Merge commit '7e3488dc6cdcb0c04e1ce167a1a3bfef83b5f2e0'
[unleashed.git] / kernel / fs / zfs / dmu_send.c
blob62abee3637ebc1d1c68e8892af5ffd4537652047
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright 2016 RackTop Systems.
28 * Copyright (c) 2014 Integros [integros.com]
31 #include <sys/dmu.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dbuf.h>
35 #include <sys/dnode.h>
36 #include <sys/zfs_context.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dmu_traverse.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dsl_prop.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/dsl_synctask.h>
44 #include <sys/zfs_ioctl.h>
45 #include <sys/zap.h>
46 #include <sys/zio_checksum.h>
47 #include <sys/zfs_znode.h>
48 #include <zfs_fletcher.h>
49 #include <sys/avl.h>
50 #include <sys/ddt.h>
51 #include <sys/zfs_onexit.h>
52 #include <sys/dmu_send.h>
53 #include <sys/dsl_destroy.h>
54 #include <sys/blkptr.h>
55 #include <sys/dsl_bookmark.h>
56 #include <sys/zfeature.h>
57 #include <sys/bqueue.h>
59 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
60 int zfs_send_corrupt_data = B_FALSE;
61 int zfs_send_queue_length = 16 * 1024 * 1024;
62 int zfs_recv_queue_length = 16 * 1024 * 1024;
63 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
64 int zfs_send_set_freerecords_bit = B_TRUE;
66 static char *dmu_recv_tag = "dmu_recv_tag";
67 const char *recv_clone_name = "%recv";
70 * Use this to override the recordsize calculation for fast zfs send estimates.
72 uint64_t zfs_override_estimate_recordsize = 0;
74 #define BP_SPAN(datablkszsec, indblkshift, level) \
75 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
76 (level) * (indblkshift - SPA_BLKPTRSHIFT)))
78 static void byteswap_record(dmu_replay_record_t *drr);
80 struct send_thread_arg {
81 bqueue_t q;
82 dsl_dataset_t *ds; /* Dataset to traverse */
83 uint64_t fromtxg; /* Traverse from this txg */
84 int flags; /* flags to pass to traverse_dataset */
85 int error_code;
86 boolean_t cancel;
87 zbookmark_phys_t resume;
90 struct send_block_record {
91 boolean_t eos_marker; /* Marks the end of the stream */
92 blkptr_t bp;
93 zbookmark_phys_t zb;
94 uint8_t indblkshift;
95 uint16_t datablkszsec;
96 bqueue_node_t ln;
99 static int
100 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
102 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os);
103 ssize_t resid; /* have to get resid to get detailed errno */
106 * The code does not rely on this (len being a multiple of 8). We keep
107 * this assertion because of the corresponding assertion in
108 * receive_read(). Keeping this assertion ensures that we do not
109 * inadvertently break backwards compatibility (causing the assertion
110 * in receive_read() to trigger on old software).
112 * Removing the assertions could be rolled into a new feature that uses
113 * data that isn't 8-byte aligned; if the assertions were removed, a
114 * feature flag would have to be added.
117 ASSERT0(len % 8);
119 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp,
120 (caddr_t)buf, len,
121 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid);
123 mutex_enter(&ds->ds_sendstream_lock);
124 *dsp->dsa_off += len;
125 mutex_exit(&ds->ds_sendstream_lock);
127 return (dsp->dsa_err);
131 * For all record types except BEGIN, fill in the checksum (overlaid in
132 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything
133 * up to the start of the checksum itself.
135 static int
136 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len)
138 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
139 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
140 (void) fletcher_4_incremental_native(dsp->dsa_drr,
141 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
142 &dsp->dsa_zc);
143 if (dsp->dsa_drr->drr_type == DRR_BEGIN) {
144 dsp->dsa_sent_begin = B_TRUE;
145 } else {
146 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u.
147 drr_checksum.drr_checksum));
148 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc;
150 if (dsp->dsa_drr->drr_type == DRR_END) {
151 dsp->dsa_sent_end = B_TRUE;
153 (void) fletcher_4_incremental_native(&dsp->dsa_drr->
154 drr_u.drr_checksum.drr_checksum,
155 sizeof (zio_cksum_t), &dsp->dsa_zc);
156 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0)
157 return (SET_ERROR(EINTR));
158 if (payload_len != 0) {
159 (void) fletcher_4_incremental_native(payload, payload_len,
160 &dsp->dsa_zc);
161 if (dump_bytes(dsp, payload, payload_len) != 0)
162 return (SET_ERROR(EINTR));
164 return (0);
168 * Fill in the drr_free struct, or perform aggregation if the previous record is
169 * also a free record, and the two are adjacent.
171 * Note that we send free records even for a full send, because we want to be
172 * able to receive a full send as a clone, which requires a list of all the free
173 * and freeobject records that were generated on the source.
175 static int
176 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
177 uint64_t length)
179 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free);
182 * When we receive a free record, dbuf_free_range() assumes
183 * that the receiving system doesn't have any dbufs in the range
184 * being freed. This is always true because there is a one-record
185 * constraint: we only send one WRITE record for any given
186 * object,offset. We know that the one-record constraint is
187 * true because we always send data in increasing order by
188 * object,offset.
190 * If the increasing-order constraint ever changes, we should find
191 * another way to assert that the one-record constraint is still
192 * satisfied.
194 ASSERT(object > dsp->dsa_last_data_object ||
195 (object == dsp->dsa_last_data_object &&
196 offset > dsp->dsa_last_data_offset));
198 if (length != -1ULL && offset + length < offset)
199 length = -1ULL;
202 * If there is a pending op, but it's not PENDING_FREE, push it out,
203 * since free block aggregation can only be done for blocks of the
204 * same type (i.e., DRR_FREE records can only be aggregated with
205 * other DRR_FREE records. DRR_FREEOBJECTS records can only be
206 * aggregated with other DRR_FREEOBJECTS records.
208 if (dsp->dsa_pending_op != PENDING_NONE &&
209 dsp->dsa_pending_op != PENDING_FREE) {
210 if (dump_record(dsp, NULL, 0) != 0)
211 return (SET_ERROR(EINTR));
212 dsp->dsa_pending_op = PENDING_NONE;
215 if (dsp->dsa_pending_op == PENDING_FREE) {
217 * There should never be a PENDING_FREE if length is -1
218 * (because dump_dnode is the only place where this
219 * function is called with a -1, and only after flushing
220 * any pending record).
222 ASSERT(length != -1ULL);
224 * Check to see whether this free block can be aggregated
225 * with pending one.
227 if (drrf->drr_object == object && drrf->drr_offset +
228 drrf->drr_length == offset) {
229 drrf->drr_length += length;
230 return (0);
231 } else {
232 /* not a continuation. Push out pending record */
233 if (dump_record(dsp, NULL, 0) != 0)
234 return (SET_ERROR(EINTR));
235 dsp->dsa_pending_op = PENDING_NONE;
238 /* create a FREE record and make it pending */
239 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
240 dsp->dsa_drr->drr_type = DRR_FREE;
241 drrf->drr_object = object;
242 drrf->drr_offset = offset;
243 drrf->drr_length = length;
244 drrf->drr_toguid = dsp->dsa_toguid;
245 if (length == -1ULL) {
246 if (dump_record(dsp, NULL, 0) != 0)
247 return (SET_ERROR(EINTR));
248 } else {
249 dsp->dsa_pending_op = PENDING_FREE;
252 return (0);
255 static int
256 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type,
257 uint64_t object, uint64_t offset, int lsize, int psize, const blkptr_t *bp,
258 void *data)
260 uint64_t payload_size;
261 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write);
264 * We send data in increasing object, offset order.
265 * See comment in dump_free() for details.
267 ASSERT(object > dsp->dsa_last_data_object ||
268 (object == dsp->dsa_last_data_object &&
269 offset > dsp->dsa_last_data_offset));
270 dsp->dsa_last_data_object = object;
271 dsp->dsa_last_data_offset = offset + lsize - 1;
274 * If there is any kind of pending aggregation (currently either
275 * a grouping of free objects or free blocks), push it out to
276 * the stream, since aggregation can't be done across operations
277 * of different types.
279 if (dsp->dsa_pending_op != PENDING_NONE) {
280 if (dump_record(dsp, NULL, 0) != 0)
281 return (SET_ERROR(EINTR));
282 dsp->dsa_pending_op = PENDING_NONE;
284 /* write a WRITE record */
285 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
286 dsp->dsa_drr->drr_type = DRR_WRITE;
287 drrw->drr_object = object;
288 drrw->drr_type = type;
289 drrw->drr_offset = offset;
290 drrw->drr_toguid = dsp->dsa_toguid;
291 drrw->drr_logical_size = lsize;
293 /* only set the compression fields if the buf is compressed */
294 if (lsize != psize) {
295 ASSERT(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED);
296 ASSERT(!BP_IS_EMBEDDED(bp));
297 ASSERT(!BP_SHOULD_BYTESWAP(bp));
298 ASSERT(!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)));
299 ASSERT3U(BP_GET_COMPRESS(bp), !=, ZIO_COMPRESS_OFF);
300 ASSERT3S(psize, >, 0);
301 ASSERT3S(lsize, >=, psize);
303 drrw->drr_compressiontype = BP_GET_COMPRESS(bp);
304 drrw->drr_compressed_size = psize;
305 payload_size = drrw->drr_compressed_size;
306 } else {
307 payload_size = drrw->drr_logical_size;
310 if (bp == NULL || BP_IS_EMBEDDED(bp)) {
312 * There's no pre-computed checksum for partial-block
313 * writes or embedded BP's, so (like
314 * fletcher4-checkummed blocks) userland will have to
315 * compute a dedup-capable checksum itself.
317 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
318 } else {
319 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
320 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
321 ZCHECKSUM_FLAG_DEDUP)
322 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP;
323 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
324 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
325 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
326 drrw->drr_key.ddk_cksum = bp->blk_cksum;
329 if (dump_record(dsp, data, payload_size) != 0)
330 return (SET_ERROR(EINTR));
331 return (0);
334 static int
335 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
336 int blksz, const blkptr_t *bp)
338 char buf[BPE_PAYLOAD_SIZE];
339 struct drr_write_embedded *drrw =
340 &(dsp->dsa_drr->drr_u.drr_write_embedded);
342 if (dsp->dsa_pending_op != PENDING_NONE) {
343 if (dump_record(dsp, NULL, 0) != 0)
344 return (EINTR);
345 dsp->dsa_pending_op = PENDING_NONE;
348 ASSERT(BP_IS_EMBEDDED(bp));
350 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
351 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED;
352 drrw->drr_object = object;
353 drrw->drr_offset = offset;
354 drrw->drr_length = blksz;
355 drrw->drr_toguid = dsp->dsa_toguid;
356 drrw->drr_compression = BP_GET_COMPRESS(bp);
357 drrw->drr_etype = BPE_GET_ETYPE(bp);
358 drrw->drr_lsize = BPE_GET_LSIZE(bp);
359 drrw->drr_psize = BPE_GET_PSIZE(bp);
361 decode_embedded_bp_compressed(bp, buf);
363 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
364 return (EINTR);
365 return (0);
368 static int
369 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data)
371 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill);
373 if (dsp->dsa_pending_op != PENDING_NONE) {
374 if (dump_record(dsp, NULL, 0) != 0)
375 return (SET_ERROR(EINTR));
376 dsp->dsa_pending_op = PENDING_NONE;
379 /* write a SPILL record */
380 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
381 dsp->dsa_drr->drr_type = DRR_SPILL;
382 drrs->drr_object = object;
383 drrs->drr_length = blksz;
384 drrs->drr_toguid = dsp->dsa_toguid;
386 if (dump_record(dsp, data, blksz) != 0)
387 return (SET_ERROR(EINTR));
388 return (0);
391 static int
392 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs)
394 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects);
397 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
398 * push it out, since free block aggregation can only be done for
399 * blocks of the same type (i.e., DRR_FREE records can only be
400 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records
401 * can only be aggregated with other DRR_FREEOBJECTS records.
