);
1302 vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1303 zio_nowait(vio);
1306 error = zio_wait(zio);
1309 * Flush the new labels to disk.
1311 zio = zio_root(spa, NULL, NULL, flags);
1313 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1314 zio_flush(zio, vd);
1316 (void) zio_wait(zio);
1318 return (error);
1322 * Sync the uberblock and any changes to the vdev configuration.
1324 * The order of operations is carefully crafted to ensure that
1325 * if the system panics or loses power at any time, the state on disk
1326 * is still transactionally consistent. The in-line comments below
1327 * describe the failure semantics at each stage.
1329 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1330 * at any time, you can just call it again, and it will resume its work.
1333 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1335 spa_t *spa = svd[0]->vdev_spa;
1336 uberblock_t *ub = &spa->spa_uberblock;
1337 int error = 0;
1338 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1340 ASSERT(svdcount != 0);
1341 retry:
1343 * Normally, we don't want to try too hard to write every label and
1344 * uberblock. If there is a flaky disk, we don't want the rest of the
1345 * sync process to block while we retry. But if we can't write a
1346 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1347 * bailing out and declaring the pool faulted.
1349 if (error != 0) {
1350 if ((flags & ZIO_FLAG_TRYHARD) != 0)
1351 return (error);
1352 flags |= ZIO_FLAG_TRYHARD;
1355 ASSERT(ub->ub_txg <= txg);
1358 * If this isn't a resync due to I/O errors,
1359 * and nothing changed in this transaction group,
1360 * and the vdev configuration hasn't changed,
1361 * then there's nothing to do.
1363 if (ub->ub_txg < txg &&
1364 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1365 list_is_empty(&spa->spa_config_dirty_list))
1366 return (0);
1368 if (txg > spa_freeze_txg(spa))
1369 return (0);
1371 ASSERT(txg <= spa->spa_final_txg);
1374 * Flush the write cache of every disk that's been written to
1375 * in this transaction group. This ensures that all blocks
1376 * written in this txg will be committed to stable storage
1377 * before any uberblock that references them.
1379 zio_t *zio = zio_root(spa, NULL, NULL, flags);
1381 for (vdev_t *vd =
1382 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1383 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1384 zio_flush(zio, vd);
1386 (void) zio_wait(zio);
1389 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1390 * system dies in the middle of this process, that's OK: all of the
1391 * even labels that made it to disk will be newer than any uberblock,
1392 * and will therefore be considered invalid. The odd labels (L1, L3),
1393 * which have not yet been touched, will still be valid. We flush
1394 * the new labels to disk to ensure that all even-label updates
1395 * are committed to stable storage before the uberblock update.
1397 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1398 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1399 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1400 "for pool '%s' when syncing out the even labels "
1401 "of dirty vdevs", error, spa_name(spa));
1403 goto retry;
1407 * Sync the uberblocks to all vdevs in svd[].
1408 * If the system dies in the middle of this step, there are two cases
1409 * to consider, and the on-disk state is consistent either way:
1411 * (1) If none of the new uberblocks made it to disk, then the
1412 * previous uberblock will be the newest, and the odd labels
1413 * (which had not yet been touched) will be valid with respect
1414 * to that uberblock.
1416 * (2) If one or more new uberblocks made it to disk, then they
1417 * will be the newest, and the even labels (which had all
1418 * been successfully committed) will be valid with respect
1419 * to the new uberblocks.
1421 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1422 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1423 zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1424 "%d for pool '%s'", error, spa_name(spa));
1426 goto retry;
1430 * Sync out odd labels for every dirty vdev. If the system dies
1431 * in the middle of this process, the even labels and the new
1432 * uberblocks will suffice to open the pool. The next time
1433 * the pool is opened, the first thing we'll do -- before any
1434 * user data is modified -- is mark every vdev dirty so that
1435 * all labels will be brought up to date. We flush the new labels
1436 * to disk to ensure that all odd-label updates are committed to
1437 * stable storage before the next transaction group begins.
1439 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1440 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1441 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1442 "for pool '%s' when syncing out the odd labels of "
1443 "dirty vdevs", error, spa_name(spa));
1445 goto retry;
1448 return (0);