403 if (dsp->dsa_pending_op != PENDING_NONE &&
404 dsp->dsa_pending_op != PENDING_FREEOBJECTS) {
405 if (dump_record(dsp, NULL, 0) != 0)
406 return (SET_ERROR(EINTR));
407 dsp->dsa_pending_op = PENDING_NONE;
409 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) {
411 * See whether this free object array can be aggregated
412 * with pending one
414 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
415 drrfo->drr_numobjs += numobjs;
416 return (0);
417 } else {
418 /* can't be aggregated. Push out pending record */
419 if (dump_record(dsp, NULL, 0) != 0)
420 return (SET_ERROR(EINTR));
421 dsp->dsa_pending_op = PENDING_NONE;
425 /* write a FREEOBJECTS record */
426 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
427 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS;
428 drrfo->drr_firstobj = firstobj;
429 drrfo->drr_numobjs = numobjs;
430 drrfo->drr_toguid = dsp->dsa_toguid;
432 dsp->dsa_pending_op = PENDING_FREEOBJECTS;
434 return (0);
437 static int
438 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp)
440 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object);
442 if (object < dsp->dsa_resume_object) {
444 * Note: when resuming, we will visit all the dnodes in
445 * the block of dnodes that we are resuming from. In
446 * this case it's unnecessary to send the dnodes prior to
447 * the one we are resuming from. We should be at most one
448 * block's worth of dnodes behind the resume point.
450 ASSERT3U(dsp->dsa_resume_object - object, <,
451 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
452 return (0);
455 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
456 return (dump_freeobjects(dsp, object, 1));
458 if (dsp->dsa_pending_op != PENDING_NONE) {
459 if (dump_record(dsp, NULL, 0) != 0)
460 return (SET_ERROR(EINTR));
461 dsp->dsa_pending_op = PENDING_NONE;
464 /* write an OBJECT record */
465 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
466 dsp->dsa_drr->drr_type = DRR_OBJECT;
467 drro->drr_object = object;
468 drro->drr_type = dnp->dn_type;
469 drro->drr_bonustype = dnp->dn_bonustype;
470 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
471 drro->drr_bonuslen = dnp->dn_bonuslen;
472 drro->drr_checksumtype = dnp->dn_checksum;
473 drro->drr_compress = dnp->dn_compress;
474 drro->drr_toguid = dsp->dsa_toguid;
476 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
477 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
478 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
480 if (dump_record(dsp, DN_BONUS(dnp),
481 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) {
482 return (SET_ERROR(EINTR));
485 /* Free anything past the end of the file. */
486 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) *
487 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0)
488 return (SET_ERROR(EINTR));
489 if (dsp->dsa_err != 0)
490 return (SET_ERROR(EINTR));
491 return (0);
494 static boolean_t
495 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp)
497 if (!BP_IS_EMBEDDED(bp))
498 return (B_FALSE);
501 * Compression function must be legacy, or explicitly enabled.
503 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
504 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LZ4)))
505 return (B_FALSE);
508 * Embed type must be explicitly enabled.
510 switch (BPE_GET_ETYPE(bp)) {
511 case BP_EMBEDDED_TYPE_DATA:
512 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
513 return (B_TRUE);
514 break;
515 default:
516 return (B_FALSE);
518 return (B_FALSE);
522 * This is the callback function to traverse_dataset that acts as the worker
523 * thread for dmu_send_impl.
525 /*ARGSUSED*/
526 static int
527 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
528 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
530 struct send_thread_arg *sta = arg;
531 struct send_block_record *record;
532 uint64_t record_size;
533 int err = 0;
535 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
536 zb->zb_object >= sta->resume.zb_object);
538 if (sta->cancel)
539 return (SET_ERROR(EINTR));
541 if (bp == NULL) {
542 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
543 return (0);
544 } else if (zb->zb_level < 0) {
545 return (0);
548 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP);
549 record->eos_marker = B_FALSE;
550 record->bp = *bp;
551 record->zb = *zb;
552 record->indblkshift = dnp->dn_indblkshift;
553 record->datablkszsec = dnp->dn_datablkszsec;
554 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
555 bqueue_enqueue(&sta->q, record, record_size);
557 return (err);
561 * This function kicks off the traverse_dataset. It also handles setting the
562 * error code of the thread in case something goes wrong, and pushes the End of
563 * Stream record when the traverse_dataset call has finished. If there is no
564 * dataset to traverse, the thread immediately pushes End of Stream marker.
566 static void
567 send_traverse_thread(void *arg)
569 struct send_thread_arg *st_arg = arg;
570 int err;
571 struct send_block_record *data;
573 if (st_arg->ds != NULL) {
574 err = traverse_dataset_resume(st_arg->ds,
575 st_arg->fromtxg, &st_arg->resume,
576 st_arg->flags, send_cb, st_arg);
578 if (err != EINTR)
579 st_arg->error_code = err;
581 data = kmem_zalloc(sizeof (*data), KM_SLEEP);
582 data->eos_marker = B_TRUE;
583 bqueue_enqueue(&st_arg->q, data, 1);
584 thread_exit();
588 * This function actually handles figuring out what kind of record needs to be
589 * dumped, reading the data (which has hopefully been prefetched), and calling
590 * the appropriate helper function.
592 static int
593 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data)
595 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os);
596 const blkptr_t *bp = &data->bp;
597 const zbookmark_phys_t *zb = &data->zb;
598 uint8_t indblkshift = data->indblkshift;
599 uint16_t dblkszsec = data->datablkszsec;
600 spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
601 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE;
602 int err = 0;
604 ASSERT3U(zb->zb_level, >=, 0);
606 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
607 zb->zb_object >= dsa->dsa_resume_object);
609 if (zb->zb_object != DMU_META_DNODE_OBJECT &&
610 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) {
611 return (0);
612 } else if (BP_IS_HOLE(bp) &&
613 zb->zb_object == DMU_META_DNODE_OBJECT) {
614 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
615 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT;
616 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT);
617 } else if (BP_IS_HOLE(bp)) {
618 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
619 uint64_t offset = zb->zb_blkid * span;
620 err = dump_free(dsa, zb->zb_object, offset, span);
621 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) {
622 return (0);
623 } else if (type == DMU_OT_DNODE) {
624 int blksz = BP_GET_LSIZE(bp);
625 arc_flags_t aflags = ARC_FLAG_WAIT;
626 arc_buf_t *abuf;
628 ASSERT0(zb->zb_level);
630 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
631 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
632 &aflags, zb) != 0)
633 return (SET_ERROR(EIO));
635 dnode_phys_t *blk = abuf->b_data;
636 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT);
637 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) {
638 err = dump_dnode(dsa, dnobj + i, blk + i);
639 if (err != 0)
640 break;
642 arc_buf_destroy(abuf, &abuf);
643 } else if (type == DMU_OT_SA) {
644 arc_flags_t aflags = ARC_FLAG_WAIT;
645 arc_buf_t *abuf;
646 int blksz = BP_GET_LSIZE(bp);
648 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
649 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
650 &aflags, zb) != 0)
651 return (SET_ERROR(EIO));
653 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data);
654 arc_buf_destroy(abuf, &abuf);
655 } else if (backup_do_embed(dsa, bp)) {
656 /* it's an embedded level-0 block of a regular object */
657 int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
658 ASSERT0(zb->zb_level);
659 err = dump_write_embedded(dsa, zb->zb_object,
660 zb->zb_blkid * blksz, blksz, bp);
661 } else {
662 /* it's a level-0 block of a regular object */
663 arc_flags_t aflags = ARC_FLAG_WAIT;
664 arc_buf_t *abuf;
665 int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
666 uint64_t offset;
669 * If we have large blocks stored on disk but the send flags
670 * don't allow us to send large blocks, we split the data from
671 * the arc buf into chunks.
673 boolean_t split_large_blocks = blksz > SPA_OLD_MAXBLOCKSIZE &&
674 !(dsa->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS);
676 * We should only request compressed data from the ARC if all
677 * the following are true:
678 * - stream compression was requested
679 * - we aren't splitting large blocks into smaller chunks
680 * - the data won't need to be byteswapped before sending
681 * - this isn't an embedded block
682 * - this isn't metadata (if receiving on a different endian
683 * system it can be byteswapped more easily)
685 boolean_t request_compressed =
686 (dsa->dsa_featureflags & DMU_BACKUP_FEATURE_COMPRESSED) &&
687 !split_large_blocks && !BP_SHOULD_BYTESWAP(bp) &&
688 !BP_IS_EMBEDDED(bp) && !DMU_OT_IS_METADATA(BP_GET_TYPE(bp));
690 ASSERT0(zb->zb_level);
691 ASSERT(zb->zb_object > dsa->dsa_resume_object ||
692 (zb->zb_object == dsa->dsa_resume_object &&
693 zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
695 ASSERT0(zb->zb_level);
696 ASSERT(zb->zb_object > dsa->dsa_resume_object ||
697 (zb->zb_object == dsa->dsa_resume_object &&
698 zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
700 ASSERT3U(blksz, ==, BP_GET_LSIZE(bp));
702 enum zio_flag zioflags = ZIO_FLAG_CANFAIL;
703 if (request_compressed)
704 zioflags |= ZIO_FLAG_RAW;
705 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
706 ZIO_PRIORITY_ASYNC_READ, zioflags, &aflags, zb) != 0) {
707 if (zfs_send_corrupt_data) {
708 /* Send a block filled with 0x"zfs badd bloc" */
709 abuf = arc_alloc_buf(spa, &abuf, ARC_BUFC_DATA,
710 blksz);
711 uint64_t *ptr;
712 for (ptr = abuf->b_data;
713 (char *)ptr < (char *)abuf->b_data + blksz;
714 ptr++)
715 *ptr = 0x2f5baddb10cULL;
716 } else {
717 return (SET_ERROR(EIO));
721 offset = zb->zb_blkid * blksz;
723 if (split_large_blocks) {
724 ASSERT3U(arc_get_compression(abuf), ==,
725 ZIO_COMPRESS_OFF);
726 char *buf = abuf->b_data;
727 while (blksz > 0 && err == 0) {
728 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE);
729 err = dump_write(dsa, type, zb->zb_object,
730 offset, n, n, NULL, buf);
731 offset += n;
732 buf += n;
733 blksz -= n;
735 } else {
736 err = dump_write(dsa, type, zb->zb_object, offset,
737 blksz, arc_buf_size(abuf), bp, abuf->b_data);
739 arc_buf_destroy(abuf, &abuf);
742 ASSERT(err == 0 || err == EINTR);
743 return (err);
747 * Pop the new data off the queue, and free the old data.
749 static struct send_block_record *
750 get_next_record(bqueue_t *bq, struct send_block_record *data)
752 struct send_block_record *tmp = bqueue_dequeue(bq);
753 kmem_free(data, sizeof (*data));
754 return (tmp);
758 * Actually do the bulk of the work in a zfs send.
760 * Note: Releases dp using the specified tag.
762 static int
763 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds,
764 zfs_bookmark_phys_t *ancestor_zb, boolean_t is_clone,
765 boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
766 int outfd, uint64_t resumeobj, uint64_t resumeoff,
767 vnode_t *vp, offset_t *off)
769 objset_t *os;
770 dmu_replay_record_t *drr;
771 dmu_sendarg_t *dsp;
772 int err;
773 uint64_t fromtxg = 0;
774 uint64_t featureflags = 0;
775 struct send_thread_arg to_arg = { 0 };
777 err = dmu_objset_from_ds(to_ds, &os);
778 if (err != 0) {
779 dsl_pool_rele(dp, tag);
780 return (err);
783 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP);
784 drr->drr_type = DRR_BEGIN;
785 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
786 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo,
787 DMU_SUBSTREAM);
789 #ifdef _KERNEL
790 if (dmu_objset_type(os) == DMU_OST_ZFS) {
791 uint64_t version;
792 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) {
793 kmem_free(drr, sizeof (dmu_replay_record_t));
794 dsl_pool_rele(dp, tag);
795 return (SET_ERROR(EINVAL));
797 if (version >= ZPL_VERSION_SA) {
798 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
801 #endif
803 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS])
804 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
805 if (embedok &&
806 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
807 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
808 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
809 featureflags |= DMU_BACKUP_FEATURE_LZ4;
811 if (compressok) {
812 featureflags |= DMU_BACKUP_FEATURE_COMPRESSED;
814 if ((featureflags &
815 (DMU_BACKUP_FEATURE_EMBED_DATA | DMU_BACKUP_FEATURE_COMPRESSED)) !=
816 0 && spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) {
817 featureflags |= DMU_BACKUP_FEATURE_LZ4;
820 if (resumeobj != 0 || resumeoff != 0) {
821 featureflags |= DMU_BACKUP_FEATURE_RESUMING;
824 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo,
825 featureflags);
827 drr->drr_u.drr_begin.drr_creation_time =
828 dsl_dataset_phys(to_ds)->ds_creation_time;
829 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os);
830 if (is_clone)
831 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE;
832 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
833 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET)
834 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA;
835 if (zfs_send_set_freerecords_bit)
836 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS;
838 if (ancestor_zb != NULL) {
839 drr->drr_u.drr_begin.drr_fromguid =
840 ancestor_zb->zbm_guid;
841 fromtxg = ancestor_zb->zbm_creation_txg;
843 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname);
844 if (!to_ds->ds_is_snapshot) {
845 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--",
846 sizeof (drr->drr_u.drr_begin.drr_toname));
849 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP);
851 dsp->dsa_drr = drr;
852 dsp->dsa_vp = vp;
853 dsp->dsa_outfd = outfd;
854 dsp->dsa_proc = curproc;
855 dsp->dsa_os = os;
856 dsp->dsa_off = off;
857 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid;
858 dsp->dsa_pending_op = PENDING_NONE;
859 dsp->dsa_featureflags = featureflags;
860 dsp->dsa_resume_object = resumeobj;
861 dsp->dsa_resume_offset = resumeoff;
863 mutex_enter(&to_ds->ds_sendstream_lock);
864 list_insert_head(&to_ds->ds_sendstreams, dsp);
865 mutex_exit(&to_ds->ds_sendstream_lock);
867 dsl_dataset_long_hold(to_ds, FTAG);
868 dsl_pool_rele(dp, tag);
870 void *payload = NULL;
871 size_t payload_len = 0;
872 if (resumeobj != 0 || resumeoff != 0) {
873 dmu_object_info_t to_doi;
874 err = dmu_object_info(os, resumeobj, &to_doi);
875 if (err != 0)
876 goto out;
877 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0,
878 resumeoff / to_doi.doi_data_block_size);
880 nvlist_t *nvl = fnvlist_alloc();
881 fnvlist_add_uint64(nvl, "resume_object", resumeobj);
882 fnvlist_add_uint64(nvl, "resume_offset", resumeoff);
883 payload = fnvlist_pack(nvl, &payload_len);
884 drr->drr_payloadlen = payload_len;
885 fnvlist_free(nvl);
888 err = dump_record(dsp, payload, payload_len);
889 fnvlist_pack_free(payload, payload_len);
890 if (err != 0) {
891 err = dsp->dsa_err;
892 goto out;
895 err = bqueue_init(&to_arg.q, zfs_send_queue_length,
896 offsetof(struct send_block_record, ln));
897 to_arg.error_code = 0;
898 to_arg.cancel = B_FALSE;
899 to_arg.ds = to_ds;
900 to_arg.fromtxg = fromtxg;
901 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH;
902 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc,
903 TS_RUN, minclsyspri);
905 struct send_block_record *to_data;
906 to_data = bqueue_dequeue(&to_arg.q);
908 while (!to_data->eos_marker && err == 0) {
909 err = do_dump(dsp, to_data);
910 to_data = get_next_record(&to_arg.q, to_data);
911 if (issig(JUSTLOOKING) && issig(FORREAL))
912 err = EINTR;
915 if (err != 0) {
916 to_arg.cancel = B_TRUE;
917 while (!to_data->eos_marker) {
918 to_data = get_next_record(&to_arg.q, to_data);
921 kmem_free(to_data, sizeof (*to_data));
923 bqueue_destroy(&to_arg.q);
925 if (err == 0 && to_arg.error_code != 0)
926 err = to_arg.error_code;
928 if (err != 0)
929 goto out;
931 if (dsp->dsa_pending_op != PENDING_NONE)
932 if (dump_record(dsp, NULL, 0) != 0)
933 err = SET_ERROR(EINTR);
935 if (err != 0) {
936 if (err == EINTR && dsp->dsa_err != 0)
937 err = dsp->dsa_err;
938 goto out;
941 bzero(drr, sizeof (dmu_replay_record_t));
942 drr->drr_type = DRR_END;
943 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc;
944 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid;
946 if (dump_record(dsp, NULL, 0) != 0)
947 err = dsp->dsa_err;
949 out:
950 mutex_enter(&to_ds->ds_sendstream_lock);
951 list_remove(&to_ds->ds_sendstreams, dsp);
952 mutex_exit(&to_ds->ds_sendstream_lock);
954 VERIFY(err != 0 || (dsp->dsa_sent_begin && dsp->dsa_sent_end));
956 kmem_free(drr, sizeof (dmu_replay_record_t));
957 kmem_free(dsp, sizeof (dmu_sendarg_t));
959 dsl_dataset_long_rele(to_ds, FTAG);
961 return (err);
965 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
966 boolean_t embedok, boolean_t large_block_ok, boolean_t compressok,
967 int outfd, vnode_t *vp, offset_t *off)
969 dsl_pool_t *dp;
970 dsl_dataset_t *ds;
971 dsl_dataset_t *fromds = NULL;
972 int err;
974 err = dsl_pool_hold(pool, FTAG, &dp);
975 if (err != 0)
976 return (err);
978 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds);
979 if (err != 0) {
980 dsl_pool_rele(dp, FTAG);
981 return (err);
984 if (fromsnap != 0) {
985 zfs_bookmark_phys_t zb;
986 boolean_t is_clone;
988 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds);
989 if (err != 0) {
990 dsl_dataset_rele(ds, FTAG);
991 dsl_pool_rele(dp, FTAG);
992 return (err);
994 if (!dsl_dataset_is_before(ds, fromds, 0))
995 err = SET_ERROR(EXDEV);
996 zb.zbm_creation_time =
997 dsl_dataset_phys(fromds)->ds_creation_time;
998 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg;
999 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
1000 is_clone = (fromds->ds_dir != ds->ds_dir);
1001 dsl_dataset_rele(fromds, FTAG);
1002 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
1003 embedok, large_block_ok, compressok, outfd, 0, 0, vp, off);
1004 } else {
1005 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1006 embedok, large_block_ok, compressok, outfd, 0, 0, vp, off);
1008 dsl_dataset_rele(ds, FTAG);
1009 return (err);
1013 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
1014 boolean_t large_block_ok, boolean_t compressok, int outfd,
1015 uint64_t resumeobj, uint64_t resumeoff,
1016 vnode_t *vp, offset_t *off)
1018 dsl_pool_t *dp;
1019 dsl_dataset_t *ds;
1020 int err;
1021 boolean_t owned = B_FALSE;
1023 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
1024 return (SET_ERROR(EINVAL));
1026 err = dsl_pool_hold(tosnap, FTAG, &dp);
1027 if (err != 0)
1028 return (err);
1030 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) {
1032 * We are sending a filesystem or volume. Ensure
1033 * that it doesn't change by owning the dataset.
1035 err = dsl_dataset_own(dp, tosnap, FTAG, &ds);
1036 owned = B_TRUE;
1037 } else {
1038 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds);
1040 if (err != 0) {
1041 dsl_pool_rele(dp, FTAG);
1042 return (err);
1045 if (fromsnap != NULL) {
1046 zfs_bookmark_phys_t zb;
1047 boolean_t is_clone = B_FALSE;
1048 int fsnamelen = strchr(tosnap, '@') - tosnap;
1051 * If the fromsnap is in a different filesystem, then
1052 * mark the send stream as a clone.
1054 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
1055 (fromsnap[fsnamelen] != '@' &&
1056 fromsnap[fsnamelen] != '#')) {
1057 is_clone = B_TRUE;
1060 if (strchr(fromsnap, '@')) {
1061 dsl_dataset_t *fromds;
1062 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds);
1063 if (err == 0) {
1064 if (!dsl_dataset_is_before(ds, fromds, 0))
1065 err = SET_ERROR(EXDEV);
1066 zb.zbm_creation_time =
1067 dsl_dataset_phys(fromds)->ds_creation_time;
1068 zb.zbm_creation_txg =
1069 dsl_dataset_phys(fromds)->ds_creation_txg;
1070 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
1071 is_clone = (ds->ds_dir != fromds->ds_dir);
1072 dsl_dataset_rele(fromds, FTAG);
1074 } else {
1075 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb);
1077 if (err != 0) {
1078 dsl_dataset_rele(ds, FTAG);
1079 dsl_pool_rele(dp, FTAG);
1080 return (err);
1082 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
1083 embedok, large_block_ok, compressok,
1084 outfd, resumeobj, resumeoff, vp, off);
1085 } else {
1086 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1087 embedok, large_block_ok, compressok,
1088 outfd, resumeobj, resumeoff, vp, off);
1090 if (owned)
1091 dsl_dataset_disown(ds, FTAG);
1092 else
1093 dsl_dataset_rele(ds, FTAG);
1094 return (err);
1097 static int
1098 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t uncompressed,
1099 uint64_t compressed, boolean_t stream_compressed, uint64_t *sizep)
1101 int err = 0;
1102 uint64_t size;
1104 * Assume that space (both on-disk and in-stream) is dominated by
1105 * data. We will adjust for indirect blocks and the copies property,
1106 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
1108 uint64_t recordsize;
1109 uint64_t record_count;
1110 objset_t *os;
1111 VERIFY0(dmu_objset_from_ds(ds, &os));
1113 /* Assume all (uncompressed) blocks are recordsize. */
1114 if (zfs_override_estimate_recordsize != 0) {
1115 recordsize = zfs_override_estimate_recordsize;
1116 } else if (os->os_phys->os_type == DMU_OST_ZVOL) {
1117 err = dsl_prop_get_int_ds(ds,
1118 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &recordsize);
1119 } else {
1120 err = dsl_prop_get_int_ds(ds,
1121 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), &recordsize);
1123 if (err != 0)
1124 return (err);
1125 record_count = uncompressed / recordsize;
1128 * If we're estimating a send size for a compressed stream, use the
1129 * compressed data size to estimate the stream size. Otherwise, use the
1130 * uncompressed data size.
1132 size = stream_compressed ? compressed : uncompressed;
1135 * Subtract out approximate space used by indirect blocks.
1136 * Assume most space is used by data blocks (non-indirect, non-dnode).
1137 * Assume no ditto blocks or internal fragmentation.
1139 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
1140 * block.
1142 size -= record_count * sizeof (blkptr_t);
1144 /* Add in the space for the record associated with each block. */
1145 size += record_count * sizeof (dmu_replay_record_t);
1147 *sizep = size;
1149 return (0);
1153 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds,
1154 boolean_t stream_compressed, uint64_t *sizep)
1156 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1157 int err;
1158 uint64_t uncomp, comp;
1160 ASSERT(dsl_pool_config_held(dp));
1162 /* tosnap must be a snapshot */
1163 if (!ds->ds_is_snapshot)
1164 return (SET_ERROR(EINVAL));
1166 /* fromsnap, if provided, must be a snapshot */
1167 if (fromds != NULL && !fromds->ds_is_snapshot)
1168 return (SET_ERROR(EINVAL));
1171 * fromsnap must be an earlier snapshot from the same fs as tosnap,
1172 * or the origin's fs.
1174 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0))
1175 return (SET_ERROR(EXDEV));
1177 /* Get compressed and uncompressed size estimates of changed data. */
1178 if (fromds == NULL) {
1179 uncomp = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
1180 comp = dsl_dataset_phys(ds)->ds_compressed_bytes;
1181 } else {
1182 uint64_t used;
1183 err = dsl_dataset_space_written(fromds, ds,
1184 &used, &comp, &uncomp);
1185 if (err != 0)
1186 return (err);
1189 err = dmu_adjust_send_estimate_for_indirects(ds, uncomp, comp,
1190 stream_compressed, sizep);
1192 * Add the size of the BEGIN and END records to the estimate.
1194 *sizep += 2 * sizeof (dmu_replay_record_t);
1195 return (err);
1198 struct calculate_send_arg {
1199 uint64_t uncompressed;
1200 uint64_t compressed;
1204 * Simple callback used to traverse the blocks of a snapshot and sum their
1205 * uncompressed and compressed sizes.
1207 /* ARGSUSED */
1208 static int
1209 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1210 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1212 struct calculate_send_arg *space = arg;
1213 if (bp != NULL && !BP_IS_HOLE(bp)) {
1214 space->uncompressed += BP_GET_UCSIZE(bp);
1215 space->compressed += BP_GET_PSIZE(bp);
1217 return (0);
1221 * Given a desination snapshot and a TXG, calculate the approximate size of a
1222 * send stream sent from that TXG. from_txg may be zero, indicating that the
1223 * whole snapshot will be sent.
1226 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg,
1227 boolean_t stream_compressed, uint64_t *sizep)
1229 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1230 int err;
1231 struct calculate_send_arg size = { 0 };
1233 ASSERT(dsl_pool_config_held(dp));
1235 /* tosnap must be a snapshot */
1236 if (!ds->ds_is_snapshot)
1237 return (SET_ERROR(EINVAL));
1239 /* verify that from_txg is before the provided snapshot was taken */
1240 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) {
1241 return (SET_ERROR(EXDEV));
1245 * traverse the blocks of the snapshot with birth times after
1246 * from_txg, summing their uncompressed size
1248 err = traverse_dataset(ds, from_txg, TRAVERSE_POST,
1249 dmu_calculate_send_traversal, &size);
1250 if (err)
1251 return (err);
1253 err = dmu_adjust_send_estimate_for_indirects(ds, size.uncompressed,
1254 size.compressed, stream_compressed, sizep);
1255 return (err);
1258 typedef struct dmu_recv_begin_arg {
1259 const char *drba_origin;
1260 dmu_recv_cookie_t *drba_cookie;
1261 cred_t *drba_cred;
1262 uint64_t drba_snapobj;
1263 } dmu_recv_begin_arg_t;
1265 static int
1266 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
1267 uint64_t fromguid)
1269 uint64_t val;
1270 int error;
1271 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1273 /* temporary clone name must not exist */
1274 error = zap_lookup(dp->dp_meta_objset,
1275 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
1276 8, 1, &val);
1277 if (error != ENOENT)
1278 return (error == 0 ? EBUSY : error);
1280 /* new snapshot name must not exist */
1281 error = zap_lookup(dp->dp_meta_objset,
1282 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
1283 drba->drba_cookie->drc_tosnap, 8, 1, &val);
1284 if (error != ENOENT)
1285 return (error == 0 ? EEXIST : error);
1288 * Check snapshot limit before receiving. We'll recheck again at the
1289 * end, but might as well abort before receiving if we're already over
1290 * the limit.
1292 * Note that we do not check the file system limit with
1293 * dsl_dir_fscount_check because the temporary %clones don't count
1294 * against that limit.
1296 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
1297 NULL, drba->drba_cred);
1298 if (error != 0)
1299 return (error);
1301 if (fromguid != 0) {
1302 dsl_dataset_t *snap;
1303 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
1305 /* Find snapshot in this dir that matches fromguid. */
1306 while (obj != 0) {
1307 error = dsl_dataset_hold_obj(dp, obj, FTAG,
1308 &snap);
1309 if (error != 0)
1310 return (SET_ERROR(ENODEV));
1311 if (snap->ds_dir != ds->ds_dir) {
1312 dsl_dataset_rele(snap, FTAG);
1313 return (SET_ERROR(ENODEV));
1315 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
1316 break;
1317 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
1318 dsl_dataset_rele(snap, FTAG);
1320 if (obj == 0)
1321 return (SET_ERROR(ENODEV));
1323 if (drba->drba_cookie->drc_force) {
1324 drba->drba_snapobj = obj;
1325 } else {
1327 * If we are not forcing, there must be no
1328 * changes since fromsnap.
1330 if (dsl_dataset_modified_since_snap(ds, snap)) {
1331 dsl_dataset_rele(snap, FTAG);
1332 return (SET_ERROR(ETXTBSY));
1334 drba->drba_snapobj = ds->ds_prev->ds_object;
1337 dsl_dataset_rele(snap, FTAG);
1338 } else {
1339 /* if full, then must be forced */
1340 if (!drba->drba_cookie->drc_force)
1341 return (SET_ERROR(EEXIST));
1342 /* start from $ORIGIN@$ORIGIN, if supported */
1343 drba->drba_snapobj = dp->dp_origin_snap != NULL ?
1344 dp->dp_origin_snap->ds_object : 0;
1347 return (0);
1351 static int
1352 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
1354 dmu_recv_begin_arg_t *drba = arg;
1355 dsl_pool_t *dp = dmu_tx_pool(tx);
1356 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1357 uint64_t fromguid = drrb->drr_fromguid;
1358 int flags = drrb->drr_flags;
1359 int error;
1360 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1361 dsl_dataset_t *ds;
1362 const char *tofs = drba->drba_cookie->drc_tofs;
1364 /* already checked */
1365 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1366 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
1368 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1369 DMU_COMPOUNDSTREAM ||
1370 drrb->drr_type >= DMU_OST_NUMTYPES ||
1371 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
1372 return (SET_ERROR(EINVAL));
1374 /* Verify pool version supports SA if SA_SPILL feature set */
1375 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1376 spa_version(dp->dp_spa) < SPA_VERSION_SA)
1377 return (SET_ERROR(ENOTSUP));
1379 if (drba->drba_cookie->drc_resumable &&
1380 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
1381 return (SET_ERROR(ENOTSUP));
1384 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1385 * record to a plain WRITE record, so the pool must have the
1386 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1387 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
1389 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1390 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1391 return (SET_ERROR(ENOTSUP));
1392 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
1393 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1394 return (SET_ERROR(ENOTSUP));
1397 * The receiving code doesn't know how to translate large blocks
1398 * to smaller ones, so the pool must have the LARGE_BLOCKS
1399 * feature enabled if the stream has LARGE_BLOCKS.
1401 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
1402 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
1403 return (SET_ERROR(ENOTSUP));
1405 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1406 if (error == 0) {
1407 /* target fs already exists; recv into temp clone */
1409 /* Can't recv a clone into an existing fs */
1410 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
1411 dsl_dataset_rele(ds, FTAG);
1412 return (SET_ERROR(EINVAL));
1415 error = recv_begin_check_existing_impl(drba, ds, fromguid);
1416 dsl_dataset_rele(ds, FTAG);
1417 } else if (error == ENOENT) {
1418 /* target fs does not exist; must be a full backup or clone */
1419 char buf[ZFS_MAX_DATASET_NAME_LEN];
1422 * If it's a non-clone incremental, we are missing the
1423 * target fs, so fail the recv.
1425 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
1426 drba->drba_origin))
1427 return (SET_ERROR(ENOENT));
1430 * If we're receiving a full send as a clone, and it doesn't
1431 * contain all the necessary free records and freeobject
1432 * records, reject it.
1434 if (fromguid == 0 && drba->drba_origin &&
1435 !(flags & DRR_FLAG_FREERECORDS))
1436 return (SET_ERROR(EINVAL));
1438 /* Open the parent of tofs */
1439 ASSERT3U(strlen(tofs), <, sizeof (buf));
1440 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
1441 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
1442 if (error != 0)
1443 return (error);
1446 * Check filesystem and snapshot limits before receiving. We'll
1447 * recheck snapshot limits again at the end (we create the
1448 * filesystems and increment those counts during begin_sync).
1450 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1451 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
1452 if (error != 0) {
1453 dsl_dataset_rele(ds, FTAG);
1454 return (error);
1457 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1458 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
1459 if (error != 0) {
1460 dsl_dataset_rele(ds, FTAG);
1461 return (error);
1464 if (drba->drba_origin != NULL) {
1465 dsl_dataset_t *origin;
1466 error = dsl_dataset_hold(dp, drba->drba_origin,
1467 FTAG, &origin);
1468 if (error != 0) {
1469 dsl_dataset_rele(ds, FTAG);
1470 return (error);
1472 if (!origin->ds_is_snapshot) {
1473 dsl_dataset_rele(origin, FTAG);
1474 dsl_dataset_rele(ds, FTAG);
1475 return (SET_ERROR(EINVAL));
1477 if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
1478 fromguid != 0) {
1479 dsl_dataset_rele(origin, FTAG);
1480 dsl_dataset_rele(ds, FTAG);
1481 return (SET_ERROR(ENODEV));
1483 dsl_dataset_rele(origin, FTAG);
1485 dsl_dataset_rele(ds, FTAG);
1486 error = 0;
1488 return (error);
1491 static void
1492 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
1494 dmu_recv_begin_arg_t *drba = arg;
1495 dsl_pool_t *dp = dmu_tx_pool(tx);
1496 objset_t *mos = dp->dp_meta_objset;
1497 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1498 const char *tofs = drba->drba_cookie->drc_tofs;
1499 dsl_dataset_t *ds, *newds;
1500 uint64_t dsobj;
1501 int error;
1502 uint64_t crflags = 0;
1504 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
1505 crflags |= DS_FLAG_CI_DATASET;
1507 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1508 if (error == 0) {
1509 /* create temporary clone */
1510 dsl_dataset_t *snap = NULL;
1511 if (drba->drba_snapobj != 0) {
1512 VERIFY0(dsl_dataset_hold_obj(dp,
1513 drba->drba_snapobj, FTAG, &snap));
1515 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
1516 snap, crflags, drba->drba_cred, tx);
1517 if (drba->drba_snapobj != 0)
1518 dsl_dataset_rele(snap, FTAG);
1519 dsl_dataset_rele(ds, FTAG);
1520 } else {
1521 dsl_dir_t *dd;
1522 const char *tail;
1523 dsl_dataset_t *origin = NULL;
1525 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
1527 if (drba->drba_origin != NULL) {
1528 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
1529 FTAG, &origin));
1532 /* Create new dataset. */
1533 dsobj = dsl_dataset_create_sync(dd,
1534 strrchr(tofs, '/') + 1,
1535 origin, crflags, drba->drba_cred, tx);
1536 if (origin != NULL)
1537 dsl_dataset_rele(origin, FTAG);
1538 dsl_dir_rele(dd, FTAG);
1539 drba->drba_cookie->drc_newfs = B_TRUE;
1541 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds));
1543 if (drba->drba_cookie->drc_resumable) {
1544 dsl_dataset_zapify(newds, tx);
1545 if (drrb->drr_fromguid != 0) {
1546 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
1547 8, 1, &drrb->drr_fromguid, tx));
1549 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
1550 8, 1, &drrb->drr_toguid, tx));
1551 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1552 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
1553 uint64_t one = 1;
1554 uint64_t zero = 0;
1555 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
1556 8, 1, &one, tx));
1557 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
1558 8, 1, &zero, tx));
1559 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
1560 8, 1, &zero, tx));
1561 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1562 DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
1563 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
1564 8, 1, &one, tx));
1566 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1567 DMU_BACKUP_FEATURE_EMBED_DATA) {
1568 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
1569 8, 1, &one, tx));
1571 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1572 DMU_BACKUP_FEATURE_COMPRESSED) {
1573 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
1574 8, 1, &one, tx));
1578 dmu_buf_will_dirty(newds->ds_dbuf, tx);
1579 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1582 * If we actually created a non-clone, we need to create the
1583 * objset in our new dataset.
1585 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
1586 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) {
1587 (void) dmu_objset_create_impl(dp->dp_spa,
1588 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1590 rrw_exit(&newds->ds_bp_rwlock, FTAG);
1592 drba->drba_cookie->drc_ds = newds;
1594 spa_history_log_internal_ds(newds, "receive", tx, "");
1597 static int
1598 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1600 dmu_recv_begin_arg_t *drba = arg;
1601 dsl_pool_t *dp = dmu_tx_pool(tx);
1602 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1603 int error;
1604 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1605 dsl_dataset_t *ds;
1606 const char *tofs = drba->drba_cookie->drc_tofs;
1608 /* already checked */
1609 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1610 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
1612 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1613 DMU_COMPOUNDSTREAM ||
1614 drrb->drr_type >= DMU_OST_NUMTYPES)
1615 return (SET_ERROR(EINVAL));
1617 /* Verify pool version supports SA if SA_SPILL feature set */
1618 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1619 spa_version(dp->dp_spa) < SPA_VERSION_SA)
1620 return (SET_ERROR(ENOTSUP));
1623 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1624 * record to a plain WRITE record, so the pool must have the
1625 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1626 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
1628 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1629 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1630 return (SET_ERROR(ENOTSUP));
1631 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
1632 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1633 return (SET_ERROR(ENOTSUP));
1635 /* 6 extra bytes for /%recv */
1636 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1638 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1639 tofs, recv_clone_name);
1641 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1642 /* %recv does not exist; continue in tofs */
1643 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1644 if (error != 0)
1645 return (error);
1648 /* check that ds is marked inconsistent */
1649 if (!DS_IS_INCONSISTENT(ds)) {
1650 dsl_dataset_rele(ds, FTAG);
1651 return (SET_ERROR(EINVAL));
1654 /* check that there is resuming data, and that the toguid matches */
1655 if (!dsl_dataset_is_zapified(ds)) {
1656 dsl_dataset_rele(ds, FTAG);
1657 return (SET_ERROR(EINVAL));
1659 uint64_t val;
1660 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1661 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1662 if (error != 0 || drrb->drr_toguid != val) {
1663 dsl_dataset_rele(ds, FTAG);
1664 return (SET_ERROR(EINVAL));
1668 * Check if the receive is still running. If so, it will be owned.
1669 * Note that nothing else can own the dataset (e.g. after the receive
1670 * fails) because it will be marked inconsistent.
1672 if (dsl_dataset_has_owner(ds)) {
1673 dsl_dataset_rele(ds, FTAG);
1674 return (SET_ERROR(EBUSY));
1677 /* There should not be any snapshots of this fs yet. */
1678 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1679 dsl_dataset_rele(ds, FTAG);
1680 return (SET_ERROR(EINVAL));
1684 * Note: resume point will be checked when we process the first WRITE
1685 * record.
1688 /* check that the origin matches */
1689 val = 0;
1690 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1691 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1692 if (drrb->drr_fromguid != val) {
1693 dsl_dataset_rele(ds, FTAG);
1694 return (SET_ERROR(EINVAL));
1697 dsl_dataset_rele(ds, FTAG);
1698 return (0);
1701 static void
1702 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1704 dmu_recv_begin_arg_t *drba = arg;
1705 dsl_pool_t *dp = dmu_tx_pool(tx);
1706 const char *tofs = drba->drba_cookie->drc_tofs;
1707 dsl_dataset_t *ds;
1708 uint64_t dsobj;
1709 /* 6 extra bytes for /%recv */
1710 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1712 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1713 tofs, recv_clone_name);
1715 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1716 /* %recv does not exist; continue in tofs */
1717 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds));
1718 drba->drba_cookie->drc_newfs = B_TRUE;
1721 /* clear the inconsistent flag so that we can own it */
1722 ASSERT(DS_IS_INCONSISTENT(ds));
1723 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1724 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
1725 dsobj = ds->ds_object;
1726 dsl_dataset_rele(ds, FTAG);
1728 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds));
1730 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1731 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
1733 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1734 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)));
1735 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1737 drba->drba_cookie->drc_ds = ds;
1739 spa_history_log_internal_ds(ds, "resume receive", tx, "");
1743 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1744 * succeeds; otherwise we will leak the holds on the datasets.
1747 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1748 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc)
1750 dmu_recv_begin_arg_t drba = { 0 };
1752 bzero(drc, sizeof (dmu_recv_cookie_t));
1753 drc->drc_drr_begin = drr_begin;
1754 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1755 drc->drc_tosnap = tosnap;
1756 drc->drc_tofs = tofs;
1757 drc->drc_force = force;
1758 drc->drc_resumable = resumable;
1759 drc->drc_cred = CRED();
1760 drc->drc_clone = (origin != NULL);
1762 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1763 drc->drc_byteswap = B_TRUE;
1764 (void) fletcher_4_incremental_byteswap(drr_begin,
1765 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1766 byteswap_record(drr_begin);
1767 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1768 (void) fletcher_4_incremental_native(drr_begin,
1769 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1770 } else {
1771 return (SET_ERROR(EINVAL));
1774 drba.drba_origin = origin;
1775 drba.drba_cookie = drc;
1776 drba.drba_cred = CRED();
1778 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1779 DMU_BACKUP_FEATURE_RESUMING) {
1780 return (dsl_sync_task(tofs,
1781 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1782 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1783 } else {
1784 return (dsl_sync_task(tofs,
1785 dmu_recv_begin_check, dmu_recv_begin_sync,
1786 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1790 struct receive_record_arg {
1791 dmu_replay_record_t header;
1792 void *payload; /* Pointer to a buffer containing the payload */
1794 * If the record is a write, pointer to the arc_buf_t containing the
1795 * payload.
1797 arc_buf_t *write_buf;
1798 int payload_size;
1799 uint64_t bytes_read; /* bytes read from stream when record created */
1800 boolean_t eos_marker; /* Marks the end of the stream */
1801 bqueue_node_t node;
1804 struct receive_writer_arg {
1805 objset_t *os;
1806 boolean_t byteswap;
1807 bqueue_t q;
1810 * These three args are used to signal to the main thread that we're
1811 * done.
1813 kmutex_t mutex;
1814 kcondvar_t cv;
1815 boolean_t done;
1817 int err;
1818 /* A map from guid to dataset to help handle dedup'd streams. */
1819 avl_tree_t *guid_to_ds_map;
1820 boolean_t resumable;
1821 uint64_t last_object;
1822 uint64_t last_offset;
1823 uint64_t max_object; /* highest object ID referenced in stream */
1824 uint64_t bytes_read; /* bytes read when current record created */
1827 struct objlist {
1828 list_t list; /* List of struct receive_objnode. */
1830 * Last object looked up. Used to assert that objects are being looked
1831 * up in ascending order.
1833 uint64_t last_lookup;
1836 struct receive_objnode {
1837 list_node_t node;
1838 uint64_t object;
1841 struct receive_arg {
1842 objset_t *os;
1843 vnode_t *vp; /* The vnode to read the stream from */
1844 uint64_t voff; /* The current offset in the stream */
1845 uint64_t bytes_read;
1847 * A record that has had its payload read in, but hasn't yet been handed
1848 * off to the worker thread.
1850 struct receive_record_arg *rrd;
1851 /* A record that has had its header read in, but not its payload. */
1852 struct receive_record_arg *next_rrd;
1853 zio_cksum_t cksum;
1854 zio_cksum_t prev_cksum;
1855 int err;
1856 boolean_t byteswap;
1857 /* Sorted list of objects not to issue prefetches for. */
1858 struct objlist ignore_objlist;
1861 typedef struct guid_map_entry {
1862 uint64_t guid;
1863 dsl_dataset_t *gme_ds;
1864 avl_node_t avlnode;
1865 } guid_map_entry_t;
1867 static int
1868 guid_compare(const void *arg1, const void *arg2)
1870 const guid_map_entry_t *gmep1 = arg1;
1871 const guid_map_entry_t *gmep2 = arg2;
1873 if (gmep1->guid < gmep2->guid)
1874 return (-1);
1875 else if (gmep1->guid > gmep2->guid)
1876 return (1);
1877 return (0);
1880 static void
1881 free_guid_map_onexit(void *arg)
1883 avl_tree_t *ca = arg;
1884 void *cookie = NULL;
1885 guid_map_entry_t *gmep;
1887 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
1888 dsl_dataset_long_rele(gmep->gme_ds, gmep);
1889 dsl_dataset_rele(gmep->gme_ds, gmep);
1890 kmem_free(gmep, sizeof (guid_map_entry_t));
1892 avl_destroy(ca);
1893 kmem_free(ca, sizeof (avl_tree_t));
1896 static int
1897 receive_read(struct receive_arg *ra, int len, void *buf)
1899 int done = 0;
1902 * The code doesn't rely on this (lengths being multiples of 8). See
1903 * comment in dump_bytes.
1905 ASSERT0(len % 8);
1907 while (done < len) {
1908 ssize_t resid;
1910 ra->err = vn_rdwr(UIO_READ, ra->vp,
1911 (char *)buf + done, len - done,
1912 ra->voff, UIO_SYSSPACE, FAPPEND,
1913 RLIM64_INFINITY, CRED(), &resid);
1915 if (resid == len - done) {
1917 * Note: ECKSUM indicates that the receive
1918 * was interrupted and can potentially be resumed.
1920 ra->err = SET_ERROR(ECKSUM);
1922 ra->voff += len - done - resid;
1923 done = len - resid;
1924 if (ra->err != 0)
1925 return (ra->err);
1928 ra->bytes_read += len;
1930 ASSERT3U(done, ==, len);
1931 return (0);
1934 static void
1935 byteswap_record(dmu_replay_record_t *drr)
1937 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
1938 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
1939 drr->drr_type = BSWAP_32(drr->drr_type);
1940 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
1942 switch (drr->drr_type) {
1943 case DRR_BEGIN:
1944 DO64(drr_begin.drr_magic);
1945 DO64(drr_begin.drr_versioninfo);
1946 DO64(drr_begin.drr_creation_time);
1947 DO32(drr_begin.drr_type);
1948 DO32(drr_begin.drr_flags);
1949 DO64(drr_begin.drr_toguid);
1950 DO64(drr_begin.drr_fromguid);
1951 break;
1952 case DRR_OBJECT:
1953 DO64(drr_object.drr_object);
1954 DO32(drr_object.drr_type);
1955 DO32(drr_object.drr_bonustype);
1956 DO32(drr_object.drr_blksz);
1957 DO32(drr_object.drr_bonuslen);
1958 DO64(drr_object.drr_toguid);
1959 break;
1960 case DRR_FREEOBJECTS:
1961 DO64(drr_freeobjects.drr_firstobj);
1962 DO64(drr_freeobjects.drr_numobjs);
1963 DO64(drr_freeobjects.drr_toguid);
1964 break;
1965 case DRR_WRITE:
1966 DO64(drr_write.drr_object);
1967 DO32(drr_write.drr_type);
1968 DO64(drr_write.drr_offset);
1969 DO64(drr_write.drr_logical_size);
1970 DO64(drr_write.drr_toguid);
1971 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
1972 DO64(drr_write.drr_key.ddk_prop);
1973 DO64(drr_write.drr_compressed_size);
1974 break;
1975 case DRR_WRITE_BYREF:
1976 DO64(drr_write_byref.drr_object);
1977 DO64(drr_write_byref.drr_offset);
1978 DO64(drr_write_byref.drr_length);
1979 DO64(drr_write_byref.drr_toguid);
1980 DO64(drr_write_byref.drr_refguid);
1981 DO64(drr_write_byref.drr_refobject);
1982 DO64(drr_write_byref.drr_refoffset);
1983 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
1984 drr_key.ddk_cksum);
1985 DO64(drr_write_byref.drr_key.ddk_prop);
1986 break;
1987 case DRR_WRITE_EMBEDDED:
1988 DO64(drr_write_embedded.drr_object);
1989 DO64(drr_write_embedded.drr_offset);
1990 DO64(drr_write_embedded.drr_length);
1991 DO64(drr_write_embedded.drr_toguid);
1992 DO32(drr_write_embedded.drr_lsize);
1993 DO32(drr_write_embedded.drr_psize);
1994 break;
1995 case DRR_FREE:
1996 DO64(drr_free.drr_object);
1997 DO64(drr_free.drr_offset);
1998 DO64(drr_free.drr_length);
1999 DO64(drr_free.drr_toguid);
2000 break;
2001 case DRR_SPILL:
2002 DO64(drr_spill.drr_object);
2003 DO64(drr_spill.drr_length);
2004 DO64(drr_spill.drr_toguid);
2005 break;
2006 case DRR_END:
2007 DO64(drr_end.drr_toguid);
2008 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
2009 break;
2012 if (drr->drr_type != DRR_BEGIN) {
2013 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
2016 #undef DO64
2017 #undef DO32
2020 static inline uint8_t
2021 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
2023 if (bonus_type == DMU_OT_SA) {
2024 return (1);
2025 } else {
2026 return (1 +
2027 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT));
2031 static void
2032 save_resume_state(struct receive_writer_arg *rwa,
2033 uint64_t object, uint64_t offset, dmu_tx_t *tx)
2035 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
2037 if (!rwa->resumable)
2038 return;
2041 * We use ds_resume_bytes[] != 0 to indicate that we need to
2042 * update this on disk, so it must not be 0.
2044 ASSERT(rwa->bytes_read != 0);
2047 * We only resume from write records, which have a valid
2048 * (non-meta-dnode) object number.
2050 ASSERT(object != 0);
2053 * For resuming to work correctly, we must receive records in order,
2054 * sorted by object,offset. This is checked by the callers, but
2055 * assert it here for good measure.
2057 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
2058 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
2059 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
2060 ASSERT3U(rwa->bytes_read, >=,
2061 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
2063 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
2064 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
2065 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
2068 static int
2069 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
2070 void *data)
2072 dmu_object_info_t doi;
2073 dmu_tx_t *tx;
2074 uint64_t object;
2075 int err;
2077 if (drro->drr_type == DMU_OT_NONE ||
2078 !DMU_OT_IS_VALID(drro->drr_type) ||
2079 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
2080 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
2081 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
2082 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
2083 drro->drr_blksz < SPA_MINBLOCKSIZE ||
2084 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
2085 drro->drr_bonuslen > DN_MAX_BONUSLEN) {
2086 return (SET_ERROR(EINVAL));
2089 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
2091 if (err != 0 && err != ENOENT)
2092 return (SET_ERROR(EINVAL));
2093 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
2095 if (drro->drr_object > rwa->max_object)
2096 rwa->max_object = drro->drr_object;
2099 * If we are losing blkptrs or changing the block size this must
2100 * be a new file instance. We must clear out the previous file
2101 * contents before we can change this type of metadata in the dnode.
2103 if (err == 0) {
2104 int nblkptr;
2106 nblkptr = deduce_nblkptr(drro->drr_bonustype,
2107 drro->drr_bonuslen);
2109 if (drro->drr_blksz != doi.doi_data_block_size ||
2110 nblkptr < doi.doi_nblkptr) {
2111 err = dmu_free_long_range(rwa->os, drro->drr_object,
2112 0, DMU_OBJECT_END);
2113 if (err != 0)
2114 return (SET_ERROR(EINVAL));
2118 tx = dmu_tx_create(rwa->os);
2119 dmu_tx_hold_bonus(tx, object);
2120 err = dmu_tx_assign(tx, TXG_WAIT);
2121 if (err != 0) {
2122 dmu_tx_abort(tx);
2123 return (err);
2126 if (object == DMU_NEW_OBJECT) {
2127 /* currently free, want to be allocated */
2128 err = dmu_object_claim(rwa->os, drro->drr_object,
2129 drro->drr_type, drro->drr_blksz,
2130 drro->drr_bonustype, drro->drr_bonuslen, tx);
2131 } else if (drro->drr_type != doi.doi_type ||
2132 drro->drr_blksz != doi.doi_data_block_size ||
2133 drro->drr_bonustype != doi.doi_bonus_type ||
2134 drro->drr_bonuslen != doi.doi_bonus_size) {
2135 /* currently allocated, but with different properties */
2136 err = dmu_object_reclaim(rwa->os, drro->drr_object,
2137 drro->drr_type, drro->drr_blksz,
2138 drro->drr_bonustype, drro->drr_bonuslen, tx);
2140 if (err != 0) {
2141 dmu_tx_commit(tx);
2142 return (SET_ERROR(EINVAL));
2145 dmu_object_set_checksum(rwa->os, drro->drr_object,
2146 drro->drr_checksumtype, tx);
2147 dmu_object_set_compress(rwa->os, drro->drr_object,
2148 drro->drr_compress, tx);
2150 if (data != NULL) {
2151 dmu_buf_t *db;
2153 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db));
2154 dmu_buf_will_dirty(db, tx);
2156 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2157 bcopy(data, db->db_data, drro->drr_bonuslen);
2158 if (rwa->byteswap) {
2159 dmu_object_byteswap_t byteswap =
2160 DMU_OT_BYTESWAP(drro->drr_bonustype);
2161 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2162 drro->drr_bonuslen);
2164 dmu_buf_rele(db, FTAG);
2166 dmu_tx_commit(tx);
2168 return (0);
2171 /* ARGSUSED */
2172 static int
2173 receive_freeobjects(struct receive_writer_arg *rwa,
2174 struct drr_freeobjects *drrfo)
2176 uint64_t obj;
2177 int next_err = 0;
2179 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2180 return (SET_ERROR(EINVAL));
2182 for (obj = drrfo->drr_firstobj;
2183 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
2184 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2185 int err;
2187 if (dmu_object_info(rwa->os, obj, NULL) != 0)
2188 continue;
2190 err = dmu_free_long_object(rwa->os, obj);
2191 if (err != 0)
2192 return (err);
2194 if (obj > rwa->max_object)
2195 rwa->max_object = obj;
2197 if (next_err != ESRCH)
2198 return (next_err);
2199 return (0);
2202 static int
2203 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
2204 arc_buf_t *abuf)
2206 dmu_tx_t *tx;
2207 int err;
2209 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2210 !DMU_OT_IS_VALID(drrw->drr_type))
2211 return (SET_ERROR(EINVAL));
2214 * For resuming to work, records must be in increasing order
2215 * by (object, offset).
2217 if (drrw->drr_object < rwa->last_object ||
2218 (drrw->drr_object == rwa->last_object &&
2219 drrw->drr_offset < rwa->last_offset)) {
2220 return (SET_ERROR(EINVAL));
2222 rwa->last_object = drrw->drr_object;
2223 rwa->last_offset = drrw->drr_offset;
2225 if (rwa->last_object > rwa->max_object)
2226 rwa->max_object = rwa->last_object;
2228 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
2229 return (SET_ERROR(EINVAL));
2231 tx = dmu_tx_create(rwa->os);
2233 dmu_tx_hold_write(tx, drrw->drr_object,
2234 drrw->drr_offset, drrw->drr_logical_size);
2235 err = dmu_tx_assign(tx, TXG_WAIT);
2236 if (err != 0) {
2237 dmu_tx_abort(tx);
2238 return (err);
2240 if (rwa->byteswap) {
2241 dmu_object_byteswap_t byteswap =
2242 DMU_OT_BYTESWAP(drrw->drr_type);
2243 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
2244 DRR_WRITE_PAYLOAD_SIZE(drrw));
2247 /* use the bonus buf to look up the dnode in dmu_assign_arcbuf */
2248 dmu_buf_t *bonus;
2249 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0)
2250 return (SET_ERROR(EINVAL));
2251 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx);
2254 * Note: If the receive fails, we want the resume stream to start
2255 * with the same record that we last successfully received (as opposed
2256 * to the next record), so that we can verify that we are
2257 * resuming from the correct location.
2259 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2260 dmu_tx_commit(tx);
2261 dmu_buf_rele(bonus, FTAG);
2263 return (0);
2267 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
2268 * streams to refer to a copy of the data that is already on the
2269 * system because it came in earlier in the stream. This function
2270 * finds the earlier copy of the data, and uses that copy instead of
2271 * data from the stream to fulfill this write.
2273 static int
2274 receive_write_byref(struct receive_writer_arg *rwa,
2275 struct drr_write_byref *drrwbr)
2277 dmu_tx_t *tx;
2278 int err;
2279 guid_map_entry_t gmesrch;
2280 guid_map_entry_t *gmep;
2281 avl_index_t where;
2282 objset_t *ref_os = NULL;
2283 dmu_buf_t *dbp;
2285 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
2286 return (SET_ERROR(EINVAL));
2289 * If the GUID of the referenced dataset is different from the
2290 * GUID of the target dataset, find the referenced dataset.
2292 if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
2293 gmesrch.guid = drrwbr->drr_refguid;
2294 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
2295 &where)) == NULL) {
2296 return (SET_ERROR(EINVAL));
2298 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
2299 return (SET_ERROR(EINVAL));
2300 } else {
2301 ref_os = rwa->os;
2304 if (drrwbr->drr_object > rwa->max_object)
2305 rwa->max_object = drrwbr->drr_object;
2307 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
2308 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH);
2309 if (err != 0)
2310 return (err);
2312 tx = dmu_tx_create(rwa->os);
2314 dmu_tx_hold_write(tx, drrwbr->drr_object,
2315 drrwbr->drr_offset, drrwbr->drr_length);
2316 err = dmu_tx_assign(tx, TXG_WAIT);
2317 if (err != 0) {
2318 dmu_tx_abort(tx);
2319 return (err);
2321 dmu_write(rwa->os, drrwbr->drr_object,
2322 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
2323 dmu_buf_rele(dbp, FTAG);
2325 /* See comment in restore_write. */
2326 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
2327 dmu_tx_commit(tx);
2328 return (0);
2331 static int
2332 receive_write_embedded(struct receive_writer_arg *rwa,
2333 struct drr_write_embedded *drrwe, void *data)
2335 dmu_tx_t *tx;
2336 int err;
2338 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2339 return (EINVAL);
2341 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2342 return (EINVAL);
2344 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2345 return (EINVAL);
2346 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2347 return (EINVAL);
2349 if (drrwe->drr_object > rwa->max_object)
2350 rwa->max_object = drrwe->drr_object;
2352 tx = dmu_tx_create(rwa->os);
2354 dmu_tx_hold_write(tx, drrwe->drr_object,
2355 drrwe->drr_offset, drrwe->drr_length);
2356 err = dmu_tx_assign(tx, TXG_WAIT);
2357 if (err != 0) {
2358 dmu_tx_abort(tx);
2359 return (err);
2362 dmu_write_embedded(rwa->os, drrwe->drr_object,
2363 drrwe->drr_offset, data, drrwe->drr_etype,
2364 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2365 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2367 /* See comment in restore_write. */
2368 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2369 dmu_tx_commit(tx);
2370 return (0);
2373 static int
2374 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2375 void *data)
2377 dmu_tx_t *tx;
2378 dmu_buf_t *db, *db_spill;
2379 int err;
2381 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2382 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2383 return (SET_ERROR(EINVAL));
2385 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2386 return (SET_ERROR(EINVAL));
2388 if (drrs->drr_object > rwa->max_object)
2389 rwa->max_object = drrs->drr_object;
2391 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2392 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) {
2393 dmu_buf_rele(db, FTAG);
2394 return (err);
2397 tx = dmu_tx_create(rwa->os);
2399 dmu_tx_hold_spill(tx, db->db_object);
2401 err = dmu_tx_assign(tx, TXG_WAIT);
2402 if (err != 0) {
2403 dmu_buf_rele(db, FTAG);
2404 dmu_buf_rele(db_spill, FTAG);
2405 dmu_tx_abort(tx);
2406 return (err);
2408 dmu_buf_will_dirty(db_spill, tx);
2410 if (db_spill->db_size < drrs->drr_length)
2411 VERIFY(0 == dbuf_spill_set_blksz(db_spill,
2412 drrs->drr_length, tx));
2413 bcopy(data, db_spill->db_data, drrs->drr_length);
2415 dmu_buf_rele(db, FTAG);
2416 dmu_buf_rele(db_spill, FTAG);
2418 dmu_tx_commit(tx);
2419 return (0);
2422 /* ARGSUSED */
2423 static int
2424 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2426 int err;
2428 if (drrf->drr_length != -1ULL &&
2429 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2430 return (SET_ERROR(EINVAL));
2432 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2433 return (SET_ERROR(EINVAL));
2435 if (drrf->drr_object > rwa->max_object)
2436 rwa->max_object = drrf->drr_object;
2438 err = dmu_free_long_range(rwa->os, drrf->drr_object,
2439 drrf->drr_offset, drrf->drr_length);
2441 return (err);
2444 /* used to destroy the drc_ds on error */
2445 static void
2446 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2448 if (drc->drc_resumable) {
2449 /* wait for our resume state to be written to disk */
2450 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0);
2451 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2452 } else {
2453 char name[ZFS_MAX_DATASET_NAME_LEN];
2454 dsl_dataset_name(drc->drc_ds, name);
2455 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2456 (void) dsl_destroy_head(name);
2460 static void
2461 receive_cksum(struct receive_arg *ra, int len, void *buf)
2463 if (ra->byteswap) {
2464 (void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
2465 } else {
2466 (void) fletcher_4_incremental_native(buf, len, &ra->cksum);
2471 * Read the payload into a buffer of size len, and update the current record's
2472 * payload field.
2473 * Allocate ra->next_rrd and read the next record's header into
2474 * ra->next_rrd->header.
2475 * Verify checksum of payload and next record.
2477 static int
2478 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
2480 int err;
2482 if (len != 0) {
2483 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2484 err = receive_read(ra, len, buf);
2485 if (err != 0)
2486 return (err);
2487 receive_cksum(ra, len, buf);
2489 /* note: rrd is NULL when reading the begin record's payload */
2490 if (ra->rrd != NULL) {
2491 ra->rrd->payload = buf;
2492 ra->rrd->payload_size = len;
2493 ra->rrd->bytes_read = ra->bytes_read;
2497 ra->prev_cksum = ra->cksum;
2499 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
2500 err = receive_read(ra, sizeof (ra->next_rrd->header),
2501 &ra->next_rrd->header);
2502 ra->next_rrd->bytes_read = ra->bytes_read;
2503 if (err != 0) {
2504 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2505 ra->next_rrd = NULL;
2506 return (err);
2508 if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
2509 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2510 ra->next_rrd = NULL;
2511 return (SET_ERROR(EINVAL));
2515 * Note: checksum is of everything up to but not including the
2516 * checksum itself.
2518 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2519 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2520 receive_cksum(ra,
2521 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2522 &ra->next_rrd->header);
2524 zio_cksum_t cksum_orig =
2525 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2526 zio_cksum_t *cksump =
2527 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2529 if (ra->byteswap)
2530 byteswap_record(&ra->next_rrd->header);
2532 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2533 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
2534 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2535 ra->next_rrd = NULL;
2536 return (SET_ERROR(ECKSUM));
2539 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
2541 return (0);
2544 static void
2545 objlist_create(struct objlist *list)
2547 list_create(&list->list, sizeof (struct receive_objnode),
2548 offsetof(struct receive_objnode, node));
2549 list->last_lookup = 0;
2552 static void
2553 objlist_destroy(struct objlist *list)
2555 for (struct receive_objnode *n = list_remove_head(&list->list);
2556 n != NULL; n = list_remove_head(&list->list)) {
2557 kmem_free(n, sizeof (*n));
2559 list_destroy(&list->list);
2563 * This function looks through the objlist to see if the specified object number
2564 * is contained in the objlist. In the process, it will remove all object
2565 * numbers in the list that are smaller than the specified object number. Thus,
2566 * any lookup of an object number smaller than a previously looked up object
2567 * number will always return false; therefore, all lookups should be done in
2568 * ascending order.
2570 static boolean_t
2571 objlist_exists(struct objlist *list, uint64_t object)
2573 struct receive_objnode *node = list_head(&list->list);
2574 ASSERT3U(object, >=, list->last_lookup);
2575 list->last_lookup = object;
2576 while (node != NULL && node->object < object) {
2577 VERIFY3P(node, ==, list_remove_head(&list->list));
2578 kmem_free(node, sizeof (*node));
2579 node = list_head(&list->list);
2581 return (node != NULL && node->object == object);
2585 * The objlist is a list of object numbers stored in ascending order. However,
2586 * the insertion of new object numbers does not seek out the correct location to
2587 * store a new object number; instead, it appends it to the list for simplicity.
2588 * Thus, any users must take care to only insert new object numbers in ascending
2589 * order.
2591 static void
2592 objlist_insert(struct objlist *list, uint64_t object)
2594 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
2595 node->object = object;
2596 #ifdef ZFS_DEBUG
2597 struct receive_objnode *last_object = list_tail(&list->list);
2598 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
2599 ASSERT3U(node->object, >, last_objnum);
2600 #endif
2601 list_insert_tail(&list->list, node);
2605 * Issue the prefetch reads for any necessary indirect blocks.
2607 * We use the object ignore list to tell us whether or not to issue prefetches
2608 * for a given object. We do this for both correctness (in case the blocksize
2609 * of an object has changed) and performance (if the object doesn't exist, don't
2610 * needlessly try to issue prefetches). We also trim the list as we go through
2611 * the stream to prevent it from growing to an unbounded size.
2613 * The object numbers within will always be in sorted order, and any write
2614 * records we see will also be in sorted order, but they're not sorted with
2615 * respect to each other (i.e. we can get several object records before
2616 * receiving each object's write records). As a result, once we've reached a
2617 * given object number, we can safely remove any reference to lower object
2618 * numbers in the ignore list. In practice, we receive up to 32 object records
2619 * before receiving write records, so the list can have up to 32 nodes in it.
2621 /* ARGSUSED */
2622 static void
2623 receive_read_prefetch(struct receive_arg *ra,
2624 uint64_t object, uint64_t offset, uint64_t length)
2626 if (!objlist_exists(&ra->ignore_objlist, object)) {
2627 dmu_prefetch(ra->os, object, 1, offset, length,
2628 ZIO_PRIORITY_SYNC_READ);
2633 * Read records off the stream, issuing any necessary prefetches.
2635 static int
2636 receive_read_record(struct receive_arg *ra)
2638 int err;
2640 switch (ra->rrd->header.drr_type) {
2641 case DRR_OBJECT:
2643 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
2644 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8);
2645 void *buf = kmem_zalloc(size, KM_SLEEP);
2646 dmu_object_info_t doi;
2647 err = receive_read_payload_and_next_header(ra, size, buf);
2648 if (err != 0) {
2649 kmem_free(buf, size);
2650 return (err);
2652 err = dmu_object_info(ra->os, drro->drr_object, &doi);
2654 * See receive_read_prefetch for an explanation why we're
2655 * storing this object in the ignore_obj_list.
2657 if (err == ENOENT ||
2658 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2659 objlist_insert(&ra->ignore_objlist, drro->drr_object);
2660 err = 0;
2662 return (err);
2664 case DRR_FREEOBJECTS:
2666 err = receive_read_payload_and_next_header(ra, 0, NULL);
2667 return (err);
2669 case DRR_WRITE:
2671 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
2672 arc_buf_t *abuf;
2673 boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type);
2674 if (DRR_WRITE_COMPRESSED(drrw)) {
2675 ASSERT3U(drrw->drr_compressed_size, >, 0);
2676 ASSERT3U(drrw->drr_logical_size, >=,
2677 drrw->drr_compressed_size);
2678 ASSERT(!is_meta);
2679 abuf = arc_loan_compressed_buf(
2680 dmu_objset_spa(ra->os),
2681 drrw->drr_compressed_size, drrw->drr_logical_size,
2682 drrw->drr_compressiontype);
2683 } else {
2684 abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2685 is_meta, drrw->drr_logical_size);
2688 err = receive_read_payload_and_next_header(ra,
2689 DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data);
2690 if (err != 0) {
2691 dmu_return_arcbuf(abuf);
2692 return (err);
2694 ra->rrd->write_buf = abuf;
2695 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
2696 drrw->drr_logical_size);
2697 return (err);
2699 case DRR_WRITE_BYREF:
2701 struct drr_write_byref *drrwb =
2702 &ra->rrd->header.drr_u.drr_write_byref;
2703 err = receive_read_payload_and_next_header(ra, 0, NULL);
2704 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2705 drrwb->drr_length);
2706 return (err);
2708 case DRR_WRITE_EMBEDDED:
2710 struct drr_write_embedded *drrwe =
2711 &ra->rrd->header.drr_u.drr_write_embedded;
2712 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2713 void *buf = kmem_zalloc(size, KM_SLEEP);
2715 err = receive_read_payload_and_next_header(ra, size, buf);
2716 if (err != 0) {
2717 kmem_free(buf, size);
2718 return (err);
2721 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2722 drrwe->drr_length);
2723 return (err);
2725 case DRR_FREE:
2728 * It might be beneficial to prefetch indirect blocks here, but
2729 * we don't really have the data to decide for sure.
2731 err = receive_read_payload_and_next_header(ra, 0, NULL);
2732 return (err);
2734 case DRR_END:
2736 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2737 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2738 return (SET_ERROR(ECKSUM));
2739 return (0);
2741 case DRR_SPILL:
2743 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2744 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP);
2745 err = receive_read_payload_and_next_header(ra, drrs->drr_length,
2746 buf);
2747 if (err != 0)
2748 kmem_free(buf, drrs->drr_length);
2749 return (err);
2751 default:
2752 return (SET_ERROR(EINVAL));
2757 * Commit the records to the pool.
2759 static int
2760 receive_process_record(struct receive_writer_arg *rwa,
2761 struct receive_record_arg *rrd)
2763 int err;
2765 /* Processing in order, therefore bytes_read should be increasing. */
2766 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2767 rwa->bytes_read = rrd->bytes_read;
2769 switch (rrd->header.drr_type) {
2770 case DRR_OBJECT:
2772 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2773 err = receive_object(rwa, drro, rrd->payload);
2774 kmem_free(rrd->payload, rrd->payload_size);
2775 rrd->payload = NULL;
2776 return (err);
2778 case DRR_FREEOBJECTS:
2780 struct drr_freeobjects *drrfo =
2781 &rrd->header.drr_u.drr_freeobjects;
2782 return (receive_freeobjects(rwa, drrfo));
2784 case DRR_WRITE:
2786 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2787 err = receive_write(rwa, drrw, rrd->write_buf);
2788 /* if receive_write() is successful, it consumes the arc_buf */
2789 if (err != 0)
2790 dmu_return_arcbuf(rrd->write_buf);
2791 rrd->write_buf = NULL;
2792 rrd->payload = NULL;
2793 return (err);
2795 case DRR_WRITE_BYREF:
2797 struct drr_write_byref *drrwbr =
2798 &rrd->header.drr_u.drr_write_byref;
2799 return (receive_write_byref(rwa, drrwbr));
2801 case DRR_WRITE_EMBEDDED:
2803 struct drr_write_embedded *drrwe =
2804 &rrd->header.drr_u.drr_write_embedded;
2805 err = receive_write_embedded(rwa, drrwe, rrd->payload);
2806 kmem_free(rrd->payload, rrd->payload_size);
2807 rrd->payload = NULL;
2808 return (err);
2810 case DRR_FREE:
2812 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2813 return (receive_free(rwa, drrf));
2815 case DRR_SPILL:
2817 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2818 err = receive_spill(rwa, drrs, rrd->payload);
2819 kmem_free(rrd->payload, rrd->payload_size);
2820 rrd->payload = NULL;
2821 return (err);
2823 default:
2824 return (SET_ERROR(EINVAL));
2829 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2830 * receive_process_record When we're done, signal the main thread and exit.
2832 static void
2833 receive_writer_thread(void *arg)
2835 struct receive_writer_arg *rwa = arg;
2836 struct receive_record_arg *rrd;
2837 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2838 rrd = bqueue_dequeue(&rwa->q)) {
2840 * If there's an error, the main thread will stop putting things
2841 * on the queue, but we need to clear everything in it before we
2842 * can exit.
2844 if (rwa->err == 0) {
2845 rwa->err = receive_process_record(rwa, rrd);
2846 } else if (rrd->write_buf != NULL) {
2847 dmu_return_arcbuf(rrd->write_buf);
2848 rrd->write_buf = NULL;
2849 rrd->payload = NULL;
2850 } else if (rrd->payload != NULL) {
2851 kmem_free(rrd->payload, rrd->payload_size);
2852 rrd->payload = NULL;
2854 kmem_free(rrd, sizeof (*rrd));
2856 kmem_free(rrd, sizeof (*rrd));
2857 mutex_enter(&rwa->mutex);
2858 rwa->done = B_TRUE;
2859 cv_signal(&rwa->cv);
2860 mutex_exit(&rwa->mutex);
2861 thread_exit();
2864 static int
2865 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2867 uint64_t val;
2868 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2869 uint64_t dsobj = dmu_objset_id(ra->os);
2870 uint64_t resume_obj, resume_off;
2872 if (nvlist_lookup_uint64(begin_nvl,
2873 "resume_object", &resume_obj) != 0 ||
2874 nvlist_lookup_uint64(begin_nvl,
2875 "resume_offset", &resume_off) != 0) {
2876 return (SET_ERROR(EINVAL));
2878 VERIFY0(zap_lookup(mos, dsobj,
2879 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2880 if (resume_obj != val)
2881 return (SET_ERROR(EINVAL));
2882 VERIFY0(zap_lookup(mos, dsobj,
2883 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2884 if (resume_off != val)
2885 return (SET_ERROR(EINVAL));
2887 return (0);
2891 * Read in the stream's records, one by one, and apply them to the pool. There
2892 * are two threads involved; the thread that calls this function will spin up a
2893 * worker thread, read the records off the stream one by one, and issue
2894 * prefetches for any necessary indirect blocks. It will then push the records
2895 * onto an internal blocking queue. The worker thread will pull the records off
2896 * the queue, and actually write the data into the DMU. This way, the worker
2897 * thread doesn't have to wait for reads to complete, since everything it needs
2898 * (the indirect blocks) will be prefetched.
2900 * NB: callers *must* call dmu_recv_end() if this succeeds.
2903 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
2904 int cleanup_fd, uint64_t *action_handlep)
2906 int err = 0;
2907 struct receive_arg ra = { 0 };
2908 struct receive_writer_arg rwa = { 0 };
2909 int featureflags;
2910 nvlist_t *begin_nvl = NULL;
2912 ra.byteswap = drc->drc_byteswap;
2913 ra.cksum = drc->drc_cksum;
2914 ra.vp = vp;
2915 ra.voff = *voffp;
2917 if (dsl_dataset_is_zapified(drc->drc_ds)) {
2918 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2919 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2920 sizeof (ra.bytes_read), 1, &ra.bytes_read);
2923 objlist_create(&ra.ignore_objlist);
2925 /* these were verified in dmu_recv_begin */
2926 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2927 DMU_SUBSTREAM);
2928 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2931 * Open the objset we are modifying.
2933 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os));
2935 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2937 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2939 /* if this stream is dedup'ed, set up the avl tree for guid mapping */
2940 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2941 minor_t minor;
2943 if (cleanup_fd == -1) {
2944 ra.err = SET_ERROR(EBADF);
2945 goto out;
2947 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2948 if (ra.err != 0) {
2949 cleanup_fd = -1;
2950 goto out;
2953 if (*action_handlep == 0) {
2954 rwa.guid_to_ds_map =
2955 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2956 avl_create(rwa.guid_to_ds_map, guid_compare,
2957 sizeof (guid_map_entry_t),
2958 offsetof(guid_map_entry_t, avlnode));
2959 err = zfs_onexit_add_cb(minor,
2960 free_guid_map_onexit, rwa.guid_to_ds_map,
2961 action_handlep);
2962 if (ra.err != 0)
2963 goto out;
2964 } else {
2965 err = zfs_onexit_cb_data(minor, *action_handlep,
2966 (void **)&rwa.guid_to_ds_map);
2967 if (ra.err != 0)
2968 goto out;
2971 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map;
2974 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
2975 void *payload = NULL;
2976 if (payloadlen != 0)
2977 payload = kmem_alloc(payloadlen, KM_SLEEP);
2979 err = receive_read_payload_and_next_header(&ra, payloadlen, payload);
2980 if (err != 0) {
2981 if (payloadlen != 0)
2982 kmem_free(payload, payloadlen);
2983 goto out;
2985 if (payloadlen != 0) {
2986 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
2987 kmem_free(payload, payloadlen);
2988 if (err != 0)
2989 goto out;
2992 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2993 err = resume_check(&ra, begin_nvl);
2994 if (err != 0)
2995 goto out;
2998 (void) bqueue_init(&rwa.q, zfs_recv_queue_length,
2999 offsetof(struct receive_record_arg, node));
3000 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL);
3001 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL);
3002 rwa.os = ra.os;
3003 rwa.byteswap = drc->drc_byteswap;
3004 rwa.resumable = drc->drc_resumable;
3006 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc,
3007 TS_RUN, minclsyspri);
3009 * We're reading rwa.err without locks, which is safe since we are the
3010 * only reader, and the worker thread is the only writer. It's ok if we
3011 * miss a write for an iteration or two of the loop, since the writer
3012 * thread will keep freeing records we send it until we send it an eos
3013 * marker.
3015 * We can leave this loop in 3 ways: First, if rwa.err is
3016 * non-zero. In that case, the writer thread will free the rrd we just
3017 * pushed. Second, if we're interrupted; in that case, either it's the
3018 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd
3019 * has been handed off to the writer thread who will free it. Finally,
3020 * if receive_read_record fails or we're at the end of the stream, then
3021 * we free ra.rrd and exit.
3023 while (rwa.err == 0) {
3024 if (issig(JUSTLOOKING) && issig(FORREAL)) {
3025 err = SET_ERROR(EINTR);
3026 break;
3029 ASSERT3P(ra.rrd, ==, NULL);
3030 ra.rrd = ra.next_rrd;
3031 ra.next_rrd = NULL;
3032 /* Allocates and loads header into ra.next_rrd */
3033 err = receive_read_record(&ra);
3035 if (ra.rrd->header.drr_type == DRR_END || err != 0) {
3036 kmem_free(ra.rrd, sizeof (*ra.rrd));
3037 ra.rrd = NULL;
3038 break;
3041 bqueue_enqueue(&rwa.q, ra.rrd,
3042 sizeof (struct receive_record_arg) + ra.rrd->payload_size);
3043 ra.rrd = NULL;
3045 if (ra.next_rrd == NULL)
3046 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP);
3047 ra.next_rrd->eos_marker = B_TRUE;
3048 bqueue_enqueue(&rwa.q, ra.next_rrd, 1);
3050 mutex_enter(&rwa.mutex);
3051 while (!rwa.done) {
3052 cv_wait(&rwa.cv, &rwa.mutex);
3054 mutex_exit(&rwa.mutex);
3057 * If we are receiving a full stream as a clone, all object IDs which
3058 * are greater than the maximum ID referenced in the stream are
3059 * by definition unused and must be freed. Note that it's possible that
3060 * we've resumed this send and the first record we received was the END
3061 * record. In that case, max_object would be 0, but we shouldn't start
3062 * freeing all objects from there; instead we should start from the
3063 * resumeobj.
3065 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3066 uint64_t obj;
3067 if (nvlist_lookup_uint64(begin_nvl, "resume_object", &obj) != 0)
3068 obj = 0;
3069 if (rwa.max_object > obj)
3070 obj = rwa.max_object;
3071 obj++;
3072 int free_err = 0;
3073 int next_err = 0;
3075 while (next_err == 0) {
3076 free_err = dmu_free_long_object(rwa.os, obj);
3077 if (free_err != 0 && free_err != ENOENT)
3078 break;
3080 next_err = dmu_object_next(rwa.os, &obj, FALSE, 0);
3083 if (err == 0) {
3084 if (free_err != 0 && free_err != ENOENT)
3085 err = free_err;
3086 else if (next_err != ESRCH)
3087 err = next_err;
3091 cv_destroy(&rwa.cv);
3092 mutex_destroy(&rwa.mutex);
3093 bqueue_destroy(&rwa.q);
3094 if (err == 0)
3095 err = rwa.err;
3097 out:
3098 nvlist_free(begin_nvl);
3099 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
3100 zfs_onexit_fd_rele(cleanup_fd);
3102 if (err != 0) {
3104 * Clean up references. If receive is not resumable,
3105 * destroy what we created, so we don't leave it in
3106 * the inconsistent state.
3108 dmu_recv_cleanup_ds(drc);
3111 *voffp = ra.voff;
3112 objlist_destroy(&ra.ignore_objlist);
3113 return (err);
3116 static int
3117 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3119 dmu_recv_cookie_t *drc = arg;
3120 dsl_pool_t *dp = dmu_tx_pool(tx);
3121 int error;
3123 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3125 if (!drc->drc_newfs) {
3126 dsl_dataset_t *origin_head;
3128 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3129 if (error != 0)
3130 return (error);
3131 if (drc->drc_force) {
3133 * We will destroy any snapshots in tofs (i.e. before
3134 * origin_head) that are after the origin (which is
3135 * the snap before drc_ds, because drc_ds can not
3136 * have any snaps of its own).
3138 uint64_t obj;
3140 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3141 while (obj !=
3142 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3143 dsl_dataset_t *snap;
3144 error = dsl_dataset_hold_obj(dp, obj, FTAG,
3145 &snap);
3146 if (error != 0)
3147 break;
3148 if (snap->ds_dir != origin_head->ds_dir)
3149 error = SET_ERROR(EINVAL);
3150 if (error == 0) {
3151 error = dsl_destroy_snapshot_check_impl(
3152 snap, B_FALSE);
3154 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3155 dsl_dataset_rele(snap, FTAG);
3156 if (error != 0)
3157 break;
3159 if (error != 0) {
3160 dsl_dataset_rele(origin_head, FTAG);
3161 return (error);
3164 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3165 origin_head, drc->drc_force, drc->drc_owner, tx);
3166 if (error != 0) {
3167 dsl_dataset_rele(origin_head, FTAG);
3168 return (error);
3170 error = dsl_dataset_snapshot_check_impl(origin_head,
3171 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3172 dsl_dataset_rele(origin_head, FTAG);
3173 if (error != 0)
3174 return (error);
3176 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3177 } else {
3178 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3179 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
3181 return (error);
3184 static void
3185 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3187 dmu_recv_cookie_t *drc = arg;
3188 dsl_pool_t *dp = dmu_tx_pool(tx);
3190 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3191 tx, "snap=%s", drc->drc_tosnap);
3193 if (!drc->drc_newfs) {
3194 dsl_dataset_t *origin_head;
3196 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3197 &origin_head));
3199 if (drc->drc_force) {
3201 * Destroy any snapshots of drc_tofs (origin_head)
3202 * after the origin (the snap before drc_ds).
3204 uint64_t obj;
3206 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3207 while (obj !=
3208 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3209 dsl_dataset_t *snap;
3210 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3211 &snap));
3212 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3213 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3214 dsl_destroy_snapshot_sync_impl(snap,
3215 B_FALSE, tx);
3216 dsl_dataset_rele(snap, FTAG);
3219 VERIFY3P(drc->drc_ds->ds_prev, ==,
3220 origin_head->ds_prev);
3222 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3223 origin_head, tx);
3224 dsl_dataset_snapshot_sync_impl(origin_head,
3225 drc->drc_tosnap, tx);
3227 /* set snapshot's creation time and guid */
3228 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3229 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3230 drc->drc_drrb->drr_creation_time;
3231 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3232 drc->drc_drrb->drr_toguid;
3233 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3234 ~DS_FLAG_INCONSISTENT;
3236 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3237 dsl_dataset_phys(origin_head)->ds_flags &=
3238 ~DS_FLAG_INCONSISTENT;
3240 drc->drc_newsnapobj =
3241 dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3243 dsl_dataset_rele(origin_head, FTAG);
3244 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3246 if (drc->drc_owner != NULL)
3247 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3248 } else {
3249 dsl_dataset_t *ds = drc->drc_ds;
3251 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3253 /* set snapshot's creation time and guid */
3254 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3255 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3256 drc->drc_drrb->drr_creation_time;
3257 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3258 drc->drc_drrb->drr_toguid;
3259 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3260 ~DS_FLAG_INCONSISTENT;
3262 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3263 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3264 if (dsl_dataset_has_resume_receive_state(ds)) {
3265 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3266 DS_FIELD_RESUME_FROMGUID, tx);
3267 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3268 DS_FIELD_RESUME_OBJECT, tx);
3269 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3270 DS_FIELD_RESUME_OFFSET, tx);
3271 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3272 DS_FIELD_RESUME_BYTES, tx);
3273 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3274 DS_FIELD_RESUME_TOGUID, tx);
3275 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3276 DS_FIELD_RESUME_TONAME, tx);
3278 drc->drc_newsnapobj =
3279 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3282 * Release the hold from dmu_recv_begin. This must be done before
3283 * we return to open context, so that when we free the dataset's dnode,
3284 * we can evict its bonus buffer.
3286 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
3287 drc->drc_ds = NULL;
3290 static int
3291 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj)
3293 dsl_pool_t *dp;
3294 dsl_dataset_t *snapds;
3295 guid_map_entry_t *gmep;
3296 int err;
3298 ASSERT(guid_map != NULL);
3300 err = dsl_pool_hold(name, FTAG, &dp);
3301 if (err != 0)
3302 return (err);
3303 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
3304 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds);
3305 if (err == 0) {
3306 gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
3307 gmep->gme_ds = snapds;
3308 avl_add(guid_map, gmep);
3309 dsl_dataset_long_hold(snapds, gmep);
3310 } else {
3311 kmem_free(gmep, sizeof (*gmep));
3314 dsl_pool_rele(dp, FTAG);
3315 return (err);
3318 static int dmu_recv_end_modified_blocks = 3;
3320 static int
3321 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3323 #ifdef _KERNEL
3325 * We will be destroying the ds; make sure its origin is unmounted if
3326 * necessary.
3328 char name[ZFS_MAX_DATASET_NAME_LEN];
3329 dsl_dataset_name(drc->drc_ds, name);
3330 zfs_destroy_unmount_origin(name);
3331 #endif
3333 return (dsl_sync_task(drc->drc_tofs,
3334 dmu_recv_end_check, dmu_recv_end_sync, drc,
3335 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3338 static int
3339 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3341 return (dsl_sync_task(drc->drc_tofs,
3342 dmu_recv_end_check, dmu_recv_end_sync, drc,
3343 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3347 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3349 int error;
3351 drc->drc_owner = owner;
3353 if (drc->drc_newfs)
3354 error = dmu_recv_new_end(drc);
3355 else
3356 error = dmu_recv_existing_end(drc);
3358 if (error != 0) {
3359 dmu_recv_cleanup_ds(drc);
3360 } else if (drc->drc_guid_to_ds_map != NULL) {
3361 (void) add_ds_to_guidmap(drc->drc_tofs,
3362 drc->drc_guid_to_ds_map,
3363 drc->drc_newsnapobj);
3365 return (error);
3369 * Return TRUE if this objset is currently being received into.
3371 boolean_t
3372 dmu_objset_is_receiving(objset_t *os)
3374 return (os->os_dsl_dataset != NULL &&
3375 os->os_dsl_dataset->ds_owner == dmu_recv_tag);